
Copyright © 2006-2016
Texas Instruments Incorporated

SW-TM4C-DRL-UG-2.1.3.156

USER’S GUIDE

TivaWare™ Peripheral Driver Library

Copyright
Copyright © 2006-2016 Texas Instruments Incorporated. All rights reserved. Tiva and TivaWare are trademarks of Texas Instruments Instruments. ARM
and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
www.ti.com/tiva-c

Revision Information
This is version 2.1.3.156 of this document, last updated on July 25, 2016.

2 July 25, 2016

www.ti.com/tiva-c

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 7

2 Programming Model . 9
2.1 Introduction . 9
2.2 Direct Register Access Model . 9
2.3 Software Driver Model . 10
2.4 Combining The Models . 11

3 Analog Comparator . 13
3.1 Introduction . 13
3.2 API Functions . 13
3.3 Programming Example . 19

4 Analog to Digital Converter (ADC) . 21
4.1 Introduction . 21
4.2 API Functions . 22
4.3 Programming Example . 46

5 AES . 47
5.1 Introduction . 47
5.2 API Functions . 47
5.3 Programming Example . 62

6 Controller Area Network (CAN) . 65
6.1 Introduction . 65
6.2 API Functions . 65
6.3 CAN Message Objects . 88
6.4 Programming Examples . 89

7 CRC . 93
7.1 Introduction . 93
7.2 API Functions . 93
7.3 Programming Example . 96

8 DES . 99
8.1 Introduction . 99
8.2 API Functions . 99
8.3 DES Programming Example . 108
8.4 TDES Programming Example . 110

9 EEPROM . 113
9.1 Introduction . 113
9.2 API Functions . 114
9.3 Programming Example . 128

10 Ethernet Controller . 129
10.1 Introduction . 129
10.2 API Functions . 129
10.3 Programming Example . 193

11 External Peripheral Interface (EPI) . 201
11.1 Introduction . 201
11.2 API Functions . 201

July 25, 2016 3

Table of Contents

11.3 Programming Example . 231

12 Flash . 233
12.1 Introduction . 233
12.2 API Functions . 233
12.3 Programming Example . 242

13 Floating-Point Unit (FPU) . 243
13.1 Introduction . 243
13.2 API Functions . 244
13.3 Programming Example . 248

14 GPIO . 249
14.1 Introduction . 249
14.2 API Functions . 250
14.3 Programming Example . 280

15 Hibernation Module . 283
15.1 Introduction . 283
15.2 API Functions . 283
15.3 Programming Example . 311

16 Inter-Integrated Circuit (I2C) . 315
16.1 Introduction . 315
16.2 API Functions . 316
16.3 Programming Example . 343

17 Interrupt Controller (NVIC) . 345
17.1 Introduction . 345
17.2 API Functions . 346
17.3 Programming Example . 356

18 LCD Controller (LCD) . 359
18.1 Introduction . 359
18.2 API Functions . 359
18.3 Programming Example . 387

19 Memory Protection Unit (MPU) . 391
19.1 Introduction . 391
19.2 API Functions . 391
19.3 Programming Example . 398

20 1-Wire Master Module . 401
20.1 Introduction . 401
20.2 API Functions . 401
20.3 Programming Example . 409

21 Pulse Width Modulator (PWM) . 411
21.1 Introduction . 411
21.2 API Functions . 411
21.3 Programming Example . 433

22 Quadrature Encoder (QEI) . 435
22.1 Introduction . 435
22.2 API Functions . 435
22.3 Programming Example . 445

23 SHA/MD5 . 447
23.1 Introduction . 447
23.2 API Functions . 447

4 July 25, 2016

Table of Contents

23.3 Hashing Programming Example . 457
23.4 HMAC Programming Example . 457

24 Synchronous Serial Interface (SSI) . 459
24.1 Introduction . 459
24.2 API Functions . 459
24.3 Programming Example . 472

25 Software CRC Module . 475
25.1 Introduction . 475
25.2 API Functions . 475
25.3 Programming Example . 478

26 System Control . 479
26.1 Introduction . 479
26.2 API Functions . 480
26.3 Programming Example . 517

27 System Exception Module . 519
27.1 Introduction . 519
27.2 API Functions . 519
27.3 Programming Example . 522

28 System Tick (SysTick) . 525
28.1 Introduction . 525
28.2 API Functions . 525
28.3 Programming Example . 529

29 Timer . 531
29.1 Introduction . 531
29.2 API Functions . 532
29.3 Programming Example . 554

30 UART . 555
30.1 Introduction . 555
30.2 API Functions . 555
30.3 Programming Example . 579

31 uDMA Controller . 581
31.1 Introduction . 581
31.2 API Functions . 582
31.3 Programming Example . 602

32 USB Controller . 605
32.1 Introduction . 605
32.2 General USB API Functions . 605
32.3 Using USB with the uDMA Controller . 648
32.4 Using the integrated USB DMA Controller . 652
32.5 USB Link Power Management Functions . 667
32.6 USB UTMI Low Pin Interface (ULPI) . 680
32.7 Programming Example . 684

33 Watchdog Timer . 685
33.1 Introduction . 685
33.2 API Functions . 685
33.3 Programming Example . 694

34 Using the ROM . 697
34.1 Introduction . 697
34.2 Direct ROM Calls . 697

July 25, 2016 5

Table of Contents

34.3 Mapped ROM Calls . 698
34.4 Firmware Update . 699

35 Error Handling . 703

IMPORTANT NOTICE . 704

6 July 25, 2016

Introduction

1 Introduction
The Texas Instruments® TivaWare™ Peripheral Driver Library is a set of drivers for accessing the
peripherals found on the Tiva™ family of ARM® Cortex™-M based microcontrollers. While they are
not drivers in the pure operating system sense (that is, they do not have a common interface and
do not connect into a global device driver infrastructure), they do provide a mechanism that makes
it easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

They are written entirely in C except where absolutely not possible.

They demonstrate how to use the peripheral in its common mode of operation.

They are easy to understand.

They are reasonably efficient in terms of memory and processor usage.

They are as self-contained as possible.

Where possible, computations that can be performed at compile time are done there instead
of at run time.

They can be built with more than one tool chain.

Some consequences of these design goals are:

The drivers are not necessarily as efficient as they could be (from a code size and/or execution
speed point of view). While the most efficient piece of code for operating a peripheral would be
written in assembly and custom tailored to the specific requirements of the application, further
size optimizations of the drivers would make them more difficult to understand.

The drivers do not support the full capabilities of the hardware. Some of the peripherals
provide complex capabilities which cannot be utilized by the drivers in this library, though
the existing code can be used as a reference upon which to add support for the additional
capabilities.

The APIs have a means of removing all error checking code. Because the error checking is
usually only useful during initial program development, it can be removed to improve code size
and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be
enhanced or rewritten in order to meet the functionality, memory, or processing requirements of the
application. If so, the existing driver can be used as a reference on how to operate the peripheral.

The Driver Library includes drivers for all classes of Tiva microcontrollers. Some drivers and pa-
rameters are only valid for certain classes. See the application report entitled, “Differences Among
Tiva Product Classes” for more information.

The following tool chains are supported:

Keil™ RealView® Microcontroller Development Kit

MentorGraphics Sourcery CodeBench for ARM EABI

IAR Embedded Workbench®

Texas Instruments Code Composer Studio™

GNU Compiler Collection(GCC)

July 25, 2016 7

Introduction

Source Code Overview

The following is an overview of the organization of the peripheral driver library source code.

EULA.txt The full text of the End User License Agreement that covers the use of this
software package.

driverlib/ This directory contains the source code for the drivers.

hw_*.h Header files, one per peripheral, that describe all the registers and the bit
fields within those registers for each peripheral. These header files are used
by the drivers to directly access a peripheral, and can be used by application
code to bypass the peripheral driver library API.

inc/ This directory holds the part specific header files used for the direct register
access programming model.

makedefs A set of definitions used by make files.

8 July 25, 2016

Programming Model

2 Programming Model
Introduction . 9
Direct Register Access Model . 9
Software Driver Model . 10
Combining The Models . 11

2.1 Introduction

The peripheral driver library provides support for two programming models: the direct register ac-
cess model and the software driver model. Each model can be used independently or combined,
based on the needs of the application or the programming environment desired by the developer.

Each programming model has advantages and disadvantages. Use of the direct register access
model generally results in smaller and more efficient code than using the software driver model.
However, the direct register access model requires detailed knowledge of the operation of each
register and bit field, as well as their interactions and any sequencing required for proper opera-
tion of the peripheral; the developer is insulated from these details by the software driver model,
generally requiring less time to develop applications.

2.2 Direct Register Access Model

In the direct register access model, the peripherals are programmed by the application by writing
values directly into the peripheral’s registers. A set of macros is provided that simplifies this process.
These macros are stored in part-specific header files contained in the inc directory; the name of
the header file matches the part number (for example, the header file for the TM4C123GH6PM
microcontroller is inc/ tm4c123gh6pm.h). By including the header file that matches the part
being used, macros are available for accessing all registers on that part, as well as all bit fields
within those registers. No macros are available for registers that do not exist on the part in question,
making it difficult to access registers that do not exist.

The defines used by the direct register access model follow a naming convention that makes it
easier to know how to use a particular macro. The rules are as follows:

Values that end in _R are used to access the value of a register. For example, SSI0_CR0_R
is used to access the CR0 register in the SSI0 module.

Values that end in _M represent the mask for a multi-bit field in a register. If the value placed in
the multi-bit field is a number, there is a macro with the same base name but ending with _S (for
example, SSI_CR0_SCR_M and SSI_CR0_SCR_S). If the value placed into the multi-bit field
is an enumeration, then there are a set of macros with the same base name but ending with
identifiers for the various enumeration values (for example, the SSI_CR0_FRF_M macro de-
fines the bit field, and the SSI_CR0_FRF_NMW, SSI_CR0_FRF_TI, and SSI_CR0_FRF_MOTO
macros provide the enumerations for the bit field).

Values that end in _S represent the number of bits to shift a value in order to align it with a
multi-bit field. These values match the macro with the same base name but ending with _M.

July 25, 2016 9

Programming Model

All other macros represent the value of a bit field.

All register name macros start with the module name and instance number (for example, SSI0
for the first SSI module) and are followed by the name of the register as it appears in the data
sheet (for example, the CR0 register in the data sheet results in SSI0_CR0_R).

All register bit fields start with the module name, followed by the register name, and then
followed by the bit field name as it appears in the data sheet. For example, the SCR bit field in
the CR0 register in the SSI module is identified by SSI_CR0_SCR.... In the case where the
bit field is a single bit, there is nothing further (for example, SSI_CR0_SPH is a single bit in the
CR0 register). If the bit field is more than a single bit, there is a mask value (_M) and either a
shift (_S) if the bit field contains a number or a set of enumerations if not.

Given these definitions, the CR0 register can be programmed as follows:

SSI0_CR0_R = ((5 << SSI_CR0_SCR_S) | SSI_CR0_SPH | SSI_CR0_SPO |
SSI_CR0_FRF_MOTO | SSI_CR0_DSS_8);

Alternatively, the following has the same effect (although it is not as easy to understand):

SSI0_CR0_R = 0x000005c7;

Extracting the value of the SCR field from the CR0 register is as follows:

ulValue = (SSI0_CR0_R & SSI_CR0_SCR_M) >> SSI0_CR0_SCR_S;

The GPIO modules have many registers that do not have bit field definitions. For these registers,
the register bits represent the individual GPIO pins; so bit zero in these registers corresponds to
the Px0 pin on the part (where x is replaced by a GPIO module letter), bit one corresponds to the
Px1 pin, and so on.

Note:
The hw_∗.h header files that are used by the drivers in the library contain many of the same
definitions as the header files used for direct register access. As a result, the two cannot
both be included into the same source file without the compiler producing warnings about the
redefinition of symbols.

2.3 Software Driver Model

In the software driver model, the API provided by the peripheral driver library is used by applications
to control the peripherals. Because these drivers provide complete control of the peripherals in their
normal mode of operation, it is possible to write an entire application without direct access to the
hardware. This method provides for rapid development of the application without requiring detailed
knowledge of how to program the peripherals.

Corresponding to the direct register access model example, the following call also programs the
CR0 register in the SSI module (though the register name is hidden by the API):

SSIConfigSetExpClk(SSI0_BASE, 50000000, SSI_FRF_MOTO_MODE_3,
SSI_MODE_MASTER, 1000000, 8);

10 July 25, 2016

Programming Model

The resulting value in the CR0 register might not be exactly the same because SSIConfigSetExp-
Clk() may compute a different value for the SCR bit field than what was used in the direct register
access model example.

All example applications other than blinky use the software driver model.

The drivers in the peripheral driver library are described in the remaining chapters in this document.
They combine to form the software driver model.

2.4 Combining The Models

The direct register access model and software driver model can be used together in a single ap-
plication, allowing the most appropriate model to be applied as needed to any particular situation
within the application. For example, the software driver model can be used to configure the periph-
erals (because this is not performance critical) and the direct register access model can be used
for operation of the peripheral (which may be more performance critical). Or, the software driver
model can be used for peripherals that are not performance critical (such as a UART used for data
logging) and the direct register access model for performance critical peripherals (such as the ADC
module used to capture real-time analog data).

July 25, 2016 11

Programming Model

12 July 25, 2016

Analog Comparator

3 Analog Comparator
Introduction . 13
API Functions .13
Programming Example . 19

3.1 Introduction

The comparator API provides a set of functions for programming and using the analog comparators.
A comparator can compare a test voltage against an individual external reference voltage, a shared
single external reference voltage, or a shared internal reference voltage. It can provide its output
to a device pin, acting as a replacement for an analog comparator on the board, or it can be
used to signal the application via interrupts or triggers to the ADC to start capturing a sample
sequence. The interrupt generation logic is independent from the ADC triggering logic. As a result,
the comparator can generate an interrupt based on one event and an ADC trigger based on another
event. For example, an interrupt can be generated on a rising edge and the ADC triggered on a
falling edge.

This driver is contained in driverlib/comp.c, with driverlib/comp.h containing the API
declarations for use by applications.

3.2 API Functions

Functions
void ComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)
void ComparatorIntClear (uint32_t ui32Base, uint32_t ui32Comp)
void ComparatorIntDisable (uint32_t ui32Base, uint32_t ui32Comp)
void ComparatorIntEnable (uint32_t ui32Base, uint32_t ui32Comp)
void ComparatorIntRegister (uint32_t ui32Base, uint32_t ui32Comp, void (∗pfnHandler)(void))
bool ComparatorIntStatus (uint32_t ui32Base, uint32_t ui32Comp, bool bMasked)
void ComparatorIntUnregister (uint32_t ui32Base, uint32_t ui32Comp)
void ComparatorRefSet (uint32_t ui32Base, uint32_t ui32Ref)
bool ComparatorValueGet (uint32_t ui32Base, uint32_t ui32Comp)

3.2.1 Detailed Description

The comparator API is fairly simple, like the comparators themselves. There are functions for
configuring a comparator and reading its output (ComparatorConfigure(), ComparatorRefSet() and
ComparatorValueGet()) and functions for dealing with an interrupt handler for the comparator (Com-
paratorIntRegister(), ComparatorIntUnregister(), ComparatorIntEnable(), ComparatorIntDisable(),
ComparatorIntStatus(), and ComparatorIntClear()).

July 25, 2016 13

Analog Comparator

3.2.2 Function Documentation

3.2.2.1 ComparatorConfigure

Configures a comparator.

Prototype:
void
ComparatorConfigure(uint32_t ui32Base,

uint32_t ui32Comp,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.

Description:
This function configures a comparator. The ui32Config parameter is the result of a logical
OR operation between the COMP_TRIG_xxx, COMP_INT_xxx, COMP_ASRCP_xxx, and
COMP_OUTPUT_xxx values.

The COMP_TRIG_xxx term can take on the following values:

COMP_TRIG_NONE to have no trigger to the ADC.
COMP_TRIG_HIGH to trigger the ADC when the comparator output is high.
COMP_TRIG_LOW to trigger the ADC when the comparator output is low.
COMP_TRIG_FALL to trigger the ADC when the comparator output goes low.
COMP_TRIG_RISE to trigger the ADC when the comparator output goes high.
COMP_TRIG_BOTH to trigger the ADC when the comparator output goes low or high.

The COMP_INT_xxx term can take on the following values:

COMP_INT_HIGH to generate an interrupt when the comparator output is high.
COMP_INT_LOW to generate an interrupt when the comparator output is low.
COMP_INT_FALL to generate an interrupt when the comparator output goes low.
COMP_INT_RISE to generate an interrupt when the comparator output goes high.
COMP_INT_BOTH to generate an interrupt when the comparator output goes low or high.

The COMP_ASRCP_xxx term can take on the following values:

COMP_ASRCP_PIN to use the dedicated Comp+ pin as the reference voltage.
COMP_ASRCP_PIN0 to use the Comp0+ pin as the reference voltage (this the same as
COMP_ASRCP_PIN for the comparator 0).
COMP_ASRCP_REF to use the internally generated voltage as the reference voltage.

The COMP_OUTPUT_xxx term can take on the following values:

COMP_OUTPUT_NORMAL to enable a non-inverted output from the comparator to a
device pin.
COMP_OUTPUT_INVERT to enable an inverted output from the comparator to a device
pin.

Returns:
None.

14 July 25, 2016

Analog Comparator

3.2.2.2 ComparatorIntClear

Clears a comparator interrupt.

Prototype:
void
ComparatorIntClear(uint32_t ui32Base,

uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
The comparator interrupt is cleared, so that it no longer asserts. This function must be called in
the interrupt handler to keep the handler from being called again immediately upon exit. Note
that for a level-triggered interrupt, the interrupt cannot be cleared until it stops asserting.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

3.2.2.3 ComparatorIntDisable

Disables the comparator interrupt.

Prototype:
void
ComparatorIntDisable(uint32_t ui32Base,

uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function disables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

July 25, 2016 15

Analog Comparator

3.2.2.4 ComparatorIntEnable

Enables the comparator interrupt.

Prototype:
void
ComparatorIntEnable(uint32_t ui32Base,

uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function enables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

3.2.2.5 ComparatorIntRegister

Registers an interrupt handler for the comparator interrupt.

Prototype:
void
ComparatorIntRegister(uint32_t ui32Base,

uint32_t ui32Comp,
void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.
pfnHandler is a pointer to the function to be called when the comparator interrupt occurs.

Description:
This function sets the handler to be called when the comparator interrupt occurs and enables
the interrupt in the interrupt controller. It is the interrupt handler’s responsibility to clear the
interrupt source via ComparatorIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

3.2.2.6 ComparatorIntStatus

Gets the current interrupt status.

16 July 25, 2016

Analog Comparator

Prototype:
bool
ComparatorIntStatus(uint32_t ui32Base,

uint32_t ui32Comp,
bool bMasked)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the comparator. Either the raw or the masked
interrupt status can be returned.

Returns:
true if the interrupt is asserted and false if it is not asserted.

3.2.2.7 ComparatorIntUnregister

Unregisters an interrupt handler for a comparator interrupt.

Prototype:
void
ComparatorIntUnregister(uint32_t ui32Base,

uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function clears the handler to be called when a comparator interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

3.2.2.8 ComparatorRefSet

Sets the internal reference voltage.

Prototype:
void
ComparatorRefSet(uint32_t ui32Base,

uint32_t ui32Ref)

July 25, 2016 17

Analog Comparator

Parameters:
ui32Base is the base address of the comparator module.
ui32Ref is the desired reference voltage.

Description:
This function sets the internal reference voltage value. The voltage is specified as one of the
following values:

COMP_REF_OFF to turn off the reference voltage
COMP_REF_0V to set the reference voltage to 0 V
COMP_REF_0_1375V to set the reference voltage to 0.1375 V
COMP_REF_0_275V to set the reference voltage to 0.275 V
COMP_REF_0_4125V to set the reference voltage to 0.4125 V
COMP_REF_0_55V to set the reference voltage to 0.55 V
COMP_REF_0_6875V to set the reference voltage to 0.6875 V
COMP_REF_0_825V to set the reference voltage to 0.825 V
COMP_REF_0_928125V to set the reference voltage to 0.928125 V
COMP_REF_0_9625V to set the reference voltage to 0.9625 V
COMP_REF_1_03125V to set the reference voltage to 1.03125 V
COMP_REF_1_134375V to set the reference voltage to 1.134375 V
COMP_REF_1_1V to set the reference voltage to 1.1 V
COMP_REF_1_2375V to set the reference voltage to 1.2375 V
COMP_REF_1_340625V to set the reference voltage to 1.340625 V
COMP_REF_1_375V to set the reference voltage to 1.375 V
COMP_REF_1_44375V to set the reference voltage to 1.44375 V
COMP_REF_1_5125V to set the reference voltage to 1.5125 V
COMP_REF_1_546875V to set the reference voltage to 1.546875 V
COMP_REF_1_65V to set the reference voltage to 1.65 V
COMP_REF_1_753125V to set the reference voltage to 1.753125 V
COMP_REF_1_7875V to set the reference voltage to 1.7875 V
COMP_REF_1_85625V to set the reference voltage to 1.85625 V
COMP_REF_1_925V to set the reference voltage to 1.925 V
COMP_REF_1_959375V to set the reference voltage to 1.959375 V
COMP_REF_2_0625V to set the reference voltage to 2.0625 V
COMP_REF_2_165625V to set the reference voltage to 2.165625 V
COMP_REF_2_26875V to set the reference voltage to 2.26875 V
COMP_REF_2_371875V to set the reference voltage to 2.371875 V

Returns:
None.

3.2.2.9 ComparatorValueGet

Gets the current comparator output value.

Prototype:
bool
ComparatorValueGet(uint32_t ui32Base,

uint32_t ui32Comp)

18 July 25, 2016

Analog Comparator

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function retrieves the current value of the comparator output.

Returns:
Returns true if the comparator output is high and false if the comparator output is low.

3.3 Programming Example

The following example shows how to use the comparator API to configure the comparator and read
its value.

//
// Enable the COMP module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_COMP0);

//
// Wait for the COMP module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_COMP0))
{
}

//
// Configure the internal voltage reference.
//
ComparatorRefSet(COMP_BASE, COMP_REF_1_65V);

//
// Configure comparator 0.
//
ComparatorConfigure(COMP_BASE, 0,

(COMP_TRIG_NONE | COMP_INT_BOTH |
COMP_ASRCP_REF | COMP_OUTPUT_NORMAL));

//
// Delay for some time...
//

//
// Read the comparator output value.
//
ComparatorValueGet(COMP_BASE, 0);

July 25, 2016 19

Analog Comparator

20 July 25, 2016

Analog to Digital Converter (ADC)

4 Analog to Digital Converter (ADC)
Introduction . 21
API Functions .22
Programming Example . 46

4.1 Introduction

The analog to digital converter (ADC) API provides a set of functions for programming and operating
the ADC. Functions are provided to configure the sample sequencers, read the captured data,
register a sample sequence interrupt handler, and handle interrupt masking/clearing.

Depending on the features of the individual microcontroller, the ADC supports up to twenty-four
input channels plus an internal temperature sensor. Four sampling sequencers, each with con-
figurable trigger events, can be captured. The first sequencer captures up to eight samples, the
second and third sequencers capture up to four samples, and the fourth sequencer captures a sin-
gle sample. Each sample can be the same channel, different channels, or any combination in any
order.

The sample sequencers have configurable priorities that determine the order in which they are
captured when multiple triggers occur simultaneously. The highest priority sequencer that is cur-
rently triggered is sampled first. Care must be taken with triggers that occur frequently (such as the
“always” trigger); if their priority is too high, it is possible to starve the lower priority sequencers.

Hardware oversampling of the ADC data is available for improved accuracy. An oversampling factor
of 2x, 4x, 8x, 16x, 32x, or 64x is supported, but reduces the throughput of the ADC by a corre-
sponding factor. Hardware oversampling is applied uniformly across all sample sequencers.

Software oversampling of the ADC data is also available (even when hardware oversampling is
available). An oversampling factor of 2x, 4x, or 8x is supported, but reduces the depth of the
sample sequencers by a corresponding amount. For example, the first sample sequencer captures
eight samples; in 4x oversampling mode, it can only capture two samples because the first four
samples are used for the first oversampled value and the second four samples are used for the
second oversampled value. The amount of software oversampling is configured on a per sample
sequencer basis.

A more sophisticated software oversampling can be used to eliminate the reduction of the sample
sequencer depth. By increasing the ADC trigger rate by 4x (for example) and averaging four trig-
gers worth of data, 4x oversampling is achieved without any loss of sample sequencer capability. In
this case, an increase in the number of ADC triggers (and presumably ADC interrupts) is the conse-
quence. Because this method requires adjustments outside of the ADC driver itself, it is not directly
supported by the driver (though nothing in the driver prevents it). The software oversampling APIs
should not be used in this case.

This driver is contained in driverlib/adc.c, with driverlib/adc.h containing the API dec-
larations for use by applications.

July 25, 2016 21

Analog to Digital Converter (ADC)

4.2 API Functions

Functions
bool ADCBusy (uint32_t ui32Base)
uint32_t ADCClockConfigGet (uint32_t ui32Base, uint32_t ∗pui32ClockDiv)
void ADCClockConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32ClockDiv)
void ADCComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)
void ADCComparatorIntClear (uint32_t ui32Base, uint32_t ui32Status)
void ADCComparatorIntDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCComparatorIntEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
uint32_t ADCComparatorIntStatus (uint32_t ui32Base)
void ADCComparatorRegionSet (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32LowRef,
uint32_t ui32HighRef)
void ADCComparatorReset (uint32_t ui32Base, uint32_t ui32Comp, bool bTrigger, bool bIn-
terrupt)
void ADCHardwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32Factor)
void ADCIntClear (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ADCIntDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ADCIntEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ADCIntRegister (uint32_t ui32Base, uint32_t ui32SequenceNum, void
(∗pfnHandler)(void))
uint32_t ADCIntStatus (uint32_t ui32Base, uint32_t ui32SequenceNum, bool bMasked)
uint32_t ADCIntStatusEx (uint32_t ui32Base, bool bMasked)
void ADCIntUnregister (uint32_t ui32Base, uint32_t ui32SequenceNum)
uint32_t ADCPhaseDelayGet (uint32_t ui32Base)
void ADCPhaseDelaySet (uint32_t ui32Base, uint32_t ui32Phase)
void ADCProcessorTrigger (uint32_t ui32Base, uint32_t ui32SequenceNum)
uint32_t ADCReferenceGet (uint32_t ui32Base)
void ADCReferenceSet (uint32_t ui32Base, uint32_t ui32Ref)
void ADCSequenceConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Trigger, uint32_t ui32Priority)
int32_t ADCSequenceDataGet (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
∗pui32Buffer)
void ADCSequenceDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceDMADisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceDMAEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
int32_t ADCSequenceOverflow (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceOverflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceStepConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Step, uint32_t ui32Config)
int32_t ADCSequenceUnderflow (uint32_t ui32Base, uint32_t ui32SequenceNum)

22 July 25, 2016

Analog to Digital Converter (ADC)

void ADCSequenceUnderflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSoftwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t ui32Factor)
void ADCSoftwareOversampleDataGet (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t ∗pui32Buffer, uint32_t ui32Count)
void ADCSoftwareOversampleStepConfigure (uint32_t ui32Base, uint32_t
ui32SequenceNum, uint32_t ui32Step, uint32_t ui32Config)

4.2.1 Detailed Description

The analog to digital converter API is broken into three groups of functions: those that deal with the
sample sequencers, those that deal with the processor trigger, and those that deal with interrupt
handling.

The sample sequencers are configured with ADCSequenceConfigure() and ADCSequenceStep-
Configure(). They are enabled and disabled with ADCSequenceEnable() and ADCSequenceDis-
able(). The captured data is obtained with ADCSequenceDataGet(). Sample sequencer FIFO
overflow and underflow is managed with ADCSequenceOverflow(), ADCSequenceOverflowClear(),
ADCSequenceUnderflow(), and ADCSequenceUnderflowClear().

Hardware oversampling of the ADC is controlled with ADCHardwareOversampleConfigure(). Soft-
ware oversampling of the ADC is controlled with ADCSoftwareOversampleConfigure(), ADCSoft-
wareOversampleStepConfigure(), and ADCSoftwareOversampleDataGet().

The processor trigger is generated with ADCProcessorTrigger().

The interrupt handler for the ADC sample sequencer interrupts are managed with ADCIntRegister()
and ADCIntUnregister(). The sample sequencer interrupt sources are managed with ADCIntDis-
able(), ADCIntEnable(), ADCIntStatus(), and ADCIntClear().

4.2.2 Function Documentation

4.2.2.1 ADCBusy

Determines whether the ADC is busy or not.

Prototype:
bool
ADCBusy(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC.

Description:
This function allows the caller to determine whether or not the ADC is currently sampling . If
false is returned, then the ADC is not sampling data.

Use this function to detect that the ADC is finished sampling data before putting the device
into deep sleep. Before using this function, it is highly recommended that the event trigger
is changed to ADC_TRIGGER_NEVER on all enabled sequencers to prevent the ADC from
starting after checking the busy status.

July 25, 2016 23

Analog to Digital Converter (ADC)

Returns:
Returns true if the ADC is sampling or false if all samples are complete.

4.2.2.2 ADCClockConfigGet

Returns the clock configuration for the ADC.

Prototype:
uint32_t
ADCClockConfigGet(uint32_t ui32Base,

uint32_t *pui32ClockDiv)

Parameters:
ui32Base is the base address of the ADC to configure, which must always be ADC0_BASE.
pui32ClockDiv is a pointer to the input clock divider for the clock selected by the

ADC_CLOCK_SRC in use by the ADCs.

Description:
This function returns the ADC clock configuration and the clock divider for the ADCs.

Example: Read the current ADC clock configuration.

uint32_t ui32Config, ui32ClockDiv;

//
// Read the current ADC clock configuration.
//
ui32Config = ADCClockConfigGet(ADC0_BASE, &ui32ClockDiv);

Returns:
The current clock configuration of the ADC defined as a combina-
tion of one of ADC_CLOCK_SRC_PLL, ADC_CLOCK_SRC_PIOSC,
ADC_CLOCK_SRC_MOSC, or ADC_CLOCK_SRC_ALTCLK logical ORed with one of
ADC_CLOCK_RATE_FULL, ADC_CLOCK_RATE_HALF, ADC_CLOCK_RATE_QUARTER,
or ADC_CLOCK_RATE_EIGHTH. See ADCClockConfigSet() for more information on these
values.

4.2.2.3 ADCClockConfigSet

Sets the clock configuration for the ADC.

Prototype:
void
ADCClockConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32ClockDiv)

Parameters:
ui32Base is the base address of the ADC to configure, which must always be ADC0_BASE.
ui32Config is a combination of the ADC_CLOCK_SRC_ and ADC_CLOCK_RATE_∗ values

used to configure the ADC clock input.
ui32ClockDiv is the input clock divider for the clock selected by the ADC_CLOCK_SRC value.

24 July 25, 2016

Analog to Digital Converter (ADC)

Description:
This function is used to configure the input clock to the ADC modules. The clock configuration
is shared across ADC units so ui32Base must always be ADC0_BASE. The ui32Config value
is logical OR of one of the ADC_CLOCK_RATE_ and one of the ADC_CLOCK_SRC_ values
defined below. The ADC_CLOCK_SRC_∗ values determine the input clock for the ADC. Not
all values are available on all devices so check the device data sheet to determine value con-
figuration options. Regardless of the source, the final frequency for TM4C123x devices must
be 16 MHz and for TM4C129x parts after dividing must be between 16 and 32 MHz.

Note:
For TM4C123x devices, if the PLL is enabled, the PLL/25 is used as the ADC clock unless
ADC_CLOCK_SRC_PIOSC is specified. If the PLL is disabled, the MOSC is used as the clock
source unless ADC_CLOCK_SRC_PIOSC is specified.

ADC_CLOCK_SRC_PLL - The main PLL output (TM4x129 class only).

ADC_CLOCK_SRC_PIOSC - The internal PIOSC at 16 MHz.

ADC_CLOCK_SRC_ALTCLK - The output of the ALTCLK in the system control module
(TM4x129 class only).

ADC_CLOCK_SRC_MOSC - The external MOSC (TM4x129 class only).

ADC_CLOCK_RATE values control how often samples are provided back to the application. The
values are the following:

ADC_CLOCK_RATE_FULL - All samples.

ADC_CLOCK_RATE_HALF - Every other sample.

ADC_CLOCK_RATE_QUARTER - Every fourth sample.

ADC_CLOCK_RATE_EIGHTH - Every either sample.

The ui32ClockDiv parameter allows for dividing a higher frequency down into the valid range for the
ADCs. This parameter is typically only used ADC_CLOCK_SRC_PLL option because it is the only
clock value that can be with the in the correct range to use the divider. The actual value ranges
from 1 to 64.

Example: ADC Clock Configurations

//
// Configure the ADC to use PIOSC divided by one (16 MHz) and sample at
// half the rate.
//
ADCClockConfigSet(ADC0_BASE, ADC_CLOCK_SRC_PIOSC | ADC_CLOCK_RATE_HALF, 1);

...

//
// Configure the ADC to use PLL at 480 MHz divided by 24 to get an ADC
// clock of 20 MHz.
//
ADCClockConfigSet(ADC0_BASE, ADC_CLOCK_SRC_PLL | ADC_CLOCK_RATE_FULL, 24);

Returns:
None.

July 25, 2016 25

Analog to Digital Converter (ADC)

4.2.2.4 ADCComparatorConfigure

Configures an ADC digital comparator.

Prototype:
void
ADCComparatorConfigure(uint32_t ui32Base,

uint32_t ui32Comp,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.

Description:
This function configures a comparator. The ui32Config parameter is the result of a logical OR
operation between the ADC_COMP_TRIG_xxx, and ADC_COMP_INT_xxx values.

The ADC_COMP_TRIG_xxx term can take on the following values:

ADC_COMP_TRIG_NONE to never trigger PWM fault condition.
ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the low-band.
ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC output
transitions into the low-band.
ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when ADC
output is in the low-band only if ADC output has been in the high-band since the last
trigger output.
ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC output
transitions into low-band only if ADC output has been in the high-band since the last trigger
output.
ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the mid-band.
ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC output
transitions into the mid-band.
ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the high-band.
ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC output
transitions into the high-band.
ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when ADC
output is in the high-band only if ADC output has been in the low-band since the last
trigger output.
ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC output
transitions into high-band only if ADC output has been in the low-band since the last trigger
output.

The ADC_COMP_INT_xxx term can take on the following values:

ADC_COMP_INT_NONE to never generate ADC interrupt.
ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC output is
in the low-band.

26 July 25, 2016

Analog to Digital Converter (ADC)

ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output transi-
tions into the low-band.
ADC_COMP_INT_LOW_HALWAYS to always generate ADC interrupt when ADC output
is in the low-band only if ADC output has been in the high-band since the last trigger output.
ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output tran-
sitions into low-band only if ADC output has been in the high-band since the last trigger
output.
ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC output is
in the mid-band.
ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output transi-
tions into the mid-band.
ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC output is
in the high-band.
ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output transi-
tions into the high-band.
ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC output
is in the high-band only if ADC output has been in the low-band since the last trigger output.
ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output tran-
sitions into high-band only if ADC output has been in the low-band since the last trigger
output.

Returns:
None.

4.2.2.5 ADCComparatorIntClear

Clears sample sequence comparator interrupt source.

Prototype:
void
ADCComparatorIntClear(uint32_t ui32Base,

uint32_t ui32Status)

Parameters:
ui32Base is the base address of the ADC module.
ui32Status is the bit-mapped interrupts status to clear.

Description:
The specified interrupt status is cleared.

Returns:
None.

4.2.2.6 ADCComparatorIntDisable

Disables a sample sequence comparator interrupt.

July 25, 2016 27

Analog to Digital Converter (ADC)

Prototype:
void
ADCComparatorIntDisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence comparator interrupt.

Returns:
None.

4.2.2.7 ADCComparatorIntEnable

Enables a sample sequence comparator interrupt.

Prototype:
void
ADCComparatorIntEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence comparator interrupt.

Returns:
None.

4.2.2.8 ADCComparatorIntStatus

Gets the current comparator interrupt status.

Prototype:
uint32_t
ADCComparatorIntStatus(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

Description:
This function returns the digital comparator interrupt status bits. This status is sequence ag-
nostic.

Returns:
The current comparator interrupt status.

28 July 25, 2016

Analog to Digital Converter (ADC)

4.2.2.9 ADCComparatorRegionSet

Defines the ADC digital comparator regions.

Prototype:
void
ADCComparatorRegionSet(uint32_t ui32Base,

uint32_t ui32Comp,
uint32_t ui32LowRef,
uint32_t ui32HighRef)

Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator to configure.
ui32LowRef is the reference point for the low/mid band threshold.
ui32HighRef is the reference point for the mid/high band threshold.

Description:
The ADC digital comparator operation is based on three ADC value regions:

low-band is defined as any ADC value less than or equal to the ui32LowRef value.
mid-band is defined as any ADC value greater than the ui32LowRef value but less than
or equal to the ui32HighRef value.
high-band is defined as any ADC value greater than the ui32HighRef value.

Returns:
None.

4.2.2.10 ADCComparatorReset

Resets the current ADC digital comparator conditions.

Prototype:
void
ADCComparatorReset(uint32_t ui32Base,

uint32_t ui32Comp,
bool bTrigger,
bool bInterrupt)

Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator.
bTrigger is the flag to indicate reset of Trigger conditions.
bInterrupt is the flag to indicate reset of Interrupt conditions.

Description:
Because the digital comparator uses current and previous ADC values, this function allows
the comparator to be reset to its initial value to prevent stale data from being used when a
sequence is enabled.

Returns:
None.

July 25, 2016 29

Analog to Digital Converter (ADC)

4.2.2.11 ADCHardwareOversampleConfigure

Configures the hardware oversampling factor of the ADC.

Prototype:
void
ADCHardwareOversampleConfigure(uint32_t ui32Base,

uint32_t ui32Factor)

Parameters:
ui32Base is the base address of the ADC module.
ui32Factor is the number of samples to be averaged.

Description:
This function configures the hardware oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Six different oversampling rates are supported; 2x, 4x,
8x, 16x, 32x, and 64x. Specifying an oversampling factor of zero disables hardware oversam-
pling.

Hardware oversampling applies uniformly to all sample sequencers. It does not reduce the
depth of the sample sequencers like the software oversampling APIs; each sample written into
the sample sequencer FIFO is a fully oversampled analog input reading.

Enabling hardware averaging increases the precision of the ADC at the cost of throughput. For
example, enabling 4x oversampling reduces the throughput of a 250 k samples/second ADC
to 62.5 k samples/second.

Returns:
None.

4.2.2.12 ADCIntClear

Clears sample sequence interrupt source.

Prototype:
void
ADCIntClear(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
The specified sample sequence interrupt is cleared, so that it no longer asserts. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid

30 July 25, 2016

Analog to Digital Converter (ADC)

returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

4.2.2.13 ADCIntClearEx

Clears the specified ADC interrupt sources.

Prototype:
void
ADCIntClearEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC port.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
Clears the interrupt for the specified interrupt source(s).

The ui32IntFlags parameter is the logical OR of the ADC_INT_∗ values. See the ADCIntEn-
ableEx() function for the list of possible ADC_INT∗ values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

4.2.2.14 ADCIntDisable

Disables a sample sequence interrupt.

Prototype:
void
ADCIntDisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

July 25, 2016 31

Analog to Digital Converter (ADC)

Description:
This function disables the requested sample sequence interrupt.

Returns:
None.

4.2.2.15 ADCIntDisableEx

Disables ADC interrupt sources.

Prototype:
void
ADCIntDisableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC module.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

ADC_INT_SS0 - interrupt due to ADC sample sequence 0.
ADC_INT_SS1 - interrupt due to ADC sample sequence 1.
ADC_INT_SS2 - interrupt due to ADC sample sequence 2.
ADC_INT_SS3 - interrupt due to ADC sample sequence 3.
ADC_INT_DMA_SS0 - interrupt due to DMA on ADC sample sequence 0.
ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.
ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.
ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.
ADC_INT_DCON_SS0 - interrupt due to digital comparator on ADC sample sequence 0.
ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

4.2.2.16 ADCIntEnable

Enables a sample sequence interrupt.

Prototype:
void
ADCIntEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

32 July 25, 2016

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence interrupt. Any outstanding interrupts
are cleared before enabling the sample sequence interrupt.

Returns:
None.

4.2.2.17 ADCIntEnableEx

Enables ADC interrupt sources.

Prototype:
void
ADCIntEnableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC module.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function enables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

ADC_INT_SS0 - interrupt due to ADC sample sequence 0.
ADC_INT_SS1 - interrupt due to ADC sample sequence 1.
ADC_INT_SS2 - interrupt due to ADC sample sequence 2.
ADC_INT_SS3 - interrupt due to ADC sample sequence 3.
ADC_INT_DMA_SS0 - interrupt due to DMA on ADC sample sequence 0.
ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.
ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.
ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.
ADC_INT_DCON_SS0 - interrupt due to digital comparator on ADC sample sequence 0.
ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

4.2.2.18 ADCIntRegister

Registers an interrupt handler for an ADC interrupt.

July 25, 2016 33

Analog to Digital Converter (ADC)

Prototype:
void
ADCIntRegister(uint32_t ui32Base,

uint32_t ui32SequenceNum,
void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
pfnHandler is a pointer to the function to be called when the ADC sample sequence interrupt

occurs.

Description:
This function sets the handler to be called when a sample sequence interrupt occurs. This
function enables the global interrupt in the interrupt controller; the sequence interrupt must be
enabled with ADCIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source via ADCIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

4.2.2.19 ADCIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ADCIntStatus(uint32_t ui32Base,

uint32_t ui32SequenceNum,
bool bMasked)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the specified sample sequence. Either the raw
interrupt status or the status of interrupts that are allowed to reflect to the processor can be
returned.

Returns:
The current raw or masked interrupt status.

4.2.2.20 ADCIntStatusEx

Gets interrupt status for the specified ADC module.

34 July 25, 2016

Analog to Digital Converter (ADC)

Prototype:
uint32_t
ADCIntStatusEx(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the ADC module.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified ADC module. The value returned is the
logical OR of the ADC_INT_∗ values that are currently active.

4.2.2.21 ADCIntUnregister

Unregisters the interrupt handler for an ADC interrupt.

Prototype:
void
ADCIntUnregister(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function unregisters the interrupt handler. This function disables the global interrupt in the
interrupt controller; the sequence interrupt must be disabled via ADCIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

4.2.2.22 ADCPhaseDelayGet

Gets the phase delay between a trigger and the start of a sequence.

Prototype:
uint32_t
ADCPhaseDelayGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

July 25, 2016 35

Analog to Digital Converter (ADC)

Description:
This function gets the current phase delay between the detection of an ADC trigger event and
the start of the sample sequence.

Returns:
Returns the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,
ADC_PHASE_45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC_PHASE_225, ADC_PHASE_247_5, ADC_PHASE_270, ADC_PHASE_292_5,
ADC_PHASE_315, or ADC_PHASE_337_5.

4.2.2.23 ADCPhaseDelaySet

Sets the phase delay between a trigger and the start of a sequence.

Prototype:
void
ADCPhaseDelaySet(uint32_t ui32Base,

uint32_t ui32Phase)

Parameters:
ui32Base is the base address of the ADC module.
ui32Phase is the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,

ADC_PHASE_45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC_PHASE_225, ADC_PHASE_247_5, ADC_PHASE_270, ADC_PHASE_292_5,
ADC_PHASE_315, or ADC_PHASE_337_5.

Description:
This function sets the phase delay between the detection of an ADC trigger event and the start
of the sample sequence. By selecting a different phase delay for a pair of ADC modules (such
as ADC_PHASE_0 and ADC_PHASE_180) and having each ADC module sample the same
analog input, it is possible to increase the sampling rate of the analog input (with samples N,
N+2, N+4, and so on, coming from the first ADC and samples N+1, N+3, N+5, and so on,
coming from the second ADC). The ADC module has a single phase delay that is applied to all
sample sequences within that module.

Note:
This capability is not available on all parts.

Returns:
None.

4.2.2.24 ADCProcessorTrigger

Causes a processor trigger for a sample sequence.

Prototype:
void
ADCProcessorTrigger(uint32_t ui32Base,

uint32_t ui32SequenceNum)

36 July 25, 2016

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number, with ADC_TRIGGER_WAIT or

ADC_TRIGGER_SIGNAL optionally ORed into it.

Description:
This function triggers a processor-initiated sample sequence if the sample sequence trigger
is configured to ADC_TRIGGER_PROCESSOR. If ADC_TRIGGER_WAIT is ORed into the
sequence number, the processor-initiated trigger is delayed until a later processor-initiated
trigger to a different ADC module that specifies ADC_TRIGGER_SIGNAL, allowing multiple
ADCs to start from a processor-initiated trigger in a synchronous manner.

Returns:
None.

4.2.2.25 ADCReferenceGet

Returns the current setting of the ADC reference.

Prototype:
uint32_t
ADCReferenceGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

Description:
Returns the value of the ADC reference setting. The returned value is one of ADC_REF_INT,
or ADC_REF_EXT_3V.

Note:
The value returned by this function is only meaningful if used on a part that is capable of using
an external reference. Consult the data sheet for your part to determine if it has an external
reference input.

Returns:
The current setting of the ADC reference.

4.2.2.26 ADCReferenceSet

Selects the ADC reference.

Prototype:
void
ADCReferenceSet(uint32_t ui32Base,

uint32_t ui32Ref)

Parameters:
ui32Base is the base address of the ADC module.
ui32Ref is the reference to use.

July 25, 2016 37

Analog to Digital Converter (ADC)

Description:
The ADC reference is set as specified by ui32Ref . It must be one of ADC_REF_INT, or
ADC_REF_EXT_3V for internal or external reference If ADC_REF_INT is chosen, then an
internal 3V reference is used and no external reference is needed. If ADC_REF_EXT_3V is
chosen, then a 3V reference must be supplied to the AVREF pin.

Note:
The ADC reference can only be selected on parts that have an external reference. Consult the
data sheet for your part to determine if there is an external reference.

Returns:
None.

4.2.2.27 ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:
void
ADCSequenceConfigure(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t ui32Trigger,
uint32_t ui32Priority)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Trigger is the trigger source that initiates the sample sequence; must be one of the

ADC_TRIGGER_∗ values.
ui32Priority is the relative priority of the sample sequence with respect to the other sample

sequences.

Description:
This function configures the initiation criteria for a sample sequence. Valid sample sequencers
range from zero to three; sequencer zero captures up to eight samples, sequencers one and
two capture up to four samples, and sequencer three captures a single sample. The trigger
condition and priority (with respect to other sample sequencer execution) are set.

The ui32Trigger parameter can take on the following values:

ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the ADCPro-
cessorTrigger() function.
ADC_TRIGGER_COMP0 - A trigger generated by the first analog comparator; configured
with ComparatorConfigure().
ADC_TRIGGER_COMP1 - A trigger generated by the second analog comparator; config-
ured with ComparatorConfigure().
ADC_TRIGGER_COMP2 - A trigger generated by the third analog comparator; configured
with ComparatorConfigure().
ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port B4 pin. Note
that some microcontrollers can select from any GPIO using the GPIOADCTriggerEnable()
function.

38 July 25, 2016

Analog to Digital Converter (ADC)

ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with TimerCon-
trolTrigger().
ADC_TRIGGER_PWM0 - A trigger generated by the first PWM generator; configured with
PWMGenIntTrigEnable().
ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; configured
with PWMGenIntTrigEnable().
ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; configured with
PWMGenIntTrigEnable().
ADC_TRIGGER_PWM3 - A trigger generated by the fourth PWM generator; configured
with PWMGenIntTrigEnable().
ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the sample se-
quence to capture repeatedly (so long as there is not a higher priority source active).

When ADC_TRIGGER_PWM0, ADC_TRIGGER_PWM1, ADC_TRIGGER_PWM2 or
ADC_TRIGGER_PWM3 is specified, one of the following should be ORed into ui32Trigger to
select the PWM module from which the triggers will be routed for this sequence:

ADC_TRIGGER_PWM_MOD0 - Selects PWM module 0 as the source of the PWM0 to
PWM3 triggers for this sequence.
ADC_TRIGGER_PWM_MOD1 - Selects PWM module 1 as the source of the PWM0 to
PWM3 triggers for this sequence.

Note that not all trigger sources are available on all Tiva family members; consult the data
sheet for the device in question to determine the availability of triggers.

The ui32Priority parameter is a value between 0 and 3, where 0 represents the highest priority
and 3 the lowest. Note that when programming the priority among a set of sample sequences,
each must have unique priority; it is up to the caller to guarantee the uniqueness of the priori-
ties.

Returns:
None.

4.2.2.28 ADCSequenceDataGet

Gets the captured data for a sample sequence.

Prototype:
int32_t
ADCSequenceDataGet(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t *pui32Buffer)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
pui32Buffer is the address where the data is stored.

Description:
This function copies data from the specified sample sequencer output FIFO to a memory resi-
dent buffer. The number of samples available in the hardware FIFO are copied into the buffer,
which is assumed to be large enough to hold that many samples. This function only returns

July 25, 2016 39

Analog to Digital Converter (ADC)

the samples that are presently available, which may not be the entire sample sequence if it is
in the process of being executed.

Returns:
Returns the number of samples copied to the buffer.

4.2.2.29 ADCSequenceDisable

Disables a sample sequence.

Prototype:
void
ADCSequenceDisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
Prevents the specified sample sequence from being captured when its trigger is detected. A
sample sequence must be disabled before it is configured.

Returns:
None.

4.2.2.30 ADCSequenceDMADisable

Disables DMA for sample sequencers.

Prototype:
void
ADCSequenceDMADisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
Prevents the specified sample sequencer from generating DMA requests.

Returns:
None.

4.2.2.31 ADCSequenceDMAEnable

Enables DMA for sample sequencers.

40 July 25, 2016

Analog to Digital Converter (ADC)

Prototype:
void
ADCSequenceDMAEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
Allows DMA requests to be generated based on the FIFO level of the sample sequencer.

Returns:
None.

4.2.2.32 ADCSequenceEnable

Enables a sample sequence.

Prototype:
void
ADCSequenceEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
Allows the specified sample sequence to be captured when its trigger is detected. A sample
sequence must be configured before it is enabled.

Returns:
None.

4.2.2.33 ADCSequenceOverflow

Determines if a sample sequence overflow occurred.

Prototype:
int32_t
ADCSequenceOverflow(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function determines if a sample sequence overflow has occurred. Overflow happens if the
captured samples are not read from the FIFO before the next trigger occurs.

