
How to Integrate the Bosch BNO055 Library into your Tiva Launchpad Project 
A How-To Guide 
By Phillip Dupree 
Mechatronics Lord 

 
So you want to integrate the BNO055 Bosch-Sensortec C Library into your Tiva 
Launchpad Project? You poor bastard. Good luck. Quick note before you get started, this 
guide should be extremely helpful in showing anyone how to integrate the Bosch bno055 
library into their microcomputer project, regardless of whether they are using a Tiva 
Launchpad microcomputer or not. The microcomputer I’m using is the TM4C123GXL. 
Now let the games begin. 

 
Chapter 1: Preliminary Reading 

 
1A: You’re In Trouble. 
Because this is, unfortunately, a massive pain. But there is hope for you, especially if 
you’re extremely familiar with: 

-    I2C Protocol 
-    C Programming Language (advanced) 
-    TivaWare Library 
- TivaWare I2C Library and what the I2CmasterControl Function is actually doing 

on an I2C Protocol level. 
-    The bno055 datasheet, particulary the section on I2C Communication. 

 
If not, here is where you start. 

 
1B: Get Reading 
For I2C Protocol, this is a very good online tutorial that goes over both I2C Protocol and 
how to use the Tiva to set it up. The video is “TM4C123 Tutorial: I2C Communications” 
by AllAboutEE on Youtube. This dude is a baller and I want him to be my friend. Watch 
this video three or four times (seriously) and take notes. Once you actually feel 
comfortable with how I2C Protocol works (SCL line, SDA line, master, slave, acks, 
nacks, start bit, stop bit, etc), then move on. I highly recommend you google around and 
read a few articles on I2C Protocol as well to make sure everything is clicking. 

 
Next move on to the tivaware library. Download the document “TivaWareTM Peripheral 
Driver Library: User’s Guide” from Texas Instruments. Skip to section 17: Inter- 
Integrated Circuit (I2C) and read up on all the functions.  Spend a good time on the 
initialization functions and I2Cmaster Control.You should see how they do all the 
different things you learned about my studying I2C beforehand. 

 
Unfortunately we’re not nearly done with absorbing all the information you’ll need to 
even stand a chance of integrating Bosch’s bno055 library into your project. It’s critical 
that you understand not just I2C protocol, but how the bno055 works with I2C. Can the 
bno055 handle successive reads and writes, or do you have to send and/or read one byte 
at a time? What clock rate does the bno055 require for its I2C communication? What is



its default slave address? You get the point. Download the bno055 datasheet from Bosch- 
Sensortec or Adafruit. You really need to read it from cover to cover, but for now scour 
Section 4.6, I2C Protocol (referred to throughout the guide as 4.6). Read it again, and 
again. We’ll be referring back to this throughout the guide. 

 
If you’re doing this right you should be seeing a problem by now. Now you know the 
specifics of how you write to the bno055 via I2C. Like, if you want to write a byte you 
have to send a start bit then, then the slave address, then get an ack back from the 
bno055, then send the register address, get an ack back, don’t send a stop bit yet, etc…but 
do you know how to do any of that? Not really. You have this big TivaWare functions 
that initialize I2C and send a slave address, data byte, then a nack, but you probably don’t 
know how to do complicated stuff like the Read of a bno055 register requires. Writing a 
slave address then register address, getting an ack back, being sure not to send a stop bit, 
then sending a read command + register address, etc..what you need to know is exactly 
what the I2C Master Control commands are doing. There are 8 of them, and to construct 
the bno055 i2c read and write functions you’ll need to know exactly what they do. 

 
In order to do that, download “Using Feature Set of I2C Master on TM4C129X 
Microcontrollers” written by Amit Ashara, from the Texas Instruments website. It is an 
Application Report, SPMA073 – July 2015. Plug all that and it should pop up in google. 
Amit Ashara is a total badass who balls so hard, you don’t even know. He’s a huge help 
and lord and master of the TI forum.  Read this document from cover to cover and cross- 
analyze it with the I2C Protocol section of the bno055 datasheet. You should now 
understand how, in order to send a write command, you’ll need to use the I2C Master 
Burst Send Start and Burst Send Finish commands, and for the more complicated bno055 
read commands, you’ll need to use a combination of the Burst Send Start, Single 
Receive, Burst Receive Continuous, and Burst Receive Finish commands, depending on 
how many bytes you’re trying to read at once. 

 
We’d be nearing the end if we were simply writing our own I2C Library using TivaWare 
to communicate with the bno055. And in a lot of ways, that would be much easier than 
what we are attempting to do. Stop here if you want to make a few read and write register 
fuctions. You now know enough to do so. But for you few brave souls who want to 
integrate Bosch Sensortec BNO055 sensor driver library into their projects, which will 
give you the ability to get huge amounts of data from the bno055 with one line function 
calls, then continue. 

