

Version 1.12

Aug17, 2016

Copyright Texas Instruments Incorporated

User's Guide

TI FEE Driver User Guide

 2

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such products or services might be or are used. TI’s publication of information
regarding any third party’s products or services does not constitute TI’s approval, license, warranty or
endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices.
Representation or reproduction of this information with alteration voids all warranties provided for an
associated TI product or service is an unfair and deceptive business practice, and TI is neither
responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such
use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm

 3

Preface

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook for working with the TI
FEE Driver. It provides necessary information regarding how to effectively install, build and
use TI FEE Driver in user systems and applications.

It also provides details regarding the TI FEE Driver functionality, the requirements it places
on the hardware and software environment where it can be deployed, how to customize/
configure it etc. It also provides supplementary information regarding steps to be followed
for proper installation/ un-installation of the TI FEE Driver.

Abbreviations

1-1. Table of Abbreviations

Abbreviation Description

TI FEE Driver This is TI coined name for the product.

FEE Flash EEPROM Emulation

 4

Revision History

Version Date Revision History

1.0 09/25/2012 Initial version

1.1 11/12/2012

1.2 03/12/2013 Add more info for datasets

1.3 04/19/2013 Add section Reset Behavior

1.4 06/04/2013 Add new configuration parameters. Add software
revision history.

1.5 07/05/2013 Software revision updated.

1.6 12/04/2013 ReadSync API added. Format API modified.
New Configuration Tag Added.

1.7 05/23/2014 Software Revision History updated.

1.8 06/02/2014 Documentation corrections

1.9 01/21/2015 Update software revision table. New API added for
supporting manual Suspend/Resume of erasing of
sector

1.10 02/13/2015 Update software revision table.

1.11 02/22/2016 Update software revision table. Update
documentation related to FEE errors.

1.12 06/29/2016 Update software revision table. Update
documentation. Replace CRC with checksum.
Added text for unconfigured blocks to copy
parameter.

Software Revision History

Version Date Revision History

00.01.00 08/31/2012 Initial version

00.01.01 10/29/2012 Changes for implementing Error Recovery

00.01.02 11/30/2012 Misra Fixes, Memory segmentation changes

00.01.03 01/14/2013 Changes as requested by Vector. If there is
an immediate erase/invalidate block request

 5

before writing of a block, API should return
the job status as JOB_OK.

00.01.04 02/12/2013 Integration issues fix. Fixed issues regarding
integration of FEE with NvM.

00.01.05 03/04/2013 Added Deleting a block feature

00.01.06 03/11/2013 Added feature: copying of unconfigured
blocks.

00.01.07 03/15/2013 Added feature: Number of 8 bytes writes,
fixed issue with copy blocks.

00.01.08 04/05/2013 Added feature: CRC check for unconfigured
blocks, Main function modified to complete
writes as fast as possible, Added Non polling
mode support.

00.01.09 04/19/2013 Warning removal, Added feature comparison
of data during write.

00.01.10 06/11/2013 Fixed issue with erase sector. Also fixed
issue with 2 EEPROM’s where if one
EEPROM is locked with error condition, other
EEPROM will not get locked.

00.01.11 07/05/2013 Warning removal. Fixed issue with
Fee_manager API, if number of Virtual
Sectors are more than 2.

01.13.00 12/04/2013 Format API modified.
Read Sync API added.
MISRA C fixes.
WriteSync API corrected.
New Configuration Tag Added.

01.13.01 05/23/2014 Data Abort issue fixed.
Unexpected Job Result issue fixed.

01.14.00 05/23/2014 Unexpected Job Result issue fixed.

01.15.00 06/01/2014 Support for new devices
TMS570LC4357/RM57x added.

01.16.00 07/15/2014 Misra warnings removal.

01.16.01 09/12/2014 Manual Suspend/Resume of erasing of
sector added.

01.17.00 10/15/2014 RAM Optimization changes.

01.17.01 10/30/2014 Support for new devices
TMS570LS07xx,TMS570LS09xx,

 6

TMS570LS05xx, RM44Lx added.

01.17.02 02/13/2015 FLEE errata fix for SPNZ215A. Applicable for
TMS570LS04xx, RM42x, TMS570LC43xx,
RM57x, TMS570LS07xx, TMS570LS09xx,
TMS570LS05xx, RM44Lx devices.

1.18.00 10/12/2015 If morethan one data set is config
ured, then a valid block may get invalidated if
multiple valid blocks are present in FEE
memory.Applicable when driver used in
Autosar context.

1.18.01 11/17/2015 In TI_FeeInternal_FeeManager, do not
change the state to IDLE,after completing the
copy operation. Applicable when driver used
in Autosar context.

1.18.02 02/05/2016 Bugfix for “If sector copy operation is
interrupted, during next initialization, FEE
does not read the block offset address
correctly"

1.18.03 06/30/2016 CRC wording changed Checksum since
driver uses checksum algorithm.

1.19.00 08/08/2016 If FEE used a partially erased sector, FEE
can read from unimplemented memory
location. Code changes done to not to use a
partially erased sector. Option “Check
EEPROM Address Range” is removed from
HALCoGen GUI. Address range will always
be checked during read/write.

1.19.01 08/12/2016 Synchronous Write API updated to not to
copy the block which is already copied.
Format API modified to erase all configured
sectors, if multiple sectors are combined to
form a larger virtual sector.
TI_FeeInternal_FeeManager modified to
update block copy status of unconfigured
blocks correctly.
TI_FeeInternal_UpdateBlockOffsetArray
modified to update write addresses correctly,
if FEE did not find a valid write address.
TI_FeeInternal_WriteDataF021 API updated
for LE MCU’s for updating correct ECC.

 7

Contents

Read This First ... 3

Contents ... 7

Table of tables .. 9

Table of figures ... 10

Chapter 1 .. 11

TI FEE Driver Introduction ... 11

1.1 Overview ... 12
1.1.1 Functions supported in the TI FEE Driver .. 12
1.1.2 Other Components ... 13
1.1.3 Development Platform ... 13

Chapter 2 .. 14

TI FEE Driver Design Overview .. 14

Overview ... 14
2.1 Flash EEPROM Emulation Methodology .. 15

2.1.1 Virtual Sector Organization ... 15
2.1.2 Data Block Organization ... 19
2.1.3 Supported Commands ... 21
2.1.4 Status Codes .. 21
2.1.5 Job Result ... 21

Chapter 3 .. 22

File List ... 22

Chapter 4 .. 24

4.1 Error Recovery Implementation .. 24
4.2 Single and Double bit Error Corrections ... 25
4.3 Memory Mapping .. 25
4.4 Build Procedure .. 26
4.5 Symbolic Constants and Enumerated Data types 27
4.6 Data Structures ... 30

4.7.1 Operating Frequency ... 30
4.7.2 Number of Blocks ... 30
4.7.3 Number of Virtual Sectors ... 31
4.7.4 Number of Virtual Sectors for EEP1 ... 31

 8

4.7.5 Number of Non Configured blocks to copy.. 31
4.7.6 Number of Eight byte writes ... 32
4.7.7 Block OverHead ... 32
4.7.8 Page OverHead .. 32
4.7.9 Virtual Sector OverHead ... 32
4.7.10 Virtual Sector Page Size .. 33
4.7.11 Driver Index .. 33
4.7.12 Enable ECC Correction .. 33
4.7.13 Error Correction Handling(Not available for Configuration) 33
4.7.14 Block Write Counter Save .. 34
4.7.15 Enable Checksum ... 34
4.7.16 Number Of EEPs ... 34
4.7.17 Data Select bits .. 35
4.7.18 Check BANK7 address Range .. 35
4.7.19 TI FEE Virtual Sector Configuration ... 35
4.7.20 TI FEE Block Configuration .. 38

4.8 API Classification .. 41
4.8.1 Initialization ... 41
4.8.2 Data Operations ... 42
4.8.3 Information .. 42
4.8.4 Internal Operations .. 43
4.8.5 Error Information and Recovery Operations ... 43
4.8.6 Suspend/Resume Erase Sector .. 43

4.9 Fee Operation Flow ... 44
4.10 API Specification ... 45

4.10.1 TI FEE Driver Functions ... 45
4.11 Privilege Mode access .. 53
4.12 Power Fail Behavior .. 53
4.13 Known Issues / Not supported features ... 54
4.14 Example Configurations .. 54

4.14.1 Four Virtual Sectors on four physical sectors – Single EEPROM 54
4.14.2 Two Virtual Sectors on four physical sectors– Single EEPROM 55
4.14.3 Two Virtual Sectors for each EEPROM on four physical sectors –
Two EEPROM .. 56