July 25, 2016 41

Analog to Digital Converter (ADC)

Returns:
Returns zero if there was not an overflow, and non-zero if there was.

4.2.2.34 ADCSequenceOverflowClear

Clears the overflow condition on a sample sequence.

Prototype:
void
ADCSequenceOverflowClear(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function clears an overflow condition on one of the sample sequences. The overflow
condition must be cleared in order to detect a subsequent overflow condition (it otherwise
causes no harm).

Returns:
None.

4.2.2.35 ADCSequenceStepConfigure

Configure a step of the sample sequencer.

Prototype:
void
ADCSequenceStepConfigure(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t ui32Step,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Step is the step to be configured.
ui32Config is the configuration of this step; must be a logical OR of ADC_CTL_TS,

ADC_CTL_IE, ADC_CTL_END, ADC_CTL_D, one of the input channel selects
(ADC_CTL_CH0 through ADC_CTL_CH23), and one of the digital comparator selects
(ADC_CTL_CMP0 through ADC_CTL_CMP7).

Description:
This function configures the ADC for one step of a sample sequence. The ADC can be
configured for single-ended or differential operation (the ADC_CTL_D bit selects differen-
tial operation when set), the channel to be sampled can be chosen (the ADC_CTL_CH0
through ADC_CTL_CH23 values), and the internal temperature sensor can be selected (the
ADC_CTL_TS bit). Additionally, this step can be defined as the last in the sequence (the

42 July 25, 2016

Analog to Digital Converter (ADC)

ADC_CTL_END bit) and it can be configured to cause an interrupt when the step is complete
(the ADC_CTL_IE bit). If the digital comparators are present on the device, this step may also
be configured to send the ADC sample to the selected comparator using ADC_CTL_CMP0
through ADC_CTL_CMP7. The configuration is used by the ADC at the appropriate time when
the trigger for this sequence occurs.

Note:
If the Digital Comparator is present and enabled using the ADC_CTL_CMP0 through
ADC_CTL_CMP7 selects, the ADC sample is NOT written into the ADC sequence data FIFO.

The ui32Step parameter determines the order in which the samples are captured by the ADC when
the trigger occurs. It can range from zero to seven for the first sample sequencer, from zero to three
for the second and third sample sequencer, and can only be zero for the fourth sample sequencer.

Differential mode only works with adjacent channel pairs (for example, 0 and 1). The channel select
must be the number of the channel pair to sample (for example, ADC_CTL_CH0 for 0 and 1, or
ADC_CTL_CH1 for 2 and 3) or undefined results are returned by the ADC. Additionally, if differential
mode is selected when the temperature sensor is being sampled, undefined results are returned
by the ADC.

It is the responsibility of the caller to ensure that a valid configuration is specified; this function does
not check the validity of the specified configuration.

Returns:
None.

4.2.2.36 ADCSequenceUnderflow

Determines if a sample sequence underflow occurred.

Prototype:
int32_t
ADCSequenceUnderflow(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function determines if a sample sequence underflow has occurred. Underflow happens if
too many samples are read from the FIFO.

Returns:
Returns zero if there was not an underflow, and non-zero if there was.

4.2.2.37 ADCSequenceUnderflowClear

Clears the underflow condition on a sample sequence.

July 25, 2016 43

Analog to Digital Converter (ADC)

Prototype:
void
ADCSequenceUnderflowClear(uint32_t ui32Base,

uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function clears an underflow condition on one of the sample sequencers. The underflow
condition must be cleared in order to detect a subsequent underflow condition (it otherwise
causes no harm).

Returns:
None.

4.2.2.38 ADCSoftwareOversampleConfigure

Configures the software oversampling factor of the ADC.

Prototype:
void
ADCSoftwareOversampleConfigure(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t ui32Factor)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Factor is the number of samples to be averaged.

Description:
This function configures the software oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Three different oversampling rates are supported; 2x,
4x, and 8x.

Oversampling is only supported on the sample sequencers that are more than one sample in
depth (that is, the fourth sample sequencer is not supported). Oversampling by 2x (for exam-
ple) divides the depth of the sample sequencer by two; so 2x oversampling on the first sample
sequencer can only provide four samples per trigger. This also means that 8x oversampling is
only available on the first sample sequencer.

Returns:
None.

4.2.2.39 ADCSoftwareOversampleDataGet

Gets the captured data for a sample sequence using software oversampling.

44 July 25, 2016

Analog to Digital Converter (ADC)

Prototype:
void
ADCSoftwareOversampleDataGet(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t *pui32Buffer,
uint32_t ui32Count)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
pui32Buffer is the address where the data is stored.
ui32Count is the number of samples to be read.

Description:
This function copies data from the specified sample sequence output FIFO to a memory resi-
dent buffer with software oversampling applied. The requested number of samples are copied
into the data buffer; if there are not enough samples in the hardware FIFO to satisfy this many
oversampled data items, then incorrect results are returned. It is the caller’s responsibility to
read only the samples that are available and wait until enough data is available, for example as
a result of receiving an interrupt.

Returns:
None.

4.2.2.40 ADCSoftwareOversampleStepConfigure

Configures a step of the software oversampled sequencer.

Prototype:
void
ADCSoftwareOversampleStepConfigure(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t ui32Step,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Step is the step to be configured.
ui32Config is the configuration of this step.

Description:
This function configures a step of the sample sequencer when using the software oversampling
feature. The number of steps available depends on the oversampling factor set by ADCSoft-
wareOversampleConfigure(). The value of ui32Config is the same as defined for ADCSe-
quenceStepConfigure().

Returns:
None.

July 25, 2016 45

Analog to Digital Converter (ADC)

4.3 Programming Example

The following example shows how to use the ADC API to initialize a sample sequencer for processor
triggering, trigger the sample sequence, and then read back the data when it is ready.

uint32_t ui32Value;

//
// Enable the ADC0 module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

//
// Wait for the ADC0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_ADC0))
{
}

//
// Enable the first sample sequencer to capture the value of channel 0 when
// the processor trigger occurs.
//
ADCSequenceConfigure(ADC0_BASE, 0, ADC_TRIGGER_PROCESSOR, 0);
ADCSequenceStepConfigure(ADC0_BASE, 0, 0,

ADC_CTL_IE | ADC_CTL_END | ADC_CTL_CH0);
ADCSequenceEnable(ADC0_BASE, 0);

//
// Trigger the sample sequence.
//
ADCProcessorTrigger(ADC0_BASE, 0);

//
// Wait until the sample sequence has completed.
//
while(!ADCIntStatus(ADC0_BASE, 0, false))
{
}

//
// Read the value from the ADC.
//
ADCSequenceDataGet(ADC0_BASE, 0, &ui32Value);

46 July 25, 2016

AES

5 AES
Introduction . 47
API Functions .47
Programming Example . 62

5.1 Introduction

The AES module driver provides a method for performing encryption and decryption operations on
blocks of 128-bits of data. The configuration and feature highlights are:

Supports ECB, CBC, CTR, ICM, CFB, CBC-MAC, GCM, CCM, XTS, F8, and F9 operating
modes.

The cipher block handles keys of 128-bits, 192-bits, and 256 bits.

In modes that require authentication, a hash tag is generated.

Controls uDMA triggers for context and data transfers.

This driver is contained in driverlib/aes.c, with driverlib/aes.h containing the API dec-
larations for use by applications.

5.2 API Functions

Functions
void AESAuthLengthSet (uint32_t ui32Base, uint32_t ui32Length)
void AESConfigSet (uint32_t ui32Base, uint32_t ui32Config)
bool AESDataAuth (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ui32Length, uint32_t
∗pui32Tag)
bool AESDataProcess (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ∗pui32Dest, uint32_t
ui32Length)
bool AESDataProcessAuth (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ∗pui32Dest,
uint32_t ui32Length, uint32_t ∗pui32AuthSrc, uint32_t ui32AuthLength, uint32_t ∗pui32Tag)
void AESDataRead (uint32_t ui32Base, uint32_t ∗pui32Dest)
bool AESDataReadNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Dest)
void AESDataWrite (uint32_t ui32Base, uint32_t ∗pui32Src)
bool AESDataWriteNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Src)
void AESDMADisable (uint32_t ui32Base, uint32_t ui32Flags)
void AESDMAEnable (uint32_t ui32Base, uint32_t ui32Flags)
void AESIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void AESIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void AESIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void AESIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t AESIntStatus (uint32_t ui32Base, bool bMasked)

July 25, 2016 47

AES

void AESIntUnregister (uint32_t ui32Base)
void AESIVRead (uint32_t ui32Base, uint32_t ∗pui32IVData)
void AESIVSet (uint32_t ui32Base, uint32_t ∗pui32IVdata)
void AESKey1Set (uint32_t ui32Base, uint32_t ∗pui32Key, uint32_t ui32Keysize)
void AESKey2Set (uint32_t ui32Base, uint32_t ∗pui32Key, uint32_t ui32Keysize)
void AESKey3Set (uint32_t ui32Base, uint32_t ∗pui32Key)
void AESLengthSet (uint32_t ui32Base, uint64_t ui64Length)
void AESReset (uint32_t ui32Base)
void AESTagRead (uint32_t ui32Base, uint32_t ∗pui32TagData)

5.2.1 Detailed Description

The AES API consists of functions for configuring the AES module and processing data.

5.2.2 Function Documentation

5.2.2.1 AESAuthLengthSet

Sets the authentication data length in the AES module.

Prototype:
void
AESAuthLengthSet(uint32_t ui32Base,

uint32_t ui32Length)

Parameters:
ui32Base is the base address of the AES module.
ui32Length is the length in bytes.

Description:
This function is only used to write the authentication data length in the combined modes (GCM
or CCM) and XTS mode. Supported AAD lengths for CCM are from 0 to (2∧16 - 28) bytes. For
GCM, any value up to (2∧32 - 1) can be used. For XTS mode, this register is used to load j.
Loading of j is only required if j != 0. j represents the sequential number of the 128-bit blocks
inside the data unit. Consequently, j must be multiplied by 16 when passed to this function,
thereby placing the block number in bits [31:4] of the register.

When this function is called, the engine is triggered to start using this context for GCM and
CCM.

Returns:
None

5.2.2.2 AESConfigSet

Configures the AES module.

48 July 25, 2016

AES

Prototype:
void
AESConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the AES module.
ui32Config is the configuration of the AES module.

Description:
This function configures the AES module based on the specified parameters. It does not
change any DMA- or interrupt-related parameters.

The ui32Config parameter is a bit-wise OR of a number of configuration flags. The valid flags
are grouped based on their function.

The direction of the operation is specified with only of following flags:

AES_CFG_DIR_ENCRYPT - Encryption mode
AES_CFG_DIR_DECRYPT - Decryption mode

The key size is specified with only one of the following flags:

AES_CFG_KEY_SIZE_128BIT - Key size of 128 bits
AES_CFG_KEY_SIZE_192BIT - Key size of 192 bits
AES_CFG_KEY_SIZE_256BIT - Key size of 256 bits

The mode of operation is specified with only one of the following flags.

AES_CFG_MODE_ECB - Electronic codebook mode
AES_CFG_MODE_CBC - Cipher-block chaining mode
AES_CFG_MODE_CFB - Cipher feedback mode
AES_CFG_MODE_CTR - Counter mode
AES_CFG_MODE_ICM - Integer counter mode
AES_CFG_MODE_XTS - Ciphertext stealing mode
AES_CFG_MODE_XTS_TWEAKJL - XEX-based tweaked-codebook mode with cipher-
text stealing with previous/intermediate tweak value and j loaded
AES_CFG_MODE_XTS_K2IJL - XEX-based tweaked-codebook mode with ciphertext
stealing with key2, i and j loaded
AES_CFG_MODE_XTS_K2ILJ0 - XEX-based tweaked-codebook mode with ciphertext
stealing with key2 and i loaded, j = 0
AES_CFG_MODE_F8 - F8 mode
AES_CFG_MODE_F9 - F9 mode
AES_CFG_MODE_CBCMAC - Cipher block chaining message authentication code mode
AES_CFG_MODE_GCM_HLY0ZERO - Galois/counter mode with GHASH with H loaded,
Y0-encrypted forced to zero and counter is not enabled.
AES_CFG_MODE_GCM_HLY0CALC - Galois/counter mode with GHASH with H loaded,
Y0-encrypted calculated internally and counter is enabled.
AES_CFG_MODE_GCM_HY0CALC - Galois/Counter mode with autonomous GHASH
(both H and Y0-encrypted calculated internally) and counter is enabled.
AES_CFG_MODE_CCM - Counter with CBC-MAC mode

July 25, 2016 49

AES

The following defines are used to specify the counter width. It is only required to be defined
when using CTR, CCM, or GCM modes, only one of the following defines must be used to
specify the counter width length:

AES_CFG_CTR_WIDTH_32 - Counter is 32 bits
AES_CFG_CTR_WIDTH_64 - Counter is 64 bits
AES_CFG_CTR_WIDTH_96 - Counter is 96 bits
AES_CFG_CTR_WIDTH_128 - Counter is 128 bits

Only one of the following defines must be used to specify the length field for CCM operations
(L):

AES_CFG_CCM_L_1 - 1 byte
AES_CFG_CCM_L_2 - 2 bytes
AES_CFG_CCM_L_3 - 3 bytes
AES_CFG_CCM_L_4 - 4 bytes
AES_CFG_CCM_L_5 - 5 bytes
AES_CFG_CCM_L_6 - 6 bytes
AES_CFG_CCM_L_7 - 7 bytes
AES_CFG_CCM_L_8 - 8 bytes

Only one of the following defines must be used to specify the length of the authentication field
for CCM operations (M) through the ui32Config argument in the AESConfigSet() function:

AES_CFG_CCM_M_4 - 4 bytes
AES_CFG_CCM_M_6 - 6 bytes
AES_CFG_CCM_M_8 - 8 bytes
AES_CFG_CCM_M_10 - 10 bytes
AES_CFG_CCM_M_12 - 12 bytes
AES_CFG_CCM_M_14 - 14 bytes
AES_CFG_CCM_M_16 - 16 bytes

Note:
When performing a basic GHASH operation for used with GCM mode, use the
AES_CFG_MODE_GCM_HLY0ZERO and do not specify a direction.

Returns:
None.

5.2.2.3 AESDataAuth

Used to authenticate blocks of data by generating a hash tag.

Prototype:
bool
AESDataAuth(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t ui32Length,
uint32_t *pui32Tag)

50 July 25, 2016

AES

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to the memory location where the input data is stored. The data must

be padded to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.
pui32Tag is a pointer to a 4-word array where the hash tag is written.

Description:
This function processes data to produce a hash tag that can be used tor authentication. Before
calling this function, ensure that the AES module is properly configured the key, data size,
mode, etc. Only CBC-MAC and F9 modes should be used.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

5.2.2.4 AESDataProcess

Used to process(transform) blocks of data, either encrypt or decrypt it.

Prototype:
bool
AESDataProcess(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t *pui32Dest,
uint32_t ui32Length)

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to the memory location where the input data is stored. The data must

be padded to the 16-byte boundary.
pui32Dest is a pointer to the memory location output is written. The space for written data

must be rounded up to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.

Description:
This function iterates the encryption or decryption mechanism number over the data length.
Before calling this function, ensure that the AES module is properly configured the key, data
size, mode, etc. Only ECB, CBC, CTR, ICM, CFB, XTS and F8 operating modes should be
used. The data is processed in 4-word (16-byte) blocks.

Note:
This function only supports values of ui32Length less than 2∧32, because the memory size is
restricted to between 0 to 2∧32 bytes.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

5.2.2.5 AESDataProcessAuth

Processes and authenticates blocks of data, either encrypt it or decrypts it.

July 25, 2016 51

AES

Prototype:
bool
AESDataProcessAuth(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t *pui32Dest,
uint32_t ui32Length,
uint32_t *pui32AuthSrc,
uint32_t ui32AuthLength,
uint32_t *pui32Tag)

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to the memory location where the input data is stored. The data must

be padded to the 16-byte boundary.
pui32Dest is a pointer to the memory location output is written. The space for written data

must be rounded up to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.
pui32AuthSrc is a pointer to the memory location where the additional authentication data is

stored. The data must be padded to the 16-byte boundary.
ui32AuthLength is the length of the additional authentication data in bytes.
pui32Tag is a pointer to a 4-word array where the hash tag is written.

Description:
This function encrypts or decrypts blocks of data in addition to authentication data. A hash
tag is also produced. Before calling this function, ensure that the AES module is properly
configured the key, data size, mode, etc. Only CCM and GCM modes should be used.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

5.2.2.6 AESDataRead

Reads plaintext/ciphertext from data registers with blocking.

Prototype:
void
AESDataRead(uint32_t ui32Base,

uint32_t *pui32Dest)

Parameters:
ui32Base is the base address of the AES module.
pui32Dest is a pointer to an array of words.

Description:
This function reads a block of either plaintext or ciphertext out of the AES module. If the output
is not ready, the function waits until it is ready. A block is 16 bytes or 4 words.

Returns:
None.

52 July 25, 2016

AES

5.2.2.7 AESDataReadNonBlocking

Reads plaintext/ciphertext from data registers without blocking.

Prototype:
bool
AESDataReadNonBlocking(uint32_t ui32Base,

uint32_t *pui32Dest)

Parameters:
ui32Base is the base address of the AES module.
pui32Dest is a pointer to an array of words of data.

Description:
This function reads a block of either plaintext or ciphertext out of the AES module. If the output
data is not ready, the function returns false. If the read completed successfully, the function
returns true. A block is 16 bytes or 4 words.

Returns:
true or false.

5.2.2.8 AESDataWrite

Writes plaintext/ciphertext to data registers with blocking.

Prototype:
void
AESDataWrite(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to an array of bytes.

Description:
This function writes a block of either plaintext or ciphertext into the AES module. If the input is
not ready, the function waits until it is ready before performing the write. A block is 16 bytes or
4 words.

Returns:
None.

5.2.2.9 AESDataWriteNonBlocking

Writes plaintext/ciphertext to data registers without blocking.

Prototype:
bool
AESDataWriteNonBlocking(uint32_t ui32Base,

uint32_t *pui32Src)

July 25, 2016 53

AES

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to an array of words of data.

Description:
This function writes a block of either plaintext or ciphertext into the AES module. If the input
is not ready, the function returns false. If the write completed successfully, the function returns
true. A block is 16 bytes or 4 words.

Returns:
True or false.

5.2.2.10 AESDMADisable

Disables uDMA requests for the AES module.

Prototype:
void
AESDMADisable(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the AES module.
ui32Flags is a bit mask of the uDMA requests to be disabled.

Description:
This function disables the uDMA request sources in the AES module. The ui32Flags parameter
is the logical OR of any of the following:

AES_DMA_DATA_IN
AES_DMA_DATA_OUT
AES_DMA_CONTEXT_IN
AES_DMA_CONTEXT_OUT

Returns:
None.

5.2.2.11 AESDMAEnable

Enables uDMA requests for the AES module.

Prototype:
void
AESDMAEnable(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the AES module.
ui32Flags is a bit mask of the uDMA requests to be enabled.

54 July 25, 2016

AES

Description:
This function enables the uDMA request sources in the AES module. The ui32Flags parameter
is the logical OR of any of the following:

AES_DMA_DATA_IN
AES_DMA_DATA_OUT
AES_DMA_CONTEXT_IN
AES_DMA_CONTEXT_OUT

Returns:
None.

5.2.2.12 AESIntClear

Clears AES module interrupts.

Prototype:
void
AESIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the AES module.
ui32IntFlags is a bit mask of the interrupt sources to disable.

Description:
This function clears the interrupt sources in the AES module. The ui32IntFlags parameter is
the logical OR of any of the following:

AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
AES_INT_DMA_DATA_IN - Data input DMA done interrupt
AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
Only the DMA done interrupts can be cleared. The remaining interrupts should be disabled
with AESIntDisable().

Returns:
None.

5.2.2.13 AESIntDisable

Disables AES module interrupts.

Prototype:
void
AESIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

July 25, 2016 55

AES

Parameters:
ui32Base is the base address of the AES module.
ui32IntFlags is a bit mask of the interrupt sources to disable.

Description:
This function disables the interrupt sources in the AES module. The ui32IntFlags parameter is
the logical OR of any of the following:

AES_INT_CONTEXT_IN - Context interrupt
AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt
AES_INT_DATA_IN - Data input interrupt
AES_INT_DATA_OUT - Data output interrupt
AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
AES_INT_DMA_DATA_IN - Data input DMA done interrupt
AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
The DMA done interrupts are the only interrupts that can be cleared. The remaining interrupts
can be disabled instead using AESIntDisable().

Returns:
None.

5.2.2.14 AESIntEnable

Enables AES module interrupts.

Prototype:
void
AESIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the AES module.
ui32IntFlags is a bit mask of the interrupt sources to enable.

Description:
This function enables the interrupts in the AES module. The ui32IntFlags parameter is the
logical OR of any of the following:

AES_INT_CONTEXT_IN - Context interrupt
AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt
AES_INT_DATA_IN - Data input interrupt
AES_INT_DATA_OUT - Data output interrupt
AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
AES_INT_DMA_DATA_IN - Data input DMA done interrupt
AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

56 July 25, 2016

AES

Note:
Interrupts that have been previously been enabled are not disabled when this function is called.

Returns:
None.

5.2.2.15 AESIntRegister

Registers an interrupt handler for the AES module.

Prototype:
void
AESIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the AES module.
pfnHandler is a pointer to the function to be called when the enabled AES interrupts occur.

Description:
This function registers the interrupt handler in the interrupt vector table, and enables AES
interrupts on the interrupt controller; specific AES interrupt sources must be enabled using
AESIntEnable(). The interrupt handler being registered must clear the source of the interrupt
using AESIntClear().

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() is used to enable AES interrupts
on the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

5.2.2.16 AESIntStatus

Returns the current AES module interrupt status.

Prototype:
uint32_t
AESIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the AES module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Returns:
Returns a bit mask of the interrupt sources, which is a logical OR of any of the following:

July 25, 2016 57

AES

AES_INT_CONTEXT_IN - Context interrupt

AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt.

AES_INT_DATA_IN - Data input interrupt

AES_INT_DATA_OUT - Data output interrupt

AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt

AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt

AES_INT_DMA_DATA_IN - Data input DMA done interrupt

AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

5.2.2.17 void AESIntUnregister (uint32_t ui32Base)

Unregisters an interrupt handler for the AES module.

Parameters:
ui32Base is the base address of the AES module.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

5.2.2.18 AESIVRead

Saves the Initial Vector (IV) registers to a user-defined location.

Prototype:
void
AESIVRead(uint32_t ui32Base,

uint32_t *pui32IVData)

Parameters:
ui32Base is the base address of the AES module.
pui32IVData is pointer to the location that stores the IV data.

Description:
This function stores the IV for use with authenticated encryption and decryption operations. It
is assumed that the AES_CTRL_SAVE_CONTEXT bit is set in the AES_CTRL register.

Returns:
None.

58 July 25, 2016

AES

5.2.2.19 AESIVSet

Writes the Initial Vector (IV) register, needed in some of the AES Modes.

Prototype:
void
AESIVSet(uint32_t ui32Base,

uint32_t *pui32IVdata)

Parameters:
ui32Base is the base address of the AES module.
pui32IVdata is an array of 4 words (128 bits), containing the IV value to be configured. The

least significant word is in the 0th index.

Description:
This functions writes the initial vector registers in the AES module.

Returns:
None.

5.2.2.20 AESKey1Set

Writes the key 1 configuration registers, which are used for encryption or decryption.

Prototype:
void
AESKey1Set(uint32_t ui32Base,

uint32_t *pui32Key,
uint32_t ui32Keysize)

Parameters:
ui32Base is the base address for the AES module.
pui32Key is an array of 32-bit words, containing the key to be configured. The least significant

word in the 0th index.
ui32Keysize is the size of the key, which must be one of the following values:

AES_CFG_KEY_SIZE_128, AES_CFG_KEY_SIZE_192, or AES_CFG_KEY_SIZE_256.

Description:
This function writes key 1 configuration registers based on the key size. This function is used
in all modes.

Returns:
None.

5.2.2.21 AESKey2Set

Writes the key 2 configuration registers, which are used for encryption or decryption.

Prototype:
void
AESKey2Set(uint32_t ui32Base,

July 25, 2016 59

AES

uint32_t *pui32Key,
uint32_t ui32Keysize)

Parameters:
ui32Base is the base address for the AES module.
pui32Key is an array of 32-bit words, containing the key to be configured. The least significant

word in the 0th index.
ui32Keysize is the size of the key, which must be one of the following values:

AES_CFG_KEY_SIZE_128, AES_CFG_KEY_SIZE_192, or AES_CFG_KEY_SIZE_256.

Description:
This function writes the key 2 configuration registers based on the key size. This function is
used in the F8, F9, XTS, CCM, and CBC-MAC modes.

Returns:
None.

5.2.2.22 AESKey3Set

Writes key 3 configuration registers, which are used for encryption or decryption.

Prototype:
void
AESKey3Set(uint32_t ui32Base,

uint32_t *pui32Key)

Parameters:
ui32Base is the base address for the AES module.
pui32Key is a pointer to an array of 4 words (128 bits), containing the key to be configured.

The least significant word is in the 0th index.

Description:
This function writes the key 2 configuration registers with key 3 data used in CBC-MAC and F8
modes. This key is always 128 bits.

Returns:
None.

5.2.2.23 AESLengthSet

Used to set the write crypto data length in the AES module.

Prototype:
void
AESLengthSet(uint32_t ui32Base,

uint64_t ui64Length)

Parameters:
ui32Base is the base address of the AES module.
ui64Length is the crypto data length in bytes.

60 July 25, 2016

AES

Description:
This function stores the cryptographic data length in blocks for all modes. Data lengths up to
(2∧61 - 1) bytes are allowed. For GCM, any value up to (2∧36 - 2) bytes are allowed because
a 32-bit block counter is used. For basic modes (ECB/CBC/CTR/ICM/CFB128), zero can be
programmed into the length field, indicating that the length is infinite.

When this function is called, the engine is triggered to start using this context.

Note:
This length does not include the authentication-only data used in some modes. Use the AE-
SAuthLengthSet() function to specify the authentication data length.

Returns:
None

5.2.2.24 AESReset

Resets the AES module.

Prototype:
void
AESReset(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the AES module.

Description:
This function performs a softreset the AES module.

Returns:
None.

5.2.2.25 AESTagRead

Saves the tag registers to a user-defined location.

Prototype:
void
AESTagRead(uint32_t ui32Base,

uint32_t *pui32TagData)

Parameters:
ui32Base is the base address of the AES module.
pui32TagData is pointer to the location that stores the tag data.

Description:
This function stores the tag data for use authenticated encryption and decryption operations.
It is assumed that the AES_CTRL_SAVE_CONTEXT bit is set in the AES_CTRL register.

Returns:
None.

July 25, 2016 61

AES

5.3 Programming Example

The following example sets up the AES module to perform an encryption operation on four blocks of
data in CBC mode with an 128-bit key. This example corresponds to vector F.2.1 in NIST document
SP 800-38A.

//
// Random data for encryption/decryption.
//
uint32_t g_ui32AESPlainText[16] =
{

0xe2bec16b, 0x969f402e, 0x117e3de9, 0x2a179373,
0x578a2dae, 0x9cac031e, 0xac6fb79e, 0x518eaf45,
0x461cc830, 0x11e45ca3, 0x19c1fbe5, 0xef520a1a,
0x45249ff6, 0x179b4fdf, 0x7b412bad, 0x10376ce6

};

//
// Encryption key
//
uint32_t g_ui32AES128Key[4] =
{

0x16157e2b, 0xa6d2ae28, 0x8815f7ab, 0x3c4fcf09
};

//
// Initial value for CBC mode.
//
uint32_t g_ui32AESIV[4] =
{

0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c
};

int
main(void)
{

uint32_t pui32CipherText[16];

//
// Enable the CCM module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CCM0);

//
// Wait for the CCM module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CCM0))
{
}

//
// Reset the AES module before use.
//
AESReset(AES_BASE);

//
// Configure the AES module.
//
AESConfigSet(AES_BASE,

AES_CFG_DIR_ENCRYPT |
AES_CFG_MODE_CBC |
AES_CFG_KEY_SIZE_128BIT);

//

62 July 25, 2016

AES

// Set the initial value.
//
AESIVSet(AES_BASE, g_ui32AESIV);

//
// Set the encryption key.
//
AESKey1Set(AES_BASE, g_ui32AES128Key);

//
// Encrypt the data.
//
// The ciphertext should be:
// {0xacab4976, 0x46b21981, 0x9b8ee9ce, 0x7d19e912,
// 0x9bcb8650, 0xee197250, 0x3a11db95, 0xb2787691,
// 0xb8d6be73, 0x3b74c1e3, 0x9ee61671, 0x16952222,
// 0xa1caf13f, 0x09ac1f68, 0x30ca0e12, 0xa7e18675}
//
AESDataProcess(AES_BASE, g_ui32AESPlainText, pui32CipherText, 64);

}

July 25, 2016 63

AES

64 July 25, 2016

Controller Area Network (CAN)

6 Controller Area Network (CAN)
Introduction . 65
API Functions .65
CAN Message Objects . 88
Programming Example . 89

6.1 Introduction

The Controller Area Network (CAN) APIs provide a set of functions for accessing the Tiva CAN
modules. Functions are provided to configure the CAN controllers, configure message objects, and
manage CAN interrupts.

The Tiva CAN module provides hardware processing of the CAN data link layer. It can be configured
with message filters and preloaded message data so that it can autonomously send and receive
messages on the bus and notify the application accordingly. It automatically handles generation
and checking of CRCs, error processing, and retransmission of CAN messages.

The message objects are stored in the CAN controller and provide the main interface for the CAN
module on the CAN bus. There are 32 message objects that can each be programmed to handle
a separate message ID, or can be chained together for a sequence of frames with the same ID.
The message identifier filters provide masking that can be programmed to match any or all of the
message ID bits, and frame types.

This driver is contained in driverlib/can.c, with driverlib/can.h containing the API dec-
larations for use by applications.

6.2 API Functions

Data Structures
tCANBitClkParms
tCANMsgObject

Defines
CAN_INT_ERROR
CAN_INT_MASTER
CAN_INT_STATUS
CAN_STATUS_BUS_OFF
CAN_STATUS_EPASS
CAN_STATUS_EWARN
CAN_STATUS_LEC_ACK
CAN_STATUS_LEC_BIT0
CAN_STATUS_LEC_BIT1
CAN_STATUS_LEC_CRC

July 25, 2016 65

Controller Area Network (CAN)

CAN_STATUS_LEC_FORM
CAN_STATUS_LEC_MASK
CAN_STATUS_LEC_MSK
CAN_STATUS_LEC_NONE
CAN_STATUS_LEC_STUFF
CAN_STATUS_RXOK
CAN_STATUS_TXOK
MSG_OBJ_DATA_LOST
MSG_OBJ_EXTENDED_ID
MSG_OBJ_FIFO
MSG_OBJ_NEW_DATA
MSG_OBJ_NO_FLAGS
MSG_OBJ_REMOTE_FRAME
MSG_OBJ_RX_INT_ENABLE
MSG_OBJ_STATUS_MASK
MSG_OBJ_TX_INT_ENABLE
MSG_OBJ_USE_DIR_FILTER
MSG_OBJ_USE_EXT_FILTER
MSG_OBJ_USE_ID_FILTER

Enumerations
tCANIntStsReg
tCANStsReg
tMsgObjType

Functions
uint32_t CANBitRateSet (uint32_t ui32Base, uint32_t ui32SourceClock, uint32_t ui32BitRate)
void CANBitTimingGet (uint32_t ui32Base, tCANBitClkParms ∗psClkParms)
void CANBitTimingSet (uint32_t ui32Base, tCANBitClkParms ∗psClkParms)
void CANDisable (uint32_t ui32Base)
void CANEnable (uint32_t ui32Base)
bool CANErrCntrGet (uint32_t ui32Base, uint32_t ∗pui32RxCount, uint32_t ∗pui32TxCount)
void CANInit (uint32_t ui32Base)
void CANIntClear (uint32_t ui32Base, uint32_t ui32IntClr)
void CANIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void CANIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void CANIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t CANIntStatus (uint32_t ui32Base, tCANIntStsReg eIntStsReg)
void CANIntUnregister (uint32_t ui32Base)
void CANMessageClear (uint32_t ui32Base, uint32_t ui32ObjID)
void CANMessageGet (uint32_t ui32Base, uint32_t ui32ObjID, tCANMsgObject
∗psMsgObject, bool bClrPendingInt)

66 July 25, 2016

Controller Area Network (CAN)

void CANMessageSet (uint32_t ui32Base, uint32_t ui32ObjID, tCANMsgObject
∗psMsgObject, tMsgObjType eMsgType)
bool CANRetryGet (uint32_t ui32Base)
void CANRetrySet (uint32_t ui32Base, bool bAutoRetry)
uint32_t CANStatusGet (uint32_t ui32Base, tCANStsReg eStatusReg)

6.2.1 Detailed Description

The CAN APIs provide all of the functions needed by the application to implement an interrupt-
driven CAN stack. These functions may be used to control any of the available CAN ports on a Tiva
microcontroller, and can be used with one port without causing conflicts with the other port.

The CAN module is disabled by default, so the CANInit() function must be called before any other
CAN functions are called. This call initializes the message objects to a safe state prior to enabling
the controller on the CAN bus. Also, the bit timing values must be programmed prior to enabling the
CAN controller. The CANSetBitTiming() function should be called with the appropriate bit timing
values for the CAN bus. Once these two functions have been called, a CAN controller can be
enabled using CANEnable() and later disabled using CANDisable() if needed. Calling CANDisable()
does not reinitialize a CAN controller, so it can be used to temporarily remove a CAN controller from
the bus.

The CAN controller is highly configurable and can be programmed to automatically transmit and
receive CAN messages under certain conditions. Message objects allow the application to perform
some actions automatically without interaction from the microcontroller. Some examples of these
actions are the following:

Send a data frame immediately

Send a data frame when a matching remote frame is seen on the CAN bus

Receive a specific data frame

Receive data frames that match a certain identifier pattern

To configure message objects to perform any of these actions, the application must first set up one
of the 32 message objects using CANMessageSet(). This function must be used to configure a
message object to send data, or to configure a message object to receive data. Each message
object can be configured to generate interrupts on transmission or reception of CAN messages.

When data is received from the CAN bus, the application can use the CANMessageGet() function to
read the received message. This function can also be used to read a message object that is already
configured in order to populate a message structure prior to making changes to the configuration
of a message object. Reading the message object using this function also clears any pending
interrupt on the message object.

Once a message object has been configured using CANMessageSet(), the message object has
been allocated and continues to perform its programmed function unless it is released by a call
to CANMessageClear(). The application is not required to clear out a message object before set-
ting it with a new configuration, because each time CANMessageSet() is called, it overwrites any
previously programmed configuration.

The 32 message objects are identical except for priority. The lowest numbered message objects
have the highest priority. Priority affects operation in two ways. First, if multiple actions are ready
at the same time, the one with the highest priority message object occurs first. And second, when

July 25, 2016 67

Controller Area Network (CAN)

multiple message objects have interrupts pending, the highest priority is presented first when read-
ing the interrupt status. It is up to the application to manage the 32 message objects as a resource,
and determine the best method for allocating and releasing them.

The CAN controller can generate interrupts on several conditions:

When any message object transmits a message

When any message object receives a message

On warning conditions such as an error counter reaching a limit or occurrence of various bus
errors

On controller error conditions such as entering the bus-off state

An interrupt handler must be installed in order to process CAN interrupts. If dynamic interrupt
configuration is desired, the CANIntRegister() can be used to register the interrupt handler. This
function places the vector in a RAM-based vector table. However, if the application uses a pre-
loaded vector table in flash, then the CAN controller handler should be entered in the appropriate
slot in the vector table. In this case, CANIntRegister() is not needed, but the interrupt must be
enabled on the host processor master interrupt controller using the IntEnable() function. The CAN
module interrupts are enabled using the CANIntEnable() function. They can be disabled by using
the CANIntDisable() function.

Once CAN interrupts are enabled, the handler is invoked whenever a CAN interrupt is triggered.
The handler can determine which condition caused the interrupt by using the CANIntStatus() func-
tion. Multiple conditions can be pending when an interrupt occurs, so the handler must be designed
to process all pending interrupt conditions before exiting. Each interrupt condition must be cleared
before exiting the handler. There are two ways to do this. The CANIntClear() function clears a
specific interrupt condition without further action required by the handler. However, the handler
can also clear the condition by performing certain actions. If the interrupt is a status interrupt,
the interrupt can be cleared by reading the status register with CANStatusGet(). If the interrupt is
caused by one of the message objects, then it can be cleared by reading the message object using
CANMessageGet().

There are several status registers that can be used to help the application manage the controller.
The status registers are read using the CANStatusGet() function. There is a controller status reg-
ister that provides general status information such as error or warning conditions. There are also
several status registers that provide information about all of the message objects at once using a
32-bit bit map of the status, with one bit representing each message object. These status registers
can be used to determine:

Which message objects have unprocessed received data

Which message objects have pending transmission requests

Which message objects are allocated for use

Bus error conditions when using CAN require special handling by the application, especially in
cases where the CAN controller has gone into a bus-off condition. The CAN specification requires
that a controller that has seen its error counters go above 256 transmit errors removes itself from
the bus and enters a bus-off state. This state is indicated when the CANStatusGet() function returns
the value CAN_STATUS_BUS_OFF. There are other warning levels (CAN_STATUS_EWARN and
CAN_STATUS_EPASS) that occur before a bus-off condition that indicate something is wrong on
the CAN bus. After entering the bus-off condition, the CAN controller automatically disables itself
just as if the application had called CANDisable(). To exit the bus-off condition, the application must
call CANEnable() and then wait for the CAN_STATUS_BUS_OFF condition to clear. If the bus-off
condition does not clear, then there is likely some physical condition or bit timing issue causing the

68 July 25, 2016

Controller Area Network (CAN)

controller to be unable to function properly. There is no way to shorten this sequence as this is the
method for recovering from a bus-off condition specified in the CAN 2.0 specification.

Example:

if(CANStatusGet(CAN0_BASE) & CAN_STATUS_BUS_OFF)
{

//
// Enable the controller again to allow it to start decrementing the
// error counter allowing the bus off condition to clear.
//
CANEnable();

//
// Wait for the bus off condition to clear. This condition can be
// polled elsewhere depending on the application. But no CAN messages
// can be sent until this condition clears.
//
while(CANStatusGet(CAN0_BASE) & CAN_STATUS_BUS_OFF)
{
}

}

6.2.2 Data Structure Documentation

6.2.2.1 tCANBitClkParms

Definition:
typedef struct
{

uint32_t ui32SyncPropPhase1Seg;
uint32_t ui32Phase2Seg;
uint32_t ui32SJW;
uint32_t ui32QuantumPrescaler;

}
tCANBitClkParms

Members:
ui32SyncPropPhase1Seg This value holds the sum of the Synchronization, Propagation, and

Phase Buffer 1 segments, measured in time quanta. The valid values for this setting range
from 2 to 16.

ui32Phase2Seg This value holds the Phase Buffer 2 segment in time quanta. The valid values
for this setting range from 1 to 8.

ui32SJW This value holds the Resynchronization Jump Width in time quanta. The valid values
for this setting range from 1 to 4.

ui32QuantumPrescaler This value holds the CAN_CLK divider used to determine time
quanta. The valid values for this setting range from 1 to 1023.

Description:
This structure is used for encapsulating the values associated with setting up the bit timing for a
CAN controller. The structure is used when calling the CANGetBitTiming and CANSetBitTiming
functions.

July 25, 2016 69

Controller Area Network (CAN)

6.2.2.2 tCANMsgObject

Definition:
typedef struct
{

uint32_t ui32MsgID;
uint32_t ui32MsgIDMask;
uint32_t ui32Flags;
uint32_t ui32MsgLen;
uint8_t *pui8MsgData;

}
tCANMsgObject

Members:
ui32MsgID The CAN message identifier used for 11 or 29 bit identifiers.
ui32MsgIDMask The message identifier mask used when identifier filtering is enabled.
ui32Flags This value holds various status flags and settings specified by tCANObjFlags.
ui32MsgLen This value is the number of bytes of data in the message object.
pui8MsgData This is a pointer to the message object’s data.

Description:
The structure used for encapsulating all the items associated with a CAN message object in
the CAN controller.

6.2.3 Define Documentation

6.2.3.1 CAN_INT_ERROR

Definition:
#define CAN_INT_ERROR

Description:
This flag is used to allow a CAN controller to generate error interrupts.

6.2.3.2 CAN_INT_MASTER

Definition:
#define CAN_INT_MASTER

Description:
This flag is used to allow a CAN controller to generate any CAN interrupts. If this is not set,
then no interrupts are generated by the CAN controller.

6.2.3.3 CAN_INT_STATUS

Definition:
#define CAN_INT_STATUS

70 July 25, 2016

Controller Area Network (CAN)

Description:
This flag is used to allow a CAN controller to generate status interrupts.

6.2.3.4 CAN_STATUS_BUS_OFF

Definition:
#define CAN_STATUS_BUS_OFF

Description:
CAN controller has entered a Bus Off state.

6.2.3.5 CAN_STATUS_EPASS

Definition:
#define CAN_STATUS_EPASS

Description:
CAN controller error level has reached error passive level.

6.2.3.6 CAN_STATUS_EWARN

Definition:
#define CAN_STATUS_EWARN

Description:
CAN controller error level has reached warning level.

6.2.3.7 CAN_STATUS_LEC_ACK

Definition:
#define CAN_STATUS_LEC_ACK

Description:
An acknowledge error has occurred.

6.2.3.8 CAN_STATUS_LEC_BIT0

Definition:
#define CAN_STATUS_LEC_BIT0

Description:
The bus remained a bit level of 0 for longer than is allowed.

July 25, 2016 71

Controller Area Network (CAN)

6.2.3.9 CAN_STATUS_LEC_BIT1

Definition:
#define CAN_STATUS_LEC_BIT1

Description:
The bus remained a bit level of 1 for longer than is allowed.

6.2.3.10 CAN_STATUS_LEC_CRC

Definition:
#define CAN_STATUS_LEC_CRC

Description:
A CRC error has occurred.

6.2.3.11 CAN_STATUS_LEC_FORM

Definition:
#define CAN_STATUS_LEC_FORM

Description:
A formatting error has occurred.

6.2.3.12 CAN_STATUS_LEC_MASK

Definition:
#define CAN_STATUS_LEC_MASK

Description:
This is the mask for the CAN Last Error Code (LEC).

6.2.3.13 CAN_STATUS_LEC_MSK

Definition:
#define CAN_STATUS_LEC_MSK

Description:
This is the mask for the last error code field.

6.2.3.14 CAN_STATUS_LEC_NONE

Definition:
#define CAN_STATUS_LEC_NONE

Description:
There was no error.

72 July 25, 2016

Controller Area Network (CAN)

6.2.3.15 CAN_STATUS_LEC_STUFF

Definition:
#define CAN_STATUS_LEC_STUFF

Description:
A bit stuffing error has occurred.

6.2.3.16 CAN_STATUS_RXOK

Definition:
#define CAN_STATUS_RXOK

Description:
A message was received successfully since the last read of this status.

6.2.3.17 CAN_STATUS_TXOK

Definition:
#define CAN_STATUS_TXOK

Description:
A message was transmitted successfully since the last read of this status.

6.2.3.18 MSG_OBJ_DATA_LOST

Definition:
#define MSG_OBJ_DATA_LOST

Description:
This indicates that data was lost since this message object was last read.

6.2.3.19 MSG_OBJ_EXTENDED_ID

Definition:
#define MSG_OBJ_EXTENDED_ID

Description:
This indicates that a message object is using an extended identifier.

6.2.3.20 MSG_OBJ_FIFO

Definition:
#define MSG_OBJ_FIFO

Description:
This indicates that this message object is part of a FIFO structure and not the final message
object in a FIFO.

July 25, 2016 73

Controller Area Network (CAN)

6.2.3.21 MSG_OBJ_NEW_DATA

Definition:
#define MSG_OBJ_NEW_DATA

Description:
This indicates that new data was available in the message object.

6.2.3.22 MSG_OBJ_NO_FLAGS

Definition:
#define MSG_OBJ_NO_FLAGS

Description:
This indicates that a message object has no flags set.

6.2.3.23 MSG_OBJ_REMOTE_FRAME

Definition:
#define MSG_OBJ_REMOTE_FRAME

Description:
This indicates that a message object is a remote frame.

6.2.3.24 MSG_OBJ_RX_INT_ENABLE

Definition:
#define MSG_OBJ_RX_INT_ENABLE

Description:
This indicates that receive interrupts are enabled.

6.2.3.25 MSG_OBJ_STATUS_MASK

Definition:
#define MSG_OBJ_STATUS_MASK

Description:
This define is used with the flag values to allow checking only status flags and not configuration
flags.

6.2.3.26 MSG_OBJ_TX_INT_ENABLE

Definition:
#define MSG_OBJ_TX_INT_ENABLE

Description:
This indicates that transmit interrupts are enabled.

74 July 25, 2016

Controller Area Network (CAN)

6.2.3.27 MSG_OBJ_USE_DIR_FILTER

Definition:
#define MSG_OBJ_USE_DIR_FILTER

Description:
This indicates that a message object uses or is using filtering based on the direction of the
transfer. If the direction filtering is used, then ID filtering must also be enabled.

6.2.3.28 MSG_OBJ_USE_EXT_FILTER

Definition:
#define MSG_OBJ_USE_EXT_FILTER

Description:
This indicates that a message object uses or is using message identifier filtering based on the
extended identifier. If the extended identifier filtering is used, then ID filtering must also be
enabled.

6.2.3.29 MSG_OBJ_USE_ID_FILTER

Definition:
#define MSG_OBJ_USE_ID_FILTER

Description:
This indicates that a message object is using filtering based on the object’s message identifier.

6.2.4 Enumeration Documentation

6.2.4.1 tCANIntStsReg

Description:
This data type is used to identify the interrupt status register. This is used when calling the
CANIntStatus() function.

Enumerators:
CAN_INT_STS_CAUSE Read the CAN interrupt status information.
CAN_INT_STS_OBJECT Read a message object’s interrupt status.

6.2.4.2 tCANStsReg

Description:
This data type is used to identify which of several status registers to read when calling the
CANStatusGet() function.

Enumerators:
CAN_STS_CONTROL Read the full CAN controller status.

July 25, 2016 75

Controller Area Network (CAN)

CAN_STS_TXREQUEST Read the full 32-bit mask of message objects with a transmit re-
quest set.

CAN_STS_NEWDAT Read the full 32-bit mask of message objects with new data available.
CAN_STS_MSGVAL Read the full 32-bit mask of message objects that are enabled.

6.2.4.3 tMsgObjType

Description:
This definition is used to determine the type of message object that is set up via a call to the
CANMessageSet() API.

Enumerators:
MSG_OBJ_TYPE_TX Transmit message object.
MSG_OBJ_TYPE_TX_REMOTE Transmit remote request message object.
MSG_OBJ_TYPE_RX Receive message object.
MSG_OBJ_TYPE_RX_REMOTE Receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE Remote frame receive remote, with auto-transmit mes-

sage object.

6.2.5 Function Documentation

6.2.5.1 CANBitRateSet

Sets the CAN bit timing values to a nominal setting based on a desired bit rate.

Prototype:
uint32_t
CANBitRateSet(uint32_t ui32Base,

uint32_t ui32SourceClock,
uint32_t ui32BitRate)

Parameters:
ui32Base is the base address of the CAN controller.
ui32SourceClock is the system clock for the device in Hz.
ui32BitRate is the desired bit rate.

Description:
This function sets the CAN bit timing for the bit rate passed in the ui32BitRate parameter based
on the ui32SourceClock parameter. Because the CAN clock is based off of the system clock,
the calling function must pass in the source clock rate either by retrieving it from SysCtlClock-
Get() or using a specific value in Hz. The CAN bit timing is calculated assuming a minimal
amount of propagation delay, which works for most cases where the network length is short. If
tighter timing requirements or longer network lengths are needed, then the CANBitTimingSet()
function is available for full customization of all of the CAN bit timing values. Because not all
bit rates can be matched exactly, the bit rate is set to the value closest to the desired bit rate
without being higher than the ui32BitRate value.

Note:
On some devices the source clock is fixed at 8MHz so the ui32SourceClock must be set to
8000000.

76 July 25, 2016

Controller Area Network (CAN)

Returns:
This function returns the bit rate that the CAN controller was configured to use or it returns 0
to indicate that the bit rate was not changed because the requested bit rate was not valid.

6.2.5.2 CANBitTimingGet

Reads the current settings for the CAN controller bit timing.

Prototype:
void
CANBitTimingGet(uint32_t ui32Base,

tCANBitClkParms *psClkParms)

Parameters:
ui32Base is the base address of the CAN controller.
psClkParms is a pointer to a structure to hold the timing parameters.

Description:
This function reads the current configuration of the CAN controller bit clock timing and stores
the resulting information in the structure supplied by the caller. Refer to CANBitTimingSet() for
the meaning of the values that are returned in the structure pointed to by psClkParms.

Returns:
None.

6.2.5.3 CANBitTimingSet

Configures the CAN controller bit timing.

Prototype:
void
CANBitTimingSet(uint32_t ui32Base,

tCANBitClkParms *psClkParms)

Parameters:
ui32Base is the base address of the CAN controller.
psClkParms points to the structure with the clock parameters.

Description:
Configures the various timing parameters for the CAN bus bit timing: Propagation segment,
Phase Buffer 1 segment, Phase Buffer 2 segment, and the Synchronization Jump Width.
The values for Propagation and Phase Buffer 1 segments are derived from the combination
psClkParms->ui32SyncPropPhase1Seg parameter. Phase Buffer 2 is determined from the
psClkParms->ui32Phase2Seg parameter. These two parameters, along with psClkParms-
>ui32SJW are based in units of bit time quanta. The actual quantum time is determined by
the psClkParms->ui32QuantumPrescaler value, which specifies the divisor for the CAN mod-
ule clock.

The total bit time, in quanta, is the sum of the two Seg parameters, as follows:

bit_time_q = ui32SyncPropPhase1Seg + ui32Phase2Seg + 1

July 25, 2016 77

Controller Area Network (CAN)

Note that the Sync_Seg is always one quantum in duration, and is added to derive the correct
duration of Prop_Seg and Phase1_Seg.