 
 
 

Chapter 2: Shit Gets Real 
(The Library, What It Does, and Other Concerns) 

 
2A: Getting Started. 
Download the driver library. It only consists of three files: bno055.h, bno055.c, and 
bno055_support.c. Integrate the first two into your project as usual and don’t forget to 
add the include files into your relevant modules. Spend a lot of time reading through all



three files. The support file is a rather nebulous cluster of badly written examples, while 
the first two are your standard library files. 

 
First of all, download and read “BNO055 Quick Start Guide” from Bosch Sensortec. It’s 
only 9 pages so read it through several times spending most of your time on page 7, the 
example code (if you are unfamiliar with the bno055 to begin with this guide would be a 
good place to start). You should now understand that in theory, this library can make 
your life pretty easy, with powerful functions that allow you to change the mode and give 
you access to all the data the IMU has to offer. It’s a generic C library to go with any 
microcomputer, so all you really have to do is: 

a.   Copy the entire initialization routine from the Quick Start Guide (steps 1 – 5) 
b.   Select whatever mode you want and start calling functions to get your data 
c.   Figure out Step 3 in the Quick Start Guide example code, in which you write your 

own I2C Functions for reading and writing and link them to the API 
communication pointers.  On the right side of these functions you insert your own 
i2c read and write functions (BNO055_I2C_bus_read and _write are just holders 
for your own functions.) Easy, right? 

 

 
Figure 1: Example Code, Step 3 

 
 
Hell no. 

 
The problem is that how these functions need to be written is completely undocumented. 
What arguments do these functions require? Do they need to save their data to an array 
somewhere? What are they returning? Do they return anything? Do the functions need to 
be able to internally handle reading and/or writing multiple bytes? 

 
You’ll have to parse together the answers to these questions and many more, in little 
infuriating painful bits in pieces, by reading 4.6 (which I’ve already had you study), and 
dragging yourself through the library files. 

 
If your C is very good and you have no problem reading about structs and pointers, this 
library may be moderately straight-forward to you. If you’ve never used structs, pointers, 
referencing, passing, and that sort in your moderately simple C code before (like me), this 
library will be an unintelligible clusterfuck. Make no mistake, this library is advanced C. 
It’s not just you. So read through the library as best you can, take a break and get some 
coffee, then come back and spend a few hours reading about structs and pointers. 
Everything about pointers. Pointers and referencing, pointers as function arguments, 
pointers pointers pointers. Let it sink in. Write some simple example programs. Take 
another break, come back and read about pointers and arrays and pointers to an array. Let 
that sink in. Sleep on it all.



 
Now it’s morning and the library will make a bit more sense. I can’t explain to you very 
well how it works, but I can give you some ideas. 

 
2B: The Header File 
Open up bno055.h, the header file. A struct called bno055_t is created to hold all the core 
information of the chip, including the chip ID, softwar rev ID, i2c device address, and 
most importantly, the bus write and read function pointers. This struct is created in the 
header file under STRUCTURE DEFINITIONS. 
There are structs created to hold the data from accelerometer, magnetometer, gyro, 
calibration, etc. These structs hold the different components for each of these 
measurements and are also found in the header file under STRUCTURE DEFINITIONS. 

 
The pound defines (#define) for a hundred different things are found in the header file. If 
you’re confused by the u8, s8, etc, take a look at the top of the header file. All the pound 
defines for the registers are here as well. 

 
2C: The Source File 
Much more difficult is the actual library file bno055.c. This contains all the function 
calls. These functions work by taking in data, processing it, then passing it into the i2c 
read and write functions you crafted and linked to the API communication pointers, 
which in turn write to the bno055. Why is it done this way? Because the blessing and the 
curse of this library is that it is a generic library that can be interfaced with any 
microcomputer. The best way to understand this will be an example. I will explain as best 
I can. 

 
The function bno055_init is near the top of bno055.c.  This function initializes 
communication by setting the register page to zero and reading the chip ID, 
accelerometer revision ID, etc. Look at the line where it writes the default page as zero. 

 

 
Figure 2: BUS_WRITE_FUNC 1 

 
 
What’s going on here? 

 
- This function, like all the communication functions, returns a variable com_rslt 

which stands for communication result. 
-    p_bno055 is a pointer to the bno055_t struct. This line of code is going into the 

bno055_t struct and “calling” (for lack of a better word) the 
BNO055_BUS_WRITE_FUNC pointer. This is nothing more than a pointer to 
the write function you wrote and linked to in Step 3 of the quick start guide 
(bus_write is pound defined as BNO055_BUS_WRITE_FUNC in the header file,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4: Support File Code 

so they are synonymous).  So it is passing dev_addr, BNO055_PAGE_ID    REG, 
&v_page_zero_u8, and BNO055_ONE_U8X into your function. 

-    So your i2c write function must have four arguments, but what do they mean? 
-    This is where a guide from bosch on how you must construct your i2c read and 

write functions in order to properly link them to their library would be great. 
Unfortunately, it doesn’t exist. All you have is me. 

