AM263x ADC PSPICE Models

2023-11-08

Summary

- Assembled PSPICE based models of the AM263x SAR ADC
 - Parasitics based on datasheet typical values
 - Models can be used to test attached op-amp and RC charge-bucket filter circuit performance to minimize sampling error
 - Various sample-rate, acquisition and hold timings can be setup
 - Single-ended model available now, can be extended to differential mode model
- PSPICE models assembled using the Cadence PSPICE for TI toolset
 - See: https://www.ti.com/tool/PSPICE-FOR-TI
- Comprehensive SAR ADC circuit selection guide (applicable to AM263x devices) is available here:
 - https://www.ti.com/lit/an/spract6a/spract6a.pdf
 - Written with TINA-TI SPICE simulator in mind, but the concepts are all applicable

Model Description

AC Source

- Typical op-amp driver circuit should be replaced with whatever driver is present in target system
- Should output signal range compatible with datasheet voltage limits

Package Capacitance

330pF

Typical value within datasheet input parasitics tolerances

ADC Hold Capacitance

- Typical value within datasheet input tolerances
- Acquisition logic samples this voltage during conversion

ADC Discharge Switch

Modeling discharge timing for Chold

S_Discharge

VON = 1.0V

V Discharge

V1 = 0 V2 = 1.2V

TD = 248nS

TR = 100p

TF = 100p

PW = 2nS

PER = 250nS

VOFF = 0.0V

Rdischarge

0.001

Ideal switch – near zero leakage

RC Charge-Bucket Circuit

- Providing local store of charge for sample phase
- · Charge current limiting
- Usually not anti-alias bandwidth limiting

ADC Discharge Switch

- Modeling sample/hold timing for Chold
- Ideal switch near zero leakage

ADC Config Info

 Used to inform expected settling noise targets

V1 = 0 < V2 = 1.2V

TR = 100p

TF = 100p

PW = 95nS

PER = 250nS

TD = 0

Settling target = 1/2 LSBs = 390uV

ADC On Resistance

AM263x SAR ADC Input Model

Ron AAA

Cpkg

 $\frac{1}{2}$ 7pF

Typical value within datasheet

input parasitics tolerances

Rhold

S_SampleHold

VON = 1.0V

V SampleHold

VOFF = 0.0V

0.001

Chold

8pF

Model Output Example

Model Output Example

- Simulated ADC settling error can be evaluated by measuring the difference in voltage from op-amp output to the Chold capacitor after the sample and hold switch has opened.
 - This would be the beginning of the conversion phase
- In the example shown, the settled acquisition error is show to be close to 1mV (no RC charge-bucket circuit optimizations were made)
- If further reduction in settled error is needed a parametric sweep of Rs and Cs values van be run

Model Output Example – Parametric Sweep

- For best value sweep starting points See SAR ADC circuit selection guide (applicable to AM263x devices) available here:
 - https://www.ti.com/lit/an/spra ct6a/spract6a.pdf
- Keeping Cs constant at 200pF and sweeping across Rs values from 1mOhm to 100Ohm
 - Rs = 80 minimized error after sample and hold switch closed to less than 33uV
- Specific RC values are dependent on op-amp driver and timing selected since both with change the settling behavior during sample phase