The equation to determine the actual bit rate is as follows:

CAN Clock / ((ui32SyncPropPhase1Seg + ui32Phase2Seg + 1) ∗ (ui32QuantumPrescaler))

Thus with ui32SyncPropPhase1Seg = 4, ui32Phase2Seg = 1, ui32QuantumPrescaler = 2 and
an 8 MHz CAN clock, the bit rate is (8 MHz) / ((5 + 2 + 1) ∗ 2) or 500 Kbit/sec.

Returns:
None.

6.2.5.4 CANDisable

Disables the CAN controller.

Prototype:
void
CANDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the CAN controller to disable.

Description:
Disables the CAN controller for message processing. When disabled, the controller no longer
automatically processes data on the CAN bus. The controller can be restarted by calling CA-
NEnable(). The state of the CAN controller and the message objects in the controller are left
as they were before this call was made.

Returns:
None.

6.2.5.5 CANEnable

Enables the CAN controller.

Prototype:
void
CANEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the CAN controller to enable.

Description:
Enables the CAN controller for message processing. Once enabled, the controller automati-
cally transmits any pending frames, and processes any received frames. The controller can
be stopped by calling CANDisable(). Prior to calling CANEnable(), CANInit() must have been
called to initialize the controller and the CAN bus clock must be configured by calling CANBit-
TimingSet().

Returns:
None.

78 July 25, 2016

Controller Area Network (CAN)

6.2.5.6 CANErrCntrGet

Reads the CAN controller error counter register.

Prototype:
bool
CANErrCntrGet(uint32_t ui32Base,

uint32_t *pui32RxCount,
uint32_t *pui32TxCount)

Parameters:
ui32Base is the base address of the CAN controller.
pui32RxCount is a pointer to storage for the receive error counter.
pui32TxCount is a pointer to storage for the transmit error counter.

Description:
This function reads the error counter register and returns the transmit and receive error counts
to the caller along with a flag indicating if the controller receive counter has reached the error
passive limit. The values of the receive and transmit error counters are returned through the
pointers provided as parameters.

After this call, ∗pui32RxCount holds the current receive error count and ∗pui32TxCount holds
the current transmit error count.

Returns:
Returns true if the receive error count has reached the error passive limit, and false if the error
count is below the error passive limit.

6.2.5.7 CANInit

Initializes the CAN controller after reset.

Prototype:
void
CANInit(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the CAN controller.

Description:
After reset, the CAN controller is left in the disabled state. However, the memory used for
message objects contains undefined values and must be cleared prior to enabling the CAN
controller the first time. This prevents unwanted transmission or reception of data before the
message objects are configured. This function must be called before enabling the controller
the first time.

Returns:
None.

6.2.5.8 CANIntClear

Clears a CAN interrupt source.

July 25, 2016 79

Controller Area Network (CAN)

Prototype:
void
CANIntClear(uint32_t ui32Base,

uint32_t ui32IntClr)

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntClr is a value indicating which interrupt source to clear.

Description:
This function can be used to clear a specific interrupt source. The ui32IntClr parameter must
be one of the following values:

CAN_INT_INTID_STATUS - Clears a status interrupt.
1-32 - Clears the specified message object interrupt

It is not necessary to use this function to clear an interrupt. This function is only used if the
application wants to clear an interrupt source without taking the normal interrupt action.

Normally, the status interrupt is cleared by reading the controller status using CANStatusGet().
A specific message object interrupt is normally cleared by reading the message object using
CANMessageGet().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

6.2.5.9 CANIntDisable

Disables individual CAN controller interrupt sources.

Prototype:
void
CANIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the specified CAN controller interrupt sources. Only enabled interrupt sources can
cause a processor interrupt.

The ui32IntFlags parameter has the same definition as in the CANIntEnable() function.

Returns:
None.

80 July 25, 2016

Controller Area Network (CAN)

6.2.5.10 CANIntEnable

Enables individual CAN controller interrupt sources.

Prototype:
void
CANIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables specific interrupt sources of the CAN controller. Only enabled sources
cause a processor interrupt.

The ui32IntFlags parameter is the logical OR of any of the following:

CAN_INT_ERROR - a controller error condition has occurred
CAN_INT_STATUS - a message transfer has completed, or a bus error has been detected
CAN_INT_MASTER - allow CAN controller to generate interrupts

In order to generate any interrupts, CAN_INT_MASTER must be enabled. Further, for any
particular transaction from a message object to generate an interrupt, that message object
must have interrupts enabled (see CANMessageSet()). CAN_INT_ERROR generates an in-
terrupt if the controller enters the “bus off” condition, or if the error counters reach a limit.
CAN_INT_STATUS generates an interrupt under quite a few status conditions and may pro-
vide more interrupts than the application needs to handle. When an interrupt occurs, use
CANIntStatus() to determine the cause.

Returns:
None.

6.2.5.11 CANIntRegister

Registers an interrupt handler for the CAN controller.

Prototype:
void
CANIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the CAN controller.
pfnHandler is a pointer to the function to be called when the enabled CAN interrupts occur.

Description:
This function registers the interrupt handler in the interrupt vector table, and enables CAN
interrupts on the interrupt controller; specific CAN interrupt sources must be enabled using
CANIntEnable(). The interrupt handler being registered must clear the source of the interrupt
using CANIntClear().

July 25, 2016 81

Controller Area Network (CAN)

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() is used to enable CAN interrupts
on the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

6.2.5.12 CANIntStatus

Returns the current CAN controller interrupt status.

Prototype:
uint32_t
CANIntStatus(uint32_t ui32Base,

tCANIntStsReg eIntStsReg)

Parameters:
ui32Base is the base address of the CAN controller.
eIntStsReg indicates which interrupt status register to read

Description:
This function returns the value of one of two interrupt status registers. The interrupt status
register read is determined by the eIntStsReg parameter, which can have one of the following
values:

CAN_INT_STS_CAUSE - indicates the cause of the interrupt
CAN_INT_STS_OBJECT - indicates pending interrupts of all message objects

CAN_INT_STS_CAUSE returns the value of the controller interrupt register and indicates the
cause of the interrupt. The value returned is CAN_INT_INTID_STATUS if the cause is a status
interrupt. In this case, the status register is read with the CANStatusGet() function. Calling
this function to read the status also clears the status interrupt. If the value of the interrupt
register is in the range 1-32, then this indicates the number of the highest priority message
object that has an interrupt pending. The message object interrupt can be cleared by using the
CANIntClear() function, or by reading the message using CANMessageGet() in the case of a
received message. The interrupt handler can read the interrupt status again to make sure all
pending interrupts are cleared before returning from the interrupt.

CAN_INT_STS_OBJECT returns a bit mask indicating which message objects have pending
interrupts. This value can be used to discover all of the pending interrupts at once, as opposed
to repeatedly reading the interrupt register by using CAN_INT_STS_CAUSE.

Returns:
Returns the value of one of the interrupt status registers.

6.2.5.13 CANIntUnregister

Unregisters an interrupt handler for the CAN controller.

82 July 25, 2016

Controller Area Network (CAN)

Prototype:
void
CANIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

6.2.5.14 CANMessageClear

Clears a message object so that it is no longer used.

Prototype:
void
CANMessageClear(uint32_t ui32Base,

uint32_t ui32ObjID)

Parameters:
ui32Base is the base address of the CAN controller.
ui32ObjID is the message object number to disable (1-32).

Description:
This function frees the specified message object from use. Once a message object has been
“cleared, ” it no longer automatically sends or receives messages, nor does it generate inter-
rupts.

Returns:
None.

6.2.5.15 CANMessageGet

Reads a CAN message from one of the message object buffers.

Prototype:
void
CANMessageGet(uint32_t ui32Base,

uint32_t ui32ObjID,
tCANMsgObject *psMsgObject,
bool bClrPendingInt)

Parameters:
ui32Base is the base address of the CAN controller.

July 25, 2016 83

Controller Area Network (CAN)

ui32ObjID is the object number to read (1-32).
psMsgObject points to a structure containing message object fields.
bClrPendingInt indicates whether an associated interrupt should be cleared.

Description:
This function is used to read the contents of one of the 32 message objects in the CAN con-
troller and return it to the caller. The data returned is stored in the fields of the caller-supplied
structure pointed to by psMsgObject . The data consists of all of the parts of a CAN message,
plus some control and status information.

Normally, this function is used to read a message object that has received and stored a CAN
message with a certain identifier. However, this function could also be used to read the contents
of a message object in order to load the fields of the structure in case only part of the structure
must be changed from a previous setting.

When using CANMessageGet(), all of the same fields of the structure are populated in the
same way as when the CANMessageSet() function is used, with the following exceptions:

psMsgObject->ui32Flags:

MSG_OBJ_NEW_DATA indicates if this data is new since the last time it was read
MSG_OBJ_DATA_LOST indicates that at least one message was received on this mes-
sage object and not read by the host before being overwritten.

Returns:
None.

6.2.5.16 CANMessageSet

Configures a message object in the CAN controller.

Prototype:
void
CANMessageSet(uint32_t ui32Base,

uint32_t ui32ObjID,
tCANMsgObject *psMsgObject,
tMsgObjType eMsgType)

Parameters:
ui32Base is the base address of the CAN controller.
ui32ObjID is the object number to configure (1-32).
psMsgObject is a pointer to a structure containing message object settings.
eMsgType indicates the type of message for this object.

Description:
This function is used to configure any one of the 32 message objects in the CAN controller. A
message object can be configured to be any type of CAN message object as well as to use au-
tomatic transmission and reception. This call also allows the message object to be configured
to generate interrupts on completion of message receipt or transmission. The message object
can also be configured with a filter/mask so that actions are only taken when a message that
meets certain parameters is seen on the CAN bus.

The eMsgType parameter must be one of the following values:

84 July 25, 2016

Controller Area Network (CAN)

MSG_OBJ_TYPE_TX - CAN transmit message object.
MSG_OBJ_TYPE_TX_REMOTE - CAN transmit remote request message object.
MSG_OBJ_TYPE_RX - CAN receive message object.
MSG_OBJ_TYPE_RX_REMOTE - CAN receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE - CAN remote frame receive remote, then transmit
message object.

The message object pointed to by psMsgObject must be populated by the caller, as follows:

ui32MsgID - contains the message ID, either 11 or 29 bits.
ui32MsgIDMask - mask of bits from ui32MsgID that must match if identifier filtering is
enabled.
ui32Flags

• Set MSG_OBJ_TX_INT_ENABLE flag to enable interrupt on transmission.
• Set MSG_OBJ_RX_INT_ENABLE flag to enable interrupt on receipt.
• Set MSG_OBJ_USE_ID_FILTER flag to enable filtering based on the identifier mask

specified by ui32MsgIDMask .
ui32MsgLen - the number of bytes in the message data. This parameter must be non-zero
even for a remote frame; it must match the expected bytes of data in the responding data
frame.
pui8MsgData - points to a buffer containing up to 8 bytes of data for a data frame.

Example: To send a data frame or remote frame (in response to a remote request), take the
following steps:

1. Set eMsgType to MSG_OBJ_TYPE_TX.
2. Set psMsgObject->ui32MsgID to the message ID.
3. Set psMsgObject->ui32Flags. Make sure to set MSG_OBJ_TX_INT_ENABLE to allow

an interrupt to be generated when the message is sent.
4. Set psMsgObject->ui32MsgLen to the number of bytes in the data frame.
5. Set psMsgObject->pui8MsgData to point to an array containing the bytes to send in the

message.
6. Call this function with ui32ObjID set to one of the 32 object buffers.

Example: To receive a specific data frame, take the following steps:

1. Set eMsgObjType to MSG_OBJ_TYPE_RX.
2. Set psMsgObject->ui32MsgID to the full message ID, or a partial mask to use partial ID

matching.
3. Set psMsgObject->ui32MsgIDMask bits that are used for masking during comparison.
4. Set psMsgObject->ui32Flags as follows:

Set MSG_OBJ_RX_INT_ENABLE flag to be interrupted when the data frame is re-
ceived.
Set MSG_OBJ_USE_ID_FILTER flag to enable identifier-based filtering.

5. Set psMsgObject->ui32MsgLen to the number of bytes in the expected data frame.
6. The buffer pointed to by psMsgObject->pui8MsgData is not used by this call as no data is

present at the time of the call.
7. Call this function with ui32ObjID set to one of the 32 object buffers.

If you specify a message object buffer that already contains a message definition, it is overwrit-
ten.

July 25, 2016 85

Controller Area Network (CAN)

Returns:
None.

6.2.5.17 CANRetryGet

Returns the current setting for automatic retransmission.

Prototype:
bool
CANRetryGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the CAN controller.

Description:
This function reads the current setting for automatic retransmission in the CAN controller and
returns it to the caller.

Returns:
Returns true if automatic retransmission is enabled, false otherwise.

6.2.5.18 CANRetrySet

Sets the CAN controller automatic retransmission behavior.

Prototype:
void
CANRetrySet(uint32_t ui32Base,

bool bAutoRetry)

Parameters:
ui32Base is the base address of the CAN controller.
bAutoRetry enables automatic retransmission.

Description:
This function enables or disables automatic retransmission of messages with detected errors.
If bAutoRetry is true, then automatic retransmission is enabled, otherwise it is disabled.

Returns:
None.

6.2.5.19 CANStatusGet

Reads one of the controller status registers.

Prototype:
uint32_t
CANStatusGet(uint32_t ui32Base,

tCANStsReg eStatusReg)

86 July 25, 2016

Controller Area Network (CAN)

Parameters:
ui32Base is the base address of the CAN controller.
eStatusReg is the status register to read.

Description:
This function reads a status register of the CAN controller and returns it to the caller. The
different status registers are:

CAN_STS_CONTROL - the main controller status
CAN_STS_TXREQUEST - bit mask of objects pending transmission
CAN_STS_NEWDAT - bit mask of objects with new data
CAN_STS_MSGVAL - bit mask of objects with valid configuration

When reading the main controller status register, a pending status interrupt is cleared. This pa-
rameter is used in the interrupt handler for the CAN controller if the cause is a status interrupt.
The controller status register fields are as follows:

CAN_STATUS_BUS_OFF - controller is in bus-off condition
CAN_STATUS_EWARN - an error counter has reached a limit of at least 96
CAN_STATUS_EPASS - CAN controller is in the error passive state
CAN_STATUS_RXOK - a message was received successfully (independent of any mes-
sage filtering).
CAN_STATUS_TXOK - a message was successfully transmitted
CAN_STATUS_LEC_MSK - mask of last error code bits (3 bits)
CAN_STATUS_LEC_NONE - no error
CAN_STATUS_LEC_STUFF - stuffing error detected
CAN_STATUS_LEC_FORM - a format error occurred in the fixed format part of a message
CAN_STATUS_LEC_ACK - a transmitted message was not acknowledged
CAN_STATUS_LEC_BIT1 - dominant level detected when trying to send in recessive
mode
CAN_STATUS_LEC_BIT0 - recessive level detected when trying to send in dominant
mode
CAN_STATUS_LEC_CRC - CRC error in received message

The remaining status registers consist of 32-bit-wide bit maps to the message objects. They
can be used to quickly obtain information about the status of all the message objects without
needing to query each one. They contain the following information:

CAN_STS_TXREQUEST - if a message object’s TXRQST bit is set, a transmission is
pending on that object. The application can use this information to determine which objects
are still waiting to send a message.
CAN_STS_NEWDAT - if a message object’s NEWDAT bit is set, a new message has been
received in that object, and has not yet been picked up by the host application
CAN_STS_MSGVAL - if a message object’s MSGVAL bit is set, the object has a valid
configuration programmed. The host application can use this information to determine
which message objects are empty/unused.

Returns:
Returns the value of the status register.

July 25, 2016 87

Controller Area Network (CAN)

6.3 CAN Message Objects

This section explains how to configure the CAN message objects in various modes using the CAN-
MessageSet() and CANMessageGet() APIs. The configuration of a message object is determined
by two parameters that are passed into the CANMessageSet() API. These are the tCANMsgObject
structure and the tMsgObjType type field. It is important to note that the ulObjID parameter is the
index of one of the 32 message objects that are available and is not the message object’s identifier.

Message objects can be defined as one of five types based on the needs of the application. They
are defined in the tMsgObjType enumeration and can only be one of those values. The simplest
of the message object types are MSG_OBJ_TYPE_TX and MSG_OBJ_TYPE_RX which are used
to send or receive messages for a given message identifier or a range of identifiers. The mes-
sage type MSG_OBJ_TYPE_TX_REMOTE is used to transmit a remote request for data from
another CAN node on the network. These message objects do not transmit any data but once
they send the request, they automatically turn into receive message object and wait for data from
a remote CAN device. The message type MSG_OBJ_TYPE_RX_REMOTE is the receiving end
of a remote request, and receives remote requests for data and generates an interrupt to let the
application know when to supply and transmit data back to the CAN controller that issued the re-
mote request for data. The message type MSG_OBJ_TYPE_RXTX_REMOTE is similar to the
MSG_OBJ_TYPE_RX_REMOTE except that it automatically responds with data that the applica-
tion placed in the message object.

The remaining information used to configure a CAN message object is contained in the tCANMs-
gObject structure which is used when calling CANMessageSet() or is filled by data read from the
message object when calling CANMessageGet(). The CAN message identifier is simply stored into
the ulMsgID member of the tCANMsgObject structure and is the 11- or 20-bit CAN identifier for
this message object. The ulMsgIDMask is the mask that is used in combination with the ulMsgID
value to determine a match when the MSG_OBJ_USE_ID_FILTER flag is set for a message ob-
ject. The ulMsgIDMask is ignored if MSG_OBJ_USE_ID_FILTER flag is not set. The last of the
configuration parameters are specified in the ulFlags which are defined as a combination of the
MSG_OBJ_∗ values. The MSG_OBJ_TX_INT_ENABLE and MSG_OBJ_RX_INT_ENABLE flags
enable transmit complete or receive data interrupts. If the CAN network is only using extended
(20-bit) identifiers, then the MSG_OBJ_EXTENDED_ID flag should be specified. The CANMes-
sageSet() function forces this flag to be set if the length of the identifier is greater than an 11-bit
identifier can hold. The MSG_OBJ_USE_ID_FILTER is used to enable filtering based on the mes-
sage identifiers as message are seen by the CAN controller. The combination of ulMsgID and
ulMsgIDMask determines if a message is accepted for a given message object. In some cases it
may be necessary to add a filter based on the direction of the message, so in these cases, the
MSG_OBJ_USE_DIR_FILTER is used to only accept the direction specified in the message type.
Another additional filter flag is MSG_OBJ_USE_EXT_FILTER which filters on only extended identi-
fiers. In a mixed 11-bit and 20-bit identifier system, this parameter prevents an 11-bit identifier from
being confused with a 20-bit identifier of the same value. It is not necessary to specify this param-
eter if there are only extended identifiers being used in the system. To determine if the incoming
message identifier matches a given message object, the incoming message identifier is ANDed
with ulMsgIDMask and compared with ulMsgID. The "C" logic would be the following:

if((IncomingID & ulMsgIDMask) == ulMsgID)
{

// Accept the message.
}
else
{

// Ignore the message.
}

88 July 25, 2016

Controller Area Network (CAN)

The last of the flags to affect CANMessageSet() is the MSG_OBJ_FIFO flag. This flag is used
when combining multiple message objects in a FIFO. This flag is useful when an application must
receive more than the 8 bytes of data that can be received by a single CAN message object. It can
also be used to reduce the likelihood of causing an overrun of data on a single message object that
may be receiving data faster than the application can handle when using a single message object.
If multiple message objects are going to be used in a FIFO, they must be read in sequential order
based on the message object number and have the exact same message identifiers and filtering
values. All but the last of the message objects in a FIFO should have the MSG_OBJ_FIFO flag set
and the last message object in the FIFO should not have the MSG_OBJ_FIFO flag set, indicating
that it is the last entry in the FIFO. See the CAN FIFO configuration example in the Programming
Examples section of this document.

The remaining flags are all used when calling CANMessageGet() when reading data or checking
the status of a message object. If the MSG_OBJ_NEW_DATA flag is set in the tCANMsgObject
ulFlags variable then the data returned was new and not stale data from a previous call to CAN-
MessageGet(). If the MSG_OBJ_DATA_LOST flag is set, then data was lost since this message
object was last read with CANMessageGet(). The MSG_OBJ_REMOTE_FRAME flag is set if the
message object was configured as a remote message object and a remote request was received.

When sending or receiving data, the last two variables define the size and a pointer to the data used
by CANMessageGet() and CANMessageSet(). The ulMsgLen variable in tCANMsgObject specifies
the number of bytes to send when calling CANMessageSet() and the number of bytes to read when
calling CANMessageGet(). The pucMsgData variable in tCANMsgObject is the pointer to the data
to send ulMsgLen bytes, or the pointer to the buffer to read ulMsgLen bytes into.

6.4 Programming Examples

This example code sends out data from CAN controller 0 to be received by CAN controller 1. In
order to actually receive the data, an external cable must be connected between the two ports. In
this example, both controllers are configured for 1 Mbit operation.

tCANBitClkParms CANBitClk;
tCANMsgObject sMsgObjectRx;
tCANMsgObject sMsgObjectTx;
uint8_t pui8BufferIn[8];
uint8_t pui8BufferOut[8];

//
// Enable the CAN0 module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);

//
// Wait for the CAN0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CAN0))
{
}

//
// Enable the CAN1 module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN1);

//
// Wait for the CAN1 module to be ready.

July 25, 2016 89

Controller Area Network (CAN)

//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CAN1))
{
}

//
// Reset the state of all the message objects and the state of the CAN
// module to a known state.
//
CANInit(CAN0_BASE);
CANInit(CAN1_BASE);

//
// Configure the controller for 1 Mbit operation.
//
CANSetBitTiming(CAN1_BASE, &CANBitClk);

//
// Take the CAN0 device out of INIT state.
//
CANEnable(CAN0_BASE);
CANEnable(CAN1_BASE);

//
// Configure a receive object.
//
sMsgObjectRx.ulMsgID = (0x400);
sMsgObjectRx.ulMsgIDMask = 0x7f8;
sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER | MSG_OBJ_FIFO;

//
// The first three message objects have the MSG_OBJ_FIFO set to indicate
// that they are part of a FIFO.
//
CANMessageSet(CAN0_BASE, 1, &sMsgObjectRx, MSG_OBJ_TYPE_RX);
CANMessageSet(CAN0_BASE, 2, &sMsgObjectRx, MSG_OBJ_TYPE_RX);
CANMessageSet(CAN0_BASE, 3, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

//
// Last message object does not have the MSG_OBJ_FIFO set to indicate that
// this is the last message.
//
sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER;
CANMessageSet(CAN0_BASE, 4, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

//
// Configure and start transmit of message object.
//
sMsgObjectTx.ulMsgID = 0x400;
sMsgObjectTx.ulFlags = 0;
sMsgObjectTx.ulMsgLen = 8;
sMsgObjectTx.pucMsgData = pui8BufferOut;
CANMessageSet(CAN0_BASE, 2, &sMsgObjectTx, MSG_OBJ_TYPE_TX);

//
// Wait for new data to become available.
//
while((CANStatusGet(CAN1_BASE, CAN_STS_NEWDAT) & 1) == 0)
{

//
// Read the message out of the message object.
//
CANMessageGet(CAN1_BASE, 1, &sMsgObjectRx, true);

}

//

90 July 25, 2016

Controller Area Network (CAN)

// Process new data in sMsgObjectRx.pucMsgData.
//
...

This example code configures a set of CAN message objects in FIFO mode using CAN controller
0.

tCANBitClkParms CANBitClk;
tCANMsgObject sMsgObjectRx;
uint8_t pui8BufferIn[8];
uint8_t pui8BufferOut[8];

//
// Enable the CAN0 module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CAN0);

//
// Wait for the CAN0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CAN0))
{
}

//
// Reset the state of all the message objects and the state of the CAN
// module to a known state.
//
CANInit(CAN0_BASE);

//
// Configure the controller for 1 Mbit operation.
//
CANBitRateSet(CAN0_BASE, 8000000, 1000000);

//
// Take the CAN0 device out of INIT state.
//
CANEnable(CAN0_BASE);

//
// Configure a receive object as a CAN FIFO to receive message objects with
// message ID 0x400-0x407.
//
sMsgObjectRx.ulMsgID = (0x400);
sMsgObjectRx.ulMsgIDMask = 0x7f8;
sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER | MSG_OBJ_FIFO;

//
// The first three message objects have the MSG_OBJ_FIFO set to indicate
// that they are part of a FIFO.
//
CANMessageSet(CAN0_BASE, 1, &sMsgObjectRx, MSG_OBJ_TYPE_RX);
CANMessageSet(CAN0_BASE, 2, &sMsgObjectRx, MSG_OBJ_TYPE_RX);
CANMessageSet(CAN0_BASE, 3, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

//
// Last message object does not have the MSG_OBJ_FIFO set to indicate that
// this is the last message.
//
sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER;
CANMessageSet(CAN0_BASE, 4, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

...

July 25, 2016 91

Controller Area Network (CAN)

92 July 25, 2016

CRC

7 CRC
Introduction . 93
API Functions .93
Programming Example . 96

7.1 Introduction

The CRC module driver provides a method for generating CRC checksums of various types. The
configuration and feature highlights are:

Seed value for CRC operations is either all zeroes, all ones or a user defined value.

Accepts data as bytes or 4-byte words.

Optionally performs pre- and post-processing on the input data and checksum.

This driver is contained in driverlib/crc.c, with driverlib/crc.h containing the API dec-
larations for use by applications.

7.2 API Functions

Functions
void CRCConfigSet (uint32_t ui32Base, uint32_t ui32CRCConfig)
uint32_t CRCDataProcess (uint32_t ui32Base, uint32_t ∗pui32DataIn, uint32_t
ui32DataLength, bool bPPResult)
void CRCDataWrite (uint32_t ui32Base, uint32_t ui32Data)
uint32_t CRCResultRead (uint32_t ui32Base, bool bPPResult)
void CRCSeedSet (uint32_t ui32Base, uint32_t ui32Seed)

7.2.1 Detailed Description

The CRC API consists of functions for configuring the CRC module, processing data, and reading
the resultant checksum.

7.2.2 Function Documentation

7.2.2.1 CRCConfigSet

Set the configuration of CRC functionality with the EC module.

July 25, 2016 93

CRC

Prototype:
void
CRCConfigSet(uint32_t ui32Base,

uint32_t ui32CRCConfig)

Parameters:
ui32Base is the base address of the EC module.
ui32CRCConfig is the configuration of the CRC engine.

Description:
This function configures the operation of the CRC engine within the EC module. The configu-
ration is specified with the ui32CRCConfig argument. It is the logical OR of any of the following
options:

CRC Initialization Value

CRC_CFG_INIT_SEED - Initialize with seed value
CRC_CFG_INIT_0 - Initialize to all ’0s’
CRC_CFG_INIT_1 - Initialize to all ’1s’

Input Data Size

CRC_CFG_SIZE_8BIT - Input data size of 8 bits
CRC_CFG_SIZE_32BIT - Input data size of 32 bits

Post Process Reverse/Inverse

CRC_CFG_RESINV - Result inverse enable
CRC_CFG_OBR - Output reverse enable

Input Bit Reverse

CRC_CFG_IBR - Bit reverse enable

Endian Control

CRC_CFG_ENDIAN_SBHW - Swap byte in half-word
CRC_CFG_ENDIAN_SHW - Swap half-word

Operation Type

CRC_CFG_TYPE_P8005 - Polynomial 0x8005
CRC_CFG_TYPE_P1021 - Polynomial 0x1021
CRC_CFG_TYPE_P4C11DB7 - Polynomial 0x4C11DB7
CRC_CFG_TYPE_P1EDC6F41 - Polynomial 0x1EDC6F41
CRC_CFG_TYPE_TCPCHKSUM - TCP checksum

Returns:
None.

7.2.2.2 CRCDataProcess

Process data to generate a CRC with the EC module.

94 July 25, 2016

CRC

Prototype:
uint32_t
CRCDataProcess(uint32_t ui32Base,

uint32_t *pui32DataIn,
uint32_t ui32DataLength,
bool bPPResult)

Parameters:
ui32Base is the base address of the EC module.
pui32DataIn is a pointer to an array of data that is processed.
ui32DataLength is the number of data items that are processed to produce the CRC.
bPPResult is true to read the post-processed result, or false to read the unmodified result.

Description:
This function processes an array of data to produce a CRC result.

The data in the array pointed to be pui32DataIn is either an array of bytes or an array or
words depending on the selection of the input data size options CRC_CFG_SIZE_8BIT and
CRC_CFG_SIZE_32BIT.

This function returns either the unmodified CRC result or the post- processed CRC result from
the EC module. The post-processing options are selectable through CRC_CFG_RESINV and
CRC_CFG_OBR parameters.

Returns:
The CRC result.

7.2.2.3 CRCDataWrite

Write data into the EC module for CRC operations.

Prototype:
void
CRCDataWrite(uint32_t ui32Base,

uint32_t ui32Data)

Parameters:
ui32Base is the base address of the EC module.
ui32Data is the data to be written.

Description:
This function writes either 8 or 32 bits of data into the EC module for CRC operations.
The distinction between 8 and 32 bits of data is made when the CRC_CFG_SIZE_8BIT or
CRC_CFG_SIZE_32BIT flag is set using the CRCConfigSet() function.

When writing 8 bits of data, ensure the data is in the least significant byte position. The re-
maining bytes should be written with zero. For example, when writing 0xAB, ui32Data should
be 0x000000AB.

Returns:
None

July 25, 2016 95

CRC

7.2.2.4 CRCResultRead

Reads the result of a CRC operation in the EC module.

Prototype:
uint32_t
CRCResultRead(uint32_t ui32Base,

bool bPPResult)

Parameters:
ui32Base is the base address of the EC module.
bPPResult is true to read the post-processed result, or false to read the unmodified result.

Description:
This function reads either the unmodified CRC result or the post processed CRC result from
the EC module. The post-processing options are selectable through CRC_CFG_RESINV and
CRC_CFG_OBR parameters in the CRCConfigSet() function.

Returns:
The CRC result.

7.2.2.5 CRCSeedSet

Write the seed value for CRC operations in the EC module.

Prototype:
void
CRCSeedSet(uint32_t ui32Base,

uint32_t ui32Seed)

Parameters:
ui32Base is the base address of the EC module.
ui32Seed is the seed value.

Description:
This function writes the seed value for use with CRC operations in the EC module. This value
is the start value for CRC operations. If this value is not written, then the residual seed from
the previous operation is used as the starting value.

Note:
The seed must be written only if CRC_CFG_INIT_SEED is set with the CRCConfigSet() func-
tion.

7.3 Programming Example

The following example sets up the CRC for basic CRC32 operation with a starting seed of zero.

uint32_t g_ui32Result;

//

96 July 25, 2016

CRC

// Random data for generating CRC.
//
uint32_t g_ui32RandomData[16] =
{

0x8a5f1b22, 0xcb935d29, 0xcc1ac092, 0x5dad8c9e,
0x6a83b39f, 0x8607dc60, 0xda0ba4d2, 0xf49b0fa2,
0xaf35d524, 0xffa8001d, 0xbcc931e8, 0x4a2c99ef,
0x7fa297ab, 0xab943bae, 0x07c61cc4, 0x47c8627d

};

int
main(void)
{

//
// Enable the CRC module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CCM0);

//
// Wait for the CRC module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CCM0))
{
}

//
// Configure the CRC module.
//
CRCConfigSet(EC_BASE,

CRC_CFG_INIT_SEED |
CRC_CFG_TYPE_P4C11DB7 |
CRC_CFG_SIZE_32BIT);

//
// Set the seed value.
//
CRCSeedSet(EC_BASE, 0x5a5a5a5a);

//
// Process the data and get the result. The result should be
// 0x75fd6f5c.
//
g_ui32Result = CRCDataProcess(EC_BASE, g_ui32RandomData, 16, false);

}

July 25, 2016 97

CRC

98 July 25, 2016

DES

8 DES
Introduction . 99
API Functions .99
Programming Example .108

8.1 Introduction

The DES module driver provides a method for performing encryption and decryption operations on
blocks of 64-bits of data. The configuration and feature highlights are:

Supports ECB, CBC, and CFB operating modes.
Supports DES and TDES(3EDE) operating modes.

This driver is contained in driverlib/des.c, with driverlib/des.h containing the API dec-
larations for use by applications.

8.2 API Functions

Functions
void DESConfigSet (uint32_t ui32Base, uint32_t ui32Config)
bool DESDataProcess (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ∗pui32Dest, uint32_t
ui32Length)
void DESDataRead (uint32_t ui32Base, uint32_t ∗pui32Dest)
bool DESDataReadNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Dest)
void DESDataWrite (uint32_t ui32Base, uint32_t ∗pui32Src)
bool DESDataWriteNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Src)
void DESDMADisable (uint32_t ui32Base, uint32_t ui32Flags)
void DESDMAEnable (uint32_t ui32Base, uint32_t ui32Flags)
void DESIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void DESIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void DESIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void DESIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t DESIntStatus (uint32_t ui32Base, bool bMasked)
void DESIntUnregister (uint32_t ui32Base)
bool DESIVSet (uint32_t ui32Base, uint32_t ∗pui32IVdata)
void DESKeySet (uint32_t ui32Base, uint32_t ∗pui32Key)
void DESLengthSet (uint32_t ui32Base, uint32_t ui32Length)
void DESReset (uint32_t ui32Base)

8.2.1 Detailed Description

The DES API consists of functions for configuring the DES module and processing data.

July 25, 2016 99

DES

8.2.2 Function Documentation

8.2.2.1 DESConfigSet

Configures the DES module for operation.

Prototype:
void
DESConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the DES module.
ui32Config is the configuration of the DES module.

Description:
This function configures the DES module for operation.

The ui32Config parameter is a bit-wise OR of a number of configuration flags. The valid flags
are grouped below based on their function.

The direction of the operation is specified with one of the following two flags. Only one is
permitted.

DES_CFG_DIR_ENCRYPT - Encryption
DES_CFG_DIR_DECRYPT - Decryption

The operational mode of the DES engine is specified with one of the following flags. Only one
is permitted.

DES_CFG_MODE_ECB - Electronic Codebook Mode
DES_CFG_MODE_CBC - Cipher-Block Chaining Mode
DES_CFG_MODE_CFB - Cipher Feedback Mode

The selection of single DES or triple DES is specified with one of the following two flags. Only
one is permitted.

DES_CFG_SINGLE - Single DES
DES_CFG_TRIPLE - Triple DES

Returns:
None.

8.2.2.2 DESDataProcess

Processes blocks of data through the DES module.

Prototype:
bool
DESDataProcess(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t *pui32Dest,
uint32_t ui32Length)

100 July 25, 2016

DES

Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of words that contains the source data for processing.
pui32Dest is a pointer to an array of words consisting of the processed data.
ui32Length is the length of the cryptographic data in bytes. It must be a multiple of eight.

Description:
This function takes the data contained in the pui32Src array and processes it using the DES
engine. The resulting data is stored in the pui32Dest array. The function blocks until all of the
data has been processed. If processing is successful, the function returns true.

Note:
This functions assumes that the DES module has been configured, and initialization values
and keys have been written.

Returns:
true or false.

8.2.2.3 DESDataRead

Reads plaintext/ciphertext from data registers with blocking.

Prototype:
void
DESDataRead(uint32_t ui32Base,

uint32_t *pui32Dest)

Parameters:
ui32Base is the base address of the DES module.
pui32Dest is a pointer to an array of bytes.

Description:
This function waits until the DES module is finished and encrypted or decrypted data is ready.
The output data is then stored in the pui32Dest array.

Returns:
None

8.2.2.4 DESDataReadNonBlocking

Reads plaintext/ciphertext from data registers without blocking

Prototype:
bool
DESDataReadNonBlocking(uint32_t ui32Base,

uint32_t *pui32Dest)

Parameters:
ui32Base is the base address of the DES module.
pui32Dest is a pointer to an array of 2 words.

July 25, 2016 101

DES

Description:
This function returns true if the data was ready when the function was called. If the data was
not ready, false is returned.

Returns:
True or false.

8.2.2.5 DESDataWrite

Writes plaintext/ciphertext to data registers without blocking

Prototype:
void
DESDataWrite(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of bytes.

Description:
This function waits until the DES module is ready before writing the data contained in the
pui32Src array.

Returns:
None.

8.2.2.6 DESDataWriteNonBlocking

Writes plaintext/ciphertext to data registers without blocking

Prototype:
bool
DESDataWriteNonBlocking(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of 2 words.

Description:
This function returns false if the DES module is not ready to accept data. It returns true if the
data was written successfully.

Returns:
true or false.

102 July 25, 2016

DES

8.2.2.7 DESDMADisable

Disables DMA request sources in the DES module.

Prototype:
void
DESDMADisable(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the DES module.
ui32Flags is a bit mask of the DMA requests to be disabled.

Description:
This function disables DMA request sources in the DES module. The ui32Flags parameter
should be the logical OR of any of the following:

DES_DMA_CONTEXT_IN - Context In
DES_DMA_DATA_OUT - Data Out
DES_DMA_DATA_IN - Data In

Returns:
None.

8.2.2.8 DESDMAEnable

Enables DMA request sources in the DES module.

Prototype:
void
DESDMAEnable(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the DES module.
ui32Flags is a bit mask of the DMA requests to be enabled.

Description:
This function enables DMA request sources in the DES module. The ui32Flags parameter
should be the logical OR of any of the following:

DES_DMA_CONTEXT_IN - Context In
DES_DMA_DATA_OUT - Data Out
DES_DMA_DATA_IN - Data In

Returns:
None.

July 25, 2016 103

DES

8.2.2.9 DESIntClear

Clears interrupts in the DES module.

Prototype:
void
DESIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the DES module.
ui32IntFlags is a bit mask of the interrupts to be disabled.

Description:
This function disables interrupt sources in the DES module. ui32IntFlags should be a logical
OR of one or more of the following values:

DES_INT_DMA_CONTEXT_IN - Context interrupt
DES_INT_DMA_DATA_IN - Data input interrupt
DES_INT_DMA_DATA_OUT - Data output interrupt

Note:
The DMA done interrupts are the only interrupts that can be cleared. The remaining interrupts
can be disabled instead using DESIntDisable().

Returns:
None.

8.2.2.10 DESIntDisable

Disables interrupts in the DES module.

Prototype:
void
DESIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the DES module.
ui32IntFlags is a bit mask of the interrupts to be disabled.

Description:
This function disables interrupt sources in the DES module. ui32IntFlags should be a logical
OR of one or more of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

104 July 25, 2016

DES

Returns:
None.

8.2.2.11 DESIntEnable

Enables interrupts in the DES module.

Prototype:
void
DESIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the DES module.
ui32IntFlags is a bit mask of the interrupts to be enabled.

Description:
ui32IntFlags should be a logical OR of one or more of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Returns:
None.

8.2.2.12 DESIntRegister

Registers an interrupt handler for the DES module.

Prototype:
void
DESIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the DES module.
pfnHandler is a pointer to the function to be called when the enabled DES interrupts occur.

Description:
This function registers the interrupt handler in the interrupt vector table, and enables DES
interrupts on the interrupt controller; specific DES interrupt sources must be enabled using
DESIntEnable(). The interrupt handler being registered must clear the source of the interrupt
using DESIntClear().

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() should be used to enable DES
interrupts on the interrupt controller.

July 25, 2016 105

DES

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

8.2.2.13 DESIntStatus

Returns the current interrupt status of the DES module.

Prototype:
uint32_t
DESIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the DES module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function gets the current interrupt status of the DES module. The value returned is a
logical OR of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT_INT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Returns:
A bit mask of the current interrupt status.

8.2.2.14 DESIntUnregister

Unregisters an interrupt handler for the DES module.

Prototype:
void
DESIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the DES module.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

106 July 25, 2016

DES

Returns:
None.

8.2.2.15 DESIVSet

Sets the initialization vector in the DES module.

Prototype:
bool
DESIVSet(uint32_t ui32Base,

uint32_t *pui32IVdata)

Parameters:
ui32Base is the base address of the DES module.
pui32IVdata is a pointer to an array of 64 bits (2 words) of data to be written into the initializa-

tion vectors registers.

Description:
This function sets the initialization vector in the DES module. It returns true if the registers
were successfully written. If the context registers cannot be written at the time the function was
called, then false is returned.

Returns:
True or false.

8.2.2.16 DESKeySet

Sets the key used for DES operations.

Prototype:
void
DESKeySet(uint32_t ui32Base,

uint32_t *pui32Key)

Parameters:
ui32Base is the base address of the DES module.
pui32Key is a pointer to an array that holds the key

Description:
This function sets the key used for DES operations.

pui32Key should be 64 bits long (2 words) if single DES is being used or 192 bits (6 words) if
triple DES is being used.

Returns:
None.

July 25, 2016 107

DES

8.2.2.17 DESLengthSet

Sets the crytographic data length in the DES module.

Prototype:
void
DESLengthSet(uint32_t ui32Base,

uint32_t ui32Length)

Parameters:
ui32Base is the base address of the DES module.
ui32Length is the length of the data in bytes.

Description:
This function writes the cryptographic data length into the DES module. When this register is
written, the engine is triggered to start using this context.

Note:
Data lengths up to (2∧32 - 1) bytes are allowed.

Returns:
None.

8.2.2.18 DESReset

Resets the DES Module.

Prototype:
void
DESReset(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the DES module.

Description:
This function performs a soft-reset sequence of the DES module.

Returns:
None.

8.3 DES Programming Example

The following example sets up the DES module to perform an encryption operation on four blocks
of data in CBC mode with an 64-bit key.

//
// Random data for encryption/decryption.
//
uint32_t g_ui32DESPlainText[16] = {

0xe2bec16b, 0x969f402e, 0x117e3de9, 0x2a179373,
0x578a2dae, 0x9cac031e, 0xac6fb79e, 0x518eaf45,

108 July 25, 2016

DES

0x461cc830, 0x11e45ca3, 0x19c1fbe5, 0xef520a1a,
0x45249ff6, 0x179b4fdf, 0x7b412bad, 0x10376ce6

};

uint32_t g_ui32DESKey[2] = {
0xc7f51c87, 0x8076211f

};

uint32_t g_ui32DESIV[2] = {
0x6d8ecac4, 0x3b27c885

};

int
main(void)
{

pui32DESCipherText[16];

//
// Enable the CCM module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CCM0);

//
// Wait for the CCM module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CCM0))
{
}

//
// Reset the DES module before use.
//
DESReset(DES_BASE);

//
// Configure the DES module.
//
DESConfigSet(DES_BASE,

DES_CFG_DIR_ENCRYPT |
DES_CFG_MODE_CBC |
DES_CFG_SINGLE);

//
// Set the key.
//
DESKeySet(DES_BASE, g_ui32DESKey);

//
// Write the initial value registers.
//
DESIVSet(DES_BASE, g_ui32DESIV);

//
// Perform the encryption.
//
// The ciphertext should be:
// {0x95a74bd5, 0x8595094a, 0xf116bd1d, 0x2aed0a67,
// 0x4b4e730b, 0x163335ca, 0x8554d039, 0xb9f7e301,
// 0x599421e2, 0x5db5db40, 0x17fc1ce2, 0xf048de81,
// 0xabdf0d51, 0x6ce768f1, 0x8233fbdb, 0x3efe7bae}
//
DESDataProcess(DES_BASE, g_ui32DESPlainText, g_ui32DESCipherText, 64);

}

July 25, 2016 109

DES

8.4 TDES Programming Example

The following example sets up the TDES module to perform an decryption operation on four blocks
of data in CBC mode with an 192-bit key.

//
// Random data for encryption/decryption.
//
uint32_t g_ui32TDESCipherText[16] = {

0x24c69385, 0xb338be54, 0x6eeeb276, 0x1a952b4e,
0x7242ce4b, 0x9ec147cf, 0x765916ee, 0x3d25e685,
0xfe5865b4, 0xf2238cb8, 0x2a5b68d5, 0x0f79a41a,
0x6f4a7601, 0x7a57235f, 0xce84d08a, 0x1a34d011

};

uint32_t g_ui32TDESKey[6] = {
0xc7f51c87, 0x8076211f, 0x5de5c871, 0xa243cf7e,
0xd25fdb75, 0xad73068f

};

uint32_t g_ui32TDESIV[2] = {
0x6d8ecac4, 0x3b27c885

};

int
main(void)
{

uint32_t pui32TDESCipherText[16];

//
// Enable the CRC module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CCM0);

//
// Wait for the CRC module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CCM0))
{
}

//
// Reset the DES module before use.
//
DESReset(DES_BASE);

//
// Configure the DES module.
//
DESConfigSet(DES_BASE,

DES_CFG_DIR_ENCRYPT |
DES_CFG_MODE_CBC |
DES_CFG_TRIPLE);

//
// Set the key.
//
DESKeySet(DES_BASE, g_ui32TDESKey);

//
// Write the initial value registers.
//
DESIVSet(DES_BASE, g_ui32TDESIV);

110 July 25, 2016

DES

//
// Perform the decryption.
//
// The ciphertext should be:
// {0xe2bec16b, 0x969f402e, 0x117e3de9, 0x2a179373,
// 0x578a2dae, 0x9cac031e, 0xac6fb79e, 0x518eaf45,
// 0x461cc830, 0x11e45ca3, 0x19c1fbe5, 0xef520a1a,
// 0x45249ff6, 0x179b4fdf, 0x7b412bad, 0x10376ce6)
//
DESDataProcess(DES_BASE, g_ui32TDESPlainText, g_ui32TDESCipherText, 64);

};

July 25, 2016 111

DES

112 July 25, 2016

EEPROM

9 EEPROM
Introduction .113
API Functions . 114
Programming Example .128

9.1 Introduction

The EEPROM API provides a set of functions for interacting with the on-chip EEPROM providing
easy-to-use non-volatile data storage. Functions are provided to program and erase the EEPROM,
configure the EEPROM protection, and handle the EEPROM interrupt.

The EEPROM can be programmed on a word-by-word basis and, unlike flash, the application need
not explicitly erase a word or page before writing a new value to it.

The EEPROM controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from a protected block). This interrupt can be used to validate the operation of a
program; the interrupt prevents invalid accesses from being silently ignored, hiding potential bugs.
An interrupt can also be generated when an erase or programming operation has completed.

The size of the available EEPROM and the number of blocks it contains varies between different
members of the Tiva family. API functions EEPROMSizeGet() and EEPROMBlockCountGet() are
provided to allow this information to be determined at runtime.

Data protection is supported at both the device and block levels with configurable passwords used to
control read and write access. Additionally, blocks may be configured to allow access only while the
CPU is running in supervisor mode. A second protection mechanism allows one or more EEPROM
blocks to be made completely inaccessible to software until the next system reset.

This driver is contained in driverlib/eeprom.c, with driverlib/eeprom.h containing the
API declarations for use by applications.

9.1.1 EEPROM Protection

The EEPROM device is organized into a number of blocks each of which may be configured with
various protection options to control an application’s ability to read and/or write data. Additionally,
protection options set on the first block of the device, block 0, affect access to the EEPROM as a
whole, allowing global options to be set on block 0 and individual block protection to be layered on
top of this.

Each block may be configured for two protection states, one which is in effect when the block is
locked and a second which applies when the block is unlocked. Unlocking is performed by writing
a 32- to 96-bit password which has previously been set and committed by the user.

If a password is set on block 0, all other blocks in the device and the registers which control them
are inaccessible until block 0 is unlocked. At this point, the protection set on each individual block
applies with those blocks being individually lockable via their own passwords.

The EEPROM driver allows three specific protection modes to be set on each block. These modes
are defined by the following labels from eeprom.h which define the protection provided if the block
has no password set, if it has a password set and is not unlocked and if it has a password set and
is unlocked. Additionally, EEPROM_PROT_SUPERVISOR_ONLY may be ORed with each of these

July 25, 2016 113

EEPROM

labels when calling EEPROMBlockProtectSet() to prevent all accesses to the block when the CPU
is executing in user mode.

9.1.1.1 EEPROM_PROT_RW_LRO_URW

If no password is set for the block, this protection level allows both read and write access to the
block data.

If a password is set for the block and the block is locked, this protection level allows only read
access to the block data.

If a password is set for the block and the block is unlocked, this protection level allows both read
and write access to the block data.

9.1.1.2 EEPROM_PROT_NA_LNA_URW

If no password is set for the block, this protection level prevents the block data from being read or
written.

If a password is set for the block and the block is locked, this protection level prevents the block
data from being read or written.

If a password is set for the block and the block is unlocked, this protection level allows both read
and write access to the block data.

9.1.1.3 EEPROM_PROT_RO_LNA_URO

If no password is set for the block, this protection level allows only read access to the block data.

If a password is set for the block and the block is locked, this protection level prevents the block
data from being read or written.

If a password is set for the block and the block is unlocked, this protection level allows only read
access to the block data.

9.2 API Functions

Defines
EEPROM_INIT_ERROR
EEPROM_INIT_OK
EEPROM_INT_PROGRAM
EEPROM_PROT_NA_LNA_URW
EEPROM_PROT_RO_LNA_URO
EEPROM_PROT_RW_LRO_URW
EEPROM_PROT_SUPERVISOR_ONLY
EEPROM_RC_NOPERM
EEPROM_RC_WKCOPY

114 July 25, 2016

EEPROM

EEPROM_RC_WKERASE
EEPROM_RC_WORKING
EEPROM_RC_WRBUSY
EEPROMAddrFromBlock(ui32Block)
EEPROMBlockFromAddr(ui32Addr)

Functions
uint32_t EEPROMBlockCountGet (void)
void EEPROMBlockHide (uint32_t ui32Block)
uint32_t EEPROMBlockLock (uint32_t ui32Block)
uint32_t EEPROMBlockPasswordSet (uint32_t ui32Block, uint32_t ∗pui32Password, uint32_t
ui32Count)
uint32_t EEPROMBlockProtectGet (uint32_t ui32Block)
uint32_t EEPROMBlockProtectSet (uint32_t ui32Block, uint32_t ui32Protect)
uint32_t EEPROMBlockUnlock (uint32_t ui32Block, uint32_t ∗pui32Password, uint32_t
ui32Count)
uint32_t EEPROMInit (void)
void EEPROMIntClear (uint32_t ui32IntFlags)
void EEPROMIntDisable (uint32_t ui32IntFlags)
void EEPROMIntEnable (uint32_t ui32IntFlags)
uint32_t EEPROMIntStatus (bool bMasked)
uint32_t EEPROMMassErase (void)
uint32_t EEPROMProgram (uint32_t ∗pui32Data, uint32_t ui32Address, uint32_t ui32Count)
uint32_t EEPROMProgramNonBlocking (uint32_t ui32Data, uint32_t ui32Address)
void EEPROMRead (uint32_t ∗pui32Data, uint32_t ui32Address, uint32_t ui32Count)
uint32_t EEPROMSizeGet (void)
uint32_t EEPROMStatusGet (void)

9.2.1 Detailed Description

The EEPROM API is broken into four groups of functions: those that deal with reading the EEP-
ROM, those that deal with programming the EEPROM, those that deal with EEPROM protection,
and those that deal with interrupt handling.