 9

Table of tables

1-1. Table of Abbreviations .. 3

Revision History ... 4

Software Revision History ... 4

2.1 Virtual Sector Header States ... 17

2.2 Virtual Sector Header backup States ... 17

2-3. Data Block Header Field Definitions .. 20

2-4. Data Block States ... 20

3-1. TI FEE Driver File List .. 22

3-2. TI FEE HALCoGen™ File List .. 23

4-1. TI FEE Driver Symbolic Constants ... 29

4-2. TI FEE Driver Initialization APIs .. 41

4-3. TI FEE Driver Data Operation APIs .. 42

4-4. TI FEE Driver Information APIs ... 42

4-5. TI FEE Driver Internal Operation APIs ... 43

4-6. TI FEE Driver Error Info and Recovery APIs ... 43

4-7. TI FEE Driver Suspend/Resume Erase sector API... 43

 10

Table of figures

FIGURE 1 VIRTUAL SECTOR ORGANIZATION ... 16
FIGURE 2 VIRTUAL SECTOR HEADER ... 17
FIGURE 3 DATA BLOCK STRUCTURE .. 19
FIGURE 4 DATA BLOCK HEADER -> LOGICAL STRUCTURE ... 19
FIGURE 5 FLOW CHART OF A TYPICAL FEE OPERATION ... 44

 11

Chapter 1

TI FEE Driver Introduction

This chapter introduces the TI FEE Driver to the user by providing a brief overview of the
purpose and construction of the TI FEE Driver along with hardware and software environment
specifics in the context of TI FEE Driver deployment.

 12

1.1 Overview

This section describes the functional scope of the TI FEE Driver and its feature set. It
introduces the TI FEE Driver to the user along with the functional decomposition and run-time
specifics regarding deployment of TI FEE Driver in user’s application.

Many applications require storing small quantities of system related data (e.g., calibration
values, device configuration) in a non-volatile memory, so that it can be used, modified or
reused even after power cycling the system. EEPROMs are primarily used for this purpose.
EEPROMs have the ability to erase and write individual bytes of memory many times over and
the programmed locations retain the data over a long period even when the system is powered
down.

The objective of TI FEE Driver is to provide a set of software functions intended to use a Sector
of on-chip Flash memory as the emulated EEPROM. These software functions are
transparently used by the application program for writing, reading and modifying the data.

• A list of functions supported by the TI FEE Driver can be found below. The primary function
responsible for Fee management is the TI_FeeInternal_FeeManager function. This function
shall operate asynchronously and with little or no user intervention after configuration,
maintaining the Fee structures in Flash memory. This function will be called by
TI_Fee_MainFunction on a cyclic basis when no other pending Fee operations are pending
so that it can perform internal operations.

1.1.1 Functions supported in the TI FEE Driver

The TI FEE Driver provides the following functional services:

 Initialization:

• TI_Fee_Init

 Operations:

• TI_Fee_WriteAsync

• TI_Fee_WriteSync

• TI_Fee_Read

• TI_Fee_ReadSync

• TI_Fee_EraseImmediateBlock

• TI_Fee_InvalidateBlock

• TI_Fee_Shutdown

• TI_Fee_Cancel

• TI_Fee_Format

 Information:

• TI_Fee_GetStatus

• TI_Fee_GetJobResult

• TI_Fee_GetVersionInfo

 13

 Internal Operations:

• TI_Fee_MainFunction

• TI_FeeInternal_FeeManager

Error Information and Recovery:

• TI_FeeErrorCode

• TI_Fee_ErrorRecovery

Suspend/Resume Erase of Sector:

• TI_Fee_SuspendResumeErase

1.1.2 Other Components

The TI FEE Driver requires the following components for complete deployment.

1. TI Fee Configuration Files :

The user needs to generate the following two configuration files using HALCoGen to
deploy and use TI FEE Driver.

a. ti_fee_cfg.h

b. ti_fee_cfg.c

These two files define which Flash sectors to be used for EEPROM
emulation, define Data Blocks ,Block Size and other configuration parameters.

HALCoGen also generates device specific files that defines the memory
mapping for the Flash FEE bank.

2. Flash API library :

The TI FEE Driver uses the Flash API library for performing program/erase
operations. The apprioprate Flash API library depending on the type of Flash
technology has to be included in the application to deploy and use the TI FEE Driver.
For TMS570 devices, F021 library version should be 02.00.00 or greater.

1.1.3 Development Platform

The TI FEE Driver was developed and validated on a system with the following operating
system and software installed

• Operating System : Win7

• Codegeneration tools : TMS570 Code Generation tools 5.0.0

 14

Chapter 2

TI FEE Driver Design
Overview

Overview

This chapter describes the implementation method followed for Flash EEPROM emulation in
the TI FEE Driver.

 15

2.1 Flash EEPROM Emulation Methodology

The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual
Sector is further partitioned into several Data Blocks. A minimum of two Virtual Sectors are
required for Flash EEPROM emulation.

The initialization routine (TI_Fee_Init) identifies which Virtual Sector to be used and marks it as
Active. The data is written to the first empty location in the Active Virtual Sector. If there is
insufficient space in the current Virtual Sector to update the data, it switches over to the next
Virtual Sector and copies all the valid data from the other Data Blocks in the current Virtual
Sector to the new one. After copying all the valid data, the current Virtual Sector is marked as
ready for erase and the new one is marked as Active Virtual Sector. Any new data is now
written into the new Active Virtual Sector and the Virtual Sector which is marked as ready for
erase will be erased in background.

Virtual Sectors and Data Blocks have certain space allocated to maintain the status information
which is described in more detail in the following sections.

2.1.1 Virtual Sector Organization

The Virtual Sector is the basic organizational unit used to partition the EEPROM Emulation
Flash Bank. This structure can contain one or more contiguous Flash Sectors contained
within one Flash Bank. A minimum of 2 Virtual Sectors are required to support the TI FEE
Driver.

The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data
Structure and the remaining space is used for Data Blocks.

a0500301
Highlight

a0500301
Highlight

 16

Virtual Sector Organization

Block 3 Block 5 DS3 Block 2

Block X

Block X

Block n

Block X

Block X Block n

Block X

Block X

Block 5 DS4 Block X

Block 2

Block 3 Block 3 Block 5 DS3 Block 0 Block 1 DS2 Block 3

Block n

Block 3 Block 5 DS4 … Block n

Block X

Block X

Block X

Block X

Block n Block 5 DS4 Block 5 DS3

Block 2

Block 1 DS2

Block n Block5 DS3 … Block 3

Virtual Sector Header

Virtual Sector Header

Virtual
Sector

0

Virtual
Sector

1

Figure 1 Virtual Sector Organization

 17

2.1.1.1 Virtual Sector Header

The Virtual Sector Header consists of two 64bit words (16 bytes) that start at the first
address of a Virtual Sector Structure. The state of the Virtual Sector Structure is
maintained in the Virtual Sector Header.

Figure 2 Virtual Sector Header

The Status Word is the first 64 bit word of the Virtual Sector Header and is used to
indicate the current state of the Virtual Sector.

The following table indicates the various states a Virtual Sector can be in.

State Value
Invalid Virtual Sector 0xFFFFFFFFFFFFFFFF
Empty Virtual Sector 0x0000FFFFFFFFFFFF
Copy Virtual Sector 0x00000000FFFFFFFF
Active Virtual Sector 0x000000000000FFFF
Ready for Erase 0x0000000000000000

 2.1 Virtual Sector Header States

Invalid Virtual Sector: This Virtual Sector is either in process of being erased or has not
yet been initialized.

Empty Virtual Sector: This indicates the Virtual Sector has been erased and can be
used to store data.

Copy Virtual Sector: This indicates that the Data Block Structure is being moved from a
full Virtual Sector to this one to allow for moving of the Active Virtual Sector.

Active Virtual Sector: This Virtual Sector is the active one.

Ready for Erase: This Virtual Sector’s Data Block Structure has been correctly
replicated to a new Virtual Sector and is now ready to be erased and initialized for re-use.

State Value
Copy Virtual Sector 0xFFFFFFFF
Active Virtual Sector 0x00000000

 2.2 Virtual Sector Header backup States

If the normal Virtual sector header is corrupted, then the backup status will be used to
know the Virtual Sector state.

Virtual Sector Information Record is the second 64 bit word in the Virtual Sector header. It
is used to record information needed by the Virtual Sector management algorithm. Currently
the first 4 bits are used to indicate the current version of the Virtual Sector and the next 20
bits are used to indicate the number of times the Virtual Sector has been erased. The erase

32 bit backup 8 bits Reserved
 Status

Version Number
(4 Bits)

Erase Count
(20 bits)

64 bit Virtual Sector Status Word

a0500301
Highlight

a0500301
Highlight

a0500301
Highlight

 18

count is incremented each time the Virtual Sector is erased. The remaining bits are reserved
for future use.

