Interrupt from PRU to R5F

Processors Platform Software

Exported on 07/08/2025

Processors Platform Software — Interrupt from PRU to R5F

Table of Contents

Initializing and Handling Interrupt on RSF:oooiiiii e 3

Processors Platform Software — Interrupt from PRU to R5F

Initializing and Handling Interrupt on RSF:

First you will have to configure the interrupt using SysConfig (More information at: AM64x MCU+ SDK:

PRUICSS (ti.com)?)

In SysConfig: Under PRUICSS module select ICSSG Instance and then

Select an interrupt Event number from 16 to 31 under PRUICSS > ICSSGO INTC Internal Signals Mapping. Can
proceed with default mapping for Channel and host interrupt. (TRM 6.4.7.1)

Host Mapping of channels

Channel Mapping of internal events

A A
I ™ ~ ™
PRUO0/M
| R31 bit 30 |1— Host-0 Channel-0 event 0
PRUON | event 2 Peripheral A
R31 bit 31 Host-1 o~ Channel-1 <
L]
Host-2 Channel-2
o
Host-3 Channel-3 [°
Host4 Channeld °
A/ ®
Host-5 Channel-5 avent 30 °
o
Host-6 Channel:6 event 31 o
[]
Host-7 Channel-7 event 34 °
°
—osts ¢ Channers .
[]
Host-9 Channel-9 °
RTU_PRUO/1 event 58
R31 bit 30 Host-10 Channel-10 . :
O o e — Channek 11] °
R31 bit 31 °
event 63 Peripheral Z
Host-19 Channel-19

icss-011

Figure 6-190. PRU_ICSSG Interrupt Controller Block Diagram

From TRM 9.4.1.3 RSFSS0_CORET1 Interrupt Map:

R5FSS0_COREOD_INTR_IN_120 120 |PRU_ICSSGO_PR1_HOST_INTR_PEND_0
R5FSS0_COREOQ_INTR_IN_121 121 PRU_ICSSGO_PR1_HOST_INTR_PEND_1
R5FSS0_COREO_INTR_IN_122 122 |PRU_ICSSGO_PR1_HOST INTR_PEND 2
R5FSS0_COREOD_INTR_IN_123 123 |PRU_ICSSGO_PR1_HOST INTR_PEND_ 3
R5FSS0_COREOD_INTR_IN_124 124 |PRU_ICSSGO_PR1_HOST INTR_PEND 4
R5FSS0_CORED_INTR_IN_125 125 |PRU_ICSSGO_PR1_HOST_INTR_PEND_5
R5FSS0_COREO_INTR_IN_126 126 |PRU_ICSSGO_PR1_HOST_INTR_PEND_6
R5FSS0_COREOD_INTR_IN_127 127 |PRU_ICSSGO_PR1_HOST INTR_PEND_7

1 https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_02_00_31/exports/docs/api_guide_am64x/
DRIVERS_PRUICSS_PAGE.html#autotoc_md612

Initializing and Handling Interrupt on R5F: - 3

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_02_00_31/exports/docs/api_guide_am64x/DRIVERS_PRUICSS_PAGE.html#autotoc_md612
https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_02_00_31/exports/docs/api_guide_am64x/DRIVERS_PRUICSS_PAGE.html#autotoc_md612

Processors Platform Software — Interrupt from PRU to R5F

Host interrupts 2-9 (from 0 to 19 as in Fig 6-190 above) are exported to system interrupts and correspond
to PRU_ICSSGO_PR1_HOST_INTR_PEND_O-PRU_ICSSGO_PR1_HOST_INTR_PEND_7 and create interrupt on
R5F0-0 on input interrupt lines 120-127.

Initialize the interrupts as: (Refer: AM64x MCU+ SDK: PRUICSS (ti.com)?)

For ICSS internal event number 16 mapped to channel 2 — host interrupt 2, sample code snippet:

gPruIcssOHandle = PRUICSS_open(CONFIG_PRU_ICSSO);
status = PRUICSS_intcInit(gPrulcssOHandle, &icssO_intc_initdata);
DebugP_assert(SystemP_SUCCESS == status);

status = PRUICSS_registerIrqHandler(gPrulcssOHandle,

0, /* pruEvtoutNum
PRU_ICSSGO_PR1_HOST_INTR_PEND_O® = 0, PRU_ICSSGO_PR1_HOST_INTR_PEND_7 = 7 */

120, /* r5fIntrNum corresponding r5f dinput
interrupt line %/

1, /* eventNum */

0, /* wait_enable x/

&ISR

)5

DebugP_assert(SystemP_SUCCESS == status);

void ISR(void *args)
{

// ISR code here

PRUICSS_clearEvent(gPrulcss@Handle, sysEventNum); /* sysEventNum = PRU 1internal
event number from 16 to 31 x/