EEPROM reading is managed with EEPROMRead().

EEPROM programming is managed with EEPROMMassErase(), EEPROMProgram() and EEP-
ROMProgramNonBlocking().

EEPROM protection is managed with EEPROMBlockProtectGet(), EEPROMBlockProtectSet(),
EEPROMBlockPasswordSet(), EEPROMBlockLock(), EEPROMBlockUnlock() and EEPROMBlock-
Hide().

Interrupt handling is managed with EEPROMIntEnable(), EEPROMIntDisable(), EEPROMIntSta-
tus(), and EEPROMIntClear().

An additional function, EEPROMSizeGet() is provided to allow an application to query the size of
the device storage and the number of blocks it contains.

July 25, 2016 115

EEPROM

9.2.2 Define Documentation

9.2.2.1 EEPROM_INIT_ERROR

Definition:
#define EEPROM_INIT_ERROR

Description:
This value may be returned from a call to EEPROMInit(). It indicates that a previous data or
protection write operation was interrupted by a reset event and that the EEPROM peripheral
was unable to clean up after the problem. This situation may be resolved with another reset or
may be fatal depending upon the cause of the problem. For example, if the voltage to the part
is unstable, retrying once the voltage has stabilized may clear the error.

9.2.2.2 EEPROM_INIT_OK

Definition:
#define EEPROM_INIT_OK

Description:
This value may be returned from a call to EEPROMInit(). It indicates that no previous write
operations were interrupted by a reset event and that the EEPROM peripheral is ready for use.

9.2.2.3 EEPROM_INT_PROGRAM

Definition:
#define EEPROM_INT_PROGRAM

Description:
This value may be passed to EEPROMIntEnable() and EEPROMIntDisable() and is returned
by EEPROMIntStatus() if an EEPROM interrupt is currently being signaled.

9.2.2.4 EEPROM_PROT_NA_LNA_URW

Definition:
#define EEPROM_PROT_NA_LNA_URW

Description:
This value may be passed to EEPROMBlockProtectSet() or returned from EEPROMBlockPro-
tectGet(). It indicates that the block should offer neither read nor write access unless it is
protected by a password and unlocked.

9.2.2.5 EEPROM_PROT_RO_LNA_URO

Definition:
#define EEPROM_PROT_RO_LNA_URO

116 July 25, 2016

EEPROM

Description:
This value may be passed to EEPROMBlockProtectSet() or returned from EEPROMBlockPro-
tectGet(). It indicates that the block should offer read-only access when no password is set or
when a password is set and the block is unlocked. When a password is set and the block is
locked, neither read nor write access is permitted.

9.2.2.6 EEPROM_PROT_RW_LRO_URW

Definition:
#define EEPROM_PROT_RW_LRO_URW

Description:
This value may be passed to EEPROMBlockProtectSet() or returned from EEPROMBlockPro-
tectGet(). It indicates that the block should offer read/write access when no password is set or
when a password is set and the block is unlocked, and read-only access when a password is
set but the block is locked.

9.2.2.7 EEPROM_PROT_SUPERVISOR_ONLY

Definition:
#define EEPROM_PROT_SUPERVISOR_ONLY

Description:
This bit may be ORed with the protection option passed to EEPROMBlockProtectSet() or re-
turned from EEPROMBlockProtectGet(). It restricts EEPROM access to threads running in
supervisor mode and prevents access to an EEPROM block when the CPU is in user mode.

9.2.2.8 EEPROM_RC_NOPERM

Definition:
#define EEPROM_RC_NOPERM

Description:
This return code bit indicates that an attempt was made to write a value but the destination
permissions disallow write operations. This may be due to the destination block being locked,
access protection set to prohibit writes or an attempt to write a password when one is already
written.

9.2.2.9 EEPROM_RC_WKCOPY

Definition:
#define EEPROM_RC_WKCOPY

Description:
This return code bit indicates that the EEPROM programming state machine is currently copy-
ing to or from the internal copy buffer to make room for a newly written value. It is provided as
a status indicator and does not indicate an error.

July 25, 2016 117

EEPROM

9.2.2.10 EEPROM_RC_WKERASE

Definition:
#define EEPROM_RC_WKERASE

Description:
This return code bit indicates that the EEPROM programming state machine is currently eras-
ing the internal copy buffer. It is provided as a status indicator and does not indicate an error.

9.2.2.11 EEPROM_RC_WORKING

Definition:
#define EEPROM_RC_WORKING

Description:
This return code bit indicates that the EEPROM programming state machine is currently work-
ing. No new write operations should be attempted until this bit is clear.

9.2.2.12 EEPROM_RC_WRBUSY

Definition:
#define EEPROM_RC_WRBUSY

Description:
This return code bit indicates that an attempt was made to read from the EEPROM while a
write operation was in progress.

9.2.2.13 EEPROMAddrFromBlock

Returns the offset address of the first word in an EEPROM block.

Definition:
#define EEPROMAddrFromBlock(ui32Block)

Parameters:
ui32Block is the index of the EEPROM block whose first word address is to be returned.

Description:
This macro may be used to determine the address of the first word in a given EEPROM block.
The address returned is expressed as a byte offset from the base of EEPROM storage.

Returns:
Returns the address of the first word in the given EEPROM block.

118 July 25, 2016

EEPROM

9.2.2.14 EEPROMBlockFromAddr

Returns the EEPROM block number containing a given offset address.

Definition:
#define EEPROMBlockFromAddr(ui32Addr)

Parameters:
ui32Addr is the linear, byte address of the EEPROM location whose block number is to be

returned. This is a zero-based offset from the start of the EEPROM storage.

Description:
This macro may be used to translate an EEPROM address offset into a block number suitable
for use in any of the driver’s block protection functions. The address provided is expressed as
a byte offset from the base of the EEPROM.

Returns:
Returns the zero-based block number which contains the passed address.

9.2.3 Function Documentation

9.2.3.1 EEPROMBlockCountGet

Determines the number of blocks in the EEPROM.

Prototype:
uint32_t
EEPROMBlockCountGet(void)

Description:
This function may be called to determine the number of blocks in the EEPROM. Each block is
the same size and the number of bytes of storage contained in a block may be determined by
dividing the size of the device, obtained via a call to the EEPROMSizeGet() function, by the
number of blocks returned by this function.

Returns:
Returns the total number of blocks in the device EEPROM.

9.2.3.2 EEPROMBlockHide

Hides an EEPROM block until the next reset.

Prototype:
void
EEPROMBlockHide(uint32_t ui32Block)

Parameters:
ui32Block is the EEPROM block number which is to be hidden.

July 25, 2016 119

EEPROM

Description:
This function hides an EEPROM block other than block 0. Once hidden, a block is completely
inaccessible until the next reset. This mechanism allows initialization code to have access to
data which is to be hidden from the rest of the application. Unlike applications using passwords,
an application making using of block hiding need not contain any embedded passwords which
could be found through disassembly.

Returns:
None.

9.2.3.3 EEPROMBlockLock

Locks a password-protected EEPROM block.

Prototype:
uint32_t
EEPROMBlockLock(uint32_t ui32Block)

Parameters:
ui32Block is the EEPROM block number which is to be locked.

Description:
This function locks an EEPROM block that has previously been protected by writing a pass-
word. Access to the block once it is locked is determined by the protection settings applied via
a previous call to the EEPROMBlockProtectSet() function. If no password has previously been
set for the block, this function has no effect.

Locking block 0 has the effect of making all other blocks in the EEPROM inaccessible.

Returns:
Returns the lock state for the block on exit, 1 if unlocked (as would be the case if no password
was set) or 0 if locked.

9.2.3.4 EEPROMBlockPasswordSet

Sets the password used to protect an EEPROM block.

Prototype:
uint32_t
EEPROMBlockPasswordSet(uint32_t ui32Block,

uint32_t *pui32Password,
uint32_t ui32Count)

Parameters:
ui32Block is the EEPROM block number for which the password is to be set.
pui32Password points to an array of uint32_t values comprising the password to set. Each

element may be any 32-bit value other than 0xFFFFFFFF. This array must contain the
number of elements given by the ui32Count parameter.

ui32Count provides the number of uint32_ts in the ui32Password . Valid values are 1, 2 and
3.

120 July 25, 2016

EEPROM

Description:
This function allows the password used to unlock an EEPROM block to be set. Valid passwords
may be either 32, 64 or 96 bits comprising words with any value other than 0xFFFFFFFF. The
password may only be set once. Any further attempts to set the password result in an error.
Once the password is set, the block remains unlocked until EEPROMBlockLock() is called for
that block or block 0, or a reset occurs.

If a password is set on block 0, this affects locking of the peripheral as a whole. When block
0 is locked, all other EEPROM blocks are inaccessible until block 0 is unlocked. Once block 0
is unlocked, other blocks become accessible according to any passwords set on those blocks
and the protection set for that block via a call to EEPROMBlockProtectSet().

Returns:
Returns a logical OR combination of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM,
EEPROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEPROM_RC_WORKING to in-
dicate status and error conditions.

9.2.3.5 EEPROMBlockProtectGet

Returns the current protection level for an EEPROM block.

Prototype:
uint32_t
EEPROMBlockProtectGet(uint32_t ui32Block)

Parameters:
ui32Block is the block number for which the protection level is to be queried.

Description:
This function returns the current protection settings for a given EEPROM block. If block 0 is
currently locked, it must be unlocked prior to calling this function to query the protection setting
for other blocks.

Returns:
Returns one of EEPROM_PROT_RW_LRO_URW, EEPROM_PROT_NA_LNA_URW or EEP-
ROM_PROT_RO_LNA_URO optionally OR-ed with EEPROM_PROT_SUPERVISOR_ONLY.

9.2.3.6 EEPROMBlockProtectSet

Set the current protection options for an EEPROM block.

Prototype:
uint32_t
EEPROMBlockProtectSet(uint32_t ui32Block,

uint32_t ui32Protect)

Parameters:
ui32Block is the block number for which the protection options are to be set.
ui32Protect consists of one of the values EEPROM_PROT_RW_LRO_URW, EEP-

ROM_PROT_NA_LNA_URW or EEPROM_PROT_RO_LNA_URO optionally ORed with
EEPROM_PROT_SUPERVISOR_ONLY.

July 25, 2016 121

EEPROM

Description:
This function sets the protection settings for a given EEPROM block assuming no protection
settings have previously been written. Note that protection settings applied to block 0 have
special meaning and control access to the EEPROM peripheral as a whole. Protection settings
applied to blocks numbered 1 and above are layered above any protection set on block 0 such
that the effective protection on each block is the logical OR of the protection flags set for block
0 and for the target block. This protocol allows global protection options to be set for the whole
device via block 0 and more restrictive protection settings to be set on a block-by-block basis.

The protection flags indicate access permissions as follow:

EEPROM_PROT_SUPERVISOR_ONLY restricts access to the block to threads running in su-
pervisor mode. If clear, both user and supervisor threads can access the block.

EEPROM_PROT_RW_LRO_URW provides read/write access to the block if no password is
set or if a password is set and the block is unlocked. If the block is locked, only read access is
permitted.

EEPROM_PROT_NA_LNA_URW provides neither read nor write access unless a password
is set and the block is unlocked. If the block is unlocked, both read and write access are
permitted.

EEPROM_PROT_RO_LNA_URO provides read access to the block if no password is set or
if a password is set and the block is unlocked. If the block is password protected and locked,
neither read nor write access is permitted.

Returns:
Returns a logical OR combination of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM,
EEPROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEPROM_RC_WORKING to in-
dicate status and error conditions.

9.2.3.7 EEPROMBlockUnlock

Unlocks a password-protected EEPROM block.

Prototype:
uint32_t
EEPROMBlockUnlock(uint32_t ui32Block,

uint32_t *pui32Password,
uint32_t ui32Count)

Parameters:
ui32Block is the EEPROM block number which is to be unlocked.
pui32Password points to an array of uint32_t values containing the password for the block.

Each element must match the password originally set via a call to EEPROMBlockPass-
wordSet().

ui32Count provides the number of elements in the pui32Password array and must match the
value originally passed to EEPROMBlockPasswordSet(). Valid values are 1, 2 and 3.

Description:
This function unlocks an EEPROM block that has previously been protected by writing a pass-
word. Access to the block once it is unlocked is determined by the protection settings applied
via a previous call to the EEPROMBlockProtectSet() function.

122 July 25, 2016

EEPROM

To successfully unlock an EEPROM block, the password provided must match the password
provided on the original call to EEPROMBlockPasswordSet(). If an incorrect password is pro-
vided, the block remains locked.

Unlocking block 0 has the effect of making all other blocks in the device accessible according
to their own access protection settings. When block 0 is locked, all other EEPROM blocks are
inaccessible.

Returns:
Returns the lock state for the block on exit, 1 if unlocked or 0 if locked.

9.2.3.8 EEPROMInit

Performs any necessary recovery in case of power failures during write.

Prototype:
uint32_t
EEPROMInit(void)

Description:
This function must be called after SysCtlPeripheralEnable() and before the EEPROM is ac-
cessed. It is used to check for errors in the EEPROM state such as from power failure during a
previous write operation. The function detects these errors and performs as much recovery as
possible.

If EEPROM_INIT_ERROR is returned, the EEPROM was unable to recover its state. If power is
stable when this occurs, this indicates a fatal error and is likely an indication that the EEPROM
memory has exceeded its specified lifetime write/erase specification. If the supply voltage is
unstable when this return code is observed, retrying the operation once the voltage is stabilized
may clear the error.

Failure to call this function after a reset may lead to incorrect operation or permanent data loss
if the EEPROM is later written.

Returns:
Returns EEPROM_INIT_OK if no errors were detected or EEPROM_INIT_ERROR if the EEP-
ROM peripheral cannot currently recover from an interrupted write or erase operation.

9.2.3.9 EEPROMIntClear

Clears the EEPROM interrupt.

Prototype:
void
EEPROMIntClear(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags indicates which interrupt sources to clear. Currently, the only valid value is EEP-

ROM_INT_PROGRAM.

Description:
This function allows an application to clear the EEPROM interrupt.

July 25, 2016 123

EEPROM

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

9.2.3.10 EEPROMIntDisable

Disables the EEPROM interrupt.

Prototype:
void
EEPROMIntDisable(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags indicates which EEPROM interrupt source to disable. This must be EEP-

ROM_INT_PROGRAM currently.

Description:
This function disables the EEPROM interrupt and prevents calls to the interrupt vector when
any EEPROM write or erase operation completes. The EEPROM peripheral shares a single
interrupt vector with the flash memory subsystem, INT_FLASH. This function is provided as a
convenience but the EEPROM interrupt can also be disabled using a call to FlashIntDisable()
passing FLASH_INT_EEPROM in the ui32IntFlags parameter.

Returns:
None.

9.2.3.11 EEPROMIntEnable

Enables the EEPROM interrupt.

Prototype:
void
EEPROMIntEnable(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags indicates which EEPROM interrupt source to enable. This must be EEP-

ROM_INT_PROGRAM currently.

Description:
This function enables the EEPROM interrupt. When enabled, an interrupt is generated when
any EEPROM write or erase operation completes. The EEPROM peripheral shares a single
interrupt vector with the flash memory subsystem, INT_FLASH. This function is provided as a
convenience but the EEPROM interrupt can also be enabled using a call to FlashIntEnable()
passing FLASH_INT_EEPROM in the ui32IntFlags parameter.

124 July 25, 2016

EEPROM

Returns:
None.

9.2.3.12 EEPROMIntStatus

Reports the state of the EEPROM interrupt.

Prototype:
uint32_t
EEPROMIntStatus(bool bMasked)

Parameters:
bMasked determines whether the masked or unmasked state of the interrupt is to be returned.

If bMasked is true, the masked state is returned, otherwise the unmasked state is returned.

Description:
This function allows an application to query the state of the EEPROM interrupt. If active, the
interrupt may be cleared by calling EEPROMIntClear().

Returns:
Returns EEPROM_INT_PROGRAM if an interrupt is being signaled or 0 otherwise.

9.2.3.13 EEPROMMassErase

Erases the EEPROM and returns it to the factory default condition.

Prototype:
uint32_t
EEPROMMassErase(void)

Description:
This function completely erases the EEPROM and removes any and all access protection on
its blocks, leaving the device in the factory default condition. After this operation, all EEPROM
words contain the value 0xFFFFFFFF and all blocks are accessible for both read and write
operations in all CPU modes. No passwords are active.

The function is synchronous and does not return until the erase operation has completed.

Returns:
Returns 0 on success or non-zero values on failure. Failure codes are logical OR combina-
tions of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING.

9.2.3.14 EEPROMProgram

Writes data to the EEPROM.

Prototype:
uint32_t
EEPROMProgram(uint32_t *pui32Data,

July 25, 2016 125

EEPROM

uint32_t ui32Address,
uint32_t ui32Count)

Parameters:
pui32Data points to the first word of data to write to the EEPROM.
ui32Address defines the byte address within the EEPROM that the data is to be written to.

This value must be a multiple of 4.
ui32Count defines the number of bytes of data that is to be written. This value must be a

multiple of 4.

Description:
This function may be called to write data into the EEPROM at a given word-aligned address.
The call is synchronous and returns only after all data has been written or an error occurs.

Returns:
Returns 0 on success or non-zero values on failure. Failure codes are logical OR combina-
tions of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING.

9.2.3.15 EEPROMProgramNonBlocking

Writes a word to the EEPROM.

Prototype:
uint32_t
EEPROMProgramNonBlocking(uint32_t ui32Data,

uint32_t ui32Address)

Parameters:
ui32Data is the word to write to the EEPROM.
ui32Address defines the byte address within the EEPROM to which the data is to be written.

This value must be a multiple of 4.

Description:
This function is intended to allow EEPROM programming under interrupt control. It may be
called to start the process of writing a single word of data into the EEPROM at a given word-
aligned address. The call is asynchronous and returns immediately without waiting for the
write to complete. Completion of the operation is signaled by means of an interrupt from the
EEPROM module. The EEPROM peripheral shares a single interrupt vector with the flash
memory subsystem, INT_FLASH.

Returns:
Returns status and error information in the form of a logical OR combinations
of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE and EEPROM_RC_WORKING. Flags EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING are expected in normal operation and
do not indicate an error.

9.2.3.16 EEPROMRead

Reads data from the EEPROM.

126 July 25, 2016

EEPROM

Prototype:
void
EEPROMRead(uint32_t *pui32Data,

uint32_t ui32Address,
uint32_t ui32Count)

Parameters:
pui32Data is a pointer to storage for the data read from the EEPROM. This pointer must point

to at least ui32Count bytes of available memory.
ui32Address is the byte address within the EEPROM from which data is to be read. This

value must be a multiple of 4.
ui32Count is the number of bytes of data to read from the EEPROM. This value must be a

multiple of 4.

Description:
This function may be called to read a number of words of data from a word-aligned address
within the EEPROM. Data read is copied into the buffer pointed to by the pui32Data parameter.

Returns:
None.

9.2.3.17 EEPROMSizeGet

Determines the size of the EEPROM.

Prototype:
uint32_t
EEPROMSizeGet(void)

Description:
This function returns the size of the EEPROM in bytes.

Returns:
Returns the total number of bytes in the EEPROM.

9.2.3.18 EEPROMStatusGet

Returns status on the last EEPROM program or erase operation.

Prototype:
uint32_t
EEPROMStatusGet(void)

Description:
This function returns the current status of the last program or erase operation performed by
the EEPROM. It is intended to provide error information to applications programming or setting
EEPROM protection options under interrupt control.

Returns:
Returns 0 if the last program or erase operation completed without any errors. If an
operation is ongoing or an error occurred, the return value is a logical OR combina-
tion of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING.

July 25, 2016 127

EEPROM

9.3 Programming Example

The following example shows how to use the EEPROM API to write a block of data and read it back.

uint32_t ui32EEPROMInit;
uint32_t pui32Data[2];
uint32_t pui32Read[2];

//
// Enable the EEPROM module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0);

//
// Wait for the EEPROM module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_EEPROM0))
{
}

//
// Wait for the EEPROM Initialization to complete
//
ui32EEPROMInit = EEPROMInit();

//
// Check if the EEPROM Initialization returned an error
// and inform the application
//
if(ui32EEPROMInit != EEPROM_INIT_OK)
{

while(1)
{
}

}

//
// Program some data into the EEPROM at address 0x400.
//
pui32Data[0] = 0x12345678;
pui32Data[1] = 0x56789abc;
EEPROMProgram(pui32Data, 0x400, sizeof(pui32Data));

//
// Read it back.
//
EEPROMRead(pui32Read, 0x400, sizeof(pui32Read));

128 July 25, 2016

Ethernet Controller

10 Ethernet Controller
Introduction .129
API Functions . 129
Programming Example .193

10.1 Introduction

The Tiva Ethernet controller consists of a fully integrated media access controller (MAC) and a
network physical (PHY) interface device. The Ethernet controller conforms to IEEE 802.3 speci-
fications and fully supports 10BASE-T and 100BASE-TX standards. Additionally, external PHYs
may be connected via either MII or RMII interfaces. Note that this document describes the Ethernet
MAC found in Tiva devices which differs markedly from that found in older LM3S devices. The new
MAC architecture provides very much improved data handling and throughput using a DMA-based
engine in addition to many new hardware features including automatic checksum calculation and
insertion, hardware perfect and hash packet filtering, low power operation with remote wakeup and
wake-on-LAN capability, VLAN tagging and IEEE1588 types 1 and 2 support. As a result, the API
provided has been completely redesigned and cannot be used with older parts.

The Ethernet MAC API provides the set of functions required to implement an interrupt-driven
Ethernet driver for the Tiva Ethernet MAC. Functions are provided to configure and control the MAC,
to access the register set on the PHY, to transmit and receive Ethernet packets using the MAC’s
integrated DMA engine, to control timestamp handling for IEEE1588, to configure and control low
power operation, to configure and control VLAN tagging, and to configure and control the peripheral
interrupts.

This driver is contained in driverlib/emac.c, with driverlib/emac.h containing the API
declarations for use by applications.

10.2 API Functions

Data Structures
tEMACDES3
tEMACDMADescriptor
tEMACWakeUpFrameFilter

Functions
uint32_t EMACAddrFilterGet (uint32_t ui32Base, uint32_t ui32Index)
void EMACAddrFilterSet (uint32_t ui32Base, uint32_t ui32Index, uint32_t ui32Config)
void EMACAddrGet (uint32_t ui32Base, uint32_t ui32Index, uint8_t ∗pui8MACAddr)
void EMACAddrSet (uint32_t ui32Base, uint32_t ui32Index, const uint8_t ∗pui8MACAddr)
void EMACConfigGet (uint32_t ui32Base, uint32_t ∗pui32Config, uint32_t ∗pui32Mode,
uint32_t ∗pui32RxMaxFrameSize)

July 25, 2016 129

Ethernet Controller

void EMACConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32ModeFlags,
uint32_t ui32RxMaxFrameSize)
uint32_t EMACDMAStateGet (uint32_t ui32Base)
uint32_t EMACFrameFilterGet (uint32_t ui32Base)
void EMACFrameFilterSet (uint32_t ui32Base, uint32_t ui32FilterOpts)
uint32_t EMACHashFilterBitCalculate (uint8_t ∗pui8MACAddr)
void EMACHashFilterGet (uint32_t ui32Base, uint32_t ∗pui32HashHi, uint32_t ∗pui32HashLo)
void EMACHashFilterSet (uint32_t ui32Base, uint32_t ui32HashHi, uint32_t ui32HashLo)
void EMACInit (uint32_t ui32Base, uint32_t ui32SysClk, uint32_t ui32BusConfig, uint32_t
ui32RxBurst, uint32_t ui32TxBurst, uint32_t ui32DescSkipSize)
void EMACIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void EMACIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void EMACIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void EMACIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t EMACIntStatus (uint32_t ui32Base, bool bMasked)
void EMACIntUnregister (uint32_t ui32Base)
uint32_t EMACNumAddrGet (uint32_t ui32Base)
void EMACPHYConfigSet (uint32_t ui32Base, uint32_t ui32Config)
uint16_t EMACPHYExtendedRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t
ui16RegAddr)
void EMACPHYExtendedWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t ui16RegAddr,
uint16_t ui16Value)
void EMACPHYPowerOff (uint32_t ui32Base, uint8_t ui8PhyAddr)
void EMACPHYPowerOn (uint32_t ui32Base, uint8_t ui8PhyAddr)
uint16_t EMACPHYRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint8_t ui8RegAddr)
void EMACPHYWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint8_t ui8RegAddr, uint16_t
ui16Data)
uint32_t EMACPowerManagementControlGet (uint32_t ui32Base)
void EMACPowerManagementControlSet (uint32_t ui32Base, uint32_t ui32Flags)
uint32_t EMACPowerManagementStatusGet (uint32_t ui32Base)
void EMACRemoteWakeUpFrameFilterGet (uint32_t ui32Base, tEMACWakeUpFrameFilter
∗pFilter)
void EMACRemoteWakeUpFrameFilterSet (uint32_t ui32Base, const tEMACWakeUpFrame-
Filter ∗pFilter)
void EMACReset (uint32_t ui32Base)
void EMACRxDisable (uint32_t ui32Base)
uint8_t ∗ EMACRxDMACurrentBufferGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ EMACRxDMACurrentDescriptorGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ EMACRxDMADescriptorListGet (uint32_t ui32Base)
void EMACRxDMADescriptorListSet (uint32_t ui32Base, tEMACDMADescriptor ∗pDescriptor)
void EMACRxDMAPollDemand (uint32_t ui32Base)
void EMACRxEnable (uint32_t ui32Base)
void EMACRxWatchdogTimerSet (uint32_t ui32Base, uint8_t ui8Timeout)
uint32_t EMACStatusGet (uint32_t ui32Base)
void EMACTimestampAddendSet (uint32_t ui32Base, uint32_t ui32Increment)
uint32_t EMACTimestampConfigGet (uint32_t ui32Base, uint32_t ∗pui32SubSecondInc)

130 July 25, 2016

Ethernet Controller

void EMACTimestampConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t
ui32SubSecondInc)
void EMACTimestampDisable (uint32_t ui32Base)
void EMACTimestampEnable (uint32_t ui32Base)
uint32_t EMACTimestampIntStatus (uint32_t ui32Base)
void EMACTimestampPPSCommand (uint32_t ui32Base, uint8_t ui8Cmd)
void EMACTimestampPPSCommandModeSet (uint32_t ui32Base, uint32_t ui32Config)
void EMACTimestampPPSPeriodSet (uint32_t ui32Base, uint32_t ui32Period, uint32_t
ui32Width)
void EMACTimestampPPSSimpleModeSet (uint32_t ui32Base, uint32_t ui32FreqConfig)
void EMACTimestampSysTimeGet (uint32_t ui32Base, uint32_t ∗pui32Seconds, uint32_t
∗pui32SubSeconds)
void EMACTimestampSysTimeSet (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds)
void EMACTimestampSysTimeUpdate (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds, bool bInc)
void EMACTimestampTargetIntDisable (uint32_t ui32Base)
void EMACTimestampTargetIntEnable (uint32_t ui32Base)
void EMACTimestampTargetSet (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds)
void EMACTxDisable (uint32_t ui32Base)
uint8_t ∗ EMACTxDMACurrentBufferGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ EMACTxDMACurrentDescriptorGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ EMACTxDMADescriptorListGet (uint32_t ui32Base)
void EMACTxDMADescriptorListSet (uint32_t ui32Base, tEMACDMADescriptor ∗pDescriptor)
void EMACTxDMAPollDemand (uint32_t ui32Base)
void EMACTxEnable (uint32_t ui32Base)
void EMACTxFlush (uint32_t ui32Base)
uint32_t EMACVLANHashFilterBitCalculate (uint16_t ui16Tag)
uint32_t EMACVLANHashFilterGet (uint32_t ui32Base)
void EMACVLANHashFilterSet (uint32_t ui32Base, uint32_t ui32Hash)
uint32_t EMACVLANRxConfigGet (uint32_t ui32Base, uint16_t ∗pui16Tag)
void EMACVLANRxConfigSet (uint32_t ui32Base, uint16_t ui16Tag, uint32_t ui32Config)
uint32_t EMACVLANTxConfigGet (uint32_t ui32Base, uint16_t ∗pui16Tag)
void EMACVLANTxConfigSet (uint32_t ui32Base, uint16_t ui16Tag, uint32_t ui32Config)

10.2.1 Detailed Description

The Ethernet MAC driver API consists of 9 groups of functions:

Initialization and configuration of the MAC and PHY are controlled using EMACInit(), EMACRe-
set(), EMACPHYConfigSet(), EMACConfigSet(), EMACConfigGet(), EMACAddrSet(), EMACAddr-
Get() and EMACNumAddrGet().

Packet filtering options are set and queried using EMACFrameFilterSet(), EMACFrameFilter-
Get(), EMACHashFilterSet(), EMACHashFilterGet(), EMACHashFilterBitCalculate(), EMACAddrFil-
terSet() and EMACAddrFilterGet().

July 25, 2016 131

Ethernet Controller

Transmit and receive DMA descriptors are managed using EMACTxDMAPollDemand(),
EMACRxDMAPollDemand(), EMACRxDMADescriptorListSet(), EMACRxDMADescriptorListGet(),
EMACRxDMACurrentDescriptorGet(), EMACRxDMACurrentBufferGet(), EMACTxDMADescrip-
torListSet(), EMACTxDMADescriptorListGet(), EMACTxDMACurrentDescriptorGet() and EMAC-
TxDMACurrentBufferGet().

Overall control of the transmitter and receiver are handled using EMACRxWatchdogTimerSet(),
EMACStatusGet(), EMACDMAStateGet(), EMACTxFlush(), EMACTxEnable(), EMACTxDisable(),
EMACRxEnable() and EMACRxDisable().

Interrupt management is controlled using EMACIntEnable(), EMACIntDisable(), EMACIntStatus(),
EMACIntClear(), EMACIntRegister() and EMACIntUnregister().

The PHY, either internal or external, is controlled using EMACPHYWrite(), EMACPHYExtend-
edWrite(), EMACPHYRead(), EMACPHYExtendedRead(), EMACPHYPowerOff() and EMACPHY-
PowerOn().

IEEE1588, Precision Time Protocol timestamping, the integrated PTPD clock and the PPS out-
put signal are controlled using EMACTimestampConfigSet(), EMACTimestampConfigGet(), EMAC-
TimestampAddendSet(), EMACTimestampEnable(), EMACTimestampDisable(), EMACTimes-
tampSysTimeSet(), EMACTimestampSysTimeGet(), EMACTimestampSysTimeUpdate(), EMAC-
TimestampTargetSet(), EMACTimestampTargetIntEnable(), EMACTimestampTargetIntDisable(),
EMACTimestampIntStatus(), EMACTimestampPPSSimpleModeSet(), EMACTimestampPPSCom-
mandModeSet(), EMACTimestampPPSCommand() and EMACTimestampPPSPeriodSet().

Control of 802.1Q VLAN packet tagging is handled using EMACVLANRxConfigSet(), EMACVLAN-
RxConfigGet(), EMACVLANTxConfigSet(), EMACVLANTxConfigGet(), EMACVLANHashFilterBit-
Calculate(), EMACVLANHashFilterSet() and EMACVLANHashFilterGet().

Handling of remote wakeup packets and power management options are controlled us-
ing EMACRemoteWakeUpFrameFilterSet(), EMACRemoteWakeUpFrameFilterGet(), EMACPow-
erManagementControlSet(), EMACPowerManagementControlGet() and EMACPowerManage-
mentStatusGet().

10.2.2 Ethernet MAC Data Transfer

Data is transfered between system SRAM and the Ethernet MAC using independent transmit and
receive DMA engines. Each engine is controlled using a list of descriptor structures stored in SRAM
and containing frame data buffer pointers, control bits and status information. Two options exist for
controlling the arrangement of the descriptor list. Descriptors may be arranged in a ring with a
fixed spacing between the start of each descriptor and a control bit in the last descriptor to tell the
hardware to return to the head of the list, or they may be configured as a linked list with a pointer in
each descriptor directing the hardware to the next descriptor that is to be processed.

Although the hardware supports two distinct descriptor formats for both transmit and receive, a ba-
sic 4-word descriptor and an enhanced 8-word descriptor, the DriverLib EMAC driver includes type
definitions and labels for only the enhanced descriptor format. Enhanced descriptors allow support
for many commonly-used advanced features such as TCP/IP/UDP checksum insertion, VLAN tag-
ging and frame timestamping so using this descriptor format throughout prevents complexity and
confusion that could arise due to attempts to handle two somewhat-incompatible formats within the
same code. Applications wishing to use the basic descriptor format may do so but must be careful
not to use the various descriptor-related types and labels defined in emac.h because many of these
will be incorrect for the shorter descriptor format.

The hardware moves through the descriptor lists sequentially until it discovers a descriptor marked

132 July 25, 2016

Ethernet Controller

as owned by software at which point it stops and waits for the descriptor to be made available to it.
Ownership of a given descriptor for both the transmit and receive cases is controlled by the most
significant bit of the first descriptor word. When this bit is set, the hardware owns the descriptor
and will read its content and use it to control transmission or reception of a frame. When clear, the
software owns the descriptor and it is safe for the software to read or write the descriptor content
without fear of treading on an ongoing hardware operation.

Management of transmit and receive descriptor lists is the responsibility of software above the
EMAC API. While the API provides function calls to set the list start pointers, query the current
descriptor and tell the hardware to start and stop reading the list, the actual descriptor contents
must be handled above the EMAC layer, typically in the Ethernet interrupt handler which must track
the current descriptor position in each ring and ensure that the correct descriptors are written for
frame transmission or read for frame reception.

To transmit a frame, software must determine the next descriptor in the transmit list which is not
currently owned by the hardware (has the DES0_TX_CTRL_OWN bit in the first descriptor word
clear). A pointer to the frame to be transmitted is then written to the third word of the descriptor
(pvBuffer1) and its length to the second word (ui32Count). If the descriptor list uses the ring
structure rather than the linked list structure, a second buffer may be linked to the same descriptor
using the fourth descriptor word (DES3.pvBuffer2) and bits [28:16] of the second word to store its
size. Various flags controlling checksum insertion or replacement options, source address insertion
or replacement and VLAN tagging are written into the first and second words of the descriptor
(ui32CtrlStatus and ui32Count) before the DES0_TX_CTRL_OWN bit in the first word is set to
hand the descriptor over to the hardware. If the transmit DMA was stopped waiting for the next
descriptor to become available, a call to EMACTxDMAPollDemand() will then ensure that the DMA
restarts and transmits the new frame. Once transmission is completed, the hardware clears the
DES0_TX_CTRL_OWN bit in the descriptor, returning it to the software and, optionally, raises an
interrupt.

Similarly, to receive a frame, software must determine the next descriptor in the receive list which
is not currently owned by the hardware (has the DES0_RX_CTRL_OWN bit in the first descriptor
word clear). A pointer to an empty buffer into which data from the next received frame will be written
must be written to the third word of the descriptor. The buffer size is written into the second word,
taking care to preserve the DES1_RX_CTRL_CHAINED and DES1_RX_CTRL_END_OF_RING
control bits also found there. Again, if the ring structure is used for the descriptor list, a second
buffer may be attached to the descriptor using fields in words 3 and 2 to hold the pointer and
size. The descriptor is then passed to the hardware by setting DES0_RX_CTRL_OWN in the first
descriptor word. If the receiver had previously stopped due to a lack of available descriptors, a call
to EMACRxDMAPollDemand() will cause it to restart.

When a frame is received, the hardware will write its content into the next available receive buffer.
If the buffer is smaller than the frame, reception continues in the next available buffer (either the
second buffer attached to the current descriptor if a descriptor ring is in use or the first buffer
attached to the next descriptor). Once the frame is completed, additional status is written into
the receive descriptors to indicate the packet type, the buffer containing the start of the frame
and the end of the frame, any errors detected and, optionally, IEEE1588 timestamps, before the
DES0_RX_CTRL_OWN bits in affected descriptors are cleared and those descriptors become
available to the software again.

July 25, 2016 133

Ethernet Controller

10.2.3 Data Structure Documentation

10.2.3.1 tEMACDES3

Definition:
typedef union
{

tEMACDMADescriptor *pLink;
void *pvBuffer2;

}
tEMACDES3

Members:
pLink When DMA descriptors are used in chained mode, this field is used to provide a link to

the next descriptor.
pvBuffer2 When the DMA descriptors are unchained, this field may be used to point to a

second buffer containing data for transmission or providing storage for a received frame.

Description:
A union used to describe the two overlapping fields forming the third word of the Ethernet DMA
descriptor.

10.2.3.2 tEMACDMADescriptor

Definition:
typedef struct
{

uint32_t ui32CtrlStatus;
uint32_t ui32Count;
void *pvBuffer1;
tEMACDES3 DES3;
uint32_t ui32ExtRxStatus;
uint32_t ui32Reserved;
uint32_t ui32IEEE1588TimeLo;
uint32_t ui32IEEE1588TimeHi;

}
tEMACDMADescriptor

Members:
ui32CtrlStatus The first DMA descriptor word contains various control and status bits depend-

ing upon whether the descriptor is in the transmit or receive queue. Bit 31 is always the
“OWN” bit which, when set, indicates that the hardware has control of the descriptor.

ui32Count The second descriptor word contains information on the size of the buffer or buffers
attached to the descriptor and various additional control bits.

pvBuffer1 The third descriptor word contains a pointer to the buffer containing data to transmit
or into which received data should be written. This pointer must refer to a buffer in internal
SRAM. Pointers to flash or EPI-connected memory may not be used and will result in the
MAC reporting a bus error.

DES3 The fourth descriptor word contains either a pointer to the next descriptor in the ring or
a pointer to a second data buffer. The meaning of the word is controlled by the “CHAINED”
control bit which appears in the first word of the transmit descriptor or the second word of
the receive descriptor.

134 July 25, 2016

Ethernet Controller

ui32ExtRxStatus The fifth descriptor word is reserved for transmit descriptors but used to
report extended status in a receive descriptor.

ui32Reserved The sixth descriptor word is reserved for both transmit and receive descriptors.
ui32IEEE1588TimeLo The seventh descriptor word contains the low 32 bits of the 64-bit

timestamp captured for transmitted or received data. The value is set only when the
transmitted or received data contains the end of a packet. Availability of the timestamp
is indicated via a status bit in the first descriptor word.

ui32IEEE1588TimeHi The eighth descriptor word contains the high 32 bits of the 64-bit times-
tamp captured for transmitted or received data.

Description:
A structure defining a single Ethernet DMA buffer descriptor.

10.2.3.3 tEMACWakeUpFrameFilter

Definition:
typedef struct
{

uint32_t pui32ByteMask[4];
uint8_t pui8Command[4];
uint8_t pui8Offset[4];
uint16_t pui16CRC[4];

}
tEMACWakeUpFrameFilter

Members:
pui32ByteMask A byte mask for each filter defining which bytes from a sequence of 31 (bit

31 must be clear in each mask) are used to filter incoming packets. A 1 indicates that
the relevant byte is used to update the CRC16 for the filter, a 0 indicates that the byte is
ignored.

pui8Command Defines whether each filter is enabled and, if so, whether it filters mul-
ticast or unicast frames. Valid values are one of EMAC_RWU_FILTER_ENABLE or
EMAC_RWU_FILTER_DISABLE ORed with one of EMAC_RWU_FILTER_UNICAST or
EMAC_RWU_FILTER_MULTICAST.

pui8Offset Determines the byte offset within the frame at which the filter starts examining
bytes. The minimum value for each offset is 12. The first byte of a frame is offset 0.

pui16CRC The CRC16 value that is expected for each filter if it passes. The CRC is calculated
using all bytes indicated by the filter’s mask.

Description:
This structure defines up to 4 filters that can be used to define specific frames which will cause
the MAC to wake up from sleep mode.

10.2.4 Function Documentation

10.2.4.1 EMACAddrFilterGet

Gets filtering parameters associated with one of the configured MAC addresses.

July 25, 2016 135

Ethernet Controller

Prototype:
uint32_t
EMACAddrFilterGet(uint32_t ui32Base,

uint32_t ui32Index)

Parameters:
ui32Base is the base address of the controller.
ui32Index is the index of the MAC address slot for which the filter is to be queried.

Description:
This function returns filtering parameters associated with one of the MAC address slots that
the controller supports. This configuration is used when perfect filtering (rather than hash table
filtering) is selected.

Valid values for ui32Index are from 1 to (number of MAC address slots - 1). The number of
supported MAC address slots may be found by calling EMACNumAddrGet(). MAC index 0 is
the local MAC address and does not have filtering parameters associated with it.

Returns:
Returns the filter configuration as the logical OR of the following labels:

EMAC_FILTER_ADDR_ENABLE indicates that this MAC address is enabled and is used
when performing perfect filtering. If this flag is absent, the MAC address at the given index is
disabled and is not used in filtering.

EMAC_FILTER_SOURCE_ADDR indicates that the MAC address at the given index is com-
pared to the source address of incoming frames while performing perfect filtering. If absent,
the MAC address is compared against the destination address.

EMAC_FILTER_MASK_BYTE_6 indicates that the MAC ignores the sixth byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_5 indicates that the MAC ignores the fifth byte of the source or
destination address when filtering.

EMAC_FILTER_MASK_BYTE_4 indicates that the MAC ignores the fourth byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_3 indicates that the MAC ignores the third byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_2 indicates that the MAC ignores the second byte of the
source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_1 indicates that the MAC ignores the first byte of the source or
destination address when filtering.

10.2.4.2 EMACAddrFilterSet

Sets filtering parameters associated with one of the configured MAC addresses.

Prototype:
void
EMACAddrFilterSet(uint32_t ui32Base,

uint32_t ui32Index,
uint32_t ui32Config)

136 July 25, 2016

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.
ui32Index is the index of the MAC address slot for which the filter is to be set.
ui32Config sets the filter parameters for the given MAC address.

Description:
This function sets filtering parameters associated with one of the MAC address slots that the
controller supports. This configuration is used when perfect filtering (rather than hash table
filtering) is selected.

Valid values for ui32Index are from 1 to (number of MAC address slots - 1). The number of
supported MAC address slots may be found by calling EMACNumAddrGet(). MAC index 0 is
the local MAC address and does not have filtering parameters associated with it.

The ui32Config parameter determines how the given MAC address is used when filtering in-
coming Ethernet frames. It is comprised of a logical OR of the fields:

EMAC_FILTER_ADDR_ENABLE indicates that this MAC address is enabled and should
be used when performing perfect filtering. If this flag is absent, the MAC address at the
given index is disabled and is not used in filtering.
EMAC_FILTER_SOURCE_ADDR indicates that the MAC address at the given index is
compared to the source address of incoming frames while performing perfect filtering. If
absent, the MAC address is compared against the destination address.
EMAC_FILTER_MASK_BYTE_6 indicates that the MAC should ignore the sixth byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_5 indicates that the MAC should ignore the fifth byte of the
source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_4 indicates that the MAC should ignore the fourth byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_3 indicates that the MAC should ignore the third byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_2 indicates that the MAC should ignore the second byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_1 indicates that the MAC should ignore the first byte of the
source or destination address when filtering.

Returns:
None.

10.2.4.3 EMACAddrGet

Gets one of the MAC addresses stored in the Ethernet controller.

Prototype:
void
EMACAddrGet(uint32_t ui32Base,

uint32_t ui32Index,
uint8_t *pui8MACAddr)

Parameters:
ui32Base is the base address of the controller.
ui32Index is the zero-based index of the MAC address to return.

July 25, 2016 137

Ethernet Controller

pui8MACAddr is the pointer to the location in which to store the array of MAC-48 address
octets.

Description:
This function reads the currently programmed MAC address into the pui8MACAddr buffer. The
ui32Index parameter defines which of the hardware’s MAC addresses to return. The number
of MAC addresses supported by the controller may be queried using a call to EMACNumAddr-
Get(). Index 0 refers to the MAC address of the local node. Other indices are used to define
MAC addresses when filtering incoming packets.

The address is written to the pui8MACAddr array ordered with the first byte to be transmit-
ted in the first array entry. For example, if the address is written in its usual form with the
Organizationally Unique Identifier (OUI) shown first as:

AC-DE-48-00-00-80

the data is returned with 0xAC in the first byte of the array, 0xDE in the second, 0x48 in the
third and so on.

Returns:
None.

10.2.4.4 EMACAddrSet

Sets the MAC address of the Ethernet controller.

Prototype:
void
EMACAddrSet(uint32_t ui32Base,

uint32_t ui32Index,
const uint8_t *pui8MACAddr)

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32Index is the zero-based index of the MAC address to set.
pui8MACAddr is the pointer to the array of MAC-48 address octets.

Description:
This function programs the IEEE-defined MAC-48 address specified in pui8MACAddr into the
Ethernet controller. This address is used by the Ethernet controller for hardware-level filtering
of incoming Ethernet packets (when promiscuous mode is not enabled). Index 0 is used to
hold the local node’s MAC address which is inserted into all transmitted packets.

The controller may support several Ethernet MAC address slots, each of which may be pro-
grammed independently and used to filter incoming packets. The number of MAC addresses
that the hardware supports may be queried using a call to EMACNumAddrGet(). The value
of the ui32Index parameter must lie in the range from 0 to (number of MAC addresses - 1)
inclusive.

The MAC-48 address is defined as 6 octets, illustrated by the following example address. The
numbers are shown in hexadecimal format.

AC-DE-48-00-00-80

In this representation, the first three octets (AC-DE-48) are the Organizationally Unique Iden-
tifier (OUI). This is a number assigned by the IEEE to an organization that requests a block of

138 July 25, 2016

Ethernet Controller

MAC addresses. The last three octets (00-00-80) are a 24-bit number managed by the OUI
owner to uniquely identify a piece of hardware within that organization that is to be connected
to the Ethernet.

In this representation, the octets are transmitted from left to right, with the “AC” octet being
transmitted first and the “80” octet being transmitted last. Within an octet, the bits are transmit-
ted LSB to MSB. For this address, the first bit to be transmitted would be “0”, the LSB of “AC”,
and the last bit to be transmitted would be “1”, the MSB of “80”.

The address passed to this function in the pui8MACAddr array is ordered with the first byte
to be transmitted in the first array entry. For example, the address given above could be
represented using the following array:

uint8_t g_pui8MACAddr[] = { 0xAC, 0xDE, 0x48, 0x00, 0x00, 0x80 };

If the MAC address set by this function is currently enabled, it remains enabled following this
call. Similarly, any filter configured for the MAC address remains unaffected by a change in the
address.

Returns:
None.

10.2.4.5 EMACConfigGet

Returns the Ethernet MAC’s current basic configuration parameters.

Prototype:
void
EMACConfigGet(uint32_t ui32Base,

uint32_t *pui32Config,
uint32_t *pui32Mode,
uint32_t *pui32RxMaxFrameSize)

Parameters:
ui32Base is the base address of the Ethernet controller.
pui32Config points to storage that is written with Ethernet MAC configuration.
pui32Mode points to storage that is written with Ethernet MAC mode information.
pui32RxMaxFrameSize points to storage that is written with the maximum receive frame size.

Description:
This function is called to query the basic operating parameters for the MAC and its DMA en-
gines.

The pui32Config parameter is written with the logical OR of various fields and flags. The first
field describes which MAC address is used during insertion or replacement for all transmitted
frames. Valid options are

EMAC_CONFIG_USE_MACADDR1
EMAC_CONFIG_USE_MACADDR0

The interframe gap between transmitted frames is given using one of the following values:

EMAC_CONFIG_IF_GAP_96BITS
EMAC_CONFIG_IF_GAP_88BITS

July 25, 2016 139

Ethernet Controller

EMAC_CONFIG_IF_GAP_80BITS
EMAC_CONFIG_IF_GAP_72BITS
EMAC_CONFIG_IF_GAP_64BITS
EMAC_CONFIG_IF_GAP_56BITS
EMAC_CONFIG_IF_GAP_48BITS
EMAC_CONFIG_IF_GAP_40BITS

The number of bytes of preamble added to the beginning of every transmitted frame is de-
scribed using one of the following values:

EMAC_CONFIG_7BYTE_PREAMBLE
EMAC_CONFIG_5BYTE_PREAMBLE
EMAC_CONFIG_3BYTE_PREAMBLE

The back-off limit determines the range of the random time that the MAC delays after a collision
and before attempting to retransmit a frame. One of the following values provides the currently
selected limit. In each case the retransmission delay in terms of 512 bit time slots, is the lower
of (2 ∗∗ N) and a random number between 0 and the reported backoff-limit.

EMAC_CONFIG_BO_LIMIT_1024
EMAC_CONFIG_BO_LIMIT_256
EMAC_CONFIG_BO_LIMIT_16
EMAC_CONFIG_BO_LIMIT_2

Handling of insertion or replacement of the source address in all transmitted frames is de-
scribed by one of the following fields:

EMAC_CONFIG_SA_INSERT causes the MAC address (0 or 1 depending on whether
EMAC_CONFIG_USE_MACADDR0 or EMAC_CONFIG_USE_MACADDR1 was speci-
fied) to be inserted into all transmitted frames.
EMAC_CONFIG_SA_REPLACE causes the MAC address to be replaced with the se-
lected address in all transmitted frames.
EMAC_CONFIG_SA_FROM_DESCRIPTOR causes control of source address insertion
or deletion to be controlled by fields in the DMA transmit descriptor, allowing control on a
frame-by-frame basis.

Whether the interface attempts to operate in full- or half-duplex mode is reported by one of the
following flags:

EMAC_CONFIG_FULL_DUPLEX
EMAC_CONFIG_HALF_DUPLEX

The following additional flags may also be included:

EMAC_CONFIG_2K_PACKETS indicates that IEEE802.3as support for 2K packets is en-
abled. When present, the MAC considers all frames up to 2000 bytes in length as nor-
mal packets. When EMAC_CONFIG_JUMBO_ENABLE is not reported, all frames larger
than 2000 bytes are treated as Giant frames. The value of this flag should be ignored if
EMAC_CONFIG_JUMBO_ENABLE is also reported.
EMAC_CONFIG_STRIP_CRC indicates that the 4-byte CRC of all Ethernet type frames
is being stripped and dropped before the frame is forwarded to the application.
EMAC_CONFIG_JABBER_DISABLE indicates that the the jabber timer on the transmitter
is disabled, allowing frames of up to 16384 bytes to be transmitted. If this flag is absent,
the MAC does not allow more than 2048 (or 10240 if EMAC_CONFIG_JUMBO_ENABLE
is reported) bytes to be sent in any one frame.