After Virtual Sector header, the next 8 bytes are used to know erase status of the Virtual
Sector. It says, if the erase was started/completed/ready for erase. Next 8 bytes are
reserved.
0x 0000FFFFFFFFFFFF – Erase of other Virtual Sector started
0x 00000000FFFFFFFF – Erase of other Virtual Sector completed
0x000000000000FFFF – Current Virtual Sector is ready for Erase.

 19

2.1.2 Data Block Organization

The Data Block is used to define where the data within a Virtual Sector is mapped. One
or more variables can be within a Data Block based on the user definition. The smallest
amount of data that can be stored within the Data Block is 64 bits. If the Data size
exceeds 64 bits, the Data Packets are added in 64 bit increments. The Data Block
Structure is limited to the size of the Virtual Sector it resides in.
Note: The size of all the Data Blocks cannot exceed the Virtual Sector length.

When a Data Packet write exceeds the available space of the current Virtual Sector, the
Data Block structure is duplicated in the next Virtual Sector to be made active.

Data Block Structure

Block5
Header

Dataset2 Block5
Header

Dataset6 Block1
Header

Dataset2 Block3
Header

Dataset1

Block4
Header

Dataset4 Block2
Header

Dataset2 Block1
Header

Dataset8 Block2
Header

Dataset3

Figure 3 Data Block Structure

2.1.2.1 Data Block Header

The Data Block Header is 24 bytes in length and is used to indicate the status information
of valid data within a Virtual Sector.

Figure 4 Data Block Header -> Logical Structure

A Standard Data Block Header has the following fields

Block Number (16 bits)

Block W/E Cycle count - optional (32 bits) / reserved if saving not enabled

 Block size(16 bits)

Block Status (64 bits)

Checksum - optional (32 bits) / reserved if saving not enabled

 Address of previous Valid Block(32 bits)

Block Status (64 bits)

a0500301
Highlight

a0500301
Highlight

 20

Bit(s) Field Description
191-176 Block Number This is used to indicate the block number.
175-160 Block size Indicates size of block
159-128 W/E counter Indicates write/erase counter for a block
127-96 Checksum Indicates Checksum of block
95-64 Address Address of the previous valid block

63-0

Status of the
Block

These 64 bits indicate the Status of the Block. The
following Table lists all the possible combinations for the
Block Status.

2-3. Data Block Header Field Definitions

State Value
Start Program Block 0xFFFFFFFFFFFF0000

Valid Block 0xFFFFFFFF00000000
Invalid Block 0xFFFF000000000000

 2-4. Data Block States

Block Status is used to ensure that data integrity is maintained even if the Block (data) update
process is interrupted by an uncontrolled event such as a power supply failure or reset.

Empty Block: New Data can be written to this Block.

Start Program Block: This indicates that the Data Block is in the progress of being
programmed with data.

Valid Block: This indicates that the Data Block is fully programmed and contains Valid Data.

2.1.2.2 Data Set Concept

Each block can have different data sets. Data which are closely related can be clubbed as
data sets of a block. Data sets of the block cannot exceed 2 power data select bits. Use
case of a dataset is : consider a car stereo which needs to display different languages based
on customer input. Projects will configure Block number = 1 for language selection and use
data sets for selecting different options for language Ex: 4-English, 5-German, 6-Russian,7-
French etc.(Here the block has 4 data sets. Data select bits should be > = 2 =>2 power 2=4.).

Data Set concept comes from Autosar. In Autosar, the layer above FEE is NVRAM Manager.
NVRAM manager defines three types of blocks, Native, Redundant and DataSet blocks.

A Native block is one which has single Non Volatile Block.

A Redundant block is one which has two Non Volatile Blocks.

A Data Set Block is the one in which the NVRAM Manager will decide the number of copies of
the same block to be present in Non Volatile Block.

If projects are not using FEE in Autosar context, data sets can be ignored(Always configure
TI_FEE_DATASELECT_BITS = 0).

a0500301
Highlight

 21

2.1.3 Supported Commands

The following list describes the supported commands.
1. WriteAsync: This command shall program a Flash Data block asynchronously.
2. WriteSync: This command shall program a Flash Data block synchronously.
3. Read: This command shall copy a continuous Flash Data block asynchronously.
4. ReadSync: This command shall copy a continuous Flash Data block synchronously.
5. EraseImmediate: This command shall mark the block as invalid in Data Block header.
6. InvalidateBlock: This command shall mark the block as invalid in Data Block header.

2.1.4 Status Codes
This indicates the status of the Fee module. It can be in one of the following states
1. UNINIT: The Fee Module has not been initialized.
2. IDLE: The Fee Module is currently idle.
3. BUSY: The Fee Module is currently busy.
4. BUSY_INTERNAL: The Fee Module is currently busy with internal management
 operations.

2.1.5 Job Result
This indicates the result of the last job. The job result can be any one of the following states
1. JOB_OK: The last job has finished successfully
2. JOB_PENDING: The last job is waiting for execution or is currently
 being executed.
3. JOB_CANCELLED: The last job has been cancelled.
4. JOB_FAILED: The last read/erase/write job failed.
5. JOB_INCONSISTENT: The requested block is inconsistent, it may
 contain corrupted data.
6. JOB_INVALID: The requested block has been invalidated. The
 requested read operation cannot be performed.

 22

Chapter 3

File List

This chapter provides the list of files generated from HALCoGen for TI FEE Driver.

File Name Destination directory

ti_fee.h Include

tiI_fee_types.h Include

ti_fee_utils.c Source

ti_fee_eraseImmediateblock.c Source

ti_fee_format.c Source

ti_fee_Info.c Source

ti_fee_invalidateblock.c Source

ti_fee_cancel.c Source

ti_fee_read.c Source

ti_fee_readsync.c Source

ti_fee_shutdown.c Source

ti_fee_ini.c Source

ti_fee_main.c Source

ti_fee_writeasync.c Source

ti_fee_writesync.c

fee_interface.h

Source

Include

3-1. TI FEE Driver File List

 23

Files generated using HALCoGen™ are listed below

File Name Destination directory

Device_types.h Include

Device_header.h Include

ti_fee_cfg.h Include

ti_fee_cfg.c Source

Device_TMS570LSxx.h/

Device_RMxx.h

Include

Device_TMS570LSxx.c/

Device_RMxx.c

Source

3-2. TI FEE HALCoGen™ File List

Note: xx indicates device part number

E.g.: If the target device chosen is TMS570LS31, then the device specific
files generated are Device_TMS570LS31.h and Device_TMS570LS31.c

 24

Chapter 4

Integration Guide

This chapter describes the steps for using the TI FEE Driver. This chapter also discusses the TI
FEE Driver run-time interfaces that comprise the API classification, usage scenarios and the
API specification. The entire source code to implement the TI FEE Driver is included in the
delivered product.

4.1 Error Recovery Implementation

Projects should implement error recovery mechanism to recover from serious errors.
They should call the API TI_FeeErrorCode() periodically to check if there are any severe
errors(Error_SetupStateMachine, Error_NoActiveVS, Error_CopyButNoActiveVS,
Error_EraseVS). If error is any of the above type, then API TI_Fee_ErrorRecovery() should
be called with proper parameters.

If the error is of type Error_CopyButNoActiveVS, then the application has to provide
info on which of the VS needs to be corrected in u8VirtualSector.For error of type
Error_CopyButNoActiveVS, TI_Fee_u32ActCpyVS will provide info on which VS is Copy. In
this case, the second argument for the TI_Fee_ErrorRecovery should be the copy Virtual
Sector number. Error recovery API will mark the Virtual Sector as Active.

If the error is of type Error_NoFreeVS, then the application has to provide info on which
of the Virtual Sector needs to be erased in u8VirtualSector. TI_Fee_u32ActCpyVS will provide
info on which Virtual Sector is active.

If the error is of type Error_SetupStateMachine, recheck configuration. Configure
RWAIT, EWAIT and operating frequency correctly.

If the error is of type Error_EraseVS, this means either erasing or a blank check of
Virtual Sector failed. Call error recovery function to perform erase again. Check the variables
TI_Fee_u8ErrEraseVS will indicate which virtual sector failed the erase

 Application can access the variable “TI_Fee_u32ActCpyVS” to know details about the Virtual
Sector’s.

Prototype for the API’s are:

TI_Fee_ErrorCodeType TI_FeeErrorCode(uint8 u8EEPIndex);

void TI_Fee_ErrorRecovery(TI_Fee_ErrorCodeType ErrorCode, uint8 u8VirtualSector);

If two EEPROM’s are configured, then TI_FeeErrorCode has to be called cyclically with
different index.