 
Just so we’re on the same page, here’s what we now know: We have a library from 
bosch full of powerful functions that should in theory make our lives easier. The problem 
is it’s a generic library, so we have to write our own low-level functions that read and 
write to the bno055 using I2C. If we can properly construct these functions and link them 
to the bosch library, our work is done and we can call all of bosch’s functions to set up 
the bno055 and get data from it. However, these functions have to be set up a very 
specific way – returning the right thing and taking the right arguments – to work with the 
bosch library. Exactly how they have to be specifically written is not documented so we 
have to figure it out from context and by reading the library. So onto Chapter 3. 

 
Chapter 3: How the Actual Fuck do we write our I2C read and 
write functions so that they’ll properly communicate with the 
bno055 library? 

 
3A: Into the Support File 
The file bno055_support.c has the best lead on how to write the I2C Read and Write 
functions, though it’s still phenomenally shitty. This text comes from towards the top of 
the file: 



In badly written English this giving you invaluable insight into what your I2C bus read 
and write functions need to do and what arguments they must take. Now, this guide is 
getting a little long so I’m going to speed this up. What can we take away from this? 

 
 
 
3B: The Return 
First, these functions are not “void”. They return s8, which is a signed eight-bit integer 
which is the result of your I2C communication. I believe that 0x00 means no error, while 
anything else indicates an error of sorts. In my functions, I return I2CMasterErr from the 
TivaWare library. I can’t swear this is correct. 

 
3C: The Arguments 
Moving on. According to the support file, Both your read and write function take four 
arguments: 

a.   the slave device address (address of the bno055) 
b.   register address 
c.   data pointer 
d.   count variable. The first two are self explanatory. 

 
Now a. and b. are self explanatory. The latter two are a bit more confusing. Let’s start 
with c. For the write function this is pretty simple. It is an eight bit variable that contains 
the data we want to write to the given register. You are not creating this variable – it is 
created within the higher functions that call your prewritten read and write functions. 
Why is it an address of a variable, rather than the variable itself like arguments a. and b? 
That’s just how the library functions are structured. The same concept goes for the read 
function, except now *reg_data is an array which can hold multiple bytes. You are not 
creating this array. Again, it is created within the functions. This took me ages to figure 
out. To demonstrate, let’s look at this function from bno055.c, the source file.



 

 
 

FIGURE 5: Accel_X Function 
 
 
Notice how array “u8 vv_data_u8[arrray_size_two]” is created within the function before 
we start calling BNO055_BUS_READ_FUNC (which, of course, just links to your read 
function)? Something very similar happens when you take a look at a Write function 
within the library, except it’s just a u8 variable, not a u8 variable array. 

 
Now for the count variable. This had me confused for ages. Remember when in Chapter 
1 I had you read Section 4.6 (I2C Protocol) of the bno055 datasheet? You should recall 
from this that though we can read multiple bytes, we can only write one byte at a time. So 
why the hell is there a count variable for the write function? Answer: I honestly don’t 
know, but when I dug through the library I found that all the functions only input a “1” 
as the count variable. So my i2c write function actually doesn’t do anything with the 
count variable. So far I haven’t run into errors.



 
This is not the case with the read function. Take another look at the  read_accel_x 
function and you’ll see that internal to your read function you must be able to read 
multiple bytes and store them in the data array that gets passed into the read function. 
You know from Section 4.6 of the bno055 datasheet that you can read more than one data 
byte at a time. Your read function will be a good deal more complicated than your write 
function. You will have to take in the count variable and do one thing if the count is only 
1, and a more complicated routine is the count is more than one. 

 
3D: In Retrospect 

 
Let’s recap. For the READ FUNCTION: 

- You must input the slave device address and the address of the register you wish 
to read from. 

- You must take in the address of a reg_data array, and write the data you get back 
from bno055 into that array. 

- Your read function takes in a count variable. It has to be smart enough to save 
multiple bytes of data, starting at the register address and incrementing from 
there. So if I input a register address of 0x00 and a count of 3, I have to be able to 
read from register 0x00, 0x01, and 0x02, and save it in reg_data[0] through [2]. 

 
For the WRITE FUNCTION: 

-    You must input the slave address and the address of the register you wish to write 
to. 

-    You must take in the address of a reg_data variable and write that data onto the 
register. 

-    You can ignore the count variable, though it must be included as a argument of 
your function. 

 
That’s it. Write your read and write function. Link them to the API communication 
pointers as shown in Step 3 of the Quick Start Guide, described in Chapter 2 of this 
Guide. Compile your code and write to your heart’s content. 

 
But Phillip, aren’t you going to include the code to your read and write functions? 

 
No, because I’m a sadistic bastard. I’ve encapsulated a week of banging my head against 
a wall into this guide. I’ve given you all the tools you need in painstaking details. I’ve 
spent all day writing this guide when I could have been sleeping or actually getting ahead 
(or let’s face it, less behind) on my project. You can do this. Believe in me who believes 
in you. Here, however, is the argument line of both: 

 
s8 bno_read(u8 dev_address, u8 reg_address, u8 *reg_data, u8 count){//magic} 
s8 bno_read(u8 dev_address, u8 reg_address, u8 *reg_data, u8 count){//more 
magic}



 
 
Now I’m going to get some goddamn coffee. 