140 July 25, 2016

Ethernet Controller

EMAC_CONFIG_JUMBO_ENABLE indicates that Jumbo Frames of up to 9018 (or 9022
if using VLAN tagging) are enabled.
EMAC_CONFIG_CS_DISABLE indicates that Carrier Sense is disabled during transmis-
sion when operating in half-duplex mode.
EMAC_CONFIG_100MBPS indicates that the MAC is using 100Mbps signaling to com-
municate with the PHY.
EMAC_CONFIG_RX_OWN_DISABLE indicates that reception of transmitted frames is
disabled when operating in half-duplex mode.
EMAC_CONFIG_LOOPBACK indicates that internal loopback is enabled.
EMAC_CONFIG_CHECKSUM_OFFLOAD indicates that IPv4 header checksum checking
and IPv4 or IPv6 TCP, UPD or ICMP payload checksum checking is enabled. The results
of the checksum calculations are reported via status fields in the DMA receive descriptors.
EMAC_CONFIG_RETRY_DISABLE indicates that retransmission is disabled in cases
where half-duplex mode is in use and a collision occurs. This condition causes the current
frame to be ignored and a frame abort to be reported in the transmit frame status.
EMAC_CONFIG_AUTO_CRC_STRIPPING indicates that the last 4 bytes (frame check
sequence) from all Ether type frames are being stripped before frames are forwarded to
the application.
EMAC_CONFIG_DEFERRAL_CHK_ENABLE indicates that transmit deferral checking is
disabled in half-duplex mode. When enabled, the transmitter reports an error if it is unable
to transmit a frame for more than 24288 bit times (or 155680 bit times in Jumbo frame
mode) due to an active carrier sense signal on the MII.
EMAC_CONFIG_TX_ENABLED indicates that the MAC transmitter is currently enabled.
EMAC_CONFIG_RX_ENABLED indicates that the MAC receiver is currently enabled.

The pui32ModeFlags parameter is written with operating parameters related to the internal
MAC FIFOs. It comprises a logical OR of the following fields. The first field reports the transmit
FIFO threshold. Transmission of a frame begins when this amount of data or a full frame exists
in the transmit FIFO. This field should be ignored if EMAC_MODE_TX_STORE_FORWARD is
also reported. One of the following values is reported:

EMAC_MODE_TX_THRESHOLD_16_BYTES
EMAC_MODE_TX_THRESHOLD_24_BYTES
EMAC_MODE_TX_THRESHOLD_32_BYTES
EMAC_MODE_TX_THRESHOLD_40_BYTES
EMAC_MODE_TX_THRESHOLD_64_BYTES
EMAC_MODE_TX_THRESHOLD_128_BYTES
EMAC_MODE_TX_THRESHOLD_192_BYTES
EMAC_MODE_TX_THRESHOLD_256_BYTES

The second field reports the receive FIFO threshold. DMA transfers of received data begin
either when the receive FIFO contains a full frame or this number of bytes. This field should be
ignored if EMAC_MODE_RX_STORE_FORWARD is included. One of the following values is
reported:

EMAC_MODE_RX_THRESHOLD_64_BYTES
EMAC_MODE_RX_THRESHOLD_32_BYTES
EMAC_MODE_RX_THRESHOLD_96_BYTES
EMAC_MODE_RX_THRESHOLD_128_BYTES

The following additional flags may be included:

July 25, 2016 141

Ethernet Controller

EMAC_MODE_KEEP_BAD_CRC indicates that frames with TCP/IP checksum errors are
being forwarded to the application if those frames do not have any errors (including FCS
errors) in the Ethernet framing. In these cases, the frames have errors only in the pay-
load. If this flag is not reported, all frames with any detected error are discarded unless
EMAC_MODE_RX_ERROR_FRAMES is also reported.
EMAC_MODE_RX_STORE_FORWARD indicates that the receive DMA is configured to
read frames from the FIFO only after the complete frame has been written to it. If this
mode is enabled, the receive threshold is ignored.
EMAC_MODE_RX_FLUSH_DISABLE indicates that the flushing of received frames is
disabled in cases where receive descriptors or buffers are unavailable.
EMAC_MODE_TX_STORE_FORWARD indicates that the transmitter is configured to
transmit a frame only after the whole frame has been written to the transmit FIFO. If this
mode is enabled, the transmit threshold is ignored.
EMAC_MODE_RX_ERROR_FRAMES indicates that all frames other than runt error
frames are being forwarded to the receive DMA regardless of any errors detected in the
frames.
EMAC_MODE_RX_UNDERSIZED_FRAMES indicates that undersized frames (frames
shorter than 64 bytes but with no errors) are being forwarded to the application. If this
option is not reported, all undersized frames are dropped by the receiver unless it has
already started transferring them to the receive FIFO due to the receive threshold setting.
EMAC_MODE_OPERATE_2ND_FRAME indicates that the transmit DMA is configured
to operate on a second frame while waiting for the previous frame to be transmitted and
associated status and timestamps to be reported. If absent, the transmit DMA works on a
single frame at any one time, waiting for that frame to be transmitted and its status to be
received before moving on to the next frame.
EMAC_MODE_TX_DMA_ENABLED indicates that the transmit DMA engine is currently
enabled.
EMAC_MODE_RX_DMA_ENABLED indicates that the receive DMA engine is currently
enabled.

The pui32RxMaxFrameSize is written with the currently configured maximum receive packet
size. Packets larger than this are flagged as being in error.

Returns:
None.

10.2.4.6 EMACConfigSet

Configures basic Ethernet MAC operation parameters.

Prototype:
void
EMACConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32ModeFlags,
uint32_t ui32RxMaxFrameSize)

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32Config provides various flags and values configuring the MAC.

142 July 25, 2016

Ethernet Controller

ui32ModeFlags provides configuration relating to the transmit and receive DMA engines.
ui32RxMaxFrameSize sets the maximum receive frame size above which an error is reported.

Description:
This function is called to configure basic operating parameters for the MAC and its DMA en-
gines.

The ui32Config parameter is the logical OR of various fields and flags. The first field determines
which MAC address is used during insertion or replacement for all transmitted frames. Valid
options are

EMAC_CONFIG_USE_MACADDR1 and
EMAC_CONFIG_USE_MACADDR0

The interframe gap between transmitted frames is controlled using one of the following values:

EMAC_CONFIG_IF_GAP_96BITS
EMAC_CONFIG_IF_GAP_88BITS
EMAC_CONFIG_IF_GAP_80BITS
EMAC_CONFIG_IF_GAP_72BITS
EMAC_CONFIG_IF_GAP_64BITS
EMAC_CONFIG_IF_GAP_56BITS
EMAC_CONFIG_IF_GAP_48BITS
EMAC_CONFIG_IF_GAP_40BITS

The number of bytes of preamble added to the beginning of every transmitted frame is selected
using one of the following values:

EMAC_CONFIG_7BYTE_PREAMBLE
EMAC_CONFIG_5BYTE_PREAMBLE
EMAC_CONFIG_3BYTE_PREAMBLE

The back-off limit determines the range of the random time that the MAC delays after a collision
and before attempting to retransmit a frame. One of the following values must be used to select
this limit. In each case, the retransmission delay in terms of 512 bit time slots, is the lower of
(2 ∗∗ N) and a random number between 0 and the selected backoff-limit.

EMAC_CONFIG_BO_LIMIT_1024
EMAC_CONFIG_BO_LIMIT_256
EMAC_CONFIG_BO_LIMIT_16
EMAC_CONFIG_BO_LIMIT_2

Control over insertion or replacement of the source address in all transmitted frames is provided
by using one of the following fields:

EMAC_CONFIG_SA_INSERT causes the MAC address (0 or 1 depending on whether
EMAC_CONFIG_USE_MACADDR0 or EMAC_CONFIG_USE_MACADDR1 was speci-
fied) to be inserted into all transmitted frames.
EMAC_CONFIG_SA_REPLACE causes the MAC address to be replaced with the se-
lected address in all transmitted frames.
EMAC_CONFIG_SA_FROM_DESCRIPTOR causes control of source address insertion
or deletion to be controlled by fields in the DMA transmit descriptor, allowing control on a
frame-by-frame basis.

July 25, 2016 143

Ethernet Controller

Whether the interface attempts to operate in full- or half-duplex mode is controlled by one of
the following flags:

EMAC_CONFIG_FULL_DUPLEX
EMAC_CONFIG_HALF_DUPLEX

The following additional flags may also be specified:

EMAC_CONFIG_2K_PACKETS enables IEEE802.3as support for 2K packets. When
specified, the MAC considers all frames up to 2000 bytes in length as nor-
mal packets. When EMAC_CONFIG_JUMBO_ENABLE is not specified, all frames
larger than 2000 bytes are treated as Giant frames. This flag is ignored if
EMAC_CONFIG_JUMBO_ENABLE is specified.
EMAC_CONFIG_STRIP_CRC causes the 4-byte CRC of all Ethernet type frames to be
stripped and dropped before the frame is forwarded to the application.
EMAC_CONFIG_JABBER_DISABLE disables the jabber timer on the transmitter and en-
ables frames of up to 16384 bytes to be transmitted. If this flag is absent, the MAC does
not allow more than 2048 (or 10240 if EMAC_CONFIG_JUMBO_ENABLE is specified)
bytes to be sent in any one frame.
EMAC_CONFIG_JUMBO_ENABLE enables Jumbo Frames, allowing frames of up to
9018 (or 9022 if using VLAN tagging) to be handled without reporting giant frame errors.
EMAC_CONFIG_100MBPS forces the MAC to communicate with the PHY using 100Mbps
signaling. If this option is not specified, the MAC uses 10Mbps signaling. This speed set-
ting is important when using an external RMII PHY where the selected rate must match the
PHY’s setting which may have been made as a result of auto-negotiation. When using the
internal PHY or an external MII PHY, the signaling rate is controlled by the PHY- provided
transmit and receive clocks.
EMAC_CONFIG_CS_DISABLE disables Carrier Sense during transmission when operat-
ing in half-duplex mode.
EMAC_CONFIG_RX_OWN_DISABLE disables reception of transmitted frames when op-
erating in half-duplex mode.
EMAC_CONFIG_LOOPBACK enables internal loopback.
EMAC_CONFIG_CHECKSUM_OFFLOAD enables IPv4 header checksum checking and
IPv4 or IPv6 TCP, UPD or ICMP payload checksum checking. The results of the checksum
calculations are reported via status fields in the DMA receive descriptors.
EMAC_CONFIG_RETRY_DISABLE disables retransmission in cases where half-duplex
mode is in use and a collision occurs. This condition causes the current frame to be
ignored and a frame abort to be reported in the transmit frame status.
EMAC_CONFIG_AUTO_CRC_STRIPPING strips the last 4 bytes (frame check sequence)
from all Ether type frames before forwarding the frames to the application.
EMAC_CONFIG_DEFERRAL_CHK_ENABLE enables transmit deferral checking in half-
duplex mode. When enabled, the transmitter reports an error if it is unable to transmit a
frame for more than 24288 bit times (or 155680 bit times in Jumbo frame mode) due to an
active carrier sense signal on the MII.

The ui32ModeFlags parameter sets operating parameters related to the internal MAC FIFOs.
It comprises a logical OR of the following fields. The first selects the transmit FIFO threshold.
Transmission of a frame begins when this amount of data or a full frame exists in the transmit
FIFO. This field is ignored if EMAC_MODE_TX_STORE_FORWARD is included. One of the
following must be specified:

EMAC_MODE_TX_THRESHOLD_16_BYTES

144 July 25, 2016

Ethernet Controller

EMAC_MODE_TX_THRESHOLD_24_BYTES
EMAC_MODE_TX_THRESHOLD_32_BYTES
EMAC_MODE_TX_THRESHOLD_40_BYTES
EMAC_MODE_TX_THRESHOLD_64_BYTES
EMAC_MODE_TX_THRESHOLD_128_BYTES
EMAC_MODE_TX_THRESHOLD_192_BYTES
EMAC_MODE_TX_THRESHOLD_256_BYTES

The second field controls the receive FIFO threshold. DMA transfers of received data begin
either when the receive FIFO contains a full frame or this number of bytes. This field is ignored
if EMAC_MODE_RX_STORE_FORWARD is included. One of the following must be specified:

EMAC_MODE_RX_THRESHOLD_64_BYTES
EMAC_MODE_RX_THRESHOLD_32_BYTES
EMAC_MODE_RX_THRESHOLD_96_BYTES
EMAC_MODE_RX_THRESHOLD_128_BYTES

The following additional flags may be specified:

EMAC_MODE_KEEP_BAD_CRC causes frames with TCP/IP checksum errors to be for-
warded to the application if those frames do not have any errors (including FCS er-
rors) in the Ethernet framing. In these cases, the frames have errors only in the pay-
load. If this flag is not specified, all frames with any detected error are discarded unless
EMAC_MODE_RX_ERROR_FRAMES is also specified.
EMAC_MODE_RX_STORE_FORWARD causes the receive DMA to read frames from the
FIFO only after the complete frame has been written to it. If this mode is enabled, the
receive threshold is ignored.
EMAC_MODE_RX_FLUSH_DISABLE disables the flushing of received frames in cases
where receive descriptors or buffers are unavailable.
EMAC_MODE_TX_STORE_FORWARD causes the transmitter to start transmitting a
frame only after the whole frame has been written to the transmit FIFO. If this mode is
enabled, the transmit threshold is ignored.
EMAC_MODE_RX_ERROR_FRAMES causes all frames other than runt error frames to
be forwarded to the receive DMA regardless of any errors detected in the frames.
EMAC_MODE_RX_UNDERSIZED_FRAMES causes undersized frames (frames shorter
than 64 bytes but with no errors) to the application. If this option is not selected, all under-
sized frames are dropped by the receiver unless it has already started transferring them to
the receive FIFO due to the receive threshold setting.
EMAC_MODE_OPERATE_2ND_FRAME enables the transmit DMA to operate on a sec-
ond frame while waiting for the previous frame to be transmitted and associated status and
timestamps to be reported. If absent, the transmit DMA works on a single frame at any one
time, waiting for that frame to be transmitted and its status to be received before moving
on to the next frame.

The ui32RxMaxFrameSize parameter may be used to override the default setting for the maxi-
mum number of bytes that can be received in a frame before that frame is flagged as being in
error. If the parameter is set to 0, the default hardware settings are applied. If non-zero, any
frame received which is longer than the ui32RxMaxFrameSize, regardless of whether the MAC
is configured for normal or Jumbo frame operation, is flagged as an error.

Returns:
None.

July 25, 2016 145

Ethernet Controller

10.2.4.7 EMACDMAStateGet

Returns the current states of the Ethernet MAC transmit and receive DMA engines.

Prototype:
uint32_t
EMACDMAStateGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to query the current states of the transmit and receive DMA engines.
The return value contains two fields, one providing the transmit state and the other the receive
state. Macros EMAC_TX_DMA_STATE() and EMAC_RX_DMA_STATE() may be used to ex-
tract these fields from the returned value. Alternatively, masks EMAC_DMA_TXSTAT_MASK
and EMAC_DMA_RXSTAT_MASK may be used directly to mask out the individual states from
the returned value.

Returns:
Returns the states of the transmit and receive DMA engines. These states are ORed together
into a single word containing one of:

EMAC_DMA_TXSTAT_STOPPED indicating that the transmit engine is stopped.

EMAC_DMA_TXSTAT_RUN_FETCH_DESC indicating that the transmit engine is fetching the
next descriptor.

EMAC_DMA_TXSTAT_RUN_WAIT_STATUS indicating that the transmit engine is waiting for
status from the MAC.

EMAC_DMA_TXSTAT_RUN_READING indicating that the transmit engine is currently trans-
ferring data from memory to the MAC transmit FIFO.

EMAC_DMA_TXSTAT_RUN_CLOSE_DESC indicating that the transmit engine is closing the
descriptor after transmission of the buffer data.

EMAC_DMA_TXSTAT_TS_WRITE indicating that the transmit engine is currently writing
timestamp information to the descriptor.

EMAC_DMA_TXSTAT_SUSPENDED indicating that the transmit engine is suspended due to
the next descriptor being unavailable (owned by the host) or a transmit buffer underflow.

and one of:

EMAC_DMA_RXSTAT_STOPPED indicating that the receive engine is stopped.

EMAC_DMA_RXSTAT_RUN_FETCH_DESC indicating that the receive engine is fetching the
next descriptor.

EMAC_DMA_RXSTAT_RUN_WAIT_PACKET indicating that the receive engine is waiting for
the next packet.

EMAC_DMA_RXSTAT_SUSPENDED indicating that the receive engine is suspended due to
the next descriptor being unavailable.

EMAC_DMA_RXSTAT_RUN_CLOSE_DESC indicating that the receive engine is closing the
descriptor after receiving a buffer of data.

EMAC_DMA_RXSTAT_TS_WRITE indicating that the transmit engine is currently writing
timestamp information to the descriptor.

146 July 25, 2016

Ethernet Controller

EMAC_DMA_RXSTAT_RUN_RECEIVING indicating that the receive engine is currently trans-
ferring data from the MAC receive FIFO to memory.

Additionally, a DMA bus error may be signaled using EMAC_DMA_ERROR. If this flag is present,
the source of the error is identified using one of the following values which may be extracted from
the return value using EMAC_DMA_ERR_MASK:

EMAC_DMA_ERR_RX_DATA_WRITE indicates that an error occurred when writing received
data to memory.

EMAC_DMA_ERR_TX_DATA_READ indicates that an error occurred when reading data from
memory for transmission.

EMAC_DMA_ERR_RX_DESC_WRITE indicates that an error occurred when writing to the
receive descriptor.

EMAC_DMA_ERR_TX_DESC_WRITE indicates that an error occurred when writing to the
transmit descriptor.

EMAC_DMA_ERR_RX_DESC_READ indicates that an error occurred when reading the re-
ceive descriptor.

EMAC_DMA_ERR_TX_DESC_READ indicates that an error occurred when reading the
transmit descriptor.

10.2.4.8 EMACFrameFilterGet

Returns the current Ethernet frame filtering settings.

Prototype:
uint32_t
EMACFrameFilterGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to retrieve the frame filtering configuration set using a prior call to
EMACFrameFilterSet().

Returns:
Returns a value comprising the logical OR of various flags indicating the frame filtering options
in use. Possible flags are:

EMAC_FRMFILTER_RX_ALL indicates that the MAC to is configured to pass all received
frames regardless of whether or not they pass any address filter that is configured. The receive
status word in the relevant DMA descriptor is updated to indicate whether the configured filter
passed or failed for the frame.

EMAC_FRMFILTER_VLAN indicates that the MAC is configured to drop any frames which do
not pass the VLAN tag comparison.

EMAC_FRMFILTER_HASH_AND_PERFECT indicates that the MAC is configured to
pass frames if they match either the hash filter or the perfect filter. If this flag
is absent, frames passing based on the result of a single filter, the perfect filter
if EMAC_FRMFILTER_HASH_MULTICAST or EMAC_FRMFILTER_HASH_UNICAST are
clear or the hash filter otherwise.

July 25, 2016 147

Ethernet Controller

EMAC_FRMFILTER_SADDR indicates that the MAC is configured to drop received frames
when the source address field in the frame does not match the values programmed into the
enabled SA registers.
EMAC_FRMFILTER_INV_SADDR enables inverse source address filtering. When this option
is specified, frames for which the SA does not match the SA registers are marked as passing
the source address filter.
EMAC_FRMFILTER_BROADCAST indicates that the MAC is configured to discard all incom-
ing broadcast frames.
EMAC_FRMFILTER_PASS_MULTICAST indicates that the MAC is configured to pass all in-
coming frames with multicast destinations addresses.
EMAC_FRMFILTER_INV_DADDR indicates that the sense of the destination address filtering
for both unicast and multicast frames is inverted.
EMAC_FRMFILTER_HASH_MULTICAST indicates that destination address filtering of re-
ceived multicast frames is enabled using the hash table. If absent, perfect destination address
filtering is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this
flag indicates that the hash filter should be used for incoming multicast packets along with the
perfect filter.
EMAC_FRMFILTER_HASH_UNICAST indicates that destination address filtering of received
unicast frames is enabled using the hash table. If absent, perfect destination address filtering
is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming unicast packets along with the perfect
filter.
EMAC_FRMFILTER_PROMISCUOUS indicates that the MAC is configured to operate in
promiscuous mode where all received frames are passed to the application and the SA and
DA filter status bits of the descriptor receive status word are always cleared.

Control frame filtering configuration is indicated by one of the following values which may be ex-
tracted from the returned value using the mask EMAC_FRMFILTER_PASS_MASK:

EMAC_FRMFILTER_PASS_NO_CTRL prevents any control frame from reaching the applica-
tion.
EMAC_FRMFILTER_PASS_NO_PAUSE passes all control frames other than PAUSE even if
they fail the configured address filter.
EMAC_FRMFILTER_PASS_ALL_CTRL passes all control frames, including PAUSE even if
they fail the configured address filter.
EMAC_FRMFILTER_PASS_ADDR_CTRL passes all control frames only if they pass the con-
figured address filter.

10.2.4.9 EMACFrameFilterSet

Sets options related to Ethernet frame filtering.

Prototype:
void
EMACFrameFilterSet(uint32_t ui32Base,

uint32_t ui32FilterOpts)

Parameters:
ui32Base is the base address of the controller.

148 July 25, 2016

Ethernet Controller

ui32FilterOpts is a logical OR of flags defining the required MAC address filtering options.

Description:
This function allows various filtering options to be defined and allows an application to control
which frames are received based on various criteria related to the frame source and destination
MAC addresses or VLAN tagging.

The ui32FilterOpts parameter is a logical OR of any of the following flags:

EMAC_FRMFILTER_RX_ALL configures the MAC to pass all received frames regardless
of whether or not they pass any address filter that is configured. The receive status word
in the relevant DMA descriptor is updated to indicate whether the configured filter passed
or failed for the frame.
EMAC_FRMFILTER_VLAN configures the MAC to drop any frames that do not pass the
VLAN tag comparison.
EMAC_FRMFILTER_HASH_AND_PERFECT configures the MAC to filter frames
based on both any perfect filters set and the hash filter if enabled using
EMAC_FRMFILTER_HASH_UNICAST or EMAC_FRMFILTER_HASH_MULTICAST. In
this case, only if both filters fail is the packet rejected. If this option is absent, only one
of the filter types is used, as controlled by EMAC_FRMFILTER_HASH_UNICAST and
EMAC_FRMFILTER_HASH_MULTICAST for unicast and multicast frames respectively.
EMAC_FRMFILTER_SADDR configures the MAC to drop received frames when the
source address field in the frame does not match the values programmed into the enabled
SA registers.
EMAC_FRMFILTER_INV_SADDR enables inverse source address filtering. When this
option is specified, frames for which the SA does not match the SA registers are marked
as passing the source address filter.
EMAC_FRMFILTER_BROADCAST configures the MAC to discard all incoming broadcast
frames.
EMAC_FRMFILTER_PASS_MULTICAST configures the MAC to pass all incoming frames
with multicast destinations addresses.
EMAC_FRMFILTER_INV_DADDR inverts the sense of the destination address filtering for
both unicast and multicast frames.
EMAC_FRMFILTER_HASH_MULTICAST enables destination address filtering of re-
ceived multicast frames using the hash table. If absent, perfect destination address filtering
is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming multicast packets along with the
perfect filter.
EMAC_FRMFILTER_HASH_UNICAST enables destination address filtering of received
unicast frames using the hash table. If absent, perfect destination address filtering is
used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming unicast packets along with the
perfect filter.
EMAC_FRMFILTER_PROMISCUOUS configures the MAC to operate in promiscuous
mode where all received frames are passed to the application and the SA and DA filter
status bits of the descriptor receive status word are always cleared.

Control frame filtering may be configured by ORing one of the following values into
ui32FilterOpts:

EMAC_FRMFILTER_PASS_NO_CTRL prevents any control frame from reaching the ap-
plication.

July 25, 2016 149

Ethernet Controller

EMAC_FRMFILTER_PASS_NO_PAUSE passes all control frames other than PAUSE
even if they fail the configured address filter.
EMAC_FRMFILTER_PASS_ALL_CTRL passes all control frames, including PAUSE even
if they fail the configured address filter.
EMAC_FRMFILTER_PASS_ADDR_CTRL passes all control frames only if they pass the
configured address filter.

Returns:
None.

10.2.4.10 EMACHashFilterBitCalculate

Returns the bit number to set in the MAC hash filter corresponding to a given MAC address.

Prototype:
uint32_t
EMACHashFilterBitCalculate(uint8_t *pui8MACAddr)

Parameters:
pui8MACAddr points to a buffer containing the 6-byte MAC address for which the hash filter

bit is to be determined.

Description:
This function may be used to determine which bit in the MAC address hash filter to set to de-
scribe a given 6-byte MAC address. The returned value is a 6-bit number where bit 5 indicates
which of the two hash table words is affected and the bottom 5 bits indicate the bit number to
set within that word. For example, if 0x22 (100010b) is returned, this indicates that bit 2 of word
1 (ui32HashHi as passed to EMACHashFilterSet()) must be set to describe the passed MAC
address.

Returns:
Returns the bit number to set in the MAC hash table to describe the passed MAC address.

10.2.4.11 EMACHashFilterGet

Returns the current MAC address hash filter table.

Prototype:
void
EMACHashFilterGet(uint32_t ui32Base,

uint32_t *pui32HashHi,
uint32_t *pui32HashLo)

Parameters:
ui32Base is the base address of the controller.
pui32HashHi points to storage to be written with the upper 32 bits of the current 64-bit hash

filter table.
pui32HashLo points to storage to be written with the lower 32 bits of the current 64-bit hash

filter table.

150 July 25, 2016

Ethernet Controller

Description:
This function may be used to retrieve the current 64-bit hash filter table from the MAC prior to
making changes and setting the new hash filter via a call to EMACHashFilterSet().

Hash table filtering allows many different MAC addresses to be filtered simultaneously at the
cost of some false-positive results in the form of packets passing the filter when their MAC
address was not one of those required. A CRC of the packet source or destination MAC
address is calculated and the bottom 6 bits are used as a bit index into the 64-bit hash filter
table. If the bit in the hash table is set, the filter is considered to have passed. If the bit is
clear, the filter fails and the packet is rejected (assuming normal rather than inverse filtering is
configured).

Returns:
None.

10.2.4.12 EMACHashFilterSet

Sets the MAC address hash filter table.

Prototype:
void
EMACHashFilterSet(uint32_t ui32Base,

uint32_t ui32HashHi,
uint32_t ui32HashLo)

Parameters:
ui32Base is the base address of the controller.
ui32HashHi is the upper 32 bits of the current 64-bit hash filter table to set.
ui32HashLo is the lower 32 bits of the current 64-bit hash filter table to set.

Description:
This function may be used to set the current 64-bit hash filter table used by the MAC to
filter incoming packets when hash filtering is enabled. Hash filtering is enabled by pass-
ing EMAC_FRMFILTER_HASH_UNICAST and/or EMAC_FRMFILTER_HASH_MULTICAST
in the ui32FilterOpts parameter to EMACFrameFilterSet(). The current hash filter may be re-
trieved by calling EMACHashFilterGet().

Hash table filtering allows many different MAC addresses to be filtered simultaneously at the
cost of some false-positive results (in the form of packets passing the filter when their MAC
address was not one of those required). A CRC of the packet source or destination MAC
address is calculated and the bottom 6 bits are used as a bit index into the 64-bit hash filter
table. If the bit in the hash table is set, the filter is considered to have passed. If the bit is
clear, the filter fails and the packet is rejected (assuming normal rather than inverse filtering is
configured).

Returns:
None.

10.2.4.13 EMACInit

Initializes the Ethernet MAC and sets bus-related DMA parameters.

July 25, 2016 151

Ethernet Controller

Prototype:
void
EMACInit(uint32_t ui32Base,

uint32_t ui32SysClk,
uint32_t ui32BusConfig,
uint32_t ui32RxBurst,
uint32_t ui32TxBurst,
uint32_t ui32DescSkipSize)

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32SysClk is the current system clock frequency in Hertz.
ui32BusConfig defines the bus operating mode for the Ethernet MAC DMA controller.
ui32RxBurst is the maximum receive burst size in words.
ui32TxBurst is the maximum transmit burst size in words.
ui32DescSkipSize is the number of 32-bit words to skip between two unchained DMA de-

scriptors. Values in the range 0 to 31 are valid.

Description:
This function sets bus-related parameters for the Ethernet MAC DMA engines. It must be
called after EMACPHYConfigSet() and called again after any subsequent call to EMACPHY-
ConfigSet().

The ui32BusConfig parameter is the logical OR of various fields. The first sets the DMA chan-
nel priority weight:

EMAC_BCONFIG_DMA_PRIO_WEIGHT_1
EMAC_BCONFIG_DMA_PRIO_WEIGHT_2
EMAC_BCONFIG_DMA_PRIO_WEIGHT_3
EMAC_BCONFIG_DMA_PRIO_WEIGHT_4

The second field sets the receive and transmit priorities used when arbitrating between
the Rx and Tx DMA. The priorities are Rx:Tx unless EMAC_BCONFIG_TX_PRIORITY is
also specified, in which case they become Tx:Rx. The priority provided here is ignored if
EMAC_BCONFIG_PRIORITY_FIXED is specified.

EMAC_BCONFIG_PRIORITY_1_1
EMAC_BCONFIG_PRIORITY_2_1
EMAC_BCONFIG_PRIORITY_3_1
EMAC_BCONFIG_PRIORITY_4_1

The following additional flags may also be defined:

EMAC_BCONFIG_TX_PRIORITY indicates that the transmit DMA should be higher pri-
ority in all arbitration for the system-side bus. If this is not defined, the receive DMA has
higher priority.
EMAC_BCONFIG_ADDR_ALIGNED works in tandem with
EMAC_BCONFIG_FIXED_BURST to control address alignment of AHB bursts. When
both flags are specified, all bursts are aligned to the start address least significant bits.
If EMAC_BCONFIG_FIXED_BURST is not specified, the first burst is unaligned but
subsequent bursts are aligned to the address.
EMAC_BCONFIG_ALT_DESCRIPTORS indicates that the DMA engine should use the
alternate descriptor format as defined in type tEMACDMADescriptor. If absent, the ba-
sic descriptor type is used. Alternate descriptors are required if using IEEE 1588-2008

152 July 25, 2016

Ethernet Controller

advanced timestamping, VLAN or TCP/UDP/ICMP CRC insertion features. Note that, for
clarity, emac.h does not contain type definitions for the basic descriptor type. Please see
the part datasheet for information on basic descriptor structures.
EMAC_BCONFIG_PRIORITY_FIXED indicates that a fixed priority scheme
should be employed when arbitrating between the transmit and receive DMA
for system-side bus access. In this case, the receive channel always has pri-
ority unless EMAC_BCONFIG_TX_PRIORITY is set, in which case the trans-
mit channel has priority. If EMAC_BCONFIG_PRIORITY_FIXED is not speci-
fied, a weighted round-robin arbitration scheme is used with the weighting de-
fined using EMAC_BCONFIG_PRIORITY_1_1, EMAC_BCONFIG_PRIORITY_2_1,
EMAC_BCONFIG_PRIORITY_3_1 or EMAC_BCONFIG_PRIORITY_4_1, and
EMAC_BCONFIG_TX_PRIORITY.
EMAC_BCONFIG_FIXED_BURST indicates that fixed burst transfers should be used.
EMAC_BCONFIG_MIXED_BURST indicates that the DMA engine should use mixed burst
types depending on the length of data to be transferred across the system bus.

The ui32RxBurst and ui32TxBurst parameters indicate the maximum number of words that the
relevant DMA should transfer in a single transaction. Valid values are 1, 2, 4, 8, 16 and 32.
Any other value results in undefined behavior.

The ui32DescSkipSize parameter is used when the descriptor lists are using ring mode (where
descriptors are contiguous in memory with the last descriptor marked with the END_OF_RING
flag) rather than chained mode (where each descriptor includes a field that points to the
next descriptor in the list). In ring mode, the hardware uses the ui32DescSkipSize to skip
past any application-defined fields after the end of the hardware- defined descriptor fields.
The parameter value indicates the number of 32-bit words to skip after the last field of the
hardware-defined descriptor to get to the first field of the next descriptor. When using arrays of
either the tEMACDMADescriptor or tEMACAltDMADescriptor types defined for this driver,
ui32DescSkipSize must be set to 1 to skip the pvNext pointer added to the end of each of these
structures. Applications may modify these structure definitions to include their own application-
specific data and modify ui32DescSkipSize appropriately if desired.

Returns:
None.

10.2.4.14 EMACIntClear

Clears individual Ethernet MAC interrupt sources.

Prototype:
void
EMACIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the Ethernet MAC.
ui32IntFlags is the bit mask of the interrupt sources to be cleared.

Description:
This function disables the indicated Ethernet MAC interrupt sources.

The ui32IntFlags parameter is the logical OR of any of the following:

July 25, 2016 153

Ethernet Controller

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable, disable and clear particular notifi-
cations.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.
EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition
occurs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode)
and causes the transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
EMACTxDMAPollDemand().
EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are
cleared automatically by the driver if any of their constituent sources are cleared. Applications
do not need to explicitly clear these bits.

Returns:
None.

10.2.4.15 EMACIntDisable

Disables individual Ethernet MAC interrupt sources.

Prototype:
void
EMACIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

154 July 25, 2016

Ethernet Controller

Parameters:
ui32Base is the base address of the Ethernet MAC.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated Ethernet MAC interrupt sources.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable and disable particular notifications.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.
EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition
occurs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode)
and causes the transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
EMACTxDMAPollDemand().
EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.
EMAC_INT_TIMESTAMP indicates that an interrupt from the timestamp module has oc-
curred. This precise source of the interrupt can be determined by calling EMACTimes-
tampIntStatus(), which also clears this bit.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are
disabled automatically by the driver if none of their constituent sources are enabled. Appli-
cations do not need to explicitly disable these bits.

Note:
Timestamp-related interrupts from the IEEE 1588 module must be disabled independently by
using a call to EMACTimestampTargetIntDisable().

July 25, 2016 155

Ethernet Controller

Returns:
None.

10.2.4.16 EMACIntEnable

Enables individual Ethernet MAC interrupt sources.

Prototype:
void
EMACIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the Ethernet MAC.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated Ethernet MAC interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable and disable particular notifications.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.
EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition
occurs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode)
and causes the transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
EMACTxDMAPollDemand().

156 July 25, 2016

Ethernet Controller

EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are en-
abled automatically by the driver if any of their constituent sources are enabled. Applications
do not need to explicitly enable these bits.

Note:
Timestamp-related interrupts from the IEEE 1588 module must be enabled independently by
using a call to EMACTimestampTargetIntEnable().

Returns:
None.

10.2.4.17 EMACIntRegister

Registers an interrupt handler for an Ethernet interrupt.

Prototype:
void
EMACIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the controller.
pfnHandler is a pointer to the function to be called when the enabled Ethernet interrupts occur.

Description:
This function sets the handler to be called when the Ethernet interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific Ethernet interrupts must be
enabled via EMACIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

10.2.4.18 EMACIntStatus

Gets the current Ethernet MAC interrupt status.

Prototype:
uint32_t
EMACIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the Ethernet MAC.

July 25, 2016 157

Ethernet Controller

bMasked is true to return the masked interrupt status or false to return the unmasked status.

Description:
This function returns the interrupt status for the Ethernet MAC. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status as the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY interrupt has occurred. Software must read the rele-
vant PHY interrupt status register to determine the cause.

EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer of
a packet.

EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled. The cause of the error can be determined by calling EMACDMAS-
tateGet().

EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully written
from memory into the MAC transmit FIFO.

EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes (of
10240 bytes in Jumbo Frame mode) was received.

EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped state.

EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPollDemand().

EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.

EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow during
transmission. The transmit process is suspended.

EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during reception.

EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition oc-
curs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode) and
causes the transmit process to abort and enter the Stopped state.

EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s trans-
mit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmission is
suspended and can be resumed by changing the descriptor ownership and calling EMAC-
TxDMAPollDemand().

EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.

EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

EMAC_INT_NORMAL_INT is a summary interrupt comprising the logical OR of the masked
state of EMAC_INT_TRANSMIT, EMAC_INT_RECEIVE, EMAC_INT_TX_NO_BUFFER and
EMAC_INT_EARLY_RECEIVE.

EMAC_INT_ABNORMAL_INT is a summary interrupt comprising
the logical OR of the masked state of EMAC_INT_TX_STOPPED,
EMAC_INT_TX_JABBER, EMAC_INT_RX_OVERFLOW, EMAC_INT_TX_UNDERFLOW,
EMAC_INT_RX_NO_BUFFER, EMAC_INT_RX_STOPPED, EMAC_INT_RX_WATCHDOG,
EMAC_INT_EARLY_TRANSMIT and EMAC_INT_BUS_ERROR.

158 July 25, 2016

Ethernet Controller

10.2.4.19 EMACIntUnregister

Unregisters an interrupt handler for an Ethernet interrupt.

Prototype:
void
EMACIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function unregisters the interrupt handler. This function disables the global interrupt in the
interrupt controller so that the interrupt handler is no longer called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

10.2.4.20 EMACNumAddrGet

Returns the number of MAC addresses supported by the Ethernet controller.

Prototype:
uint32_t
EMACNumAddrGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function may be used to determine the number of MAC addresses that the given controller
supports. MAC address slots may be used when performing perfect (rather than hash table)
filtering of packets.

Returns:
Returns the number of supported MAC addresses.

10.2.4.21 EMACPHYConfigSet

Selects the Ethernet PHY in use.

Prototype:
void
EMACPHYConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the Ethernet controller.

July 25, 2016 159

Ethernet Controller

ui32Config selects the PHY in use and, when using the internal PHY, allows various various
PHY parameters to be configured.

Description:
This function must be called prior to EMACInit() and EMACConfigSet() to select the Ethernet
PHY to be used. If the internal PHY is selected, the function also allows configuration of
various PHY parameters. Note that the Ethernet MAC is reset during this function call because
parameters used by this function are latched by the hardware only on a MAC reset. The call
sequence to select and configure the PHY, therefore, must be as follows:

// Enable and reset the MAC.
SysCtlPeripheralEnable(SYSCTL_PERIPH_EMAC0);
SysCtlPeripheralReset(SYSCTL_PERIPH_EMAC0);
if(<using internal PHY>)
{

// Enable and reset the internal PHY.
SysCtlPeripheralEnable(SYSCTL_PERIPH_EPHY0);
SysCtlPeripheralReset(SYSCTL_PERIPH_EPHY0);

}

// Ensure the MAC is completed its reset.
while(!MAP_SysCtlPeripheralReady(SYSCTL_PERIPH_EMAC0))
{
}

// Set the PHY type and configuration options.
EMACPHYConfigSet(EMAC0_BASE, <config>);

// Initialize and configure the MAC.
EMACInit(EMAC0_BASE, <system clock rate>, <bus config>,

<Rx burst size>, <Tx burst size>, <desc skip>);
EMACConfigSet(EMAC0_BASE, <parameters>);

The ui32Config parameter must specify one of the following values:

EMAC_PHY_TYPE_INTERNAL selects the internal Ethernet PHY.
EMAC_PHY_TYPE_EXTERNAL_MII selects an external PHY connected via the MII inter-
face.
EMAC_PHY_TYPE_EXTERNAL_RMII selects an external PHY connected via the RMII
interface.

If EMAC_PHY_TYPE_INTERNAL is selected, the following flags may be ORed into ui32Config
to control various PHY features and modes. These flags are ignored if an external PHY is
selected.

EMAC_PHY_INT_NIB_TXERR_DET_DIS disables odd nibble transmit error detection
(sets the default value of PHY register MR10, bit 1).
EMAC_PHY_INT_RX_ER_DURING_IDLE enables receive error detection during idle
(sets the default value of PHY register MR10, bit 2).
EMAC_PHY_INT_ISOLATE_MII_LLOSS ties the MII outputs low if no link is established
in 100B-T and full duplex modes (sets the default value of PHY register MR10, bit 3).
EMAC_PHY_INT_LINK_LOSS_RECOVERY enables link loss recovery (sets the default
value of PHY register MR9, bit 7).
EMAC_PHY_INT_TDRRUN enables execution of the TDR procedure after a link down
event (sets the default value of PHY register MR9, bit 8).
EMAC_PHY_INT_LD_ON_RX_ERR_COUNT enables link down if the receiver error count
reaches 32 within a 10-us interval (sets the default value of PHY register MR11 bit 3).

160 July 25, 2016

Ethernet Controller

EMAC_PHY_INT_LD_ON_MTL3_ERR_COUNT enables link down if the MTL3 error
count reaches 20 in a 10 us-interval (sets the default value of PHY register MR11 bit
2).
EMAC_PHY_INT_LD_ON_LOW_SNR enables link down if the low SNR threshold is
crossed 20 times in a 10 us-interval (sets the default value of PHY register MR11 bit 1).
EMAC_PHY_INT_LD_ON_SIGNAL_ENERGY enables link down if energy detector indi-
cates Energy Loss (sets the default value of PHY register MR11 bit 0).
EMAC_PHY_INT_POLARITY_SWAP inverts the polarity on both TPTD and TPRD pairs
(sets the default value of PHY register MR11 bit 5).
EMAC_PHY_INT_MDI_SWAP swaps the MDI pairs putting receive on the TPTD pair and
transmit on TPRD (sets the default value of PHY register MR11 bit 6).
EMAC_PHY_INT_ROBUST_MDIX enables robust auto MDI-X resolution (sets the default
value of PHY register MR9 bit 5).
EMAC_PHY_INT_FAST_MDIX enables fast auto-MDI/MDIX resolution (sets the default
value of PHY register MR9 bit 6).
EMAC_PHY_INT_MDIX_EN enables auto-MDI/MDIX crossover (sets the default value of
PHY register MR9 bit 14).
EMAC_PHY_INT_FAST_RXDV_DETECT enables fast RXDV detection (set the default
value of PHY register MR9 bit 1).
EMAC_PHY_INT_FAST_L_UP_DETECT enables fast link-up time during parallel detec-
tion (sets the default value of PHY register MR10 bit 6)
EMAC_PHY_INT_EXT_FULL_DUPLEX forces full-duplex while working with a link part-
ner in forced 100B-TX (sets the default value of PHY register MR10 bit 5).
EMAC_PHY_INT_FAST_AN_80_50_35 enables fast auto-negotiation using break link,
link fail inhibit and wait timers set to 80, 50 and 35 respectively (sets the default value
of PHY register MR9 bits [4:2] to 3b100).
EMAC_PHY_INT_FAST_AN_120_75_50 enables fast auto-negotiation using break link,
link fail inhibit and wait timers set to 120, 75 and 50 respectively (sets the default value of
PHY register MR9 bits [4:2] to 3b101).
EMAC_PHY_INT_FAST_AN_140_150_100 enables fast auto-negotiation using break
link, link fail inhibit and wait timers set to 140, 150 and 100 respectively (sets the default
value of PHY register MR9 bits [4:2] to 3b110).
EMAC_PHY_FORCE_10B_T_HALF_DUPLEX disables auto-negotiation and forces op-
eration in 10Base-T, half duplex mode (sets the default value of PHY register MR9 bits
[13:11] to 3b000).
EMAC_PHY_FORCE_10B_T_FULL_DUPLEX disables auto-negotiation and forces oper-
ation in 10Base-T, full duplex mode (sets the default value of PHY register MR9 bits [13:11]
to 3b001).
EMAC_PHY_FORCE_100B_T_HALF_DUPLEX disables auto-negotiation and forces op-
eration in 100Base-T, half duplex mode (sets the default value of PHY register MR9 bits
[13:11] to 3b010).
EMAC_PHY_FORCE_100B_T_FULL_DUPLEX disables auto-negotiation and forces op-
eration in 100Base-T, full duplex mode (sets the default value of PHY register MR9 bits
[13:11] to 3b011).
EMAC_PHY_AN_10B_T_HALF_DUPLEX enables auto-negotiation and advertises
10Base-T, half duplex mode (sets the default value of PHY register MR9 bits [13:11] to
3b100).
EMAC_PHY_AN_10B_T_FULL_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex modes (sets the default value of PHY register MR9 bits [13:11]
to 3b101).

July 25, 2016 161

Ethernet Controller

EMAC_PHY_AN_100B_T_HALF_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex, and 100Base-T half duplex modes (sets the default value
of PHY register MR9 bits [13:11] to 3b110).
EMAC_PHY_AN_100B_T_FULL_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex, and 100Base-T half or full duplex modes (sets the default
value of PHY register MR9 bits [13:11] to 3b111).
EMAC_PHY_INT_HOLD prevents the PHY from transmitting energy on the line.

As a side effect of this function, the Ethernet MAC is reset so any previous MAC configuration
is lost.

Returns:
None.

10.2.4.22 EMACPHYExtendedRead

Reads from an extended PHY register.

Prototype:
uint16_t
EMACPHYExtendedRead(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint16_t ui16RegAddr)

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui16RegAddr is the address of the PHY extended register to be accessed.

Description:
When using the internal PHY or when connected to an external PHY supporting extended
registers, this function returns the contents of the extended PHY register specified by
ui16RegAddr .

Returns:
Returns the 16-bit value read from the PHY.

10.2.4.23 EMACPHYExtendedWrite

Writes a value to an extended PHY register.

Prototype:
void
EMACPHYExtendedWrite(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint16_t ui16RegAddr,
uint16_t ui16Value)

Parameters:
ui32Base is the base address of the controller.

162 July 25, 2016

Ethernet Controller

ui8PhyAddr is the physical address of the PHY to access.
ui16RegAddr is the address of the PHY extended register to be accessed.
ui16Value is the value to write to the register.

Description:
When using the internal PHY or when connected to an external PHY supporting extended
registers, this function allows a value to be written to the extended PHY register specified by
ui16RegAddr .

Returns:
None.

10.2.4.24 EMACPHYPowerOff

Powers off the Ethernet PHY.

Prototype:
void
EMACPHYPowerOff(uint32_t ui32Base,

uint8_t ui8PhyAddr)

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to power down.

Description:
This function powers off the Ethernet PHY, reducing the current consumption of the device.
While in the powered-off state, the Ethernet controller is unable to connect to Ethernet.

Returns:
None.

10.2.4.25 EMACPHYPowerOn

Powers on the Ethernet PHY.

Prototype:
void
EMACPHYPowerOn(uint32_t ui32Base,

uint8_t ui8PhyAddr)

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to power up.

Description:
This function powers on the Ethernet PHY, enabling it return to normal operation. By default,
the PHY is powered on, so this function is only called if EMACPHYPowerOff() has previously
been called.

Returns:
None.

July 25, 2016 163

Ethernet Controller

10.2.4.26 EMACPHYRead

Reads from a PHY register.

Prototype:
uint16_t
EMACPHYRead(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint8_t ui8RegAddr)

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui8RegAddr is the address of the PHY register to be accessed.

Description:
This function returns the contents of the PHY register specified by ui8RegAddr .

Returns:
Returns the 16-bit value read from the PHY.

10.2.4.27 EMACPHYWrite

Writes to the PHY register.

Prototype:
void
EMACPHYWrite(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint8_t ui8RegAddr,
uint16_t ui16Data)

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui8RegAddr is the address of the PHY register to be accessed.
ui16Data is the data to be written to the PHY register.

Description:
This function writes the ui16Data value to the PHY register specified by ui8RegAddr .

Returns:
None.

10.2.4.28 EMACPowerManagementControlGet

Queries the current Ethernet MAC remote wake-up configuration.

Prototype:
uint32_t
EMACPowerManagementControlGet(uint32_t ui32Base)

164 July 25, 2016

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.

Description:
This function allows the MAC’s remote wake-up settings to be queried. These settings deter-
mine which types of frame should trigger a remote wake-up event

Returns:
Returns a logical OR of the following flags:

EMAC_PMT_GLOBAL_UNICAST_ENABLE indicates that the MAC wakes up when any uni-
cast frame matching the MAC destination address filter is received.

EMAC_PMT_WAKEUP_PACKET_ENABLE indicates that the MAC wakes up when any re-
ceived frame matches the remote wake-up filter configured via a call to EMACRemoteWake-
UpFrameFilterSet().

EMAC_PMT_MAGIC_PACKET_ENABLE indicates that the MAC wakes up when a standard
Wake-on-LAN "magic packet" is received. The magic packet contains 6 bytes of 0xFF followed
immediately by 16 repetitions of the destination MAC address.

EMAC_PMT_POWER_DOWN indicates that the MAC is currently in power-down mode and
is waiting for an incoming frame matching the remote wake-up frames as described by other
returned flags and via the remote wake-up filter.

10.2.4.29 EMACPowerManagementControlSet

Sets the Ethernet MAC remote wake-up configuration.

Prototype:
void
EMACPowerManagementControlSet(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the controller.
ui32Flags defines which types of frame should trigger a remote wake-up and allows the MAC

to be put into power-down mode.

Description:
This function allows the MAC’s remote wake-up features to be configured, determining which
types of frame should trigger a wake-up event and allowing an application to place the MAC
in power-down mode. In this mode, the MAC ignores all received frames until one matching
a configured remote wake-up frame is received, at which point the MAC automatically exits
power-down mode and continues to receive frames.

The ui32Flags parameter is a logical OR of the following flags:

EMAC_PMT_GLOBAL_UNICAST_ENABLE instructs the MAC to wake up when any uni-
cast frame matching the MAC destination address filter is received.
EMAC_PMT_WAKEUP_PACKET_ENABLE instructs the MAC to wake up when any re-
ceived frame matches the remote wake-up filter configured via a call to EMACRemote-
WakeUpFrameFilterSet().

July 25, 2016 165

Ethernet Controller

EMAC_PMT_MAGIC_PACKET_ENABLE instructs the MAC to wake up when a standard
Wake-on-LAN "magic packet" is received. The magic packet contains 6 bytes of 0xFF
followed immediately by 16 repetitions of the destination MAC address.
EMAC_PMT_POWER_DOWN instructs the MAC to enter power-down mode and wait for
an incoming frame matching the remote wake-up frames as described by other flags and
via the remote wake-up filter. This flag should only set set if at least one other flag is
specified to configure a wake-up frame type.