}

2 https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_02_00_31/exports/docs/api_guide_am64x/
DRIVERS_PRUICSS_PAGE.html#autotoc_md612

Initializing and Handling Interrupt on R5F: - 4

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_02_00_31/exports/docs/api_guide_am64x/DRIVERS_PRUICSS_PAGE.html#autotoc_md612
https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_02_00_31/exports/docs/api_guide_am64x/DRIVERS_PRUICSS_PAGE.html#autotoc_md612

Processors Platform Software — Interrupt from PRU to R5F

Generating interrupt from PRU:

From TRM 6.4.5.2.2.2:

Simultaneously writing a ‘1’ to pru_r31_vec_valid (R31 bit 5) and a channel number from 0 to 15 to
pru_r31_vec[3:0] (R31 bits 3-0) creates a pulse on the output of the corresponding pr_pru_mst_intr[x]_intr_req
INTC system event. For example, writing ‘100000’ will generate a pulse on prk_pru_mst_intr[0]_intr_req,
writing ‘100001’ will generate a pulse on prk_pru_mst_intr[1]_intr_req, and so on to where writing ‘101111’ will
generate a pulse on prk_pru_mst_intr[15]_intr_req and writing ‘Oxxxxx’ will not generate any system event
pulses. The output values from both PRU cores in a subsystem are ORed together. The output channels 0-15
are connected to the INTC system events 16-31, respectively. This allows the PRU to assert one of the
system events 16-31 by writing to its own R31 register. The system event is used to either post a completion
event to one of the host CPUs (Arm) or to signal the other PRU. The host to be signaled is determined by the
system interrupt to interrupt channel mapping (programmable). The 16 events are named as
prk_pru_mst_intr<15:0>_intr_req. See the , PRU_ICSSG Interrupt Requests Mapping, in the section,
PRU_ICSSG Local Interrupt Controller, for more details.

So:

1di r3l1.b0, 0x20 + 0Ox0 ; creates event 16 to interrupt r5f
core

This is all we need to do to trigger interrupt if the interrupt settings have already been configured by the r5f
core.

‘Tablo 6425, PRU_ICSSG Intorrupt Roquosts
ot Reasets

od e Mo g S ot

e ouscrpten

6.4.7.1 PRU_ICSSG Interrupt Controller Functional Description

The PRU_ICSSG INTC supports up to 160 interrupts from different peripherals (including 64 intemal interrupts

from PRU_ICSSG located interrupt sources). The INTC maps these events to 20 channels inside the INTC (see

Figure 6-194). Interrupts from these 20 channels are further mapped to 20 Host Intefrupts.

+ Any of the 160 internal interrupts can be mapped to any of the 20 channels.

+ Multiple interrupts can be mapped to a single channel.

« Aninterrupt should not be mapped to more than one channel.

+ Any of the 20 channels can be mapped to any of the 20 host interrupts. Itis recommended to map channel
“X"1o host interrupt *x', where x is from 0 to 19.

+ Achannel should not be mapped to more than one host interrupt

+ For channels mapping to the same host interrupt, lower number channels have higher priority.

+ For interrupts on same channel, priority is determined by the hardware interrupt number. The lower the
interrupt number, the higher the priority.

+ HostInterrupt 0 is connected to bit 30 in register 31 (R31) of PRUO and PRUA i paraliel

+ Host Interrupt 1 is connected to bit 31 in register 31 (R31) for PRUO and PRUT in parallel

+ HostInterrupts 2 through 9 exported from PRU_ICSSG and mapped to device level interrupt controlle

" iostIntormupt 10is connecied t bl 30 register 31 (R31) o both RTU_PRUO and RTU PRUT i paralel

+ Host Interrupt 11 is connected o bit 31 in register 31 (R31) to both RTU_PRUO and RTU_PRU1 in parallel.

+ Host Interrupts 12 through 19 are connected to each of the 6 Task Managers

Table 6.481. PRU._ICSSGO and PRU_ICSSG1 Intemal Interrupts Table 6-435. Evont Interface Mapping (R31) Field Descriptions
e o Sowee prion
£l
E)
7
£
=
= and soon
B g ‘0000 willnot
z a subsystem are ORed together.
o
= The output channels 0-15 are connected to the INTC system events 16-31, respectively. This allows the PRU
1o sssat o f e sysem svnt 1631 by wing o s o R31 registe. The sysem vert s used o
i Us (Am) ot sealhe oter PRU. he hattobe
® o « by 1 ot chanoe opping (roorarmabl), T 13 evers are
i e PRU.1CSSG et Reaussts Mapping, n e secir
© P, 10556 Toce marupt ont is

Generating interrupt from PRU: - 5

	Initializing and Handling Interrupt on R5F:
	Generating interrupt from PRU:

