

Motor Tachometer Speed Calculation Using
Hardware Timer Capture Feature

December 3, 2007 Document No. 001-41064 Rev. *A - 1 -

AN2087
Author: Arnold Motley

Associated Project: Yes
Associated Part Family: CY8C24x23A, CY8C27x43, CY8C29x66

GET FREE SAMPLES HERE
Software Version: PSoC Designer™ 4.4

Associated Application Notes: None

Application Note Abstract
Motor speed sensing is a necessary and critical part of μprocessor based fan control. This application note explains how to
utilize the unique PSoC® architecture to capture, filter, and store the period of a fan tachometer signal.

Introduction
The PSoC MCU captures and measures tachometer (tach)
signals from fan and other types of motors. This is critical
when performing automatic speed control and speed error
detection and correction. The PSoC digital blocks provide a
hardware timer capture, which is a special feature used for
the accurate measurement of motor tach signals.

Motor Background
Motors come in a wide variety and have different features
and capabilities. For this design, a voltage controlled
variable speed motor with a tach output feature is selected.
The tach output comes from an open drain connection, so a
1 kΩ resistor to Vcc is necessary.

The motor has 2 poles, which means that two square wave
pulses (periods) are generated for one mechanical
revolution of the motor. The tach period has a duty cycle of
50%. The motor statistics follow:

 Operating Voltage: 7vdc - 12vdc

 Operating Speed: 3900 RPM at 7 vdc
 6800 RPM at 12 vdc

Hardware Module Setup
Converting the analog tach signal from the fan into a digital
signal that a timer can use requires several steps. Figure 1
shows the hardware blocks used to implement the design.
First, a Programmable Gain Amplifier (PGA) is used in the
PSoC to provide a connection block. From the PGA the
signal goes to a Low Pass Filter (LPF) to remove the high
frequency components that are common on motor tach
signal lines.

Figure 1. Tachometer User Module Placement

The LPF is configured for 1 kHz cutoff frequency. The 600
kHz column clock required for the LPF is generated by the
Count_LPF2 user module. The output of this counter also
feeds the Count_30 kHz counter, which generates a 30 kHz
clock for the capture timer.

The last component in the analog stage of the design is a
comparator. The two purposes of a comparator follow:

1. It "conditions" the tach signal when it leaves the filter.
This is done by decreasing the leading edge rise time of
the tach signal. In this design, the tach output of the
comparator has a rise time of about 6-7μs.

2. The comparator also provides the hardware connection
to the timer. The comparator output bus feature is
enabled in the comparator block for this purpose.

[+] Feedback [+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41064_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41064_pdf_p_1
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___motor_tachometer_speed_calculation_using_hardware_timer_capture_feature___an2087_12_pdf_p_1

AN2087

December 3, 2007 Document No. 001-41064 Rev. *A - 2 -

The hardware capture feature of the timer works as follows:

When a positive tach pulse is sensed on the capture line of
the timer, an interrupt is generated. Upon entering the timer
Interrupt Service Routine (ISR), the timer is stopped and
then a count variable "PulseCount" is checked to see if this
is the first of two pulses. If it is the first pulse, the counter
variable is incremented, the timer period is loaded with a
value of FFh, and the timer is restarted in preparation for the
next pulse.

If it is the second pulse, the timer compare register is read
and the value (the tach period) is moved to the “PulseData”
variable. A value of 1 is added to the “PulseData” variable in
case an overflow condition is detected. In an overflow
condition, the variable returned from the timer compare
register is FFh and the compare test indicates that the
overflow did not occur. Adding 1 to “PulseData” makes the
value 0, and now the test correctly indicates an overflow
condition.

The compare value in the ISR is set to a value of 20h, which
correlates to a timer period window of 7.5 ms. This is
calculated as follows:

 Upper time limit = (input Clk period) * (Timer period
count - value set in ISR)

 Upper time limit = (1/30 kHz) * (256 - 32)

 Upper time limit = 7.5 ms

According to the previous calculations, the window for
capturing tach pulses is 7.5 ms with a resolution of 33 μs or
1 over the timer clock frequency of 30 kHz.