When the MAC is in power-down mode, software may exit the mode by calling this function with
the EMAC_PMT_POWER_DOWN flag absent from ui32Flags. If a configured wake-up frame
is received while in power-down mode, the EMAC_INT_POWER_MGMNT interrupt is signaled
and may be cleared by reading the status using EMACPowerManagementStatusGet().

Note:
While it is possible to gate the clock to the MAC while it is in power-down mode, doing so pre-
vents the reading of the registers required to determine the interrupt status and also prevents
power-down mode from exiting via another call to this function.

Returns:
None.

10.2.4.30 EMACPowerManagementStatusGet

Queries the current Ethernet MAC remote wake-up status.

Prototype:
uint32_t
EMACPowerManagementStatusGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns information on the remote wake-up state of the Ethernet MAC. If the MAC
has been woken up since the last call, the returned value indicates the type of received frame
that caused the MAC to exit power-down state.

Returns:
Returns a logical OR of the following flags:

EMAC_PMT_POWER_DOWN indicates that the MAC is currently in power-down mode.

EMAC_PMT_WAKEUP_PACKET_RECEIVED indicates that the MAC exited power-down
mode due to a remote wake-up frame being received. This function call clears this flag.

EMAC_PMT_MAGIC_PACKET_RECEIVED indicates that the MAC exited power-down mode
due to a wake-on-LAN magic packet being received. This function call clears this flag.

10.2.4.31 EMACRemoteWakeUpFrameFilterGet

Returns the current remote wake-up frame filter configuration.

166 July 25, 2016

Ethernet Controller

Prototype:
void
EMACRemoteWakeUpFrameFilterGet(uint32_t ui32Base,

tEMACWakeUpFrameFilter *pFilter)

Parameters:
ui32Base is the base address of the controller.
pFilter points to the structure that is written with the current remote wake-up frame filter infor-

mation.

Description:
This function may be used to read the current wake-up frame filter settings. The data returned
by the function describes wake-up frames in terms of a CRC calculated on up to 31 payload
bytes in the frame. The actual bytes used in the CRC calculation are defined by means of a bit
mask where a “1” indicates that a byte in the frame should contribute to the CRC calculation
and a “0” indicates that the byte should be skipped, and an offset from the start of the frame to
the payload byte that represents the first byte in the 31-byte CRC-checked sequence.

The pFilter parameter points to storage that is written with a structure containing the infor-
mation defining the frame filters. This structure contains the following fields, each of which is
replicated 4 times, once for each possible wake-up frame:

pui32ByteMask defines whether a given byte in the chosen 31-byte sequence within the
frame should contribute to the CRC calculation or not. A 1 indicates that the byte should
contribute to the calculation, a 0 causes the byte to be skipped.
pui8Command contains flags defining whether this filter is enabled and, if so,
whether it refers to unicast or multicast packets. Valid values are one of
EMAC_RWU_FILTER_MULTICAST or EMAC_RWU_FILTER_UNICAST ORed with one
of EMAC_RWU_FILTER_ENABLE or EMAC_RWU_FILTER_DISABLE.
pui8Offset defines the zero-based index of the byte within the frame at which CRC check-
ing defined by pui32ByteMask begins. Alternatively, this value can be thought of as the
number of bytes in the frame that the MAC skips before accumulating the CRC based on
the pattern in pui32ByteMask.
pui16CRC provides the value of the calculated CRC for a valid remote wake-up frame. If
the incoming frame is processed according to the filter values provided and the final CRC
calculation equals this value, the frame is considered to be a valid remote wake-up frame.

Note that this filter uses CRC16 rather than CRC32 as used in frame checksums.

Returns:
None.

10.2.4.32 EMACRemoteWakeUpFrameFilterSet

Sets values defining up to four frames used to trigger a remote wake-up.

Prototype:
void
EMACRemoteWakeUpFrameFilterSet(uint32_t ui32Base,

const tEMACWakeUpFrameFilter *pFilter)

Parameters:
ui32Base is the base address of the controller.

July 25, 2016 167

Ethernet Controller

pFilter points to the structure containing remote wake-up frame filter information.

Description:
This function may be used to define up to four different frames that are considered by the
Ethernet MAC to be remote wake-up signals. The data passed to the function describes a
wake-up frame in terms of a CRC calculated on up to 31 payload bytes in the frame. The
actual bytes used in the CRC calculation are defined by means of a bit mask where a “1”
indicates that a byte in the frame should contribute to the CRC calculation and a “0” indicates
that the byte should be skipped, as well as an offset from the start of the frame to the payload
byte that represents the first byte in the 31-byte CRC-checked sequence.

The pFilter parameter points to a structure containing the information necessary to set up the
filters. This structure contains the following fields, each of which is replicated 4 times, once for
each possible wake-up frame:

pui32ByteMask defines whether a given byte in the chosen 31-byte sequence within the
frame should contribute to the CRC calculation or not. A 1 indicates that the byte should
contribute to the calculation, a 0 causes the byte to be skipped.
pui8Command contains flags defining whether this filter is enabled and, if so,
whether it refers to unicast or multicast packets. Valid values are one of
EMAC_RWU_FILTER_MULTICAST or EMAC_RWU_FILTER_UNICAST ORed with one
of EMAC_RWU_FILTER_ENABLE or EMAC_RWU_FILTER_DISABLE.
pui8Offset defines the zero-based index of the byte within the frame at which CRC check-
ing defined by pui32ByteMask begins. Alternatively, this value can be thought of as the
number of bytes in the frame that the MAC skips before accumulating the CRC based on
the pattern in pui32ByteMask.
pui16CRC provides the value of the calculated CRC for a valid remote wake-up frame. If
the incoming frame is processed according to the filter values provided and the final CRC
calculation equals this value, the frame is considered to be a valid remote wake-up frame.

Note that this filter uses CRC16 rather than CRC32 as used in frame checksums. The required
CRC uses a direct algorithm with polynomial 0x8005, initial seed value 0xFFFF, no final XOR
and reversed data order. CRCs for use in this function may be determined using the online
calculator found at http://www.zorc.breitbandkatze.de/crc.html.

Returns:
None.

10.2.4.33 EMACReset

Resets the Ethernet MAC.

Prototype:
void
EMACReset(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function performs a reset of the Ethernet MAC by resetting all logic and returning all
registers to their default values. The function returns only after the hardware indicates that the
reset has completed.

168 July 25, 2016

http://www.zorc.breitbandkatze.de/crc.html.

Ethernet Controller

Note:
To ensure that the reset completes, the selected PHY clock must be enabled when this function
is called. If the PHY clock is absent, this function does not return.

Returns:
None.

10.2.4.34 EMACRxDisable

Disables the Ethernet controller receiver.

Prototype:
void
EMACRxDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This
function disables the receiver.

Returns:
None.

10.2.4.35 EMACRxDMACurrentBufferGet

Returns the current DMA receive buffer pointer.

Prototype:
uint8_t *
EMACRxDMACurrentBufferGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to determine which buffer the receive DMA engine is currently
writing to.

Returns:
Returns the receive buffer address currently being written by the DMA engine.

10.2.4.36 EMACRxDMACurrentDescriptorGet

Returns the current DMA receive descriptor pointer.

Prototype:
tEMACDMADescriptor *
EMACRxDMACurrentDescriptorGet(uint32_t ui32Base)

July 25, 2016 169

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the current Ethernet receive descriptor read by the DMA.

Returns:
Returns a pointer to the start of the current receive DMA descriptor.

10.2.4.37 EMACRxDMADescriptorListGet

Returns a pointer to the start of the DMA receive descriptor list.

Prototype:
tEMACDMADescriptor *
EMACRxDMADescriptorListGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the head of the Ethernet MAC’s receive DMA descriptor list.
This value corresponds to the pointer originally set using a call to EMACRxDMADescriptorList-
Set().

Returns:
Returns a pointer to the start of the DMA receive descriptor list.

10.2.4.38 EMACRxDMADescriptorListSet

Sets the DMA receive descriptor list pointer.

Prototype:
void
EMACRxDMADescriptorListSet(uint32_t ui32Base,

tEMACDMADescriptor *pDescriptor)

Parameters:
ui32Base is the base address of the controller.
pDescriptor points to the first DMA descriptor in the list to be passed to the receive DMA

engine.

Description:
This function sets the Ethernet MAC’s receive DMA descriptor list pointer. The pDescriptor
pointer must point to one or more descriptor structures.

When multiple descriptors are provided, they can be either chained or unchained.
Chained descriptors are indicated by setting the DES0_TX_CTRL_CHAINED or
DES1_RX_CTRL_CHAINED bit in the relevant word of the transmit or receive descrip-
tor. If this bit is clear, unchained descriptors are assumed.

Chained descriptors use a link pointer in each descriptor to point to the next descriptor in the
chain.

170 July 25, 2016

Ethernet Controller

Unchained descriptors are assumed to be contiguous in memory with a consistent offset be-
tween the start of one descriptor and the next. If unchained descriptors are used, the pvLink
field in the descriptor becomes available to store a second buffer pointer, allowing each de-
scriptor to point to two buffers rather than one. In this case, the ui32DescSkipSize parameter
to EMACInit() must previously have been set to the number of words between the end of one
descriptor and the start of the next. This value must be 0 in cases where a packed array of
tEMACDMADescriptor structures is used. If the application wishes to add new state fields to
the end of the descriptor structure, the skip size should be set to accommodate the newly sized
structure.

Applications are responsible for initializing all descriptor fields appropriately before passing the
descriptor list to the hardware.

Returns:
None.

10.2.4.39 EMACRxDMAPollDemand

Orders the MAC DMA controller to attempt to acquire the next receive descriptor.

Prototype:
void
EMACRxDMAPollDemand(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function must be called to restart the receiver if it has been suspended due to the current
receive DMA descriptor being owned by the host. Once the application reads any data from the
descriptor and marks it as being owned by the MAC DMA, this function causes the hardware
to attempt to acquire the descriptor before writing the next received packet into its buffer(s).

Returns:
None.

10.2.4.40 EMACRxEnable

Enables the Ethernet controller receiver.

Prototype:
void
EMACRxEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When starting operations on the Ethernet interface, this function should be called to enable the
receiver after all configuration has been completed.

Returns:
None.

July 25, 2016 171

Ethernet Controller

10.2.4.41 EMACRxWatchdogTimerSet

Sets the receive interrupt watchdog timer period.

Prototype:
void
EMACRxWatchdogTimerSet(uint32_t ui32Base,

uint8_t ui8Timeout)

Parameters:
ui32Base is the base address of the Ethernet controller.
ui8Timeout is the desired timeout expressed as a number of 256 system clock periods.

Description:
This function configures the receive interrupt watchdog timer. The uiTimeout parame-
ter specifies the number of 256 system clock periods that elapse before the timer ex-
pires. In cases where the DMA has transferred a frame using a descriptor that has
DES1_RX_CTRL_DISABLE_INT set, the watchdog causes a receive interrupt to be generated
when it times out. The watchdog timer is reset whenever a packet is transferred to memory
using a DMA descriptor that does not disable the receive interrupt.

To disable the receive interrupt watchdog function, set ui8Timeout to 0.

Returns:
None.

10.2.4.42 EMACStatusGet

Returns the current Ethernet MAC status.

Prototype:
uint32_t
EMACStatusGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function returns information on the current status of all the main modules in the MAC
transmit and receive data paths.

Returns:
Returns the current MAC status as a logical OR of any of the following flags:

EMAC_STATUS_TX_NOT_EMPTY

EMAC_STATUS_TX_WRITING_FIFO

EMAC_STATUS_TX_PAUSED

EMAC_STATUS_MAC_NOT_IDLE

EMAC_STATUS_RWC_ACTIVE

EMAC_STATUS_RPE_ACTIVE

172 July 25, 2016

Ethernet Controller

The transmit frame controller status can be extracted from the returned value by ANDing with
EMAC_STATUS_TFC_STATE_MASK and is one of the following:

EMAC_STATUS_TFC_STATE_IDLE

EMAC_STATUS_TFC_STATE_WAITING

EMAC_STATUS_TFC_STATE_PAUSING

EMAC_STATUS_TFC_STATE_WRITING

The transmit FIFO read controller status can be extracted from the returned value by ANDing with
EMAC_STATUS_TRC_STATE_MASK and is one of the following:

EMAC_STATUS_TRC_STATE_IDLE

EMAC_STATUS_TRC_STATE_READING

EMAC_STATUS_TRC_STATE_WAITING

EMAC_STATUS_TRC_STATE_STATUS

The current receive FIFO levels can be extracted from the returned value by ANDing with
EMAC_STATUS_RX_FIFO_LEVEL_MASK and is one of the following:

EMAC_STATUS_RX_FIFO_EMPTY indicating that the FIFO is empty.

EMAC_STATUS_RX_FIFO_BELOW indicating that the FIFO fill level is below the flow-control
deactivate threshold.

EMAC_STATUS_RX_FIFO_ABOVE indicating that the FIFO fill level is above the flow-control
activate threshold.

EMAC_STATUS_RX_FIFO_FULL indicating that the FIFO is full.

The current receive FIFO state can be extracted from the returned value by ANDing with
EMAC_STATUS_RX_FIFO_STATE_MASK and is one of the following:

EMAC_STATUS_RX_FIFO_IDLE

EMAC_STATUS_RX_FIFO_READING

EMAC_STATUS_RX_FIFO_STATUS

EMAC_STATUS_RX_FIFO_FLUSHING

10.2.4.43 EMACTimestampAddendSet

Adjusts the system time update rate when using the fine correction method.

Prototype:
void
EMACTimestampAddendSet(uint32_t ui32Base,

uint32_t ui32Increment)

Parameters:
ui32Base is the base address of the controller.
ui32Increment is the number to add to the accumulator register on each tick of the 25-MHz

main oscillator.

July 25, 2016 173

Ethernet Controller

Description:
This function is used to control the rate of update of the system time when in fine update mode.
Fine correction mode is selected if EMAC_TS_UPDATE_FINE is supplied in the ui32Config
parameter passed to a previous call to EMACTimestampConfigSet(). Fine update mode is
typically used when synchronizing the local clock to the IEEE 1588 master clock. The sub-
second counter is incremented by the number passed to EMACTimestampConfigSet() in the
ui32SubSecondInc parameter each time a 32-bit accumulator register generates a carry. The
accumulator register is incremented by the "addend" value on each main oscillator tick, and
this addend value is modified to allow fine control over the rate of change of the timestamp
counter. The addend value is calculated using the ratio of the main oscillator clock rate and
the desired IEEE 1588 clock rate and the ui32SubSecondInc value is set to correspond to the
desired IEEE 1588 clock rate.

As an example, using digital rollover mode and a 25-MHz main oscillator clock with a desired
IEEE 1588 clock accuracy of 12.5 MHz, and having made a previous call to EMACTimes-
tampConfigSet() with ui32SubSecondInc set to the 12.5-MHz clock period of 80 ns, the initial
ui32Increment value would be set to 0x80000000 to generate a carry on every second main
oscillator tick. Because the system time updates each time the accumulator overflows, small
changes in the ui32Increment value can be used to very finely control the system time rate.

Returns:
None.

See also:
EMACTimestampConfigSet()

10.2.4.44 EMACTimestampConfigGet

Returns the current IEEE 1588 timestamping configuration.

Prototype:
uint32_t
EMACTimestampConfigGet(uint32_t ui32Base,

uint32_t *pui32SubSecondInc)

Parameters:
ui32Base is the base address of the controller.
pui32SubSecondInc points to storage that is written with the current subsecond increment

value for the IEEE 1588 clock.

Description:
This function may be used to retreive the current MAC timestamping configuration.

See also:
EMACTimestampConfigSet()

Returns:
Returns the current timestamping configuration as a logical OR of the following flags:

EMAC_TS_PTP_VERSION_2 indicates that the MAC is processing PTP version 2 messages.
If this flag is absent, PTP version 1 messages are expected.

174 July 25, 2016

Ethernet Controller

EMAC_TS_DIGITAL_ROLLOVER causes the clock’s subsecond value to roll over at
0x3BA9C9FF (999999999 decimal). In this mode, it can be considered as a nanosecond
counter with each digit representing 1 ns. If this flag is absent, the subsecond value rolls over
at 0x7FFFFFFF, effectively counting increments of 0.465 ns.

EMAC_TS_MAC_FILTER_ENABLE indicates that incoming PTP messages are filtered using
any of the configured MAC addresses. Messages with a destination address programmed
into the MAC address filter are passed, others are discarded. If this flag is absent, the MAC
address is ignored.

EMAC_TS_UPDATE_FINE implements the fine update method that causes the IEEE 1588
clock to advance by the the value returned in the ∗pui32SubSecondInc parameter each time
a carry is generated from the addend accumulator register. If this flag is absent, the coarse
update method is in use and the clock is advanced by the ∗pui32SubSecondInc value on each
system clock tick.

EMAC_TS_SYNC_ONLY indicates that timestamps are only generated for SYNC messages.

EMAC_TS_DELAYREQ_ONLY indicates that timestamps are only generated for Delay_Req
messages.

EMAC_TS_ALL indicates that timestamps are generated for all IEEE 1588 messages.

EMAC_TS_SYNC_PDREQ_PDRESP timestamps only SYNC, Pdelay_Req and Pdelay_Resp
messages.

EMAC_TS_DREQ_PDREQ_PDRESP indicates that timestamps are only generated for De-
lay_Req, Pdelay_Req and Pdelay_Resp messages.

EMAC_TS_SYNC_DELAYREQ indicates that timestamps are only generated for Delay_Req
messages.

EMAC_TS_PDREQ_PDRESP indicates that timestamps are only generated for Pdelay_Req
and Pdelay_Resp messages.

EMAC_TS_PROCESS_IPV4_UDP indicates that PTP packets encapsulated in UDP over
IPv4 packets are being processed. If absent, the MAC ignores these frames.

EMAC_TS_PROCESS_IPV6_UDP indicates that PTP packets encapsulated in UDP over
IPv6 packets are being processed. If absent, the MAC ignores these frames.

EMAC_TS_PROCESS_ETHERNET indicates that PTP packets encapsulated directly in Eth-
ernet frames are being processd. If absent, the MAC ignores these frames.

EMAC_TS_ALL_RX_FRAMES indicates that timestamping is enabled for all frames received
by the MAC, regardless of type.

If EMAC_TS_ALL_RX_FRAMES and none of the options specifying subsets of PTP packets to
timestamp are set, the MAC is configured to timestamp SYNC, Follow_Up, Delay_Req and De-
lay_Resp messages only.

10.2.4.45 EMACTimestampConfigSet

Configures the Ethernet MAC’s IEEE 1588 timestamping options.

Prototype:
void
EMACTimestampConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32SubSecondInc)

July 25, 2016 175

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.
ui32Config contains flags selecting particular configuration options.
ui32SubSecondInc is the number that the IEEE 1588 subsecond clock should increment on

each tick.

Description:
This function is used to configure the operation of the Ethernet MAC’s internal timestamping
clock. This clock is used to timestamp incoming and outgoing packets and as an accurate
system time reference when IEEE 1588 Precision Time Protocol is in use.

The ui32Config parameter contains a collection of flags selecting the desired options. Valid
flags are:

One of the following to determine whether IEEE 1588 version 1 or version 2 packet format is to
be processed:

EMAC_TS_PTP_VERSION_2
EMAC_TS_PTP_VERSION_1

One of the following to determine how the IEEE 1588 clock’s subsecond value should be inter-
preted and handled:

EMAC_TS_DIGITAL_ROLLOVER causes the clock’s subsecond value to roll over at
0x3BA9C9FF (999999999 decimal). In this mode, it can be considered as a nanosec-
ond counter with each digit representing 1 ns.
EMAC_TS_BINARY_ROLLOVER causes the clock’s subsecond value to roll over at
0x7FFFFFFF. In this mode, the subsecond value counts 0.465 ns periods.

One of the following to enable or disable MAC address filtering. When enabled, PTP frames are
filtered unless the destination MAC address matches any of the currently programmed MAC
addresses.

EMAC_TS_MAC_FILTER_ENABLE
EMAC_TS_MAC_FILTER_DISABLE

One of the following to determine how the clock is updated:

EMAC_TS_UPDATE_COARSE causes the IEEE 1588 clock to advance by the value sup-
plied in the ui32SubSecondInc parameter on each main oscillator clock cycle.
EMAC_TS_UPDATE_FINE selects the fine update method which causes the IEEE 1588
clock to advance by the the value supplied in the ui32SubSecondInc parameter each time
a carry is generated from the addend accumulator register.

One of the following to determine which IEEE 1588 messages are timestamped:

EMAC_TS_SYNC_FOLLOW_DREQ_DRESP timestamps SYNC, Follow_Up, Delay_Req
and Delay_Resp messages.
EMAC_TS_SYNC_ONLY timestamps only SYNC messages.
EMAC_TS_DELAYREQ_ONLY timestamps only Delay_Req messages.
EMAC_TS_ALL timestamps all IEEE 1588 messages.
EMAC_TS_SYNC_PDREQ_PDRESP timestamps only SYNC, Pdelay_Req and Pde-
lay_Resp messages.
EMAC_TS_DREQ_PDREQ_PDRESP timestamps only Delay_Req, Pdelay_Req and
Pdelay_Resp messages.

176 July 25, 2016

Ethernet Controller

EMAC_TS_SYNC_DELAYREQ timestamps only Delay_Req messages.
EMAC_TS_PDREQ_PDRESP timestamps only Pdelay_Req and Pdelay_Resp mes-
sages.

Optional, additional flags are:

EMAC_TS_PROCESS_IPV4_UDP processes PTP packets encapsulated in UDP over
IPv4 packets. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_IPV6_UDP processes PTP packets encapsulated in UDP over
IPv6 packets. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_ETHERNET processes PTP packets encapsulated directly in Eth-
ernet frames. If absent, the MAC ignores these frames.
EMAC_TS_ALL_RX_FRAMES enables timestamping for all frames received by the MAC,
regardless of type.

The ui32SubSecondInc controls the rate at which the timestamp clock’s subsecond
count increments. Its meaning depends on which of EMAC_TS_DIGITAL_ROLLOVER
or EMAC_TS_BINARY_ROLLOVER and EMAC_TS_UPDATE_FINE or
EMAC_TS_UPDATE_COARSE were included in ui32Config.

The timestamp second counter is incremented each time the subsecond counter rolls over.
In digital rollover mode, the subsecond counter acts as a simple 31-bit counter, rolling over
to 0 after reaching 0x7FFFFFFF. In this case, each lsb of the subsecond counter represents
0.465 ns (assuming the definition of 1 second resolution for the seconds counter). When binary
rollover mode is selected, the subsecond counter acts as a nanosecond counter and rolls over
to 0 after reaching 999, 999, 999 making each lsb represent 1 nanosecond.

In coarse update mode, the timestamp subsecond counter is incremented by
ui32SubSecondInc on each main oscillator clock tick. Setting ui32SubSecondInc to the
main oscillator clock period in either 1 ns or 0.465 ns units ensures that the time stamp, read
as seconds and subseconds, increments at the same rate as the main oscillator clock. For
example, if the main oscillator is 25 MHz, ui32SubSecondInc is set to 40 if digital rollover
mode is selected or (40 / 0.465) = 86 in binary rollover mode.

In fine update mode, the subsecond increment value must be set according to the desired
accuracy of the recovered IEEE 1588 clock which must be lower than the system clock rate.
Fine update mode is typically used when synchronizing the local clock to the IEEE 1588 master
clock. The subsecond counter is incremented by ui32SubSecondInc counts each time a 32-bit
accumulator register generates a carry. The accumulator register is incremented by the addend
value on each main oscillator tick and this addend value is modified to allow fine control over
the rate of change of the timestamp counter. The addend value is calculated using the ratio of
the main oscillator clock rate and the desired IEEE 1588 clock rate and the ui32SubSecondInc
value is set to correspond to the desired IEEE 1588 clock rate. As an example, using digital
rollover mode and a 25-MHz main oscillator clock with a desired IEEE 1588 clock accuracy of
12.5 MHz, we would set ui32SubSecondInc to the 12.5-MHz clock period of 80 ns and set the
initial addend value to 0x80000000 to generate a carry on every second system clock.

See also:
EMACTimestampAddendSet()

Returns:
None.

July 25, 2016 177

Ethernet Controller

10.2.4.46 EMACTimestampDisable

Disables packet timestamping and stops the system clock.

Prototype:
void
EMACTimestampDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to stop the system clock used to timestamp Ethernet frames and to disable
timestamping.

Returns:
None.

10.2.4.47 EMACTimestampEnable

Enables packet timestamping and starts the system clock running.

Prototype:
void
EMACTimestampEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to enable the system clock used to timestamp Ethernet frames and to
enable that timestamping.

Returns:
None.

10.2.4.48 EMACTimestampIntStatus

Reads the status of the Ethernet system time interrupt.

Prototype:
uint32_t
EMACTimestampIntStatus(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When an Ethernet interrupt occurs and EMAC_INT_TIMESTAMP is reported bu EMACIntSta-
tus(), this function must be called to read and clear the timer interrupt status.

178 July 25, 2016

Ethernet Controller

Returns:
The return value is the logical OR of the values EMAC_TS_INT_TS_SEC_OVERFLOW and
EMAC_TS_INT_TARGET_REACHED.

EMAC_TS_INT_TS_SEC_OVERFLOW indicates that the second counter in the hardware
timer has rolled over.

EMAC_TS_INT_TARGET_REACHED indicates that the system time incremented past the
value set in an earlier call to EMACTimestampTargetSet(). When this occurs, a new target
time may be set and the interrupt re-enabled using calls to EMACTimestampTargetSet() and
EMACTimestampTargetIntEnable().

10.2.4.49 EMACTimestampPPSCommand

Sends a command to control the PPS output from the Ethernet MAC.

Prototype:
void
EMACTimestampPPSCommand(uint32_t ui32Base,

uint8_t ui8Cmd)

Parameters:
ui32Base is the base address of the controller.
ui8Cmd identifies the command to be sent.

Description:
This function may be used to send a command to the MAC PPS (Pulse Per Second) controller
when it is operating in command mode. Command mode is selected by calling EMACTimes-
tampPPSCommandModeSet(). Valid commands are as follow:

EMAC_PPS_COMMAND_NONE indicates no command.
EMAC_PPS_COMMAND_START_SINGLE indicates that a single high pulse should be
generated when the system time reaches the current target time.
EMAC_PPS_COMMAND_START_TRAIN indicates that a train of pulses should be
started when the system time reaches the current target time.
EMAC_PPS_COMMAND_CANCEL_START cancels any pending start command if the
system time has not yet reached the programmed target time.
EMAC_PPS_COMMAND_STOP_AT_TIME indicates that the current pulse train should
be stopped when the system time reaches the current target time.
EMAC_PPS_COMMAND_STOP_NOW indicates that the current pulse train should be
stopped immediately.
EMAC_PPS_COMMAND_CANCEL_STOP cancels any pending stop command if the
system time has not yet reached the programmed target time.

In all cases, the width of the pulses generated is governed by the ui32Width parameter passed
to EMACTimestampPPSPeriodSet(). If a command starts a train of pulses, the period of the
pulses is governed by the ui32Period parameter passed to the same function. Target times
associated with PPS commands are set by calling EMACTimestampTargetSet().

Returns:
None.

July 25, 2016 179

Ethernet Controller

10.2.4.50 EMACTimestampPPSCommandModeSet

Configures the Ethernet MAC PPS output in command mode.

Prototype:
void
EMACTimestampPPSCommandModeSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.
ui32Config determines how the system target time is used.

Description:
The simple mode of operation offered by the PPS (Pulse Per Second) engine may be too
restrictive for some applications. The second mode, however, allows complex pulse trains to
be generated using commands that tell the engine to send individual pulses or start and stop
trains if pulses. In this mode, the pulse width and period may be set arbitrarily based on ticks
of the clock used to update the system time. Commands are triggered at specific times using
the target time last set using a call to EMACTimestampTargetSet().

The ui32Config parameter may be used to control whether the target time is used to trigger
commands only or can also generate an interrupt to the CPU. Valid values are:

EMAC_PPS_TARGET_INT configures the target time to only raise an interrupt and not to
trigger any pending PPS command.
EMAC_PPS_TARGET_PPS configures the target time to trigger a pending PPS command
but not raise an interrupt.
EMAC_PPS_TARGET_BOTH configures the target time to trigger any pending PPS com-
mand and also raise an interrupt.

To use command mode, an application must call this function to enable the mode, then call:

EMACTimestampPPSPeriodSet() to set the desired pulse width and period then
EMACTimestampTargetSet() to set the time at which the next command is executed, and
finally
EMACTimestampPPSCommand() to send a command to cause the pulse or pulse train to
be started at the required time.

Returns:
None.

10.2.4.51 EMACTimestampPPSPeriodSet

Sets the period and width of the pulses on the Ethernet MAC PPS output.

Prototype:
void
EMACTimestampPPSPeriodSet(uint32_t ui32Base,

uint32_t ui32Period,
uint32_t ui32Width)

180 July 25, 2016

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.
ui32Period is the period of the PPS output expressed in terms of system time update ticks.
ui32Width is the width of the high portion of the PPS output expressed in terms of system

time update ticks.

Description:
This function may be used to control the period and duty cycle of the signal output on the
Ethernet MAC PPS pin when the PPS generator is operating in command mode and a com-
mand to send one or more pulses has been executed. Command mode is selected by calling
EMACTimestampPPSCommandModeSet().

In simple mode, the PPS output signal frequency is controlled by the ui32FreqConfig parameter
passed to EMACTimestampPPSSimpleModeSet().

The ui32Period and ui32Width parameters are expressed in terms of system time update ticks.
When the system time is operating in coarse update mode, each tick is equivalent to the sys-
tem clock. In fine update mode, a tick occurs every time the 32-bit system time accumulator
overflows and this, in turn, is determined by the value passed to the function EMACTimes-
tampAddendSet(). Regardless of the tick source, each tick increments the actual system time,
queried using EMACTimestampSysTimeGet() by the subsecond increment value passed in the
ui32SubSecondInc to EMACTimestampConfigSet().

Returns:
None.

10.2.4.52 EMACTimestampPPSSimpleModeSet

Configures the Ethernet MAC PPS output in simple mode.

Prototype:
void
EMACTimestampPPSSimpleModeSet(uint32_t ui32Base,

uint32_t ui32FreqConfig)

Parameters:
ui32Base is the base address of the controller.
ui32FreqConfig determines the frequency of the output generated on the PPS pin.

Description:
This function configures the Ethernet MAC PPS (Pulse Per Second) engine to operate in its
simple mode which allows the generation of a few, fixed frequencies and pulse widths on
the PPS pin. If more complex pulse train generation is required, the MAC also provides a
command-based PPS control mode that can be selected by calling EMACTimestampPPSCom-
mandModeSet().

The ui32FreqConfig parameter may take one of the following values:

EMAC_PPS_SINGLE_PULSE generates a single high pulse on the PPS output once per
second. The pulse width is the same as the system clock period.
EMAC_PPS_1HZ generates a 1Hz signal on the PPS output. This option is not available
if the system time subsecond counter is currently configured to operate in binary rollover
mode.

July 25, 2016 181

Ethernet Controller

EMAC_PPS_2HZ, EMAC_PPS_4HZ, EMAC_PPS_8HZ, EMAC_PPS_16HZ,
EMAC_PPS_32HZ, EMAC_PPS_64HZ, EMAC_PPS_128HZ, EMAC_PPS_256HZ,
EMAC_PPS_512HZ, EMAC_PPS_1024HZ, EMAC_PPS_2048HZ, EMAC_PPS_4096HZ,
EMAC_PPS_8192HZ, EMAC_PPS_16384HZ generate the requested frequency on the
PPS output in both binary and digital rollover modes.
EMAC_PPS_32768HZ generates a 32KHz signal on the PPS output. This option is not
available if the system time subsecond counter is currently configured to operate in digital
rollover mode.

Except when EMAC_PPS_SINGLE_PULSE is specified, the signal generated on PPS has a
duty cycle of 50% when binary rollover mode is used for the system time subsecond count.
In digital mode, the output frequency averages the value requested and is resynchronized
each second. For example, if EMAC_PPS_4HZ is selected in digital rollover mode, the output
generates three clocks with 50 percent duty cycle and 268 ms period followed by a fourth clock
of 195 ms period, 134 ms low and 61 ms high.

Returns:
None.

10.2.4.53 EMACTimestampSysTimeGet

Gets the current system time.

Prototype:
void
EMACTimestampSysTimeGet(uint32_t ui32Base,

uint32_t *pui32Seconds,
uint32_t *pui32SubSeconds)

Parameters:
ui32Base is the base address of the controller.
pui32Seconds points to storage for the current seconds value.
pui32SubSeconds points to storage for the current subseconds value.

Description:
This function may be used to get the current system time.

The meaning of ui32SubSeconds depends on the current system time configuration. If
EMACTimestampConfigSet() was previously called with the EMAC_TS_DIGITAL_ROLLOVER
configuration option, each bit in the ui32SubSeconds value represents 1 ns. If
EMAC_TS_BINARY_ROLLOVER was specified instead, a ui32SubSeconds bit represents
0.46 ns.

Returns:
None.

10.2.4.54 EMACTimestampSysTimeSet

Sets the current system time.

182 July 25, 2016

Ethernet Controller

Prototype:
void
EMACTimestampSysTimeSet(uint32_t ui32Base,

uint32_t ui32Seconds,
uint32_t ui32SubSeconds)

Parameters:
ui32Base is the base address of the controller.
ui32Seconds is the seconds value of the new system clock setting.
ui32SubSeconds is the subseconds value of the new system clock setting.

Description:
This function may be used to set the current system time. The system clock is set to the value
passed in the ui32Seconds and ui32SubSeconds parameters.

The meaning of ui32SubSeconds depends on the current system time configuration. If
EMACTimestampConfigSet() was previously called with the EMAC_TS_DIGITAL_ROLLOVER
configuration option, each bit in the ui32SubSeconds value represents 1 ns. If
EMAC_TS_BINARY_ROLLOVER was specified instead, a ui32SubSeconds bit represents
0.46 ns.

Returns:
None.

10.2.4.55 EMACTimestampSysTimeUpdate

Adjusts the current system time upwards or downwards by a given amount.

Prototype:
void
EMACTimestampSysTimeUpdate(uint32_t ui32Base,

uint32_t ui32Seconds,
uint32_t ui32SubSeconds,
bool bInc)

Parameters:
ui32Base is the base address of the controller.
ui32Seconds is the seconds value of the time update to apply.
ui32SubSeconds is the subseconds value of the time update to apply.
bInc defines the direction of the update.

Description:
This function may be used to adjust the current system time either upwards or downwards by
a given amount. The size of the adjustment is given by the ui32Seconds and ui32SubSeconds
parameter and the direction by the bInc parameter. When bInc is true, the system time is
advanced by the interval given. When it is false, the time is retarded by the interval.

The meaning of ui32SubSeconds depends on the current system time configuration. If EMAC-
TimestampConfigSet() was previously called with the EMAC_TS_DIGITAL_ROLLOVER
configuration option, each bit in the subsecond value represents 1 ns. If
EMAC_TS_BINARY_ROLLOVER was specified instead, a subsecond bit represents 0.46 ns.

Returns:
None.

July 25, 2016 183

Ethernet Controller

10.2.4.56 EMACTimestampTargetIntDisable

Disables the Ethernet system time interrupt.

Prototype:
void
EMACTimestampTargetIntDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to disable any pending Ethernet system time interrupt previously
scheduled using calls to EMACTimestampTargetSet() and EMACTimestampTargetIntEnable().

Returns:
None.

10.2.4.57 EMACTimestampTargetIntEnable

Enables the Ethernet system time interrupt.

Prototype:
void
EMACTimestampTargetIntEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used after EMACTimestampTargetSet() to schedule an interrupt at some
future time. The time reference for the function is the IEEE 1588 time as returned by EMAC-
TimestampSysTimeGet(). To generate an interrupt when the system time exceeds a given
value, call this function to set the desired time, then EMACTimestampTargetIntEnable() to en-
able the interrupt. When the system time increments past the target time, an Ethernet interrupt
with status EMAC_INT_TIMESTAMP is generated.

Returns:
None.

10.2.4.58 EMACTimestampTargetSet

Sets the target system time at which the next Ethernet timer interrupt is generated.

Prototype:
void
EMACTimestampTargetSet(uint32_t ui32Base,

uint32_t ui32Seconds,
uint32_t ui32SubSeconds)

Parameters:
ui32Base is the base address of the controller.

184 July 25, 2016

Ethernet Controller

ui32Seconds is the second value of the desired target time.
ui32SubSeconds is the subseconds value of the desired target time.

Description:
This function may be used to schedule an interrupt at some future time. The time reference for
the function is the IEEE 1588 time as returned by EMACTimestampSysTimeGet(). To generate
an interrupt when the system time exceeds a given value, call this function to set the desired
time, then EMACTimestampTargetIntEnable() to enable the interrupt. When the system time
increments past the target time, an Ethernet interrupt with status EMAC_INT_TIMESTAMP is
generated.

The accuracy of the interrupt timing depends on the Ethernet timer update frequency and
the subsecond increment value currently in use. The interrupt is generated on the first timer
increment that causes the system time to be greater than or equal to the target time set.

Returns:
None.

10.2.4.59 EMACTxDisable

Disables the Ethernet controller transmitter.

Prototype:
void
EMACTxDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This
function disables the transmitter.

Returns:
None.

10.2.4.60 EMACTxDMACurrentBufferGet

Returns the current DMA transmit buffer pointer.

Prototype:
uint8_t *
EMACTxDMACurrentBufferGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to determine which buffer the transmit DMA engine is currently
reading from.

Returns:
Returns the transmit buffer address currently being read by the DMA engine.

July 25, 2016 185

Ethernet Controller

10.2.4.61 EMACTxDMACurrentDescriptorGet

Returns the current DMA transmit descriptor pointer.

Prototype:
tEMACDMADescriptor *
EMACTxDMACurrentDescriptorGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the current Ethernet transmit descriptor read by the DMA.

Returns:
Returns a pointer to the start of the current transmit DMA descriptor.

10.2.4.62 EMACTxDMADescriptorListGet

Returns a pointer to the start of the DMA transmit descriptor list.

Prototype:
tEMACDMADescriptor *
EMACTxDMADescriptorListGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the head of the Ethernet MAC’s transmit DMA descriptor list.
This value corresponds to the pointer originally set using a call to EMACTxDMADescriptorList-
Set().

Returns:
Returns a pointer to the start of the DMA transmit descriptor list.

10.2.4.63 EMACTxDMADescriptorListSet

Sets the DMA transmit descriptor list pointer.

Prototype:
void
EMACTxDMADescriptorListSet(uint32_t ui32Base,

tEMACDMADescriptor *pDescriptor)

Parameters:
ui32Base is the base address of the controller.
pDescriptor points to the first DMA descriptor in the list to be passed to the transmit DMA

engine.

186 July 25, 2016

Ethernet Controller

Description:
This function sets the Ethernet MAC’s transmit DMA descriptor list pointer. The pDescriptor
pointer must point to one or more descriptor structures.

When multiple descriptors are provided, they can be either chained or unchained.
Chained descriptors are indicated by setting the DES0_TX_CTRL_CHAINED or
DES1_RX_CTRL_CHAINED bit in the relevant word of the transmit or receive descrip-
tor. If this bit is clear, unchained descriptors are assumed.

Chained descriptors use a link pointer in each descriptor to point to the next descriptor in the
chain.

Unchained descriptors are assumed to be contiguous in memory with a consistent offset be-
tween the start of one descriptor and the next. If unchained descriptors are used, the pvLink
field in the descriptor becomes available to store a second buffer pointer, allowing each de-
scriptor to point to two buffers rather than one. In this case, the ui32DescSkipSize parameter
to EMACInit() must previously have been set to the number of words between the end of one
descriptor and the start of the next. This value must be 0 in cases where a packed array of
tEMACDMADescriptor structures is used. If the application wishes to add new state fields to
the end of the descriptor structure, the skip size should be set to accommodate the newly sized
structure.

Applications are responsible for initializing all descriptor fields appropriately before passing the
descriptor list to the hardware.

Returns:
None.

10.2.4.64 EMACTxDMAPollDemand

Orders the MAC DMA controller to attempt to acquire the next transmit descriptor.

Prototype:
void
EMACTxDMAPollDemand(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function must be called to restart the transmitter if it has been suspended due to the
current transmit DMA descriptor being owned by the host. Once the application writes new
values to the descriptor and marks it as being owned by the MAC DMA, this function causes
the hardware to attempt to acquire the descriptor and start transmission of the new data.

Returns:
None.

10.2.4.65 EMACTxEnable

Enables the Ethernet controller transmitter.

July 25, 2016 187

Ethernet Controller

Prototype:
void
EMACTxEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When starting operations on the Ethernet interface, this function should be called to enable the
transmitter after all configuration has been completed.

Returns:
None.

10.2.4.66 EMACTxFlush

Flushes the Ethernet controller transmit FIFO.

Prototype:
void
EMACTxFlush(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function flushes any data currently held in the Ethernet transmit FIFO. Data that has
already been passed to the MAC for transmission is transmitted, possibly resulting in a transmit
underflow or runt frame transmission.

Returns:
None.

10.2.4.67 EMACVLANHashFilterBitCalculate

Returns the bit number to set in the VLAN hash filter corresponding to a given tag.

Prototype:
uint32_t
EMACVLANHashFilterBitCalculate(uint16_t ui16Tag)

Parameters:
ui16Tag is the VLAN tag for which the hash filter bit number is to be determined.

Description:
This function may be used to determine which bit in the VLAN hash filter to set to describe a
given 12- or 16-bit VLAN tag. The returned value is a 4-bit value indicating the bit number to
set within the 16-bit VLAN hash filter. For example, if 0x02 is returned, this indicates that bit 2
of the hash filter must be set to pass the supplied VLAN tag.

Returns:
Returns the bit number to set in the VLAN hash filter to describe the passed tag.

188 July 25, 2016

Ethernet Controller

10.2.4.68 EMACVLANHashFilterGet

Returns the current value of the hash filter used to control reception of VLAN-tagged frames.

Prototype:
uint32_t
EMACVLANHashFilterGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function allows the current VLAN tag hash filter value to be returned. Additional VLAN tags
may be added to this filter by setting the appropriate bits, determined by calling EMACVLAN-
HashFilterBitCalculate(), and then calling EMACVLANHashFilterSet() to set the new filter
value.

Returns:
Returns the current value of the VLAN hash filter.

10.2.4.69 EMACVLANHashFilterSet

Sets the hash filter used to control reception of VLAN-tagged frames.

Prototype:
void
EMACVLANHashFilterSet(uint32_t ui32Base,

uint32_t ui32Hash)

Parameters:
ui32Base is the base address of the controller.
ui32Hash is the hash filter value to set.

Description:
This function allows the VLAG tag hash filter to be set. By using hash filtering, several different
VLAN tags can be filtered very easily at the cost of some false positive results that must be
removed by software.

The hash filter value passed in ui32Hash may be built up by calling EMACVLANHashFilterBit-
Calculate() for each VLAN tag that is to pass the filter and then set each of the bits for which
the numbers are returned by that function. Care must be taken when clearing bits in the hash
filter due to the fact that there is a many-to-one correspondence between VLAN tags and hash
filter bits.

Returns:
None

10.2.4.70 EMACVLANRxConfigGet

Returns the currently-set options related to reception of VLAN-tagged frames.

July 25, 2016 189

Ethernet Controller

Prototype:
uint32_t
EMACVLANRxConfigGet(uint32_t ui32Base,

uint16_t *pui16Tag)

Parameters:
ui32Base is the base address of the controller.
pui16Tag points to storage which is written with the currently configured VLAN tag used for

perfect filtering.

Description:
This function returns information on how the receiver is currently handling IEEE 802.1Q VLAN-
tagged frames.

See also:
EMACVLANRxConfigSet()

Returns:
Returns flags defining how VLAN-tagged frames are handled. The value is a logical OR of the
following flags:

EMAC_VLAN_RX_HASH_ENABLE indicates that hash filtering is enabled for VLAN tags. If
this flag is absent, perfect filtering using the tag returned in ∗pui16Tag is performed.

EMAC_VLAN_RX_SVLAN_ENABLE indicates that the receiver recognizes S-VLAN (Type =
0x88A8) frames as valid VLAN-tagged frames. If absent, only frames with type 0x8100 are
considered valid VLAN frames.

EMAC_VLAN_RX_INVERSE_MATCH indicates that the receiver passes all VLAN frames for
which the tags do not match the ∗pui16Tag value. If this flag is absent, only tagged frames
matching ∗pui16Tag are passed.

EMAC_VLAN_RX_12BIT_TAG indicates that the receiver is comparing only the bottom 12
bits of ∗pui16Tag when performing either perfect or hash filtering of VLAN frames. If this
flag is absent, all 16 bits of the frame tag are examined when filtering. If this flag is set and
∗pui16Tag has all bottom 12 bits clear, the receiver passes all frames with types 0x8100 or
0x88A8 regardless of the tag values they contain.

10.2.4.71 EMACVLANRxConfigSet

Sets options related to reception of VLAN-tagged frames.

Prototype:
void
EMACVLANRxConfigSet(uint32_t ui32Base,

uint16_t ui16Tag,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.
ui16Tag is the IEEE 802.1Q VLAN tag expected for incoming frames.
ui32Config determines how the receiver handles VLAN-tagged frames.

190 July 25, 2016

Ethernet Controller

Description:
This function configures the receiver’s handling of IEEE 802.1Q VLAN tagged frames. Incom-
ing tagged frames are filtered using either a perfect filter or a hash filter. When hash filtering
is disabled, VLAN frames tagged with the value of ui16Tag pass the filter and all others are
rejected. The tag comparison may involve all 16 bits or only the 12-bit VLAN ID portion of the
tag.

The ui32Config parameter is a logical OR of the following values:

EMAC_VLAN_RX_HASH_ENABLE enables hash filtering for VLAN tags. If this flag is
absent, perfect filtering using the tag supplied in ui16Tag is performed. The hash filter may
be set using EMACVLANHashFilterSet(), and EMACVLANHashFilterBitCalculate() may be
used to determine which bits to set in the filter for given VLAN tags.
EMAC_VLAN_RX_SVLAN_ENABLE causes the receiver to recognize S-VLAN (Type =
0x88A8) frames as valid VLAN-tagged frames. If absent, only frames with type 0x8100
are considered valid VLAN frames.
EMAC_VLAN_RX_INVERSE_MATCH causes the receiver to pass all VLAN frames for
which the tags do not match the supplied ui16Tag value. If this flag is absent, only tagged
frames matching ui16Tag are passed.
EMAC_VLAN_RX_12BIT_TAG causes the receiver to compare only the bottom 12 bits
of ui16Tag when performing either perfect or hash filtering of VLAN frames. If this flag
is absent, all 16 bits of the frame tag are examined when filtering. If this flag is set and
ui16Tag has all bottom 12 bits clear, the receiver passes all frames with types 0x8100 or
0x88A8 regardless of the tag values they contain.

Note:
To ensure that VLAN frames that fail the tag filter are dropped by the MAC, EMACFrame-
FilterSet() must be called with the EMAC_FRMFILTER_VLAN flag set in the ui32FilterOpts
parameter. If this flag is not set, failing VLAN packets are received by the application, but bit
10 of RDES0 (EMAC_FRMFILTER_VLAN) is clear indicating that the packet did not match the
current VLAG tag filter.

See also:
EMACVLANRxConfigGet()

Returns:
None

10.2.4.72 EMACVLANTxConfigGet

Returns currently-selected options related to transmission of VLAN-tagged frames.

Prototype:
uint32_t
EMACVLANTxConfigGet(uint32_t ui32Base,

uint16_t *pui16Tag)

Parameters:
ui32Base is the base address of the controller.
pui16Tag points to storage that is written with the VLAN tag currently being used for insertion

or replacement.

July 25, 2016 191

Ethernet Controller

Description:
This function returns information on the current settings related to VLAN tagging of transmitted
frames.

See also:
EMACVLANTxConfigSet()

Returns:
Returns flags describing the current VLAN configuration relating to frame transmission. The
return value is a logical OR of the following values:

EMAC_VLAN_TX_SVLAN indicates that the S-VLAN type (0x88A8) is being used when in-
serting or replacing tags in transmitted frames. If this label is absent, C-VLAN type (0x8100)
is being used.
EMAC_VLAN_TX_USE_VLC indicates that the transmitter is processing VLAN frames ac-
cording to the VLAN control (VLC) value returned here. If this tag is absent, VLAN handling is
controlled by fields in the transmit descriptor.

If EMAC_VLAN_TX_USE_VLC is returned, one of the following four labels is also included to
define the transmit VLAN tag handling. Note that this value may be extracted from the return value
using the mask EMAC_VLAN_TX_VLC_MASK.

EMAC_VLAN_TX_VLC_NONE indicates that the transmitter is not performing VLAN tag in-
sertion, deletion or replacement.
EMAC_VLAN_TX_VLC_DELETE indicates that the transmitter is removing VLAN tags from
all transmitted frames which contain them.
EMAC_VLAN_TX_VLC_INSERT indicates that the transmitter is inserting a VLAN type and
tag into all outgoing frames regardless of whether or not they already contain a VLAN tag.
EMAC_VLAN_TX_VLC_REPLACE indicates that the transmitter is replacing the VLAN tag in
all transmitted frames of type 0x8100 or 0x88A8 with the value returned in ∗pui16Tag.

10.2.4.73 EMACVLANTxConfigSet

Sets options related to transmission of VLAN-tagged frames.

Prototype:
void
EMACVLANTxConfigSet(uint32_t ui32Base,

uint16_t ui16Tag,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.
ui16Tag is the VLAN tag to be used when inserting or replacing tags in transmitted frames.
ui32Config determines the VLAN-related processing performed by the transmitter.

Description:
This function is used to configure transmitter options relating to IEEE 802.1Q VLAN tagging.
The transmitter may be set to insert tagging into untagged frames or replace existing tags with
new values.

The ui16Tag parameter contains the VLAN tag to be used in outgoing tagged frames. The
ui32Config parameter is a logical OR of the following labels:

192 July 25, 2016

Ethernet Controller

EMAC_VLAN_TX_SVLAN uses the S-VLAN type (0x88A8) when inserting or replacing
tags in transmitted frames. If this label is absent, C-VLAN type (0x8100) is used.
EMAC_VLAN_TX_USE_VLC informs the transmitter that the VLAN tag handling should
be defined by the VLAN control (VLC) value provided in this function call. If this tag is
absent, VLAN handling is controlled by fields in the transmit descriptor.