Ex: TI_FeeErrorCode(0) and TI_FeeErrorCode(1)

If Error is of type Error_CopyButNoActiveVS and TI_Fee_u32ActCpyVS = 0x0001, this
means VS 1 is COPY sector.

Projects has to mark the sector 1 as ACTIVE, so

a0500301
Highlight

 25

Call TI_Fee_ErrorRecovery(Error_TwoActiveVS, 1);

Virtual sector 1 will be marked as ACTIVE.

Virtual sector numbers start from 1.

4.2 Single and Double bit Error Corrections

Hercules devices provide a mechanism to detect single and double bit errors. FEE enables the
SECDED. If there are any double bit error’s during read, they will be flagged as
BLOCK_INCONSISTENT after read operation is completed, provided
TI_FEE_FLASH_ERROR_CORRECTION_ENABLE is enabled.

4.3 Memory Mapping

Following macros can be used for reallocating code, constants and variables.

• FEE_START_SEC_CONST_UNSPECIFIED

• FEE_STOP_SEC_CONST_UNSPECIFIED

• FEE_START_SEC_CODE

• FEE_STOP_SEC_CODE

• FEE_START_SEC_VAR_INIT_UNSPECIFIED

• FEE_STOP_SEC_VAR_INIT_UNSPECIFIED

.

a0500301
Highlight

 26

4.4 Build Procedure

The build procedure mentions how one ought to go about building the TI FEE Driver into their
systems and applications.

1. The driver files generated from HALCoGen should be included in the application.

2. The files listed in Table 3.3 (Fee configuration files and device specific files) generated using
HALCoGen™ should be included in the application. The configuration files (ti_fee_cfg.h &
ti_fee_cfg.c) define which Flash sectors to be used for EEPROM emulation, define Data
Blocks, Block Size and other configuration parameters whereas the device specific files define
the memory mapping for the Flash FEE bank.

3. Flash API library : The TI FEE Driver uses the Flash API library for performing program/erase
operations. Include appropriate F021 library and include files of F021. F021 version should be
02.00.00 or greater. For TMS570LCxx devices, use F021 library v02.01.01 or greater.

 27

4.5 Symbolic Constants and Enumerated Data types

This section summarizes the symbolic constants specified as either #define macros and/or
enumerated C data types. Described alongside the macro or enumeration is the semantics or
interpretation of the same in terms of what value it stands for and what it means.

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

TI_Fee_StatusType TI_FEE_OK Function returned no error

TI_FEE_ERROR Function returned an error

VirtualSectorStatesType

VsState_Invalid =1 Virtual Sector is Invalid

VsState_Empty =2 Virtual Sector is Empty

VsState_Copy =3 Virtual Sector is Copy

VsState_Active =4 Virtual Sector is Active

VsState_ReadyForErase =5 Virtual Sector is Ready for
Erase

BlockStatesType

Block_StartProg=1 Write/Erase/Invalid operation is
in progress on this Block

Block_Valid=2 Block is Valid

Block_Invalid=3 Block is Invalid

TI_Fee_ErrorCodeType

Error_Nil=0 No Error.

Error_TwoActiveVS=1 There are two active Virtual
sectors. This error will not
happen with modified design.

Error_TwoCopyVS=2 There are two copy Virtual
sectors. This error will not
happen with modified design.

Error_SetupStateMachine=3 Either HCLK or EWAIT are not
configured correctly or there is
OTP error.

Error_CopyButNoActiveVS=4 There is a copy Virtual sector
but no Active sector or ready
for erase sector.

Error_NoActiveVS=5 FEE was not able to
find/create an active Virtual
Sector.

Error_BlockInvalid=6 Invalid Block passed as input.

Error_NullDataPtr=7 Null Data ptr passed as input.

Error_NoFreeVS=8 No more Free Virtual Sector
present to write data. This

 28

error will not happen with
modified design.

Error_InvalidVirtualSectorPara
meter=9

This is deprecated.

Error_ExceedSectorOnBank=1
0

Error_EraseVS=11 Blank check failed after erase.

Error_BlockOffsetGtBlockSize
=12

Block Offset is not valid.

Error_LengthParam=13 Length Parameter is not valid.

Error_FeeUninit=14 FEE if not initialized.

Error_Suspend=15 This is deprecated.

Error_InvalidBlockIndex=16 Block index is invalid.

Error_NoErase=17 This is deprecated.

Error_CurrentAddress=18 Address of block is not valid.

Error_Exceed_No_Of_DataSet
s=19

Data sets not configured
correctly.

TI_FeeModuleStatusType

UNINIT FEE Module is Uninitialized

IDLE FEE Module is Idle

BUSY FEE Module is Busy

BUSY_INTERNAL FEE Module is performing
internal operations

TI_Fee_StatusWordType_UN

Erase If set to ‘1’ indicates Erase
operation is in progress

ReadSync If set to ‘1’ indicates
Synchronous Read operation
is in progress

ProgramFailed If set to ‘1’ indicates there was
an error during write operation.
This is now deprecated.

Read If set to ‘1’ indicates Read
operation is in progress

Writesync If set to ‘1’ indicates Sync
Write operation is in progress

WriteAsync If set to ‘1’ indicates Async
Write operation is in progress

EraseImmediate If set to ‘1’ indicates Erase

 29

immediate operation is in
progress

InvalidateBlock If set to ‘1’ indicates Invalidate
operation is in progress

Copy If set to ‘1’ indicates Copy
operation is in progress

Initialized If set to ‘1’ indicates FEE is
initialized. This is now
deprecated.

SingleBitError If set to ‘1’ indicates there was
a single bit error during read
operation. This is now
deprecated.

TI_FEE_SW_MAJOR_VERSION #define Macro which indicates the Major version of the FEE

TI_FEE_SW_MINOR_VERSION #define Macro which indicates the Minor version of the FEE

TI_FEE_SW_PATCH_VERSION #define Macro which indicates the Patch version of the FEE
4-1. TI FEE Driver Symbolic Constants

 30

4.6 Data Structures

This section summarizes the entire user visible data structure elements pertaining to the TI FEE
Driver run-time interfaces.

4.7 TI FEE Parameter Configuration

This section describes the parameters which are used to configure the TI FEE driver.

4.7.1 Operating Frequency

Description Device operating frequency in MHz.
Generated configuration TI_FEE_OPERATING_FREQUENCY is set to the value

assigned to FeeFrequency.
FeeFrequency is equivalent to the HCLK frequency in the
TMS570/RMxx clock tree.
It is recommended to copy the value of HCLK obtained by
configuring the TMS570/RMxx clock tree during MCU
configuration to this parameter.

Default Value 160.0
Parameter Range Device dependent parameter. Refer to the device

datasheet to know the range.
Parameter Type float
Target File ti_fee_cfg.h

4.7.2 Number of Blocks

Description Defines the number of Data Blocks used for EEPROM

emulation. This is sum of all the blocks configured on
EEP1 and EEP2.

Generated configuration TI_FEE_NUMBER_OF_BLOCKS is set to the defined
value.

Default Value 0x1
Parameter Range 0x1 to 0xFFFE
Parameter Type uint16
Target File ti_fee_cfg.h

Note: In HALCoGen GUI, only 16 blocks can be configured. If projects want to have
more blocks, manually edit ti_fee_cfg.h and ti_fee_cfg.c files. In ti_fee_cfg.c file, add
blocks under /* USER CODE BEGIN */ and /* USER CODE END */ inside
Fee_BlockConfiguration[] so that they are not overwritten by HALCoGen.

 31

4.7.3 Number of Virtual Sectors

Description Defines the number of Virtual Sectors used for FEE.
Generated configuration TI_FEE_NUMBER_OF_VIRTUAL_SECTORS is set to the

defined value.
Default Value 0x2
Parameter Range Min : 0x2 Max : 0x4(Depending on the device, max value

can change. For TMS570LC4357, max value can be 32)
Parameter Type uint16
Target File ti_fee_cfg.h

4.7.4 Number of Virtual Sectors for EEP1

Description Defines the number of Virtual Sectors used for EEP1.
Generated configuration TI_FEE_NUMBER_OF_VIRTUAL_SECTORS_EEP1 is

set to the defined value.
Default Value 0x0
Parameter Range Min : 0x0 Max :

(TI_FEE_NUMBER_OF_VIRTUAL_SECTORS-0x02)
Parameter Type uint16
Target File ti_fee_cfg.h

 Note: TI_FEE_NUMBER_OF_VIRTUAL_SECTORS_EEP1 should be configured as
 zero if TI_FEE_NUMBER_OF_EEPS = 1.