Setting up the timer correctly is very important to ensure that
the pulses are captured accurately and an overflow
condition is detected properly. In the design, the hardware
timer compare value is also set to 20h. At a setting of 20h,
PSoC indicates an overflow condition at a fan speed of 3720
RPM. This trip point is 4.6% below the minimum operating
fan speed of 3900 RPM at 7vdc. The trip point setting is
variable and may be adjusted by changing the compare
value in the timer module and the ISR.

When this state is sensed, a flag may be set to indicate a
low fan speed condition. This allows the design to add
support for a complete fan failure and slow fan conditions.
This same capability allows variable speed error correction.
For example, if a slow fan condition is detected, instead of
just turning on the backup fan at full bore, an algorithm is
added to the firmware to allow the variable speed operation
of the backup fan.

Firmware Support
If “PulseData” is sampled less than or equal to 20h, this
indicates that an overflow condition has occurred. Now, in
the ISR an overflow variable "Overflow" is set to 1 and the
timer is started. A variable "NewData" is set to 1 to indicate
that a new tach signal pair is received. The “PulseCount”
variable is also reset to 0 and a reti is done. This code
detects a low fan speed condition.

Note This code does not detect the complete failure of the
fan because there would be no tach signal to generate the

capture interrupt. Moreover, if the time between the tach
signals exceeds the total period of the timer, the firmware
cannot detect this condition. For such conditions, a 16-bit
timer is used to increase the measurement range or a
timeout mechanism may be implemented by using another
timer.

The main body of code sits in a loop until the variable
“NewData” is set. When “NewData” is set, the code goes
into a switch statement to check if the data is valid or not. If
the data is valid, the variable "PulseWidth" is set with the
variable "PulseData." “PulseWidth” holds the tach data until
a new data point is captured.

If the data is invalid then "PulseWidth" is set with a value of
0. "Overflow" and "NewData" are also set to 0 in preparation
for the next capture. The data stored in "PulseWidth" could
be sent to a monitoring device for further processing.

 Block Diagram
The block diagram in Figure 2 shows the PSoC hardware
user modules that are used in the design. Pin 1 in the
following figure is configured as a standard analog input pin.
The tach signal from the fan is a square-wave pulse train
from 0 – 5 vdc, so the gain on the PGA is set at unity (A=1).

Figure 2. Tachometer Block Placement

PGA
Tach

Cypress PSoC

8-bit Tach
Timer

2-pole
LPF

30KHz

CPU

Tach_1 P0[7], Pin 1

8-bit
Count
30KHz

A = 1

HW
Capture

Timer
Value

8-bit
Counter

Comparator

600KHz

Mux

The 2 pole LPF has an fc = 1 kHz, and the comparator
switching level is set at 2.5 vdc. This level is chosen to limit
noise affects, yet it allows enough margin for proper design
operation. With the PSoC A_Mux module, a multichannel
sensing scheme is easily implemented.

Summary
The PSoC μcontroller is used to control motor operation. It
incorporates many functions normally done with external
hardware, including the following:

 Speed Sensing

 Error Detection

 Correction

This application note demonstrates straightforward PSoC
device implementation of capturing and measuring
tachometer signals.

[+] Feedback [+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41064_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41064_pdf_p_2
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___motor_tachometer_speed_calculation_using_hardware_timer_capture_feature___an2087_12_pdf_p_2

AN2087

December 3, 2007 Document No. 001-41064 Rev. *A - 3 -

 About the Author
Name: Arnold Motley

Title: Cypress Customer Design Center Engineer

Contact: iam@cypress.com

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new
documentation number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all
subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer and PSoC Express are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their
respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback [+] Feedback [+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41064_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-41064_pdf_p_3
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_motor_control___motor_tachometer_speed_calculation_using_hardware_timer_capture_feature___an2087_12_pdf_p_3