If EMAC_VLAN_TX_USE_VLC is set, one of the following four labels must also be included to
define the transmit VLAN tag handling:

EMAC_VLAN_TX_VLC_NONE instructs the transmitter to perform no VLAN tag insertion,
deletion or replacement.
EMAC_VLAN_TX_VLC_DELETE instructs the transmitter to remove VLAN tags from all
transmitted frames that contain them. As a result, bytes 13, 14, 15 and 16 are removed
from all frames with types 0x8100 or 0x88A8.
EMAC_VLAN_TX_VLC_INSERT instructs the transmitter to insert a VLAN type and tag
into all outgoing frames regardless of whether or not they already contain a VLAN tag.
EMAC_VLAN_TX_VLC_REPLACE instructs the transmitter to replace the VLAN tag in all
frames of type 0x8100 or 0x88A8 with the value provided to this function in the ui16Tag
parameter.

Returns:
None

10.3 Programming Example

The following example shows how to use the this API to initialize the Ethernet controller to transmit
and receive packets. Note that this is a very much simplified example which shows only the basic
flow required. A full implementation would contain rather more error checking and recovery code.

//***
//
// Ethernet DMA descriptors.
//
// The MAC hardware needs a minimum of 3 receive descriptors to operate. The
// number used will be application-dependent and should be tuned for best
// performance.
//
//***
#define NUM_TX_DESCRIPTORS 3
#define NUM_RX_DESCRIPTORS 3
tEMACDMADescriptor g_psRxDescriptor[NUM_TX_DESCRIPTORS];
tEMACDMADescriptor g_psTxDescriptor[NUM_RX_DESCRIPTORS];

uint32_t g_ui32RxDescIndex;
uint32_t g_ui32TxDescIndex;

//***
//
// Transmit and receive buffers. These will typically be allocated within your
// network stack somewhere.
//
//***
#define RX_BUFFER_SIZE 1536
uint8_t g_ppui8RxBuffer[NUM_RX_DESCRIPTORS][RX_BUFFER_SIZE];

//***

July 25, 2016 193

Ethernet Controller

//
// Read a packet from the DMA receive buffer and return the number of bytes
// read.
//
//***
int32_t
ProcessReceivedPacket(void)
{

int_fast32_t i32FrameLen;

//
// By default, we assume we got a bad frame.
//
i32FrameLen = 0;

//
// Make sure that we own the receive descriptor.
//
if(!(g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus & DES0_RX_CTRL_OWN))
{

//
// We own the receive descriptor so check to see if it contains a valid
// frame.
//
if(!(g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus &

DES0_RX_STAT_ERR))
{

//
// We have a valid frame. First check that the "last descriptor"
// flag is set. We sized the receive buffer such that it can
// always hold a valid frame so this flag should never be clear at
// this point but...
//
if(g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus &

DES0_RX_STAT_LAST_DESC)
{

//
// What size is the received frame?
//
i32FrameLen =

((g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus &
DES0_RX_STAT_FRAME_LENGTH_M) >>

DES0_RX_STAT_FRAME_LENGTH_S);

//
// Pass the received buffer up to the application to handle.
//
ApplicationProcessFrame(i32FrameLen,

g_psRxDescriptor[g_ui32RxDescIndex].pvBuffer1);

}
}

//
// Now that we are finished dealing with this descriptor, hand
// it back to the hardware. Note that we assume
// ApplicationProcessFrame() is finished with the buffer at this point
// so it is safe to reuse.
//
g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus =

DES0_RX_CTRL_OWN;

//
// Move on to the next descriptor in the chain.
//
g_ui32RxDescIndex++;

194 July 25, 2016

Ethernet Controller

if(g_ui32RxDescIndex == NUM_RX_DESCRIPTORS)
{

g_ui32RxDescIndex = 0;
}

}

//
// Return the Frame Length
//
return(i32FrameLen);

}

//***
//
// The interrupt handler for the Ethernet interrupt.
//
//***
void
EthernetIntHandler(void)
{

uint32_t ui32Temp;

//
// Read and Clear the interrupt.
//
ui32Temp = EMACIntStatus(EMAC0_BASE, true);
EMACIntClear(EMAC0_BASE, ui32Temp);

//
// Check to see if an RX Interrupt has occurred.
//
if(ui32Temp & EMAC_INT_RECEIVE)
{

//
// Indicate that a packet has been received.
//
ProcessReceivedPacket();

}
}

//***
//
// Transmit a packet from the supplied buffer. This function would be called
// directly by the application. pui8Buf points to the Ethernet frame to send
// and i32BufLen contains the number of bytes in the frame.
//
//***
static int32_t
PacketTransmit(uint8_t *pui8Buf, int32_t i32BufLen)
{

//
// Wait for the transmit descriptor to free up.
//
while(g_psTxDescriptor[g_ui32TxDescIndex].ui32CtrlStatus &

DES0_TX_CTRL_OWN)
{

//
// Spin and waste time.
//

}

//
// Move to the next descriptor.
//
g_ui32TxDescIndex++;
if(g_ui32TxDescIndex == NUM_TX_DESCRIPTORS)

July 25, 2016 195

Ethernet Controller

{
g_ui32TxDescIndex = 0;

}

//
// Fill in the packet size and pointer, and tell the transmitter to start
// work.
//
g_psTxDescriptor[g_ui32TxDescIndex].ui32Count = (uint32_t)i32BufLen;
g_psTxDescriptor[g_ui32TxDescIndex].pvBuffer1 = pui8Buf;
g_psTxDescriptor[g_ui32TxDescIndex].ui32CtrlStatus =

(DES0_TX_CTRL_LAST_SEG | DES0_TX_CTRL_FIRST_SEG |
DES0_TX_CTRL_INTERRUPT | DES0_TX_CTRL_IP_ALL_CKHSUMS |
DES0_TX_CTRL_CHAINED | DES0_TX_CTRL_OWN);

//
// Tell the DMA to reacquire the descriptor now that we’ve filled it in.
// This call is benign if the transmitter hasn’t stalled and checking
// the state takes longer than just issuing a poll demand so we do this
// for all packets.
//
EMACTxDMAPollDemand(EMAC0_BASE);

//
// Return the number of bytes sent.
//
return(i32BufLen);

}

//***
//
// Initialize the transmit and receive DMA descriptors.
//
//***
void
InitDescriptors(uint32_t ui32Base)
{

uint32_t ui32Loop;

//
// Initialize each of the transmit descriptors. Note that we leave the
// buffer pointer and size empty and the OWN bit clear here since we have
// not set up any transmissions yet.
//
for(ui32Loop = 0; ui32Loop < NUM_TX_DESCRIPTORS; ui32Loop++)
{

g_psTxDescriptor[ui32Loop].ui32Count = DES1_TX_CTRL_SADDR_INSERT;
g_psTxDescriptor[ui32Loop].DES3.pLink =

(ui32Loop == (NUM_TX_DESCRIPTORS - 1)) ?
g_psTxDescriptor : &g_psTxDescriptor[ui32Loop + 1];

g_psTxDescriptor[ui32Loop].ui32CtrlStatus =
(DES0_TX_CTRL_LAST_SEG | DES0_TX_CTRL_FIRST_SEG |
DES0_TX_CTRL_INTERRUPT | DES0_TX_CTRL_CHAINED |
DES0_TX_CTRL_IP_ALL_CKHSUMS);

}

//
// Initialize each of the receive descriptors. We clear the OWN bit here
// to make sure that the receiver doesn’t start writing anything
// immediately.
//
for(ui32Loop = 0; ui32Loop < NUM_RX_DESCRIPTORS; ui32Loop++)
{

g_psRxDescriptor[ui32Loop].ui32CtrlStatus = 0;
g_psRxDescriptor[ui32Loop].ui32Count =

(DES1_RX_CTRL_CHAINED |

196 July 25, 2016

Ethernet Controller

(RX_BUFFER_SIZE << DES1_RX_CTRL_BUFF1_SIZE_S));
g_psRxDescriptor[ui32Loop].pvBuffer1 = g_ppui8RxBuffer[ui32Loop];
g_psRxDescriptor[ui32Loop].DES3.pLink =

(ui32Loop == (NUM_RX_DESCRIPTORS - 1)) ?
g_psRxDescriptor : &g_psRxDescriptor[ui32Loop + 1];

}

//
// Set the descriptor pointers in the hardware.
//
EMACRxDMADescriptorListSet(ui32Base, g_psRxDescriptor);
EMACTxDMADescriptorListSet(ui32Base, g_psTxDescriptor);

//
// Start from the beginning of both descriptor chains. We actually set
// the transmit descriptor index to the last descriptor in the chain
// since it will be incremented before use and this means the first
// transmission we perform will use the correct descriptor.
//
g_ui32RxDescIndex = 0;
g_ui32TxDescIndex = NUM_TX_DESCRIPTORS - 1;

}

//***
//
// This example demonstrates the use of the Ethernet Controller.
//
//***
int
main(void)
{

uint32_t ui32User0, ui32User1, ui32Loop, ui32SysClock;
uint8_t ui8PHYAddr;
uint8_t pui8MACAddr[6];

//
// Run from the PLL at 120 MHz.
//
ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

//
// Configure the device pins.
//
PinoutSet();

//
// Read the MAC address from the user registers.
//
FlashUserGet(&ui32User0, &ui32User1);
if((ui32User0 == 0xffffffff) || (ui32User1 == 0xffffffff))
{

//
// We should never get here. This is an error if the MAC address has
// not been programmed into the device. Exit the program.
//
while(1)
{
}

}

//
// Convert the 24/24 split MAC address from NV ram into a 32/16 split MAC
// address needed to program the hardware registers, then program the MAC

July 25, 2016 197

Ethernet Controller

// address into the Ethernet Controller registers.
//
pui8MACAddr[0] = ((ui32User0 >> 0) & 0xff);
pui8MACAddr[1] = ((ui32User0 >> 8) & 0xff);
pui8MACAddr[2] = ((ui32User0 >> 16) & 0xff);
pui8MACAddr[3] = ((ui32User1 >> 0) & 0xff);
pui8MACAddr[4] = ((ui32User1 >> 8) & 0xff);
pui8MACAddr[5] = ((ui32User1 >> 16) & 0xff);

//
// Enable and reset the Ethernet modules.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_EMAC0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_EPHY0);
SysCtlPeripheralReset(SYSCTL_PERIPH_EMAC0);
SysCtlPeripheralReset(SYSCTL_PERIPH_EPHY0);

//
// Wait for the MAC to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_EMAC0))
{
}

//
// Configure for use with the internal PHY.
//
ui8PHYAddr = 0;
EMACPHYConfigSet(EMAC0_BASE,

(EMAC_PHY_TYPE_INTERNAL |
EMAC_PHY_INT_MDIX_EN |
EMAC_PHY_AN_100B_T_FULL_DUPLEX));

//
// Reset the MAC to latch the PHY configuration.
//
EMACReset(EMAC0_BASE);

//
// Initialize the MAC and set the DMA mode.
//
EMACInit(EMAC0_BASE, ui32SysClock,

EMAC_BCONFIG_MIXED_BURST | EMAC_BCONFIG_PRIORITY_FIXED, 4, 4,
0);

//
// Set MAC configuration options.
//
EMACConfigSet(EMAC0_BASE,

(EMAC_CONFIG_FULL_DUPLEX |
EMAC_CONFIG_CHECKSUM_OFFLOAD |
EMAC_CONFIG_7BYTE_PREAMBLE |
EMAC_CONFIG_IF_GAP_96BITS |
EMAC_CONFIG_USE_MACADDR0 |
EMAC_CONFIG_SA_FROM_DESCRIPTOR |
EMAC_CONFIG_BO_LIMIT_1024),
(EMAC_MODE_RX_STORE_FORWARD |
EMAC_MODE_TX_STORE_FORWARD |
EMAC_MODE_TX_THRESHOLD_64_BYTES |
EMAC_MODE_RX_THRESHOLD_64_BYTES), 0);

//
// Initialize the Ethernet DMA descriptors.
//
InitDescriptors(EMAC0_BASE);

198 July 25, 2016

Ethernet Controller

//
// Program the hardware with its MAC address (for filtering).
//
EMACAddrSet(EMAC0_BASE, 0, pui8MACAddr);

//
// Wait for the link to become active.
//
while((EMACPHYRead(EMAC0_BASE, ui8PHYAddr, EPHY_BMSR) &

EPHY_BMSR_LINKSTAT) == 0)
{
}

//
// Set MAC filtering options. We receive all broadcast and multicast
// packets along with those addressed specifically for us.
//
EMACFrameFilterSet(EMAC0_BASE, (EMAC_FRMFILTER_SADDR |

EMAC_FRMFILTER_PASS_MULTICAST |
EMAC_FRMFILTER_PASS_NO_CTRL));

//
// Clear any pending interrupts.
//
EMACIntClear(EMAC0_BASE, EMACIntStatus(EMAC0_BASE, false));

//
// Mark the receive descriptors as available to the DMA to start
// the receive processing.
//
for(ui32Loop = 0; ui32Loop < NUM_RX_DESCRIPTORS; ui32Loop++)
{

g_psRxDescriptor[ui32Loop].ui32CtrlStatus |= DES0_RX_CTRL_OWN;
}

//
// Enable the Ethernet MAC transmitter and receiver.
//
EMACTxEnable(EMAC0_BASE);
EMACRxEnable(EMAC0_BASE);

//
// Enable the Ethernet interrupt.
//
IntEnable(INT_EMAC0);

//
// Enable the Ethernet RX Packet interrupt source.
//
EMACIntEnable(EMAC0_BASE, EMAC_INT_RECEIVE);

//
// Application main loop continues....
//
while(1)
{

//
// Do main loop things...
//

}
}

July 25, 2016 199

Ethernet Controller

200 July 25, 2016

External Peripheral Interface (EPI)

11 External Peripheral Interface (EPI)
Introduction .201
API Functions . 201
Programming Example .231

11.1 Introduction

The EPI API provides functions to use the EPI module available in the Tiva microcontroller. The
EPI module provides a physical interface for external peripherals and memories. The EPI can
be configured to support several types of external interfaces and different sized address and data
buses.

Some features of the EPI module are:

configurable interface modes including SDRAM, HostBus, and simple read/write protocols

configurable address and data sizes

configurable bus cycle timing

blocking and non-blocking reads and writes

FIFO for streaming reads

interrupt and uDMA support

This driver is contained in driverlib/epi.c, with driverlib/epi.h containing the API dec-
larations for use by applications.

11.2 API Functions

Functions
void EPIAddressMapSet (uint32_t ui32Base, uint32_t ui32Map)
void EPIConfigGPModeSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t
ui32FrameCount, uint32_t ui32MaxWait)
void EPIConfigHB16CSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigHB16Set (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxWait)
void EPIConfigHB16TimingSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigHB8CSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigHB8Set (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxWait)
void EPIConfigHB8TimingSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigSDRAMSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32Refresh)
void EPIDividerCSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Divider)
void EPIDividerSet (uint32_t ui32Base, uint32_t ui32Divider)
void EPIDMATxCount (uint32_t ui32Base, uint32_t ui32Count)
void EPIFIFOConfig (uint32_t ui32Base, uint32_t ui32Config)
void EPIIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)

July 25, 2016 201

External Peripheral Interface (EPI)

void EPIIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void EPIIntErrorClear (uint32_t ui32Base, uint32_t ui32ErrFlags)
uint32_t EPIIntErrorStatus (uint32_t ui32Base)
void EPIIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t EPIIntStatus (uint32_t ui32Base, bool bMasked)
void EPIIntUnregister (uint32_t ui32Base)
void EPIModeSet (uint32_t ui32Base, uint32_t ui32Mode)
uint32_t EPINonBlockingReadAvail (uint32_t ui32Base)
void EPINonBlockingReadConfigure (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32DataSize, uint32_t ui32Address)
uint32_t EPINonBlockingReadCount (uint32_t ui32Base, uint32_t ui32Channel)
uint32_t EPINonBlockingReadGet16 (uint32_t ui32Base, uint32_t ui32Count, uint16_t
∗pui16Buf)
uint32_t EPINonBlockingReadGet32 (uint32_t ui32Base, uint32_t ui32Count, uint32_t
∗pui32Buf)
uint32_t EPINonBlockingReadGet8 (uint32_t ui32Base, uint32_t ui32Count, uint8_t ∗pui8Buf)
void EPINonBlockingReadStart (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Count)
void EPINonBlockingReadStop (uint32_t ui32Base, uint32_t ui32Channel)
uint32_t EPIPSRAMConfigRegGet (uint32_t ui32Base, uint32_t ui32CS)
bool EPIPSRAMConfigRegGetNonBlocking (uint32_t ui32Base, uint32_t ui32CS, uint32_t
∗pui32CR)
void EPIPSRAMConfigRegRead (uint32_t ui32Base, uint32_t ui32CS)
void EPIPSRAMConfigRegSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32CR)
uint8_t EPIWorkaroundByteRead (uint8_t ∗pui8Addr)
void EPIWorkaroundByteWrite (uint8_t ∗pui8Addr, uint8_t ui8Value)
uint16_t EPIWorkaroundHWordRead (uint16_t ∗pui16Addr)
void EPIWorkaroundHWordWrite (uint16_t ∗pui16Addr, uint16_t ui16Value)
uint32_t EPIWorkaroundWordRead (uint32_t ∗pui32Addr)
void EPIWorkaroundWordWrite (uint32_t ∗pui32Addr, uint32_t ui32Value)
uint32_t EPIWriteFIFOCountGet (uint32_t ui32Base)

11.2.1 Detailed Description

The function EPIModeSet() is used to select the interface mode. The clock divider is set with the
EPIDividerSet() function which determines the speed of the external bus. The external device is
mapped into the processor memory or peripheral space using the EPIAddressMapSet() function.

Once the mode is selected, the interface is configured with one of the configuration functions. If
SDRAM mode is chosen, then the function EPIConfigSDRAMSet() is used to configure the SDRAM
interface. If Host-Bus 8 mode is chosen, then EPIConfigHB8Set() is used. If Host-Bus 16 mode is
chosen, then EPIConfigHB16Set() is used. If General-Purpose mode is chosen, then EPIConfig-
GPMode() is used.

After the mode has been selected and configured, then the device can be accessed by read-
ing and writing to the memory or peripheral address space that was programmed with EPIAd-
dressMapSet().

202 July 25, 2016

External Peripheral Interface (EPI)

There are more sophisticated ways to use the read/write interface. When an application is writing
to the mapped memory or peripheral space, the writes stall the processor until the write to the
external interface is completed. However, the EPI contains an internal transaction FIFO and can
buffer up to 4 pending writes without stalling the processor. Prior to writing, the application can test
to see if the EPI can take more write operations without stalling the processor by using the function
EPINonBlockingWriteCount(), which returns the number of non-blocking writes that can be made.

For efficient reads from the external device, the EPI contains a programmable read FIFO. After
setting a starting address and a count, data from sequential reads from the device can be stored in
the FIFO. The application can then periodically drain the FIFO by polling or by interrupts, optionally
using the uDMA controller. A non-blocking read is configured by using the function EPINonBlock-
ingReadConfigure(). The read operation is started with EPINonBlockingReadStart() and can be
stopped by calling EPINonBlockingReadStop(). The function EPINonBlockingReadCount() can be
used to determine the number of items remaining to be read, while the function EPINonBlock-
ingReadAvail() returns the number of items in the FIFO that can be read immediately without
stalling. There are 3 functions available for reading data from the FIFO and into a buffer provided by
the application. These functions are EPINonBlockingReadGet32(), EPINonBlockingReadGet16(),
EPINonBlockingReadGet8(), to read the data from the FIFO as 32-bit, 16-bit, or 8-bit data items.

The read FIFO and write transaction FIFO can be configured with the function EPIFIFOConfig().
This function is used to set the FIFO trigger levels and to enable error interrupts to be generated
when a read or write is stalled.

Interrupts are enabled or disabled with the functions EPIIntEnable() and EPIIntDisable(). The inter-
rupt status can be read by calling EPIIntStatus(). If there is an error interrupt pending, the cause
of the error can be determined with the function EPIIntErrorStatus(). The error can then be cleared
with EPIIntErrorClear().

If dynamic interrupt registration is being used by the application, then an EPI interrupt handler can
be registered by calling EPIIntRegister(). This function loads the interrupt handler’s address into
the vector table. The handler can be removed with EPIIntUnregister().

11.2.2 Function Documentation

11.2.2.1 EPIAddressMapSet

Configures the address map for the external interface.

Prototype:
void
EPIAddressMapSet(uint32_t ui32Base,

uint32_t ui32Map)

Parameters:
ui32Base is the EPI module base address.
ui32Map is the address mapping configuration.

Description:
This function is used to configure the address mapping for the external interface, which then
determines the base address of the external memory or device within the processor peripheral
and/or memory space.

The parameter ui32Map is the logical OR of the following:

July 25, 2016 203

External Peripheral Interface (EPI)

Peripheral address space size, select one of:
• EPI_ADDR_PER_SIZE_256B sets the peripheral address space to 256 bytes.
• EPI_ADDR_PER_SIZE_64KB sets the peripheral address space to 64 Kbytes.
• EPI_ADDR_PER_SIZE_16MB sets the peripheral address space to 16 Mbytes.
• EPI_ADDR_PER_SIZE_256MB sets the peripheral address space to 256 Mbytes.

Peripheral base address, select one of:
• EPI_ADDR_PER_BASE_NONE sets the peripheral base address to none.
• EPI_ADDR_PER_BASE_A sets the peripheral base address to 0xA0000000.
• EPI_ADDR_PER_BASE_C sets the peripheral base address to 0xC0000000.

RAM address space, select one of:
• EPI_ADDR_RAM_SIZE_256B sets the RAM address space to 256 bytes.
• EPI_ADDR_RAM_SIZE_64KB sets the RAM address space to 64 Kbytes.
• EPI_ADDR_RAM_SIZE_16MB sets the RAM address space to 16 Mbytes.
• EPI_ADDR_RAM_SIZE_256MB sets the RAM address space to 256 Mbytes.

RAM base address, select one of:
• EPI_ADDR_RAM_BASE_NONE sets the RAM space address to none.
• EPI_ADDR_RAM_BASE_6 sets the RAM space address to 0x60000000.
• EPI_ADDR_RAM_BASE_8 sets the RAM space address to 0x80000000.

EPI_ADDR_RAM_QUAD_MODE maps CS0n to 0x60000000, CS1n to 0x80000000,
CS2n to 0xA0000000, and CS3n to 0xC0000000.
EPI_ADDR_CODE_SIZE_256B sets an external code size of 256 bytes, range 0x00 to
0xFF.
EPI_ADDR_CODE_SIZE_64KB sets an external code size of 64 Kbytes, range 0x0000 to
0xFFFF.
EPI_ADDR_CODE_SIZE_16MB sets an external code size of 16 Mbytes, range 0x000000
to 0xFFFFFF.
EPI_ADDR_CODE_SIZE_256MB sets an external code size of 256 Mbytes, range
0x0000000 to 0xFFFFFFF.
EPI_ADDR_CODE_BASE_NONE sets external code base to not mapped.
EPI_ADDR_CODE_BASE_1 sets external code base to 0x10000000.

Note:
The availability of EPI_ADDR_RAM_QUAD_MODE and EPI_ADDR_CODE_∗ varies based
on the Tiva part in use. Please consult the data sheet to determine if these features are
available.

Returns:
None.

11.2.2.2 EPIConfigGPModeSet

Configures the interface for general-purpose mode operation.

Prototype:
void
EPIConfigGPModeSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32FrameCount,
uint32_t ui32MaxWait)

204 July 25, 2016

External Peripheral Interface (EPI)

Parameters:
ui32Base is the EPI module base address.
ui32Config is the interface configuration.
ui32FrameCount is the frame size in clocks, if the frame signal is used (0-15).
ui32MaxWait is currently not used.

Description:
This function is used to configure the interface when used in general-purpose operation as
chosen with the function EPIModeSet(). The parameter ui32Config is the logical OR of the
following:

EPI_GPMODE_CLKPIN interface clock as output on a pin.
EPI_GPMODE_CLKGATE clock is stopped when there is no transaction, otherwise it is
free-running.
EPI_GPMODE_FRAME50 framing signal is 50/50 duty cycle, otherwise it is a pulse.
EPI_GPMODE_WRITE2CYCLE a two-cycle write is used, otherwise a single-cycle write
is used.
Address bus size, select one of:

• EPI_GPMODE_ASIZE_NONE sets no address bus.
• EPI_GPMODE_ASIZE_4 sets an address bus size of 4 bits.
• EPI_GPMODE_ASIZE_12 sets an address bus size of 12 bits.
• EPI_GPMODE_ASIZE_20 sets an address bus size of 20 bits.

Data bus size, select one of:
• EPI_GPMODE_DSIZE_8 sets a data bus size of 8 bits.
• EPI_GPMODE_DSIZE_16 sets a data bus size of 16 bits.
• EPI_GPMODE_DSIZE_24 sets a data bus size of 24 bits.
• EPI_GPMODE_DSIZE_32 sets a data bus size of 32 bits.

The parameter ui32FrameCount is the number of clocks used to form the framing signal, if the
framing signal is used. The behavior depends on whether the frame signal is a pulse or a 50/50
duty cycle.

Returns:
None.

11.2.2.3 EPIConfigHB16CSSet

Sets the individual chip select configuration for the Host-bus 16 interface.

Prototype:
void
EPIConfigHB16CSSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

July 25, 2016 205

External Peripheral Interface (EPI)

Description:
This function is used to configure individual chip select settings for the Host-bus 16 interface
mode. EPIConfigHB16Set() must have been set up with the EPI_HB16_CSBAUD flag for the
individual chip select configuration option to be available.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR the following:

Host-bus 16 submode, select one of:
• EPI_HB16_MODE_ADMUX sets data and address muxed, AD[15:0].
• EPI_HB16_MODE_ADDEMUX sets up data and address separate, D[15:0].
• EPI_HB16_MODE_SRAM same as EPI_HB8_MODE_ADDEMUX, but uses address

switch for multiple reads instead of OEn strobing, D[15:0].
• EPI_HB16_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty,

D[15:0]. This feature is only available on CS0n and CS1n.
EPI_HB16_WRHIGH sets active high write strobe, otherwise it is active low.
EPI_HB16_RDHIGH sets active high read strobe, otherwise it is active low.
Write wait state when EPI_HB16_BAUD is used, select one of:

• EPI_HB16_WRWAIT_0 sets write wait state to 2 EPI clocks (default).
• EPI_HB16_WRWAIT_1 sets write wait state to 4 EPI clocks.
• EPI_HB16_WRWAIT_2 sets write wait state to 6 EPI clocks.
• EPI_HB16_WRWAIT_3 sets write wait state to 8 EPI clocks.

Read wait state when EPI_HB16_BAUD is used, select one of:
• EPI_HB16_RDWAIT_0 sets read wait state to 2 EPI clocks (default).
• EPI_HB16_RDWAIT_1 sets read wait state to 4 EPI clocks.
• EPI_HB16_RDWAIT_2 sets read wait state to 6 EPI clocks.
• EPI_HB16_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB16_ALE_HIGH sets the address latch active high (default).
EPI_HB16_ALE_LOW sets address latch active low.
EPI_HB16_BURST_TRAFFIC enables burst traffic. Only valid with
EPI_HB16_MODE_ADMUX and a chip select configuration that utilizes an ALE.

Note:
The availability of the unique chip select configuration within the Host-bus 16 interface mode
varies based on the Tiva part in use. Please consult the data sheet to determine if this feature
is available.

Returns:
None.

11.2.2.4 EPIConfigHB16Set

Configures the interface for Host-bus 16 operation.

Prototype:
void
EPIConfigHB16Set(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32MaxWait)

206 July 25, 2016

External Peripheral Interface (EPI)

Parameters:
ui32Base is the EPI module base address.
ui32Config is the interface configuration.
ui32MaxWait is the maximum number of external clocks to wait if a FIFO ready signal is

holding off the transaction.

Description:
This function is used to configure the interface when used in Host-bus 16 operation as chosen
with the function EPIModeSet(). The parameter ui32Config is the logical OR of the following:

Host-bus 16 submode, select one of:
• EPI_HB16_MODE_ADMUX sets data and address muxed, AD[15:0].
• EPI_HB16_MODE_ADDEMUX sets up data and address as separate, D[15:0].
• EPI_HB16_MODE_SRAM sets as EPI_HB16_MODE_ADDEMUX but uses address

switch for multiple reads instead of OEn strobing, D[15:0].
• EPI_HB16_MODE_FIFO addes XFIFO controls with sense of XFIFO full and XFIFO

empty, D[15:0]. This submode uses no address or ALE.

EPI_HB16_USE_TXEMPTY enables TXEMPTY signal with FIFO.
EPI_HB16_USE_RXFULL enables RXFULL signal with FIFO.
EPI_HB16_WRHIGH use active high write strobe, otherwise it is active low.
EPI_HB16_RDHIGH use active high read strobe, otherwise it is active low.
Write wait state, select one of:

• EPI_HB16_WRWAIT_0 sets write wait state to 2 EPI clocks.
• EPI_HB16_WRWAIT_1 sets write wait state to 4 EPI clocks.
• EPI_HB16_WRWAIT_2 sets write wait state to 6 EPI clocks.
• EPI_HB16_WRWAIT_3 sets write wait state to 8 EPI clocks.

Read wait state, select one of:
• EPI_HB16_RDWAIT_0 sets read wait state to 2 EPI clocks.
• EPI_HB16_RDWAIT_1 sets read wait state to 4 EPI clocks.
• EPI_HB16_RDWAIT_2 sets read wait state to 6 EPI clocks.
• EPI_HB16_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB16_WORD_ACCESS use Word Access mode to route bytes to the correct byte
lanes allowing data to be stored in bits [31:16]. If absent, all data transfers use bits [15:0].

Note:
EPI_HB16_WORD_ACCESS is not available on all parts. Please consult the data sheet to
determine if this feature is available.

EPI_HB16_CLOCK_GATE_IDLE holds the EPI clock low when no data is available to read or
write.

EPI_HB16_CLOCK_INVERT inverts the EPI clock.

EPI_HB16_IN_READY_EN sets EPIS032 as a ready/stall signal, active high.

EPI_HB16_IN_READY_EN_INVERTED sets EPIS032 as ready/stall signal, active low.

Address latch logic, select one of:

• EPI_HB16_ALE_HIGH sets the address latch active high (default).
• EPI_HB16_ALE_LOW sets address latch active low.

July 25, 2016 207

External Peripheral Interface (EPI)

EPI_HB16_BURST_TRAFFIC enables burst traffic. Only valid with
EPI_HB16_MODE_ADMUX and a chip select configuration that utilizes an ALE.

EPI_HB16_BSEL enables byte selects. In this mode, two EPI signals operate as byte selects
allowing 8-bit transfers. If this flag is not specified, data must be read and written using only
16-bit transfers.

EPI_HB16_CSBAUD use different baud rates when accessing devices on each chip select.
CS0n uses the baud rate specified by the lower 16 bits of the divider passed to EPIDividerSet()
and CS1n uses the divider passed in the upper 16 bits. If this option is absent, both chip
selects use the baud rate resulting from the divider in the lower 16 bits of the parameter
passed to EPIDividerSet().

In addition, some parts support CS2n and CS3n for a total of 4 chip selects. If EPI_HB16_CSBAUD
is configured, EPIDividerCSSet() should be used to to configure the divider for CS2n and CS3n.
They both also use the lower 16 bits passed to EPIDividerSet() if this option is absent.

The use of EPI_HB16_CSBAUD also allows for unique chip select configurations. CS0n, CS1n,
CS2n, and CS3n can each be configured by calling EPIConfigHB16CSSet() if EPI_HB16_CSBAUD
is used. Otherwise, the configuration provided in ui32Config is used for all chip selects.

Chip select configuration, select one of:

• EPI_HB16_CSCFG_CS sets EPIS030 to operate as a chip select signal.
• EPI_HB16_CSCFG_ALE sets EPIS030 to operate as an address latch (ALE).
• EPI_HB16_CSCFG_DUAL_CS sets EPIS030 to operate as CS0n and EPIS027 as CS1n

with the asserted chip select determined from the most significant address bit for the
respective external address map.

• EPI_HB16_CSCFG_ALE_DUAL_CS sets EPIS030 as an address latch (ALE), EPIS027
as CS0n and EPIS026 as CS1n with the asserted chip select determined from the most
significant address bit for the respective external address map.

• EPI_HB16_CSCFG_ALE_SINGLE_CS sets EPIS030 to operate as an address latch
(ALE) and EPIS027 is used as a chip select.

• EPI_HB16_CSCFG_QUAD_CS sets EPIS030 as CS0n, EPIS027 as CS1n, EPIS034 as
CS2n and EPIS033 as CS3n.

• EPI_HB16_CSCFG_ALE_QUAD_CS sets EPIS030 as an address latch (ALE), EPIS026
as CS0n, EPIS027 as CS1n, EPIS034 as CS2n and EPIS033 as CS3n.
Note:

Dual or quad chip select configurations cannot be used with
EPI_HB16_MODE_SRAM.

The parameter ui32MaxWait is used if the FIFO mode is chosen. If a FIFO is used along
with RXFULL or TXEMPTY ready signals, then this parameter determines the maximum
number of clocks to wait when the transaction is being held off by by the FIFO using one
of these ready signals. A value of 0 means to wait forever.

Note:
Availability of configuration options varies based on the Tiva part in use. Please consult the
data sheet to determine if the features desired are available.

Returns:
None.

208 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.5 EPIConfigHB16TimingSet

Sets the individual chip select timing settings for the Host-bus 16 interface.

Prototype:
void
EPIConfigHB16TimingSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to set individual chip select timings for the Host-bus 16 interface mode.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

Input ready stall delay, select one of:
• EPI_HB16_IN_READY_DELAY_1 sets the stall on input ready (EPIS032) to start 1

EPI clock after signaled.
• EPI_HB16_IN_READY_DELAY_2 sets the stall on input ready (EPIS032) to start 2

EPI clocks after signaled.
• EPI_HB16_IN_READY_DELAY_3 sets the stall on input ready (EPIS032) to start 3

EPI clocks after signaled.

PSRAM size limitation, select one of:
• EPI_HB16_PSRAM_NO_LIMIT defines no row size limitation.
• EPI_HB16_PSRAM_128 defines the PSRAM row size to 128 bytes.
• EPI_HB16_PSRAM_256 defines the PSRAM row size to 256 bytes.
• EPI_HB16_PSRAM_512 defines the PSRAM row size to 512 bytes.
• EPI_HB16_PSRAM_1024 defines the PSRAM row size to 1024 bytes.
• EPI_HB16_PSRAM_2048 defines the PSRAM row size to 2048 bytes.
• EPI_HB16_PSRAM_4096 defines the PSRAM row size to 4096 bytes.
• EPI_HB16_PSRAM_8192 defines the PSRAM row size to 8192 bytes.

Host bus transfer delay, select one of:
• EPI_HB16_CAP_WIDTH_1 defines the inter-transfer capture width to create a delay

of 1 EPI clock
• EPI_HB16_CAP_WIDTH_2 defines the inter-transfer capture width to create a delay

of 2 EPI clocks.

Write wait state timing reduction, select one of:
• EPI_HB16_WRWAIT_MINUS_DISABLE disables the additional write wait state reduc-

tion.
• EPI_HB16_WRWAIT_MINUS_ENABLE enables a 1 EPI clock write wait state reduc-

tion.

July 25, 2016 209

External Peripheral Interface (EPI)

Read wait state timing reduction, select one of:
• EPI_HB16_RDWAIT_MINUS_DISABLE disables the additional read wait state reduc-

tion.
• EPI_HB16_RDWAIT_MINUS_ENABLE enables a 1 EPI clock read wait state reduc-

tion.

Note:
The availability of unique chip select timings within Host-bus 16 interface mode varies based
on the Tiva part in use. Please consult the data sheet to determine if this feature is available.

Returns:
None.

11.2.2.6 EPIConfigHB8CSSet

Sets the individual chip select configuration for the Host-bus 8 interface.

Prototype:
void
EPIConfigHB8CSSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to configure individual chip select settings for the Host-bus 8 interface
mode. EPIConfigHB8Set() must have been setup with the EPI_HB8_CSBAUD flag for the
individual chip select configuration option to be available.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

Host-bus 8 submode, select one of:
• EPI_HB8_MODE_ADMUX sets data and address muxed, AD[7:0].
• EPI_HB8_MODE_ADDEMUX sets up data and address separate, D[7:0].
• EPI_HB8_MODE_SRAM as EPI_HB8_MODE_ADDEMUX, but uses address switch

for multiple reads instead of OEn strobing, D[7:0].
• EPI_HB8_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty,

D[7:0]. This is only available for CS0n and CS1n.

EPI_HB8_WRHIGH sets active high write strobe, otherwise it is active low.
EPI_HB8_RDHIGH sets active high read strobe, otherwise it is active low.
Write wait state when EPI_HB8_BAUD is used, select one of:

• EPI_HB8_WRWAIT_0 sets write wait state to 2 EPI clocks (default).
• EPI_HB8_WRWAIT_1 sets write wait state to 4 EPI clocks.
• EPI_HB8_WRWAIT_2 sets write wait state to 6 EPI clocks.

210 July 25, 2016

External Peripheral Interface (EPI)

• EPI_HB8_WRWAIT_3 sets write wait state to 8 EPI clocks.
Read wait state when EPI_HB8_BAUD is used, select one of:

• EPI_HB8_RDWAIT_0 sets read wait state to 2 EPI clocks (default).
• EPI_HB8_RDWAIT_1 sets read wait state to 4 EPI clocks.
• EPI_HB8_RDWAIT_2 sets read wait state to 6 EPI clocks.
• EPI_HB8_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB8_ALE_HIGH sets the address latch active high (default).
EPI_HB8_ALE_LOW sets address latch active low.

Note:
The availability of a unique chip select configuration within Host-bus 8 interface mode varies
based on the Tiva part in use. Please consult the data sheet to determine if this feature is
available.

Returns:
None.

11.2.2.7 EPIConfigHB8Set

Configures the interface for Host-bus 8 operation.

Prototype:
void
EPIConfigHB8Set(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32MaxWait)

Parameters:
ui32Base is the EPI module base address.
ui32Config is the interface configuration.
ui32MaxWait is the maximum number of external clocks to wait if a FIFO ready signal is

holding off the transaction, 0-255.

Description:
This function is used to configure the interface when used in host-bus 8 operation as chosen
with the function EPIModeSet(). The parameter ui32Config is the logical OR of the following:

Host-bus 8 submode, select one of:
• EPI_HB8_MODE_ADMUX sets data and address muxed, AD[7:0]
• EPI_HB8_MODE_ADDEMUX sets up data and address separate, D[7:0]
• EPI_HB8_MODE_SRAM as EPI_HB8_MODE_ADDEMUX, but uses address switch

for multiple reads instead of OEn strobing, D[7:0]
• EPI_HB8_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty, D[7:0]

EPI_HB8_USE_TXEMPTY enables TXEMPTY signal with FIFO
EPI_HB8_USE_RXFULL enables RXFULL signal with FIFO
EPI_HB8_WRHIGH sets active high write strobe, otherwise it is active low
EPI_HB8_RDHIGH sets active high read strobe, otherwise it is active low

Write wait state when EPI_HB8_BAUD is used, select one of:

July 25, 2016 211

External Peripheral Interface (EPI)

• EPI_HB8_WRWAIT_0 sets write wait state to 2 EPI clocks (default)
• EPI_HB8_WRWAIT_1 sets write wait state to 4 EPI clocks
• EPI_HB8_WRWAIT_2 sets write wait state to 6 EPI clocks
• EPI_HB8_WRWAIT_3 sets write wait state to 8 EPI clocks

Read wait state when EPI_HB8_BAUD is used, select one of:
• EPI_HB8_RDWAIT_0 sets read wait state to 2 EPI clocks (default)
• EPI_HB8_RDWAIT_1 sets read wait state to 4 EPI clocks
• EPI_HB8_RDWAIT_2 sets read wait state to 6 EPI clocks
• EPI_HB8_RDWAIT_3 sets read wait state to 8 EPI clocks

EPI_HB8_WORD_ACCESS - use Word Access mode to route bytes to the correct byte
lanes allowing data to be stored in bits [31:8]. If absent, all data transfers use bits [7:0].

EPI_HB8_CLOCK_GATE_IDLE sets the EPI clock to be held low when no data is avail-
able to read or write
EPI_HB8_CLOCK_INVERT inverts the EPI clock
EPI_HB8_IN_READY_EN sets EPIS032 as a ready/stall signal, active high
EPI_HB8_IN_READY_EN_INVERT sets EPIS032 as ready/stall signal, active low
EPI_HB8_ALE_HIGH sets the address latch active high (default)
EPI_HB8_ALE_LOW sets address latch active low
EPI_HB8_CSBAUD use different baud rates when accessing devices on each chip select.
CS0n uses the baud rate specified by the lower 16 bits of the divider passed to EPIDi-
viderSet() and CS1n uses the divider passed in the upper 16 bits. If this option is absent,
both chip selects use the baud rate resulting from the divider in the lower 16 bits of the
parameter passed to EPIDividerSet().

In addition, some parts support CS2n and CS3n for a total of 4 chip selects. If
EPI_HB8_CSBAUD is configured, EPIDividerCSSet() should be used to to configure the di-
vider for CS2n and CS3n. They both also use the lower 16 bits passed to EPIDividerSet() if
this option is absent.

The use of EPI_HB8_CSBAUD also allows for unique chip select configurations. CS0n,
CS1n, CS2n, and CS3n can each be configured by calling EPIConfigHB8CSSet() if
EPI_HB8_CSBAUD is used. Otherwise, the configuration provided in ui32Config is used for
all chip selects enabled.

Chip select configuration, select one of:
• EPI_HB8_CSCFG_CS sets EPIS030 to operate as a chip select signal.
• EPI_HB8_CSCFG_ALE sets EPIS030 to operate as an address latch (ALE).
• EPI_HB8_CSCFG_DUAL_CS sets EPIS030 to operate as CS0n and EPIS027 as

CS1n with the asserted chip select determined from the most significant address bit
for the respective external address map.

• EPI_HB8_CSCFG_ALE_DUAL_CS sets EPIS030 as an address latch (ALE),
EPIS027 as CS0n and EPIS026 as CS1n with the asserted chip select determined
from the most significant address bit for the respective external address map.

• EPI_HB8_CSCFG_ALE_SINGLE_CS sets EPIS030 to operate as an address latch
(ALE) and EPIS027 is used as a chip select.

• EPI_HB8_CSCFG_QUAD_CS sets EPIS030 as CS0n, EPIS027 as CS1n, EPIS034
as CS2n and EPIS033 as CS3n.

• EPI_HB8_CSCFG_ALE_QUAD_CS sets EPIS030 as an address latch (ALE),
EPIS026 as CS0n, EPIS027 as CS1n, EPIS034 as CS2n and EPIS033 as CS3n.

212 July 25, 2016

External Peripheral Interface (EPI)

Note:
Dual or quad chip select configurations cannot be used with
EPI_HB8_MODE_SRAM.

The parameter ui32MaxWait is used if the FIFO mode is chosen. If a FIFO is used
aint32_t with RXFULL or TXEMPTY ready signals, then this parameter determines the
maximum number of clocks to wait when the transaction is being held off by by the
FIFO using one of these ready signals. A value of 0 means to wait forever.

Note:
Availability of configuration options varies based on the Tiva part in use. Please consult the
data sheet to determine if the features desired are available.

Returns:
None.

11.2.2.8 EPIConfigHB8TimingSet

Sets the individual chip select timing settings for the Host-bus 8 interface.

Prototype:
void
EPIConfigHB8TimingSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to set individual chip select timings for the Host-bus 8 interface mode.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

Input ready stall delay, select one of:
• EPI_HB8_IN_READY_DELAY_1 sets the stall on input ready (EPIS032) to start 1 EPI

clock after signaled.
• EPI_HB8_IN_READY_DELAY_2 sets the stall on input ready (EPIS032) to start 2 EPI

clocks after signaled.
• EPI_HB8_IN_READY_DELAY_3 sets the stall on input ready (EPIS032) to start 3 EPI

clocks after signaled.

Host bus transfer delay, select one of:
• EPI_HB8_CAP_WIDTH_1 defines the inter-transfer capture width to create a delay of

1 EPI clock.
• EPI_HB8_CAP_WIDTH_2 defines the inter-transfer capture width to create a delay of

2 EPI clocks.

EPI_HB8_WRWAIT_MINUS_DISABLE disables the additional write wait state reduction.

July 25, 2016 213

External Peripheral Interface (EPI)

EPI_HB8_WRWAIT_MINUS_ENABLE enables a 1 EPI clock write wait state reduction.
EPI_HB8_RDWAIT_MINUS_DISABLE disables the additional read wait state reduction.
EPI_HB8_RDWAIT_MINUS_ENABLE enables a 1 EPI clock read wait state reduction.

Note:
The availability of unique chip select timings within Host-bus 8 interface mode varies based on
the Tiva part in use. Please consult the data sheet to determine if this feature is available.

Returns:
None.

11.2.2.9 EPIConfigSDRAMSet

Configures the SDRAM mode of operation.

Prototype:
void
EPIConfigSDRAMSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32Refresh)

Parameters:
ui32Base is the EPI module base address.
ui32Config is the SDRAM interface configuration.
ui32Refresh is the refresh count in core clocks (0-2047).

Description:
This function is used to configure the SDRAM interface, when the SDRAM mode is chosen
with the function EPIModeSet(). The parameter ui32Config is the logical OR of several sets of
choices:

The processor core frequency must be specified with one of the following:

EPI_SDRAM_CORE_FREQ_0_15 defines core clock as 0 MHz < clk <= 15 MHz
EPI_SDRAM_CORE_FREQ_15_30 defines core clock as 15 MHz < clk <= 30 MHz
EPI_SDRAM_CORE_FREQ_30_50 defines core clock as 30 MHz < clk <= 50 MHz
EPI_SDRAM_CORE_FREQ_50_100 defines core clock as 50 MHz < clk <= 100 MHz

The low power mode is specified with one of the following:

EPI_SDRAM_LOW_POWER enter low power, self-refresh state.
EPI_SDRAM_FULL_POWER normal operating state.

The SDRAM device size is specified with one of the following:

EPI_SDRAM_SIZE_64MBIT size is a 64 Mbit device (8 MB).
EPI_SDRAM_SIZE_128MBIT size is a 128 Mbit device (16 MB).
EPI_SDRAM_SIZE_256MBIT size is a 256 Mbit device (32 MB).
EPI_SDRAM_SIZE_512MBIT size is a 512 Mbit device (64 MB).

The parameter ui16Refresh sets the refresh counter in units of core clock ticks. It is an 11-bit
value with a range of 0 - 2047 counts.

Returns:
None.

214 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.10 EPIDividerCSSet

Sets the clock divider for the specified CS in the EPI module.

Prototype:
void
EPIDividerCSSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Divider)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select to modify and has a valid range of 0-3.
ui32Divider is the value of the clock divider to be applied to the external interface (0-65535).

Description:
This function sets the clock divider(s) for the specified CS that is used to determine the clock
rate of the external interface. The ui32Divider value is used to derive the EPI clock rate from
the system clock based on the following formula.

EPIClk = (Divider == 0) ? SysClk : (SysClk / (((Divider / 2) + 1) ∗ 2))

For example, a divider value of 1 results in an EPI clock rate of half the system clock, value of
2 or 3 yields one quarter of the system clock and a value of 4 results in one sixth of the system
clock rate.

Note:
The availability of CS2n and CS3n varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
None.

11.2.2.11 EPIDividerSet

Sets the clock divider for the EPI module’s CS0n/CS1n.

Prototype:
void
EPIDividerSet(uint32_t ui32Base,

uint32_t ui32Divider)

Parameters:
ui32Base is the EPI module base address.
ui32Divider is the value of the clock divider to be applied to the external interface (0-65535).

Description:
This function sets the clock divider(s) that is used to determine the clock rate of the external
interface. The ui32Divider value is used to derive the EPI clock rate from the system clock
based on the following formula.

EPIClk = (Divider == 0) ? SysClk : (SysClk / (((Divider / 2) + 1) ∗ 2))

July 25, 2016 215

External Peripheral Interface (EPI)

For example, a divider value of 1 results in an EPI clock rate of half the system clock, value of
2 or 3 yields one quarter of the system clock and a value of 4 results in one sixth of the system
clock rate.

In cases where a dual chip select mode is in use and different clock rates are required for each
chip select, the ui32Divider parameter must contain two dividers. The lower 16 bits define the
divider to be used with CS0n and the upper 16 bits define the divider for CS1n.

Returns:
None.

11.2.2.12 EPIDMATxCount

Sets the transfer count for uDMA transmit operations on EPI.

Prototype:
void
EPIDMATxCount(uint32_t ui32Base,

uint32_t ui32Count)

Parameters:
ui32Base is the EPI module base address.
ui32Count is the number of units to transmit by uDMA to WRFIFO.

Description:
This function is used to help configure the EPI uDMA transmit operations. A non-zero transmit
count in combination with a FIFO threshold trigger asserts an EPI uDMA transmit.

Note that, although the EPI peripheral can handle counts of up to 65535, a single uDMA
transfer has a maximum length of 1024 units so ui32Count should be set to values less than
or equal to 1024.

Note:
The availability of the EPI DMA TX count varies based on the Tiva part in use. Please consult
the data sheet to determine if this feature is available.

Returns:
None.

11.2.2.13 EPIFIFOConfig

Configures the read FIFO.

Prototype:
void
EPIFIFOConfig(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.
ui32Config is the FIFO configuration.

216 July 25, 2016

External Peripheral Interface (EPI)

Description:
This function configures the FIFO trigger levels and error generation. The parameter
ui32Config is the logical OR of the following:

EPI_FIFO_CONFIG_WTFULLERR enables an error interrupt when a write is attempted
and the write FIFO is full
EPI_FIFO_CONFIG_RSTALLERR enables an error interrupt when a read is stalled due
to an interleaved write or other reason
FIFO TX trigger level, select one of:

• EPI_FIFO_CONFIG_TX_EMPTY sets the FIFO TX trigger level to empty.
• EPI_FIFO_CONFIG_TX_1_4 sets the FIFO TX trigger level to 1/4.
• EPI_FIFO_CONFIG_TX_1_2 sets the FIFO TX trigger level to 1/2.
• EPI_FIFO_CONFIG_TX_3_4 sets the FIFO TX trigger level to 3/4.