4.7.5 Number of Non Configured blocks to copy

Description Maximum number of non configured blocks to copy. If set

to a value other than zero, then the non configured valid
blocks in Flash will be copied to new virtual sector during
virtual sector swap.

Generated configuration TI_FEE_NUMBER_OF_UNCONFIGUREDBLOCKSTOCO
PY is set to 0 if no non configured valid blocks are to be
copied during Virtual Sector swap.

Default Value 0
Parameter Range 0-0xFFFE
Parameter Type uint16
Target File ti_fee_cfg.h

Note: This parameter is used when a project starts with, let’s say 10 blocks and during
 development they reduce the blocks to 8. However, if they still want the remaining
 blocks to be present inside Flash(assume project has already written 10 blocks into Flash),
 they will have to configure this parameter to more than 2.

 This parameter can also be used to run two different instances of FEE driver, one owned by
 boot loader and the other owned by application.

 32

4.7.6 Number of Eight byte writes

Description Defines the number of 8 byte writes to be done in main

function call. If configured to 2, main function writes 16
bytes per call.

Generated configuration TI_ FEE_NUMBER_OF_EIGHTBYTEWRITES is set
required value.

Default Value 1
Parameter Range 1-255
Parameter Type uint8
Target File ti_fee_cfg.h

4.7.7 Block OverHead

Description Indicates the number of bytes used for Block Header.
Generated configuration TI_FEE_BLOCK_OVERHEAD is set to the value assigned

to FeeBlockOverhead.
Default Value 0x18
Parameter Range Fixed to 0x18.
Parameter Type uint8
Target file ti_fee_cfg.h

4.7.8 Page OverHead

Description Indicates the Page Overhead in bytes.
Generated configuration TI_FEE_PAGE_OVERHEAD is set to the value assigned

to FeePageOverhead. (0x0)
Default Value 0x0
Parameter Range Fixed to 0x0.
Parameter Type uint8
Target File ti_fee_cfg.h

4.7.9 Virtual Sector OverHead

Description Indicates the number of bytes used for Virtual Sector

Header.
Generated configuration TI_FEE_VIRTUAL_SECTOR_OVERHEAD is set to the

value assigned to FeeVirtualSectorOverhead (0x10).
Default Value 0x10
Parameter Range Fixed to 0x10.
Parameter Type uint8
Target File ti_fee_cfg.h

 33

4.7.10 Virtual Sector Page Size

Description Indicates the virtual page size in bytes.
Generated configuration TI_FEE_VIRTUAL_PAGE_SIZE is set to the value

assigned to FeeVirtualPageSize. (0x8)
Default Value 0x8
Parameter Range Fixed to 0x8.
Parameter Type uint8
Target File ti_fee_cfg.h

4.7.11 Driver Index

Description Instance ID of FEE module. Should always be 0x0.
Generated configuration TI_FEE_INDEX is set to the value assigned to FeeIndex.

(0x0)
Default Value 0x0
Parameter Range Fixed to 0x0.
Parameter Type uint8
Target File ti_fee_cfg.h

4.7.12 Enable ECC Correction

Description Indicates if error correction is enabled.
Generated configuration TI_FEE_FLASH_ERROR_CORRECTION_ENABLE

Is set to STD_ON if Error Correction is enabled else it is
set to STD_OFF.

Default Value STD_OFF
Parameter Range STD_ON/STD_OFF
Parameter Type Boolean
Target File ti_fee_cfg.h

4.7.13 Error Correction Handling(Not available for Configuration)

Description Indicates desired action to be taken on detection of bit

errors.
Generated configuration TI_FEE_FLASH_ERROR_CORRECTION_HANDLING is

set to the value assigned to
FeeFlashErrCorrHandlingType. Only Ti_Fee_None is
supported.

Default Value TI_Fee_None
Parameter Range TI_Fee_None or TI_Fee_Fix
Parameter Type # define TI_Fee_None 0U

define TI_Fee_Fix 1U
Target File ti_fee_cfg.h

 34

4.7.14 Block Write Counter Save

Description Pre-processor switch to enable the block write counter.

STD_ON: Block Write counter is enabled.
STD_OFF:Block Write counter is disabled

Generated configuration TI_FEE_FLASH_WRITECOUNTER_SAVE is set to
STD_ON if block write counter save is enabled else it is
set to STD_OFF. If enabled, the block write counter is
updated for every write. With this counter, projects can
know how many times a block has been written into Flash.

Default Value STD_OFF
Parameter Range STD_ON / STD_OFF
Parameter Type Boolean
Target File ti_fee_cfg.h

4.7.15 Enable Checksum

Description

Pre-processor switch to enable the Checksum for blocks.
STD_ON: Checksum for blocks is enabled. STD_OFF:
Checksum disabled

Generated configuration TI_FEE_FLASH_CHECKSUM_ENABLE Is set to
STD_ON if check is enabled else it is set to STD_OFF. If
enabled, 16bit Checksum of the block is generated.

Default Value STD_OFF
Parameter Range STD_ON / STD_OFF
Parameter Type Boolean
Target File ti_fee_cfg.h

Note: If Checksum is enabled, during writing of a block, Checksum of the data to be written is
calculated and checked against the Checksum of the same block which is already existing in
Flash. If Checksum matches, data is not written. If Checksum is not enabled, then data is
compared byte by byte. If data does not match, write will be initiated.

4.7.16 Number Of EEPs

Description Number of EEP's configured. 1 - Only one EEP

configured. All Virtual Sectors can be used by this EEP. 2
- Two EEP's configured. Each EEP can use two Virtual
Sectors.

Generated configuration TI_FEE_NUMBER_OF_EEPS is set to 1 if all virtual
sectors are used by one EEP. If virtual sectors are shared
between two EEPs, it is set to 2. If projects have data
blocks which are frequently updated and also have blocks
which are not frequently updated, then projects can
configure 2 EPPROM’s and use each EEPROM for
different set of blocks. One EEPROM can have data
blocks which are frequently updated and the other can
have data blocks which are not frequently updated.

Default Value 1
Parameter Range 1/2
Parameter Type uint8
Target File ti_fee_cfg.h

 35

4.7.17 Data Select bits

Description Number of data sets configured for a block.
Generated configuration TI_FEE_DATASELECT_BITS is set configured value.
Default Value 0
Parameter Range 0-8
Parameter Type uint8
Target File ti_fee_cfg.h

4.7.18 Check BANK7 address Range

Description Pre processor switch to enable EEPROM address

range check during read/write.
Generated configuration TI_FEE_CHECK_BANK7_ACCESS is set configured

value.
Default Value STD_OFF
Parameter Range STD_ON/STD_OFF
Parameter Type Boolean
Target File ti_fee_cfg.h

4.7.19 TI FEE Virtual Sector Configuration

Array Name TI_FEE_VirtualSectorConfiguration
Description Used to define a Virtual Sector
Array Type TI_Fee_VirtualSectorConfigType.

This is a structure having the following members.
Members FeeVirtualSectorNumber Virtual Sector's Number.

FeeFlashBank EEPROM emulation is supported
only on Bank 7 for F021 devices..

FeeStartSector Starting Sector in the Bank for
this Virtual Sector.

FeeEndSector Ending Sector in the Bank for this
Virtual Sector.

The configurations described in the following section are repeated for each Virtual Sector.

4.7.19.1 Virtual Sector Number

Description Used to assign a number to the Virtual Sector.
Generated configuration FeeVirtualSectorNumber is set to the value assigned to

the symbolic name for the Virtual Sector.
Default Value 1
Parameter Range Min : 0x1, Max : 0x4
Parameter Type uint16
Target File ti_fee_cfg.c

 36

4.7.19.2 Flash Bank

Description Indicates the Flash Bank used by the Virtual Sector. All

the Virtual Sectors should use the same Flash Bank.
EEPROM emulation is supported only on Bank 7 for F021
devices.

Generated configuration FeeFlashBank is set to the value assigned to
FeeSectorBank.

Default Value 0x7 for F021 devices.
Parameter Range Fixed to 0x7 for F021 devices.
Parameter Type uint16
Target File ti_fee_cfg.c

4.7.19.3 Start Sector

Description Indicates the Flash Sector in the Bank used by the Virtual

Sector as the Start sector.
Generated configuration FeeStartSector is set to the value assigned to

FeeSectorStart.
Default Value 0x0
Parameter Range Device specific, can use any Sector of the selected Flash

Bank. Please refer to the device datasheet “Flash Memory
Map” for more details.

Parameter Type uint8
Target File ti_fee_cfg.c

4.7.19.4 End Sector

Description Indicates the Flash Sector in the Bank used by the Virtual

Sector as the End sector.
Generated configuration FeeEndSector is set to the value assigned to

FeeSectorEnd.
Default Value 0x0
Parameter Range Device specific, can use any Flash Sector of the selected

Flash Bank. It should be greater than the FEE Start
Sector. Please refer to the device datasheet “Flash
Memory Map” for more details.

Parameter Type uint8
Target File ti_fee_cfg.c

 37

4.7.19.5 Sample Virtual Sector Configuration

The following code snippet indicates one of the possible configurations for the Virtual Sectors
from the file fee_config.c:

/* Virtual Sector Configuration */
 const TI_FeeVirtualSectorConfigType TI_FeeVirtualSectorConfiguration[] =

{
 /* Virtual Sector 1 */
 {
 1, /* Virtual sector number */
 7, /* Bank */
 0, /* Start Sector */
 0 /* End Sector */
 },
 /* Virtual Sector 2 */
 {
 2, /* Virtual sector number */
 7, /* Bank */
 1, /* Start Sector */
 1 /* End Sector */
 },
};

 38

4.7.20 TI FEE Block Configuration

Array Name Fee_BlockConfiguration
Description Used to define a block

Array Type

Fee_BlockConfigType.
This is a structure with the following members.

Members

FeeBlockNumber Indicates Block's Number.
FeeBlockSize Defines Block's Size in bytes.

FeeImmediateData Indicates if the block is used for
immediate data.

FeeNumberOfWriteCycles Number of write cycles required
for this block .

FeeDeviceIndex Indicates the device index.

FeeNumberofDatasets Indicates the number of Datasets for
this Block.

FeeEEPNumber Indicates the number of EEP.

The configurations described in the following section are repeated for each Data Block.

4.7.20.1 BlockNumber

Description Assigns a number for the Block.
Generated configuration FeeBlockNumber is set to a numeric value. It is equal to the

BlockNumber.
Default Value 1
Parameter Range Min : 0x1 Max : 0xFFFE
Parameter Type uint16
Target File ti_fee_cfg.c

4.7.20.2 Block Size

Description Indicates the size of the Block in bytes.
Generated configuration FeeBlockSize is set to the value assigned to FeeBlockSize.
Default Value 0x008
Parameter Range 0x1 to 0xFFF
Parameter Type uint16
Target File ti_fee_cfg.c

 39

4.7.20.3 Immediate Data

Description Indicates the number of clock cycles required to write to a

flash address location.
Generated configuration FeeNumberOfWriteCycles is set to the value assigned to

FeeNumberOfWriteCycles.
Default Value 0x1
Parameter Range Device or core/flash tech dependent parameter.
Parameter Type uint32
Target File ti_fee_cfg.c

4.7.20.4 Number of Write Cycles

Description Indicates if the block is used for immediate data.
Generated configuration FeeImmediateData is set to the value assigned to

FeeImmediateData.
Default Value FALSE

Parameter Range TRUE / FALSE
Parameter Type Boolean
Target File ti_fee_cfg.c

4.7.20.5 Device Index

Description Indicates the device index. This will always be 0.
Generated configuration FeeDeviceIndex is set to the value 0x0.
Default Value 0x0
Parameter Range Fixed to 0x0.
Parameter Type uint8
Target File ti_fee_cfg.c

4.7.20.6 Data sets

Description Indicates the number of Datasets for this particular Block .
Generated configuration FeeNumberOfDataSets is set to the value assigned to

FeeDataset. It should not be greater than 2 power
TI_FEE_DATASELECT_BITS.

Default Value 0x01
Parameter Range 0x1 to 0xFF
Parameter Type uint8
Target File ti_fee_cfg.c

 40

4.7.20.7 EEPNumber

Description Number indicating into which EEP does the block go. 0 --

Block will be configured on EEP1. 1 -- Block will be configured
on EEP2.

Generated configuration FeeEEPNumber is set to the value assigned.
Default Value 0x0
Parameter Range 0x00/0x01
Parameter Type uint8
Target File ti_fee_cfg.c

4.7.20.8 Sample Block Configuration

The following code snippet indicates one of the possible configurations for the Blocks from the
file fee_config.c:

/* Block Configuration */

const TI_FeeBlockConfigType TI_Fee_BlockConfiguration[] =

{
 /* Block 1 */
 {
 0x01, /* Block number */
 0x004, /* Block size */
 0x10, /* Block number of write cycles */
 TRUE, /* Block immediate data used */
 0, /* Device Index */
 1, /* Number of DataSets */
 0 /* EEP Number */
 },
 /* Block 2 */
 {
 0x02, /* Block number */
 0x008, /* Block size */
 0x10, /* Block number of write cycles */
 TRUE, /* Block immediate data used */
 0, /* Device Index */
 2, /* Number of DataSets */
 0 /* EEP Number */
 },
 /* Block 3 */
 {
 0x03, /* Block number */
 0x0004, /* Block size */
 0x10, /* Block number of write cycles */
 TRUE, /* Block immediate data used */
 0, /* Device Index */
 3, /* Number of DataSets */
 1 /* EEP Number */
 },

/* Block 4 */
 {

 41

 0x04, /* Block number */
 0x001A, /* Block size */
 0x10, /* Block number of write cycles */
 TRUE, /* Block immediate data used */
 0, /* Device Index */
 4, /* Number of DataSets */
 1 /* EEP Number */
 },

};

4.8 API Classification

This section introduces the application-programming interface for the TI FEE Driver by grouping
them into logical units. This is intended for the user to get a quick understanding of the TI FEE
Driver APIs. For detailed descriptions please refer to the API specification section 4.6.

4.8.1 Initialization

The TI FEE Driver APIs that are intended for use in initialization of the FEE module are listed
below.

Name Description
TI_Fee_Init Used to initialize the FEE module

4-2. TI FEE Driver Initialization APIs

 42

4.8.2 Data Operations

The TI FEE Driver APIs that are intended for performing Data operations on Data Blocks are
listed below.

Name Description
TI_Fee_WriteAsync Used to initiate an Asynchronous Write

Operation to a Data Block.
TI_Fee_MainFunction function should be
called at regular intervals to finish the
operation

TI_Fee_WriteSync Used to perform a Synchronous Write
Operation to a Data Block.

TI_Fee_Read Used to read Data from a Data Block.
TI_Fee_MainFunction function should be
called at regular intervals to finish the
operation

TI_Fee_ReadSync Used to read Data from a Data Block
Synchronously.

TI_Fee_EraseImmediateBlock Used to initiate an Erase Operation of a
Data Block. TI_Fee_MainFunction
function should be called at regular
intervals to finish the operation

TI_Fee_InvalidateBlock Used to initiate an Invalidate Operation
on a Data Block. TI_Fee_MainFunction
function should be called at regular
intervals to finish the operation

TI_Fee_Shutdown This function completes the Async jobs
which are in progress by performing a
bulk Data Write while shutting down the
system synchronously.

TI_Fee_Format Used to erase all the configured Virtual
Sectors.

4-3. TI FEE Driver Data Operation APIs

4.8.3 Information

The TI FEE Driver APIs that are intended to get information about the status of the FEE
Module are listed below.

Name Description
TI_Fee_GetVersionInfo Used to get the Driver version.

TI_Fee_GetStatus Used to get the status of the FEE module.

TI_Fee_GetJobResult Used to get the job result of a Data
Operation.

4-4. TI FEE Driver Information APIs

 43

4.8.4 Internal Operations

The TI FEE Driver APIs that are used to perform internal operations of the FEE Module are
listed below.

Name Description
TI_Fee_MainFunction Used to complete the Data Operations

initiated by any of the Data Operation
functions.

TI_FeeInternal_FeeManager Used to perform internal operations
(Copy, Erase Virtual Sector).

4-5. TI FEE Driver Internal Operation APIs

4.8.5 Error Information and Recovery Operations

The TI FEE Driver APIs that are used to provide error information and recover from severe
errors.

Name Description
TI_FeeErrorCode Function to know the error type.

TI_Fee_ErrorRecovery Function to recover from severe
errors.

4-6. TI FEE Driver Error Info and Recovery APIs

4.8.6 Suspend/Resume Erase Sector

The TI FEE Driver APIs that are used to provide error information and recover from severe
errors.

Name Description
TI_FeeErrorCode Function to know the error type.

TI_Fee_ErrorRecovery Function to recover from severe
errors.

4-7. TI FEE Driver Suspend/Resume Erase sector API

 44

4.9 Fee Operation Flow

This section depicts a flow chart for a typical FEE operation.

Figure 5 Flow chart of a typical FEE operation

Schedule a Data Operation
TI_Fee_WriteAsync()
TI_Fee_WriteSync()
TI_Fee_EraseImmediateBlock()
TI_Fee_InvalidateBlock()
TI_Fee_Read()
TI Fee ReadSync()

Schedule Other
Application Tasks

TI_Fee_GetJobResult()

TI_Fee_MainFu
nction()
 TI_FeeInternal_Fee

Manager()

Initialization
TI_ Fee_Init()

TI_Fee_GetStatus()

TI FEE is in IDLE state after
successful initialization

IDLE?

Yes

Call any one of the data
operation functions as required.
A new operation can be initiated
only when the module is in “Idle”
state.

To be called at regular
intervals to complete the Data
operation.

To be called only once at the
beginning to initialize the TI FEE
module.

Returns the Job result of the last
operation.

Called by TI_Fee_MainFunction()
whenever in “Idle” state to handle
internal operations. No

 45

4.10 API Specification

This section constitutes the detailed reference for the entire API set published to users of the TI FEE
Driver.

4.10.1 TI FEE Driver Functions

4.10.1.1 Initilization Function (TI_Fee_Init)

This function provides functionality for initializing the TI FEE module. This routine must be
called only once at the beginning before commencing any data operation.

Function Name: TI_Fee_Init
Syntax: void TI_Fee_Init (void)
Sync/Async: Synchronous
Parameters(in): None
Return value: None
Description: Function to initialize the TI Fee module.

4.10.1.2 Async Write Function (TI_Fee_WriteAsync)
This function initiates an Asynchronous Write operation to a Data Block.
TI_Fee_MainFunction() function should be called at regular intervals to finish the Async Write
operation.

Function Name: TI_Fee_WriteAsync

Syntax:
Std_ReturnType TI_Fee_WriteAsync(
 uint16 BlockNumber,
 uint8* DataBufferPtr)

Sync/Async: Asynchronous

Parameters (in): BlockNumber
Number of logical block, also
denoting start address of that
block in Flash memory.

DataBufferPtr Pointer to data buffer.

Return value: Std_ReturnType

E_OK: The write job was
accepted by the TI Fee
module
E_NOT_OK: The write job
was not accepted by the TI
Fee module.

Description: Function to initiate an Async Write job.

 46

4.10.1.3 Sync Write Function (TI_Fee_WriteSync)
This function provides the functionality to program data to a Block synchronously.

4.10.1.4 Read Function (TI_Fee_Read)

This function provides functionality for reading of data from a Block asynchronously.
TI_Fee_MainFunction() function should be called at regular intervals to finish the Read
operation.

Function Name: TI_Fee_WriteSync

Syntax:
Std_ReturnType TI_Fee_WriteSync(
 uint16 BlockNumber,
 uint8* DataBufferPtr)

Sync/Async: Synchronous

Parameters (in): BlockNumber

Number of logical
block, also denoting
start address of that
block in Flash
memory.

DataBufferPtr Pointer to data buffer.

Return value: Std_ReturnType

E_OK: The write job
was accepted by the
TI Fee module
E_NOT_OK: The
write job was not
accepted by the TI
Fee module.

Description: Function to program Data to a Block
synchronously.

Function Name: TI_Fee_Read

Syntax:

Std_ReturnType TI_Fee_Read(
 uint16 BlockNumber,
 uint16 BlockOffset,
 uint8* DataBufferPtr,
 uint16 Length)

Sync/Async: Asynchronous

Parameters (in):

BlockNumber Number of logical block, also
denoting start address of that block
in Flash memory.

BlockOffset Read address offset inside the
block.

DataBufferPtr Pointer to data buffer.
Length Number of bytes to read.

Return value: Std_ReturnType

E_OK: The Read job was
accepted by the TI Fee module
E_NOT_OK: The Read job
was not accepted by the TI
Fee module.

Description: Function to read data from a Block.

 47

4.10.1.5 Erase Function (TI_Fee_EraseImmediateBlock)

This function provides functionality for Erasing a Data Block asynchronously.
TI_Fee_MainFunction() function should be called at regular intervals to finish the Erase
operation.

4.10.1.6 Invalidate Function (TI_Fee_InvalidateBlock).

This function provides functionality for invalidating a Data Block asynchronously.
TI_Fee_MainFunction() function should be called at regular intervals to finish the Invalidate
Block operation.

Function Name: TI_Fee_EraseImmediateBlock

Syntax: Std_ReturnType TI_Fee_EraseImmediateBlock(
 uint16 BlockNumber)

Sync/Async: Asynchronous

Parameters (in): BlockNumber
Number of logical block, also
denoting start address of that
block in Flash memory.

Return value: Std_ReturnType

E_OK: The Erase job was
accepted by the TI Fee module
E_NOT_OK: The Erase job was
not accepted by the TI Fee
module.

Description: Function to initiate Erase operation on a Data Block

Function Name: TI_Fee_InvalidateBlock

Syntax: Std_ReturnType TI_Fee_InvalidateBlock(
 uint16 BlockNumber)

Sync/Async: Asynchronous

Parameters (in): BlockNumber
Number of logical block, also
denoting start address of that
block in Flash memory.

Return value: Std_ReturnType

E_OK: The Invalidate Block job
was accepted by the TI Fee
module
E_NOT_OK: The Invalidate
Block job was not accepted by
the TI Fee module.

Description: Function to initiate an Invalidate operation on a Data
Block

 48

4.10.1.7 Shutdown Function (TI_Fee_Shutdown)

This function provides functionality for performing a bulk data write when shutting down the
system synchronously. This function completes the Async jobs which are in progress by
performing a bulk Data Write while shutting down the system synchronously.

4.10.1.8 Get Version Info Function (TI_Fee_GetVersionInfo)

This function returns the version information for the TI Fee module.

TI Fee specific version numbers MM.mm.rr
• MM – Major Version
• mm – Minor Version
• rr – Revision

4.10.1.9 Get Status Function (TI_Fee_GetStatus)

This function returns the status of the TI FEE module.

Function Name: TI_Fee_Shutdown
Syntax: Std_ReturnType TI_Fee_Shutdown()
Sync/Async: Synchronous
Parameters (in): None

Return value: Std_ReturnType

E_OK: The Async job was
completed
E_NOT_OK: The Async job
was not completed.

Description: Function to perform bulk Data write prior to system
shutdown.

Function Name: TI_Fee_GetVersionInfo

Syntax: void TI_Fee_GetVersionInfo(
 Std_VersionInfoType* VersionInfoPtr)

Sync/Async: Synchronous
Parameters (in): None

Return value: VersionInfoPtr Pointer to standard version
information structure

Description: Function to return the version information of the TI
Fee module.

 49

4.10.1.10 Get Job Result Function (TI_Fee_GetJobResult)

This function returns the result of the last job synchronously.

Function Name: TI_Fee_GetJobResult

Syntax: TI_FeeJobResultType TI_Fee_GetJobResult(uint8
u8EEPIndex)

Sync/Async: Synchronous
Parameters in): u8EEPIndex Index for EEP.(0/1)

Return value: TI_FeeJobResultType

JOB_OK: The last job has
finished successfully.
JOB_PENDING: The last job
is waiting for execution or is
currently being executed.
JOB_CANCELLED: The last
job has been cancelled.
JOB_FAILED: The last job
failed.
BLOCK_INCONSISTENT:
The requested block is
inconsistent, it may contain
corrupted data.
BLOCK_INVALID: The
requested block has been
invalidated. The requested
read operation cannot be
performed.

Description: Function gets the job result from the TI Fee module.

4.10.1.11 Task Function (TI_Fee_MainFunction)

Function Name: TI_Fee_GetStatus

Syntax: TI_FeeModuleStatusType TI_Fee_GetStatus(uint8
u8EEPIndex)

Sync/Async: Synchronous
Parameters
(in):

u8EEPIndex Index for EEP. (0/1)

Return value: TI_FeeModuleStatusType

UNINIT: TI Fee Module has
not been initialized.
IDLE: TI Fee Module is
currently idle.
BUSY: TI Fee Module is
currently busy.
BUSY_INTERNAL: TI Fee
Module is currently busy with
internal management
operations

Description: Function gets the status of the TI Fee module.

 50

This function handles the Write/Read/Erase/Invalidate asynchronous jobs initiated by
TI_Fee_WriteAsync()/TI_Fee_Read()/TI_Fee_EraseBlock()/TI_Fee_InvalidateBlock()
functions. This function should be called at regular intervals by a scheduler.
This function internally calls another function TI_FeeInternal_FeeManager whenever there is
no other job pending (“IDLE” State). TI_FeeInternal_FeeManager function handles all the
background tasks/internal operations to manage the TI FEE module.

Note: The user has to schedule the tasks/data operations such that the TI FEE module is in
“IDLE” state for some time so that the internal operations are handled correctly.

Function Name: TI_Fee_MainFunction
Syntax: void TI_Fee_MainFunction(void)
Sync/Async: Asynchronous
Parameters (in): None
Return value: None

Description: Function to handle the requested Async data
operations

4.10.1.12 Manager Function (TI_FeeInternal_FeeManager)

The function TI_FeeInternal_FeeManager() manages the Flash EEPROM Emulation and is
called when no other job is pending by the TI_Fee_MainFunction function. This function
handles all the background tasks to manage the FEE.

 This routine is responsible to
• Determine whether a Virtual Sector Copy operation is in progress. If so, it should

identify all the Valid Data Blocks in the old Virtual Sector and copy them to the new
Virtual Sector.

• Determine if any of the Virtual Sector needs to be erased. If so, it should erase that
particular Virtual Sector.

• This function is only called when the Fee module is in IDLE state. It should set the
Fee module to BUSY_INTERNAL state.

Function Name: TI_FeeInternal_FeeManager
Syntax: TI_FeeStatusType TI_FeeInternal_FeeManager(void)
Sync/Async: Asynchronous
Parameters(in): None

Return value:

TI_FeeStatusType TI_FEE_OK: The job
was completed
TI_FEE_ERROR: The
job was not completed
due to an error.

Description: Function to perform background operations.

4.10.1.13 Format Function (TI_Fee_Format)

This function provides functionality for erasing all the Virtual Sectors synchronously.

 51

Note:

Calling this function will result in loss of data. This function should be called only if you want to
reconfigure the Data Blocks/Virtual Sectors or detect a serious error condition.
If u32FormatKey=0xA5A5A5A5, this API will format only configured sectors. However,
TI_Fee_Init has to be called before.
If u32FormatKey=0x5A5A5A5A, then TI_Fee_Init API call is not required. However, in
this case complete EEPROM bank will be formatted.

4.10.1.14 TI_FeeErrorCode

This function provides functionality to identify occurrence of an error.
It returns ‘0’ if no error has occurred else it returns an Error code.

4.10.1.15 TI_Fee_ErrorRecovery

Function Name: TI_Fee_Format
Syntax: boolean TI_Fee_Format(uint32 u32FormatKey)
Sync/Async: Synchronous

Parameters (in): u32FormatKey – 0xA5A5A5A5/ 0x5A5A5A5A should
be passed as input for formatting the emulated Flash.

Return value: TRUE/FALSE
Description: Function formats all the Virtual Sectors.

Function Name: TI_FeeErrorCode()

Syntax: TI_FeeErrorCodeType TI_FeeErrorCode(uint8
u8EEPIndex)

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in) EEP Index
Parameters (out): None

Return value: TI_FeeErrorCodeType Returns an Error
Code

Description: Returns ‘0’ if no error has occurred else it returns an
Error code.

 52

This function provides functionality to recover from any severe errors.

4.10.1.16 Synchronous Read Function (TI_Fee_ReadSync)

This function provides functionality for reading of data from a Block synchronously.

4.10.1.17 S
u
s
p
e
n
d
/
R
e
s
u
m
e

E
r
a
s
e

of sector Function (TI_Fee_SuspendResumeErase)

This function provides functionality to suspend/Resume of erasing a sector.

Function Name: TI_Fee_ErrorRecovery()

Syntax: void TI_Fee_ErrorRecovery(TI_Fee_ErrorCodeType
ErrorCode, uint8 u8VirtualSector)

Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in) Error Code

Error_TwoActiveVS(Deprecated)

Error_TwoCopyVS(Deprecated)
Error_SetupStateMachine

Error_NoActiveVS
Error_CopyButNoActiveVS(Deprecated)

Error_NoFreeVS

Error_EraseVS
Virtual Sector Number

Parameters (out): None

Return value: None

Description: Function recovers from any severe errors.

Function Name: TI_Fee_ReadSync

Syntax:

Std_ReturnType TI_Fee_ReadSync(
 uint16 BlockNumber,
 uint16 BlockOffset,
 uint8* DataBufferPtr,
 uint16 Length)

Sync/Async: Synchronous

Parameters (in):

BlockNumber Number of logical block, also
denoting start address of that block in
Flash memory.

BlockOffset Read address offset inside the block.
DataBufferPtr Pointer to data buffer.
Length Number of bytes to read.

Return value: Std_ReturnType

E_OK: The Read job was
accepted and completed by the
TI Fee module
E_NOT_OK: The Read job was
not accepted by the TI Fee
module.

Description: Function to read data from a Block.

 53

Note: This API can be called once after TI_Fee_Init is executed with Suspend_Erase as
function argument. It has to be called again after application has completed all the
initialization sequence with Resume_Erase as function argument. This can be called if
projects do not want TI_Fee_Init API to trigger erasing of virtual sector.

4.11 Privilege Mode access

FEE needs following API’s to be executed in Privilege mode:

- TI_Fee_Init

- TI_FeeInternal_WriteDataF021

4.12 Power Fail Behavior

FEE will be able to recover from any kind of resets.

Following are the scenarios where if power fail happens, how FEE behaves:

=>Assume an erase command is issued and F021 starts erasing the sector. Now,

before the sector is completely erased, if there was a power fail, in next
initialization, this sector is added to the erase queue since sector header will not
match with the expected sector header states(Active, Copy, Ready for Erase,
Empty).
Erasing will happen in the background.

=>Similarly, if there was a power fail during writing of Sector header, above step is
 performed.

=>If there was a power fail during writing of a block
 Block is written in following way
 1. Block status is programmed as start program block.
 2. Block number and block size are written.
 3. Write data of the block.
 4. After completion of writing of data, Checksum and address of previous block are
 written
 5. Block status is marked as Active.

Function Name: TI_Fee_SuspendResumeErase

Syntax: void TI_Fee_SuspendResumeErase(
 TI_Fee_EraseCommandType Command)

Sync/Async: Synchronous
Parameters (in): Command Suspend_Erase/Resume_Erase
Return value: None
Description: Function to suspend/Resume erasing of sector.

 54

If power fail happens after setp1, then in next initialization, writing of next block is
shifted by 24 bytes. If power fail happens after step2, step3,step4 or step5, then the
writing of next block will happen after current block size+block header.

=>Similarly if power fail happens during copy operation, during the next
 initialization, INI API detects that during previous shutdown, copy was
 started but did not get completed. Copy operation is initiated in the current
 driving cycle. Only blocks which were not copied during previous driving
 cycle are copied in current driving cycle.

4.13 Known Issues / Not supported features

- Non Polling mode not supported.

- Immediate block writing not accepted when FEE is performing copy of blocks /
erase of sectors.

- No Jobs accepted during copy of blocks /erase of sectors ongoing. (The write job
which triggered the copy operation will be pending until copy of blocks and erase
of sectors is completed.)

- Maximum Blocking time not supported.

4.14 Example Configurations

4.14.1 Four Virtual Sectors on four physical sectors – Single EEPROM

Step 1: Configure FEE Global

Step 2: Configure FEE Virtual Sector Configuration

 55

Step 3: Add blocks in FEE Block Configuration

4.14.2 Two Virtual Sectors on four physical sectors– Single EEPROM

Step 1: Same as in 4.14.1

Step 2: Configure FEE Virtual Sector Configuration

 56

Step 3: Same as in 4.14.1

4.14.3 Two Virtual Sectors for each EEPROM on four physical sectors – Two
EEPROM

Step 1: Configure FEE Global as shown below.

Step 2: Configure FEE Virtual Sector Configuration

 57

Step 3: Add blocks in FEE Block Configuration. Configure blocks on to EEP0/EEP1

	TI FEE Driver User Guide
	Overview
	The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual Sector is further partitioned into several Data Blocks. A minimum of two Virtual Sectors are required for Flash EEPROM emulation.
	The initialization routine (TI_Fee_Init) identifies which Virtual Sector to be used and marks it as Active. The data is written to the first empty location in the Active Virtual Sector. If there is insufficient space in the current Virtual Sector to u...
	Virtual Sectors and Data Blocks have certain space allocated to maintain the status information which is described in more detail in the following sections.
	The Virtual Sector is the basic organizational unit used to partition the EEPROM Emulation Flash Bank. This structure can contain one or more contiguous Flash Sectors contained within one Flash Bank. A minimum of 2 Virtual Sectors are required to su...
	The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data Structure and the remaining space is used for Data Blocks.
	4.10 API Specification
	4.10.1 TI FEE Driver Functions
	4.10.1.1 Initilization Function (TI_Fee_Init)

	This function returns the version information for the TI Fee module.
	TI Fee specific version numbers MM.mm.rr
	This function returns the status of the TI FEE module.
	This function returns the result of the last job synchronously.
	4.11 Privilege Mode access
	4.12 Power Fail Behavior
	4.13 Known Issues / Not supported features
	4.14 Example Configurations