FIFO RX trigger level, select one of:
• EPI_FIFO_CONFIG_RX_1_8 sets the FIFO RX trigger level to 1/8.
• EPI_FIFO_CONFIG_RX_1_4 sets the FIFO RX trigger level to 1/4.
• EPI_FIFO_CONFIG_RX_1_2 sets the FIFO RX trigger level to 1/2.
• EPI_FIFO_CONFIG_RX_3_4 sets the FIFO RX trigger level to 3/4.
• EPI_FIFO_CONFIG_RX_7_8 sets the FIFO RX trigger level to 7/8.
• EPI_FIFO_CONFIG_RX_FULL sets the FIFO RX trigger level to full.

Returns:
None.

11.2.2.14 EPIIntDisable

Disables EPI interrupt sources.

Prototype:
void
EPIIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the EPI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be disabled.

Description:
This function disables the specified EPI sources for interrupt generation. The ui32IntFlags
parameter can be the logical OR of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPI_INT_ERR interrupt when an error condition occurs.
EPI_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPI_INT_DMA_RX_DONE interrupt when the read DMA completes.

Returns:
Returns None.

July 25, 2016 217

External Peripheral Interface (EPI)

11.2.2.15 EPIIntEnable

Enables EPI interrupt sources.

Prototype:
void
EPIIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the EPI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the specified EPI sources to generate interrupts. The ui32IntFlags pa-
rameter can be the logical OR of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPI_INT_ERR interrupt when an error condition occurs.
EPI_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPI_INT_DMA_RX_DONE interrupt when the read DMA completes.

Returns:
Returns None.

11.2.2.16 EPIIntErrorClear

Clears pending EPI error sources.

Prototype:
void
EPIIntErrorClear(uint32_t ui32Base,

uint32_t ui32ErrFlags)

Parameters:
ui32Base is the EPI module base address.
ui32ErrFlags is a bit mask of the error sources to be cleared.

Description:
This function clears the specified pending EPI errors. The ui32ErrFlags parameter can be the
logical OR of any of the following values:

EPI_INT_ERR_DMAWRIC clears the EPI_INT_DMA_TX_DONE as an interrupt source
EPI_INT_ERR_DMARDIC clears the EPI_INT_DMA_RX_DONE as an interrupt source
EPI_INT_ERR_WTFULL occurs when a write stalled when the transaction FIFO was full
EPI_INT_ERR_RSTALL occurs when a read stalled
EPI_INT_ERR_TIMEOUT occurs when the external clock enable held off a transaction
longer than the configured maximum wait time

Returns:
Returns None.

218 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.17 EPIIntErrorStatus

Gets the EPI error interrupt status.

Prototype:
uint32_t
EPIIntErrorStatus(uint32_t ui32Base)

Parameters:
ui32Base is the EPI module base address.

Description:
This function returns the error status of the EPI. If the return value of the function EPIIntStatus()
has the flag EPI_INT_ERR set, then this function can be used to determine the cause of the
error.

Returns:
Returns a bit mask of error flags, which can be the logical OR of any of the following:

EPI_INT_ERR_WTFULL occurs when a write stalled when the transaction FIFO was full

EPI_INT_ERR_RSTALL occurs when a read stalled

EPI_INT_ERR_TIMEOUT occurs when the external clock enable held off a transaction longer
than the configured maximum wait time

11.2.2.18 EPIIntRegister

Registers an interrupt handler for the EPI module.

Prototype:
void
EPIIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the EPI module base address.
pfnHandler is a pointer to the function to be called when the interrupt is activated.

Description:
This sets and enables the handler to be called when the EPI module generates an interrupt.
Specific EPI interrupts must still be enabled with the EPIIntEnable() function.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

July 25, 2016 219

External Peripheral Interface (EPI)

11.2.2.19 EPIIntStatus

Gets the EPI interrupt status.

Prototype:
uint32_t
EPIIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the EPI module base address.
bMasked is set true to get the masked interrupt status, or false to get the raw interrupt status.

Description:
This function returns the EPI interrupt status. It can return either the raw or masked interrupt
status.

Returns:
Returns the masked or raw EPI interrupt status, as a bit field of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.

EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.

EPI_INT_ERR interrupt when an error condition occurs.

EPI_INT_DMA_TX_DONE interrupt when the transmit DMA completes.

EPI_INT_DMA_RX_DONE interrupt when the read DMA completes.

11.2.2.20 EPIIntUnregister

Removes a registered interrupt handler for the EPI module.

Prototype:
void
EPIIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the EPI module base address.

Description:
This function disables and clears the handler to be called when the EPI interrupt occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

220 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.21 EPIModeSet

Sets the usage mode of the EPI module.

Prototype:
void
EPIModeSet(uint32_t ui32Base,

uint32_t ui32Mode)

Parameters:
ui32Base is the EPI module base address.
ui32Mode is the usage mode of the EPI module.

Description:
This functions sets the operating mode of the EPI module. The parameter ui32Mode must be
one of the following:

EPI_MODE_GENERAL - use for general-purpose mode operation
EPI_MODE_SDRAM - use with SDRAM device
EPI_MODE_HB8 - use with host-bus 8-bit interface
EPI_MODE_HB16 - use with host-bus 16-bit interface
EPI_MODE_DISABLE - disable the EPI module

Selection of any of the above modes enables the EPI module, except for
EPI_MODE_DISABLE, which is used to disable the module.

Returns:
None.

11.2.2.22 EPINonBlockingReadAvail

Get the count of items available in the read FIFO.

Prototype:
uint32_t
EPINonBlockingReadAvail(uint32_t ui32Base)

Parameters:
ui32Base is the EPI module base address.

Description:
This function gets the number of items that are available to read in the read FIFO. The read
FIFO is filled by a non-blocking read transaction which is configured by the functions EPINon-
BlockingReadConfigure() and EPINonBlockingReadStart().

Returns:
The number of items available to read in the read FIFO.

July 25, 2016 221

External Peripheral Interface (EPI)

11.2.2.23 EPINonBlockingReadConfigure

Configures a non-blocking read transaction.

Prototype:
void
EPINonBlockingReadConfigure(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32DataSize,
uint32_t ui32Address)

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).
ui32DataSize is the size of the data items to read.
ui32Address is the starting address to read.

Description:
This function is used to configure a non-blocking read channel for a transaction. Two channels
are available that can be used in a ping-pong method for continuous reading. It is not necessary
to use both channels to perform a non-blocking read.

The parameter ui8DataSize is one of EPI_NBCONFIG_SIZE_8, EPI_NBCONFIG_SIZE_16,
or EPI_NBCONFIG_SIZE_32 for 8-bit, 16-bit, or 32-bit sized data transfers.

The parameter ui32Address is the starting address for the read, relative to the external device.
The start of the device is address 0.

Once configured, the non-blocking read is started by calling EPINonBlockingReadStart(). If the
addresses to be read from the device are in a sequence, it is not necessary to call this function
multiple times. Until it is changed, the EPI module stores the last address that was used for a
non-blocking read (per channel).

Returns:
None.

11.2.2.24 EPINonBlockingReadCount

Get the count remaining for a non-blocking transaction.

Prototype:
uint32_t
EPINonBlockingReadCount(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).

Description:
This function gets the remaining count of items for a non-blocking read transaction.

Returns:
The number of items remaining in the non-blocking read transaction.

222 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.25 EPINonBlockingReadGet16

Read available data from the read FIFO, as 16-bit data items.

Prototype:
uint32_t
EPINonBlockingReadGet16(uint32_t ui32Base,

uint32_t ui32Count,
uint16_t *pui16Buf)

Parameters:
ui32Base is the EPI module base address.
ui32Count is the maximum count of items to read.
pui16Buf is the caller-supplied buffer where the read data is stored.

Description:
This function reads 16-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count . The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

11.2.2.26 EPINonBlockingReadGet32

Read available data from the read FIFO, as 32-bit data items.

Prototype:
uint32_t
EPINonBlockingReadGet32(uint32_t ui32Base,

uint32_t ui32Count,
uint32_t *pui32Buf)

Parameters:
ui32Base is the EPI module base address.
ui32Count is the maximum count of items to read.
pui32Buf is the caller supplied buffer where the read data is stored.

Description:
This function reads 32-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count . The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

July 25, 2016 223

External Peripheral Interface (EPI)

11.2.2.27 EPINonBlockingReadGet8

Read available data from the read FIFO, as 8-bit data items.

Prototype:
uint32_t
EPINonBlockingReadGet8(uint32_t ui32Base,

uint32_t ui32Count,
uint8_t *pui8Buf)

Parameters:
ui32Base is the EPI module base address.
ui32Count is the maximum count of items to read.
pui8Buf is the caller-supplied buffer where the read data is stored.

Description:
This function reads 8-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count . The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

11.2.2.28 EPINonBlockingReadStart

Starts a non-blocking read transaction.

Prototype:
void
EPINonBlockingReadStart(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Count)

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).
ui32Count is the number of items to read (1-4095).

Description:
This function starts a non-blocking read that was previously configured with the function
EPINonBlockingReadConfigure(). Once this function is called, the EPI module begins read-
ing data from the external device into the read FIFO. The EPI stops reading when the FIFO fills
up and resumes reading when the application drains the FIFO, until the total specified count of
data items has been read.

Once a read transaction is completed and the FIFO drained, another transaction can be started
from the next address by calling this function again.

Returns:
None.

224 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.29 EPINonBlockingReadStop

Stops a non-blocking read transaction.

Prototype:
void
EPINonBlockingReadStop(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).

Description:
This function cancels a non-blocking read transaction that is already in progress.

Returns:
None.

11.2.2.30 EPIPSRAMConfigRegGet

Retrieves the contents of the EPI PSRAM configuration register.

Prototype:
uint32_t
EPIPSRAMConfigRegGet(uint32_t ui32Base,

uint32_t ui32CS)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.

Description:
This function retrieves the EPI PSRAM configuration register. The register is read once the
EPI PSRAM configuration register read enable signal is de-asserted.

The Host-bus 16 interface mode should be set up and EPIPSRAMConfigRegRead() should be
called prior to calling this function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
none.

July 25, 2016 225

External Peripheral Interface (EPI)

11.2.2.31 EPIPSRAMConfigRegGetNonBlocking

Retrieves the contents of the EPI PSRAM configuration register.

Prototype:
bool
EPIPSRAMConfigRegGetNonBlocking(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t *pui32CR)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.
pui32CR is the provided storage used to hold the register value.

Description:
This function copies the contents of the EPI PSRAM configuration register to the provided
storage if the PSRAM read configuration register enable is no longer asserted. Otherwise the
provided storage is not modified.

The Host-bus 16 interface mode should be set up and EPIPSRAMConfigRegRead() should be
called prior to calling this function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The pui32CR
parameter is a pointer to provided storage used to hold the register value.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
true if the value was copied to the provided storage and false if it was not.

11.2.2.32 EPIPSRAMConfigRegRead

Requests a configuration register read from the PSRAM.

Prototype:
void
EPIPSRAMConfigRegRead(uint32_t ui32Base,

uint32_t ui32CS)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.

Description:
This function requests a read of the PSRAM’s configuration register. The Host-bus 16 inter-
face mode should be configured prior to calling this function. The EPIPSRAMConfigRegGet()
and EPIPSRAMConfigRegGetNonBlocking() can be used to retrieve the configuration register
value.

226 July 25, 2016

External Peripheral Interface (EPI)

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
none.

11.2.2.33 EPIPSRAMConfigRegSet

Sets the PSRAM configuration register.

Prototype:
void
EPIPSRAMConfigRegSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32CR)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.
ui32CR is the PSRAM configuration register value.

Description:
This function sets the PSRAM’s configuration register by using the PSRAM configuration reg-
ister enable signal. The Host-bus 16 interface mode should be configured prior to calling this
function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32CR value is determined by consulting the PSRAM’s data sheet.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
None.

11.2.2.34 EPIWorkaroundByteRead

Safely reads a byte from the EPI 0x10000000 address space.

Prototype:
uint8_t
EPIWorkaroundByteRead(uint8_t *pui8Addr)

Parameters:
pui8Addr is the address which is to be read.

July 25, 2016 227

External Peripheral Interface (EPI)

Description:
This function must be used when reading bytes from EPI-attached memory configured to use
the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:
The 8-bit byte stored at address pui8Addr .

11.2.2.35 EPIWorkaroundByteWrite

Safely writes a byte to the EPI 0x10000000 address space.

Prototype:
void
EPIWorkaroundByteWrite(uint8_t *pui8Addr,

uint8_t ui8Value)

Parameters:
pui8Addr is the address which is to be written.
ui8Value is the 8-bit byte to write.

Description:
This function must be used when writing bytes to EPI-attached memory configured to use the
address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:
None.

11.2.2.36 EPIWorkaroundHWordRead

Safely reads a half-word from the EPI 0x10000000 address space.

Prototype:
uint16_t
EPIWorkaroundHWordRead(uint16_t *pui16Addr)

228 July 25, 2016

External Peripheral Interface (EPI)

Parameters:
pui16Addr is the address which is to be read.

Description:
This function must be used when reading half-words from EPI-attached memory configured to
use the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct ac-
cess to memory in these cases can cause data corruption depending upon memory accesses
immediately before or after the EPI access but using this function will allow EPI accesses to
complete correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:
The 16-bit word stored at address pui16Addr .

11.2.2.37 EPIWorkaroundHWordWrite

Safely writes a half-word to the EPI 0x10000000 address space.

Prototype:
void
EPIWorkaroundHWordWrite(uint16_t *pui16Addr,

uint16_t ui16Value)

Parameters:
pui16Addr is the address which is to be written.
ui16Value is the 16-bit half-word to write.

Description:
This function must be used when writing half-words to EPI-attached memory configured to use
the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:
None.

11.2.2.38 EPIWorkaroundWordRead

Safely reads a word from the EPI 0x10000000 address space.

July 25, 2016 229

External Peripheral Interface (EPI)

Prototype:
uint32_t
EPIWorkaroundWordRead(uint32_t *pui32Addr)

Parameters:
pui32Addr is the address which is to be read.

Description:
This function must be used when reading words from EPI-attached memory configured to use
the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:
The 32-bit word stored at address pui32Addr .

11.2.2.39 EPIWorkaroundWordWrite

Safely writes a word to the EPI 0x10000000 address space.

Prototype:
void
EPIWorkaroundWordWrite(uint32_t *pui32Addr,

uint32_t ui32Value)

Parameters:
pui32Addr is the address which is to be written.
ui32Value is the 32-bit word to write.

Description:
This function must be used when writing words to EPI-attached memory configured to use the
address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:
None.

230 July 25, 2016

External Peripheral Interface (EPI)

11.2.2.40 EPIWriteFIFOCountGet

Reads the number of empty slots in the write transaction FIFO.

Prototype:
uint32_t
EPIWriteFIFOCountGet(uint32_t ui32Base)

Parameters:
ui32Base is the EPI module base address.

Description:
This function returns the number of slots available in the transaction FIFO. It can be used in a
polling method to avoid attempting a write that would stall.

Returns:
The number of empty slots in the transaction FIFO.

11.3 Programming Example

This example illustrates the setup steps required to initialize the EPI to access an SDRAM when
the system clock is running at 50MHz.

//
// Enable the EPI module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_EPI0);

//
// Wait for the EPI module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_EPI0))
{
}

//
// Set the EPI divider.
//
EPIDividerSet(EPI0_BASE, 0);

//
// Select SDRAM mode.
//
EPIModeSet(EPI0_BASE, EPI_MODE_SDRAM);

//
// Configure SDRAM mode.
//
EPIConfigSDRAMSet(EPI0_BASE, (EPI_SDRAM_CORE_FREQ_50_100 |

EPI_SDRAM_FULL_POWER | EPI_SDRAM_SIZE_64MBIT), 1024);

//
// Set the address map.
//
EPIAddressMapSet(EPI0_BASE, EPI_ADDR_RAM_SIZE_256MB | EPI_ADDR_RAM_BASE_6);

//
// Wait for the EPI initialization to complete.

July 25, 2016 231

External Peripheral Interface (EPI)

//
while(HWREG(EPI0_BASE + EPI_O_STAT) & EPI_STAT_INITSEQ)
{

//
// Wait for SDRAM initialization to complete.
//

}

//
// At this point, the SDRAM is accessible and available for use.
//

232 July 25, 2016

Flash

12 Flash
Introduction .233
API Functions . 233
Programming Example .242

12.1 Introduction

The flash API provides a set of functions for dealing with the on-chip flash. Functions are provided
to program and erase the flash, configure the flash protection, and handle the flash interrupt.

The flash is organized as a set of blocks that can be individually erased. See the device data sheet
to determine the size of the flash blocks on an MCU. Erasing a block causes the entire contents
of the block to be reset to all ones. The blocks can be marked as read-only or execute-only,
providing differing levels of code protection. Read-only blocks cannot be erased or programmed,
protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased
or programmed, and can only be read by the processor instruction fetch mechanism, protecting
the contents of those blocks from being read by either the processor or by debuggers. Refer to
the device data sheet to determine the size of flash blocks that can be configured as read-only or
execute-only.

The flash can be programmed on a word-by-word basis. Programming causes 1 bits to become 0
bits (where appropriate); because of this, a word can be repeatedly programmed so long as each
programming operation only requires changing 1 bits to 0 bits.

The timing for the flash is automatically handled by the flash controller. On some devices, flash
timing depends on the PLL frequency that is specified. For these devices, the SysCtlClockFreqSet()
function properly configures the flash timing.

The flash controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from execute-only flash). This capability can be used to validate the operation of
a program as the interrupt ensures that invalid accesses are not silently ignored, hiding potential
bugs. The flash protection can be applied without being permanently enabled, which allows the
program to be debugged before the flash protection is permanently applied to the device (which is
a non-reversible operation on some devices). An interrupt can also be generated when an erase or
programming operation has completed.

Depending upon the member of the Tiva family used, the amount of available flash is 8 KB, 16 KB,
32 KB, 64 KB, 96 KB, 128 KB, 256 KB, 512 KB, or 1 MB.

This driver is contained in driverlib/flash.c, with driverlib/flash.h containing the API
declarations for use by applications.

12.2 API Functions

Functions
int32_t FlashAllUserRegisterGet (uint32_t ∗pui32User0, uint32_t ∗pui32User1, uint32_t
∗pui32User2, uint32_t ∗pui32User3)

July 25, 2016 233

Flash

int32_t FlashAllUserRegisterSet (uint32_t ui32User0, uint32_t ui32User1, uint32_t ui32User2,
uint32_t ui32User3)
int32_t FlashErase (uint32_t ui32Address)
void FlashIntClear (uint32_t ui32IntFlags)
void FlashIntDisable (uint32_t ui32IntFlags)
void FlashIntEnable (uint32_t ui32IntFlags)
void FlashIntRegister (void (∗pfnHandler)(void))
uint32_t FlashIntStatus (bool bMasked)
void FlashIntUnregister (void)
int32_t FlashProgram (uint32_t ∗pui32Data, uint32_t ui32Address, uint32_t ui32Count)
tFlashProtection FlashProtectGet (uint32_t ui32Address)
int32_t FlashProtectSave (void)
int32_t FlashProtectSet (uint32_t ui32Address, tFlashProtection eProtect)
int32_t FlashUserGet (uint32_t ∗pui32User0, uint32_t ∗pui32User1)
int32_t FlashUserSave (void)
int32_t FlashUserSet (uint32_t ui32User0, uint32_t ui32User1)

12.2.1 Detailed Description

The flash API is broken into three groups of functions: those that deal with programming the flash,
those that deal with flash protection, and those that deal with interrupt handling.

Flash programming is managed with FlashErase(), FlashProgram(), FlashUsecGet(), and
FlashUsecSet().

Flash protection is managed with FlashProtectGet(), FlashProtectSet(), and FlashProtectSave().

Interrupt handling is managed with FlashIntRegister(), FlashIntUnregister(), FlashIntEnable(),
FlashIntDisable(), FlashIntGetStatus(), and FlashIntClear().

12.2.2 Function Documentation

12.2.2.1 FlashAllUserRegisterGet

Gets all the user registers.

Prototype:
int32_t
FlashAllUserRegisterGet(uint32_t *pui32User0,

uint32_t *pui32User1,
uint32_t *pui32User2,
uint32_t *pui32User3)

Parameters:
pui32User0 is a pointer to the location to store USER Register 0.
pui32User1 is a pointer to the location to store USER Register 1.
pui32User2 is a pointer to the location to store USER Register 2.
pui32User3 is a pointer to the location to store USER Register 3.

234 July 25, 2016

Flash

Description:
This function reads the contents of user registers 0, 1, 2 and 3, and stores them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.2 FlashAllUserRegisterSet

Sets the user registers 0 to 3

Prototype:
int32_t
FlashAllUserRegisterSet(uint32_t ui32User0,

uint32_t ui32User1,
uint32_t ui32User2,
uint32_t ui32User3)

Parameters:
ui32User0 is the value to store in USER Register 0.
ui32User1 is the value to store in USER Register 1.
ui32User2 is the value to store in USER Register 2.
ui32User3 is the value to store in USER Register 3.

Description:
This function sets the contents of the user registers 0, 1, 2 and 3 to the specified values.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.3 FlashErase

Erases a block of flash.

Prototype:
int32_t
FlashErase(uint32_t ui32Address)

Parameters:
ui32Address is the start address of the flash block to be erased.

Description:
This function erases a block of the on-chip flash. After erasing, the block is filled with 0xFF
bytes. Read-only and execute-only blocks cannot be erased.

The flash block size is device-class dependent. All TM4C123x devices use 1-KB blocks but
TM4C129x devices use 16-KB blocks. Please consult the device datasheet to determine the
block size in use.

This function does not return until the block has been erased.

July 25, 2016 235

Flash

Returns:
Returns 0 on success, or -1 if an invalid block address was specified or the block is write-
protected.

12.2.2.4 FlashIntClear

Clears flash controller interrupt sources.

Prototype:
void
FlashIntClear(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be cleared.

Description:
The specified flash controller interrupt sources are cleared, so that they no longer assert. The
ui32IntFlags parameter can be the logical OR of any of the following values:

FLASH_INT_ACCESS occurs when a program or erase action was attempted on a block
of flash that is marked as read-only or execute-only.
FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.
FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of the
EEPROM interrupt can be determined by reading the EEDONE register.
FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during the flash
operation and the operation was terminated.
FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that con-
tains a 0 to a 1.
FLASH_INT_ERASE_ERR occurs when an erase operation fails.
FLASH_INT_PROGRAM_ERR occurs when a program operation fails.

This function must be called in the interrupt handler to keep the interrupt from being triggered
again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

12.2.2.5 FlashIntDisable

Disables individual flash controller interrupt sources.

236 July 25, 2016

Flash

Prototype:
void
FlashIntDisable(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be disabled. The ui32IntFlags parameter

can be the logical OR of any of the following values:

FLASH_INT_ACCESS occurs when a program or erase action was attempted on a block of
flash that is marked as read-only or execute-only.
FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.
FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of the EEP-
ROM interrupt can be determined by reading the EEDONE register.
FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during the flash oper-
ation and the operation was terminated.
FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that contains a
0 to a 1.
FLASH_INT_ERASE_ERR occurs when an erase operation fails.
FLASH_INT_PROGRAM_ERR occurs when a program operation fails.

This function disables the indicated flash controller interrupt sources. Only the sources that are en-
abled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

12.2.2.6 void FlashIntEnable (uint32_t ui32IntFlags)

Enables individual flash controller interrupt sources.

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be enabled. The ui32IntFlags parameter

can be the logical OR of any of the following values:

FLASH_INT_ACCESS occurs when a program or erase action was attempted on a block of
flash that is marked as read-only or execute-only.
FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.
FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of the EEP-
ROM interrupt can be determined by reading the EEDONE register.
FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during the flash oper-
ation and the operation was terminated.
FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that contains a
0 to a 1.
FLASH_INT_ERASE_ERR occurs when an erase operation fails.
FLASH_INT_PROGRAM_ERR occurs when a program operation fails.

This function enables the indicated flash controller interrupt sources. Only the sources that are en-
abled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

July 25, 2016 237

Flash

12.2.2.7 void FlashIntRegister (void(∗)(void) pfnHandler)

Registers an interrupt handler for the flash interrupt.

Parameters:
pfnHandler is a pointer to the function to be called when the flash interrupt occurs.

Description:
This function sets the handler to be called when the flash interrupt occurs. The flash controller
can generate an interrupt when an invalid flash access occurs, such as trying to program or
erase a read-only block, or trying to read from an execute-only block. It can also generate
an interrupt when a program or erase operation has completed. The interrupt is automatically
enabled when the handler is registered.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

12.2.2.8 FlashIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
FlashIntStatus(bool bMasked)

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the flash controller. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of FLASH_INT_ACCESS,
FLASH_INT_PROGRAM, FLASH_INT_EEPROM, FLASH_INT_VOLTAGE_ERR,
FLASH_INT_DATA_ERR, FLASH_INT_ERASE_ERR, and FLASH_INT_PROGRAM_ERR.

12.2.2.9 FlashIntUnregister

Unregisters the interrupt handler for the flash interrupt.

Prototype:
void
FlashIntUnregister(void)

Description:
This function clears the handler to be called when the flash interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler is no longer called.

238 July 25, 2016

Flash

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

12.2.2.10 FlashProgram

Programs flash.

Prototype:
int32_t
FlashProgram(uint32_t *pui32Data,

uint32_t ui32Address,
uint32_t ui32Count)

Parameters:
pui32Data is a pointer to the data to be programmed.
ui32Address is the starting address in flash to be programmed. Must be a multiple of four.
ui32Count is the number of bytes to be programmed. Must be a multiple of four.

Description:
This function programs a sequence of words into the on-chip flash. Because the flash is pro-
grammed one word at a time, the starting address and byte count must both be multiples of
four. It is up to the caller to verify the programmed contents, if such verification is required.

This function does not return until the data has been programmed.

Returns:
Returns 0 on success, or -1 if a programming error is encountered.

12.2.2.11 FlashProtectGet

Gets the protection setting for a block of flash.

Prototype:
tFlashProtection
FlashProtectGet(uint32_t ui32Address)

Parameters:
ui32Address is the start address of the flash block to be queried.

Description:
This function gets the current protection for the specified block of flash. Refer to the device
data sheet to determine the granularity for each protection option. A block can be read/write,
read-only, or execute-only. Read/write blocks can be read, executed, erased, and programmed.
Read-only blocks can be read and executed. Execute-only blocks can only be executed; pro-
cessor and debugger data reads are not allowed.

Returns:
Returns the protection setting for this block. See FlashProtectSet() for possible values.

July 25, 2016 239

Flash

12.2.2.12 FlashProtectSave

Saves the flash protection settings.

Prototype:
int32_t
FlashProtectSave(void)

Description:
This function makes the currently programmed flash protection settings permanent. This oper-
ation is non-reversible; a chip reset or power cycle does not change the flash protection.

This function does not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.13 FlashProtectSet

Sets the protection setting for a block of flash.

Prototype:
int32_t
FlashProtectSet(uint32_t ui32Address,

tFlashProtection eProtect)

Parameters:
ui32Address is the start address of the flash block to be protected.
eProtect is the protection to be applied to the block. Can be one of FlashReadWrite,

FlashReadOnly, or FlashExecuteOnly.

Description:
This function sets the protection for the specified block of flash. Refer to the device data sheet
to determine the granularity for each protection option. Blocks that are read/write can be made
read-only or execute-only. Blocks that are read-only can be made execute-only. Blocks that
are execute-only cannot have their protection modified. Attempts to make the block protection
less stringent (that is, read-only to read/write) result in a failure (and are prevented by the
hardware).

Changes to the flash protection are maintained only until the next reset. This protocol allows
the application to be executed in the desired flash protection environment to check for inappro-
priate flash access (via the flash interrupt). To make the flash protection permanent, use the
FlashProtectSave() function.

Returns:
Returns 0 on success, or -1 if an invalid address or an invalid protection was specified.

12.2.2.14 FlashUserGet

Gets the user registers.

240 July 25, 2016

Flash

Prototype:
int32_t
FlashUserGet(uint32_t *pui32User0,

uint32_t *pui32User1)

Parameters:
pui32User0 is a pointer to the location to store USER Register 0.
pui32User1 is a pointer to the location to store USER Register 1.

Description:
This function reads the contents of user registers 0 and 1, and stores them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.15 FlashUserSave

Saves the user registers.

Prototype:
int32_t
FlashUserSave(void)

Description:
This function makes the currently programmed user register 0 and 1 settings permanent. This
operation is non-reversible; a chip reset or power cycle does not change the flash protection.

This function does not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.16 FlashUserSet

Sets the user registers.

Prototype:
int32_t
FlashUserSet(uint32_t ui32User0,

uint32_t ui32User1)

Parameters:
ui32User0 is the value to store in USER Register 0.
ui32User1 is the value to store in USER Register 1.

Description:
This function sets the contents of the user registers 0 and 1 to the specified values.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

July 25, 2016 241

Flash

12.3 Programming Example

The following example shows how to use the flash API to erase a block of the flash and program a
few words on a TM4C123x device.

uint32_t pui32Data[2];

//
// Erase a block of the flash.
//
FlashErase(0x800);

//
// Program some data into the newly erased block of the flash.
//
pui32Data[0] = 0x12345678;
pui32Data[1] = 0x56789abc;
FlashProgram(pui32Data, 0x800, sizeof(pui32Data));

242 July 25, 2016

Floating-Point Unit (FPU)

13 Floating-Point Unit (FPU)
Introduction .243
API Functions . 244
Programming Example .248

13.1 Introduction

The floating-point unit (FPU) driver provides methods for manipulating the behavior of the floating-
point unit in the Cortex-M processor. By default, the floating-point is disabled and must be enabled
prior to the execution of any floating-point instructions. If a floating-point instruction is executed
when the floating-point unit is disabled, a NOCP usage fault is generated. This feature can be
used by an RTOS, for example, to keep track of which tasks actually use the floating-point unit, and
therefore only perform floating-point context save/restore on task switches that involve those tasks.

There are three methods of handling the floating-point context when the processor executes an in-
terrupt handler: it can do nothing with the floating-point context, it can always save the floating-point
context, or it can perform a lazy save/restore of the floating-point context. If nothing is done with
the floating-point context, the interrupt stack frame is identical to a Cortex-M processor that does
not have a floating-point unit, containing only the volatile registers of the integer unit. This method
is useful for applications where the floating-point unit is used by the main thread of execution, but
not in any of the interrupt handlers. By not saving the floating-point context, stack usage is reduced
and interrupt latency is kept to a minimum.

Alternatively, the floating-point context can always be saved onto the stack. This method allows
floating-point operations to be performed inside interrupt handlers without any special precautions,
at the expense of increased stack usage (for the floating-point context) and increased interrupt
latency (due to the additional writes to the stack). The advantage to this method is that the stack
frame always contains the floating-point context when inside an interrupt handler.

The default handling of the floating-point context is to perform a lazy save/restore. When an in-
terrupt is taken, space is reserved on the stack for the floating-point context but the context is not
written. This method keeps the interrupt latency to a minimum because only the integer state is
written to the stack. Then, if a floating-point instruction is executed from within the interrupt handler,
the floating-point context is written to the stack prior to the execution of the floating-point instruction.
Finally, upon return from the interrupt, the floating-point context is restored from the stack only if
it was written. Using lazy save/restore provides a blend between fast interrupt response and the
ability to use floating-point instructions in the interrupt handler.

The floating-point unit can generate an interrupt when one of several exceptions occur. The ex-
ceptions are underflow, overflow, divide by zero, invalid operation, input denormal, and inexact
exception. The application can optionally choose to enable one or more of these interrupts and use
the interrupt handler to decide upon a course of action to be taken in each case.

The behavior of the floating-point unit can also be adjusted, specifying the format of half-precision
floating-point values, the handle of NaN values, the flush-to-zero mode (which sacrifices full IEEE
compliance for execution speed), and the rounding mode for results.

This driver is contained in driverlib/fpu.c, with driverlib/fpu.h containing the API dec-
larations for use by applications.

July 25, 2016 243

Floating-Point Unit (FPU)

13.2 API Functions

Functions
void FPUDisable (void)
void FPUEnable (void)
void FPUFlushToZeroModeSet (uint32_t ui32Mode)
void FPUHalfPrecisionModeSet (uint32_t ui32Mode)
void FPULazyStackingEnable (void)
void FPUNaNModeSet (uint32_t ui32Mode)
void FPURoundingModeSet (uint32_t ui32Mode)
void FPUStackingDisable (void)
void FPUStackingEnable (void)

13.2.1 Detailed Description

The FPU API provides functions for enabling and disabling the floating-point unit (FPUEnable() and
FPUDisable()), for controlling how the floating-point state is stored on the stack when interrupts
occur (FPUStackingEnable(), FPULazyStackingEnable(), and FPUStackingDisable()), for han-
dling the floating-point interrupt (FPUIntRegister(), FPUIntUnregister(), FPUIntEnable(), FPUIntDis-
able(), FPUIntStatus(), and FPUIntClear()), and for adjusting the operation of the floating-point unit
(FPUHalfPrecisionModeSet(), FPUNaNModeSet(), FPUFlushToZeroModeSet(), and FPURound-
ingModeSet()).

13.2.2 Function Documentation

13.2.2.1 FPUDisable

Disables the floating-point unit.

Prototype:
void
FPUDisable(void)

Description:
This function disables the floating-point unit, preventing floating-point instructions from execut-
ing (generating a NOCP usage fault instead).

Returns:
None.

13.2.2.2 FPUEnable

Enables the floating-point unit.

244 July 25, 2016

Floating-Point Unit (FPU)

Prototype:
void
FPUEnable(void)

Description:
This function enables the floating-point unit, allowing the floating-point instructions to be exe-
cuted. This function must be called prior to performing any hardware floating-point operations;
failure to do so results in a NOCP usage fault.

Returns:
None.

13.2.2.3 FPUFlushToZeroModeSet

Selects the flush-to-zero mode.

Prototype:
void
FPUFlushToZeroModeSet(uint32_t ui32Mode)

Parameters:
ui32Mode is the flush-to-zero mode; which is either FPU_FLUSH_TO_ZERO_DIS or

FPU_FLUSH_TO_ZERO_EN.

Description:
This function enables or disables the flush-to-zero mode of the floating-point unit. When dis-
abled (the default), the floating-point unit is fully IEEE compliant. When enabled, values close
to zero are treated as zero, greatly improving the execution speed at the expense of some
accuracy (as well as IEEE compliance).

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

13.2.2.4 FPUHalfPrecisionModeSet

Selects the format of half-precision floating-point values.

Prototype:
void
FPUHalfPrecisionModeSet(uint32_t ui32Mode)

Parameters:
ui32Mode is the format for half-precision floating-point value, which is either

FPU_HALF_IEEE or FPU_HALF_ALTERNATE.

Description:
This function selects between the IEEE half-precision floating-point representation and the
Cortex-M processor alternative representation. The alternative representation has a larger

July 25, 2016 245

Floating-Point Unit (FPU)

range but does not have a way to encode infinity (positive or negative) or NaN (quiet or signal-
ing). The default setting is the IEEE format.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

13.2.2.5 FPULazyStackingEnable

Enables the lazy stacking of floating-point registers.

Prototype:
void
FPULazyStackingEnable(void)

Description:
This function enables the lazy stacking of floating-point registers s0-s15 when an interrupt is
handled. When lazy stacking is enabled, space is reserved on the stack for the floating-point
context, but the floating-point state is not saved. If a floating-point instruction is executed from
within the interrupt context, the floating-point context is first saved into the space reserved on
the stack. On completion of the interrupt handler, the floating-point context is only restored if it
was saved (as the result of executing a floating-point instruction).

This method provides a compromise between fast interrupt response (because the floating-
point state is not saved on interrupt entry) and the ability to use floating-point in interrupt han-
dlers (because the floating-point state is saved if floating-point instructions are used).

Returns:
None.

13.2.2.6 FPUNaNModeSet

Selects the NaN mode.

Prototype:
void
FPUNaNModeSet(uint32_t ui32Mode)

Parameters:
ui32Mode is the mode for NaN results; which is either FPU_NAN_PROPAGATE or

FPU_NAN_DEFAULT.

Description:
This function selects the handling of NaN results during floating-point computations. NaNs can
either propagate (the default), or they can return the default NaN.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

246 July 25, 2016

Floating-Point Unit (FPU)

Returns:
None.

13.2.2.7 FPURoundingModeSet

Selects the rounding mode for floating-point results.

Prototype:
void
FPURoundingModeSet(uint32_t ui32Mode)

Parameters:
ui32Mode is the rounding mode.

Description:
This function selects the rounding mode for floating-point results. After a floating-
point operation, the result is rounded toward the specified value. The default mode is
FPU_ROUND_NEAREST.

The following rounding modes are available (as specified by ui32Mode):

FPU_ROUND_NEAREST - round toward the nearest value
FPU_ROUND_POS_INF - round toward positive infinity
FPU_ROUND_NEG_INF - round toward negative infinity
FPU_ROUND_ZERO - round toward zero

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

13.2.2.8 FPUStackingDisable

Disables the stacking of floating-point registers.

Prototype:
void
FPUStackingDisable(void)

Description:
This function disables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When floating-point context stacking is disabled, floating-point operations performed in
an interrupt handler destroy the floating-point context of the main thread of execution.

Returns:
None.

July 25, 2016 247

Floating-Point Unit (FPU)

13.2.2.9 FPUStackingEnable

Enables the stacking of floating-point registers.

Prototype:
void
FPUStackingEnable(void)

Description:
This function enables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When enabled, space is reserved on the stack for the floating-point context and the
floating-point state is saved into this stack space. Upon return from the interrupt, the floating-
point context is restored.

If the floating-point registers are not stacked, floating-point instructions cannot be safely exe-
cuted in an interrupt handler because the values of s0-s15 are not likely to be preserved for
the interrupted code. On the other hand, stacking the floating-point registers increases the
stacking operation from 8 words to 26 words, also increasing the interrupt response latency.

Returns:
None.

13.3 Programming Example

The following example shows how to use the FPU API to enable the floating-point unit and configure
the stacking of floating-point context.

//
// Enable the floating-point unit.
//
FPUEnable();

//
// Configure the floating-point unit to perform lazy stacking of the
// floating-point state.
//
FPULazyStackingEnable();

248 July 25, 2016

GPIO

14 GPIO
Introduction .249
API Functions . 250
Programming Example .280

14.1 Introduction

The GPIO module provides control for up to eight independent GPIO pins (the actual number
present depend upon the GPIO port and part number). Each pin has the following capabilities:

Can be configured as an input or an output. On reset, GPIOs default to being inputs.
In input mode, can generate interrupts on high level, low level, rising edge, falling edge, or
both edges.
In output mode, can be configured for 2-mA, 4-mA, or 8-mA drive strength. The 8-mA drive
strength configuration has optional slew rate control to limit the rise and fall times of the signal.
On reset, GPIOs default to 2-mA drive strength.
Optional weak pull-up or pull-down resistors. On reset, GPIOs default to no pull-up or pull-
down resistors.
Optional open-drain operation. On reset, GPIOs default to standard push/pull operation.
Can be configured to be a GPIO or a peripheral pin. On reset, the default is GPIO. Note that
not all pins on all parts have peripheral functions, in which case the pin is only useful as a
GPIO.

Most of the GPIO functions can operate on more than one GPIO pin (within a single module) at a
time. The ucPins parameter to these functions is used to specify the pins that are affected; only the
GPIO pins corresponding to the bits in this parameter that are set are affected (where pin 0 is bit
0, pin 1 in bit 1, and so on). For example, if ucPins is 0x09, then pins 0 and 3 are affected by the
function.

This protocol is most useful for the GPIOPinRead() and GPIOPinWrite() functions; a read returns
only the values of the requested pins (with the other pin values masked out) and a write only affects
the requested pins simultaneously (that is, the state of multiple GPIO pins can be changed at the
same time). This data masking for the GPIO pin state occurs in the hardware; a single read or write
is issued to the hardware, which interprets some of the address bits as an indication of the GPIO
pins to operate on (and therefore the ones to not affect). See the part data sheet for details of the
GPIO data register address-based bit masking.

For functions that have a ucPin (singular) parameter, only a single pin is affected by the function. In
this case, the value specifies the pin number (that is, 0 through 7).

NOTE: A subset of GPIO pins on many Tiva devices are protected by a locking mechanism to
prevent inadvertent reconfiguration. The actual pins vary by device but typically include any pin that
is part of the JTAG or SWD interface, and any pin which may be configured as an NMI input. On
a TM4C129XNCZAD part, for example, this affects pins PC[3:0], PD7 and PE7. Locked pins may
not be reconfigured without first unlocking them using the mechanism described under “Commit
Control” in the GPIO chapter of your device’s datasheet. This mechanism is also illustrated in the
TivaWare “gpio_jtag” example application included for all target evaluation and development kits.

This driver is contained in driverlib/gpio.c, with driverlib/gpio.h containing the API
declarations for use by applications.

July 25, 2016 249

GPIO

14.2 API Functions

Functions
void GPIOADCTriggerDisable (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOADCTriggerEnable (uint32_t ui32Port, uint8_t ui8Pins)
uint32_t GPIODirModeGet (uint32_t ui32Port, uint8_t ui8Pin)
void GPIODirModeSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32PinIO)
void GPIODMATriggerDisable (uint32_t ui32Port, uint8_t ui8Pins)
void GPIODMATriggerEnable (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOIntClear (uint32_t ui32Port, uint32_t ui32IntFlags)
void GPIOIntDisable (uint32_t ui32Port, uint32_t ui32IntFlags)
void GPIOIntEnable (uint32_t ui32Port, uint32_t ui32IntFlags)
void GPIOIntRegister (uint32_t ui32Port, void (∗pfnIntHandler)(void))
uint32_t GPIOIntStatus (uint32_t ui32Port, bool bMasked)
uint32_t GPIOIntTypeGet (uint32_t ui32Port, uint8_t ui8Pin)
void GPIOIntTypeSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32IntType)
void GPIOIntUnregister (uint32_t ui32Port)
void GPIOPadConfigGet (uint32_t ui32Port, uint8_t ui8Pin, uint32_t ∗pui32Strength, uint32_t
∗pui32PinType)
void GPIOPadConfigSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32Strength, uint32_t
ui32PinType)
void GPIOPinConfigure (uint32_t ui32PinConfig)
int32_t GPIOPinRead (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeADC (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeCAN (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeComparator (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeComparatorOutput (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeDIVSCLK (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeEPI (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeEthernetLED (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeEthernetMII (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeGPIOInput (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeGPIOOutput (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeGPIOOutputOD (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeHibernateRTCCLK (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeI2C (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeI2CSCL (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeLCD (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeOneWire (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypePWM (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeQEI (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeSSI (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeTimer (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeTrace (uint32_t ui32Port, uint8_t ui8Pins)

250 July 25, 2016

GPIO

void GPIOPinTypeUART (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeUSBAnalog (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeUSBDigital (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeWakeHigh (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeWakeLow (uint32_t ui32Port, uint8_t ui8Pins)
uint32_t GPIOPinWakeStatus (uint32_t ui32Port)
void GPIOPinWrite (uint32_t ui32Port, uint8_t ui8Pins, uint8_t ui8Val)

14.2.1 Detailed Description

The GPIO API is broken into three groups of functions: those that deal with configuring the GPIO
pins, those that deal with interrupts, and those that access the pin value.

The GPIO pins are configured with GPIODirModeSet(), GPIOPadConfigSet(), and GPIOPinConfig-
ure(). The configuration can be read back with GPIODirModeGet() and GPIOPadConfigGet().

The GPIO pin state is accessed with GPIOPinRead() and GPIOPinWrite().

The GPIO interrupts are handled with GPIOIntTypeSet(), GPIOIntTypeGet(), GPIOIntEnable(), GPI-
OIntDisable(), GPIOIntStatus(), GPIOIntClear(), GPIOIntRegister(), and GPIOIntUnregister().

14.2.2 GPIO Pin Configuration

Many of the GPIO pins on the TM4C123 and TM4C129 devices have other peripheral functions
that can also use the GPIO pins for peripheral pins. The Peripheral Driver Library provides a
set of convenience functions to configure the pins in the required or recommended input/output
configuration for a particular peripheral; these are GPIOPinTypeADC(), GPIOPinTypeCAN(),
GPIOPinTypeComparator(), GPIOPinTypeEPI(), GPIOPinTypeEthernetLED(), GPIOPinTypeEther-
netMII(), GPIOPinTypeGPIOInput(), GPIOPinTypeGPIOOutput(), GPIOPinTypeGPIOOutputOD(),
GPIOPinTypeI2C(), GPIOPinTypeI2CSCL(), GPIOPinTypeLCD() GPIOPinTypePWM(), GPIOPin-
TypeQEI(), GPIOPinTypeSSI(), GPIOPinTypeTimer(), GPIOPinTypeUART(), GPIOPinTypeUS-
BAnalog(), GPIOPinTypeUSBDigital(), GPIOPinTypeWakeHigh(), GPIOPinTypeWakeLow(), GPI-
OPinWakeStatus(), GPIODMATriggerEnable(), GPIODMATriggerDisable(), GPIOADCTriggerEn-
able(), and GPIOADCTriggerDisable(). In order to complete the pin configuration, the GPIOPinCon-
figure() function must also be called to enable the desired peripheral function on the given GPIO pin.
The GPIOPinConfigure() function uses the pin definitions located in the driverlib/pin_map.h
file. These definitions follow the GPIO_P<port><pin>_<peripheral_function> naming scheme.
The available pin mappings are supplied on a per-device basis and are selected using the
PART_<partno> defines to enable only the pin definitions that are valid for the given device. For
example, on the TM4C129XNCZAD device the UART1 RX function can be enabled on one of two
pins. The UART1 RX is found on GPIO port B pin 0(GPIO_PB0_U1RX) or it can also be found on
GPIO port Q pin 4(GPIO_PQ4_U1RX). The application must define the PART_TM4C129XNCZAD
in order to get the correct pin mappings for the TM4C129XNCZAD device.

Note:
The PART_<partno> macros also control the mapping of interrupt names to interrupt num-
bers. See the Interrupt Mapping section of this document for more details on how these defines
are used to determine interrupt mapping.

A locked GPIO pin must be unlocked prior to making calls to GPIODirModeSet(), GPIOPadCon-
figSet() or any of the GPIOPinType functions.

July 25, 2016 251

GPIO

14.2.3 Function Documentation

14.2.3.1 GPIOADCTriggerDisable

Disable a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
GPIOADCTriggerDisable(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin to be used as a trigger to start an ADC sequence. This func-
tion can be used to disable this feature if it was enabled via a call to GPIOADCTriggerEnable().

Returns:
None.

14.2.3.2 GPIOADCTriggerEnable

Enables a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
GPIOADCTriggerEnable(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function enables a GPIO pin to be used as a trigger to start an ADC sequence. Any
GPIO pin can be configured to be an external trigger for an ADC sequence. The GPIO pin still
generates interrupts if the interrupt is enabled for the selected pin. To enable the use of a GPIO
pin to trigger the ADC module, the ADCSequenceConfigure() function must be called with the
ADC_TRIGGER_EXTERNAL parameter.

Returns:
None.

14.2.3.3 GPIODirModeGet

Gets the direction and mode of a pin.

252 July 25, 2016

GPIO

Prototype:
uint32_t
GPIODirModeGet(uint32_t ui32Port,

uint8_t ui8Pin)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.

Description:
This function gets the direction and control mode for a specified pin on the selected GPIO port.
The pin can be configured as either an input or output under software control, or it can be under
hardware control. The type of control and direction are returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for GPIODirModeSet().

14.2.3.4 GPIODirModeSet

Sets the direction and mode of the specified pin(s).

Prototype:
void
GPIODirModeSet(uint32_t ui32Port,

uint8_t ui8Pins,
uint32_t ui32PinIO)

Parameters:
ui32Port is the base address of the GPIO port
ui8Pins is the bit-packed representation of the pin(s).
ui32PinIO is the pin direction and/or mode.

Description:
This function configures the specified pin(s) on the selected GPIO port as either input or output
under software control, or it configures the pin to be under hardware control.

The parameter ui32PinIO is an enumerated data type that can be one of the following values:

GPIO_DIR_MODE_IN
GPIO_DIR_MODE_OUT
GPIO_DIR_MODE_HW

where GPIO_DIR_MODE_IN specifies that the pin is programmed as a software controlled
input, GPIO_DIR_MODE_OUT specifies that the pin is programmed as a software controlled
output, and GPIO_DIR_MODE_HW specifies that the pin is placed under hardware control.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
GPIOPadConfigSet() must also be used to configure the corresponding pad(s) in order for them
to propagate the signal to/from the GPIO.

July 25, 2016 253

GPIO

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.5 GPIODMATriggerDisable

Disables a GPIO pin as a trigger to start a DMA transaction.

Prototype:
void
GPIODMATriggerDisable(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin from being used as a trigger to start a uDMA transaction.
This function can be used to disable this feature if it was enabled via a call to GPIODMATrig-
gerEnable().

Returns:
None.

14.2.3.6 GPIODMATriggerEnable

Enables a GPIO pin as a trigger to start a DMA transaction.

Prototype:
void
GPIODMATriggerEnable(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function enables a GPIO pin to be used as a trigger to start a uDMA transaction. Any GPIO
pin can be configured to be an external trigger for the uDMA. The GPIO pin still generates
interrupts if the interrupt is enabled for the selected pin.

Returns:
None.

254 July 25, 2016

GPIO

14.2.3.7 GPIOIntClear

Clears the specified interrupt sources.

Prototype:
void
GPIOIntClear(uint32_t ui32Port,

uint32_t ui32IntFlags)

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
Clears the interrupt for the specified interrupt source(s).

The ui32IntFlags parameter is the logical OR of the GPIO_INT_∗ values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

14.2.3.8 GPIOIntDisable

Disables the specified GPIO interrupts.

Prototype:
void
GPIOIntDisable(uint32_t ui32Port,

uint32_t ui32IntFlags)

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated GPIO interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

GPIO_INT_PIN_0 - interrupt due to activity on Pin 0.
GPIO_INT_PIN_1 - interrupt due to activity on Pin 1.
GPIO_INT_PIN_2 - interrupt due to activity on Pin 2.
GPIO_INT_PIN_3 - interrupt due to activity on Pin 3.
GPIO_INT_PIN_4 - interrupt due to activity on Pin 4.

July 25, 2016 255

GPIO

GPIO_INT_PIN_5 - interrupt due to activity on Pin 5.
GPIO_INT_PIN_6 - interrupt due to activity on Pin 6.
GPIO_INT_PIN_7 - interrupt due to activity on Pin 7.
GPIO_INT_DMA - interrupt due to DMA activity on this GPIO module.

Returns:
None.

14.2.3.9 GPIOIntEnable

Enables the specified GPIO interrupts.

Prototype:
void
GPIOIntEnable(uint32_t ui32Port,

uint32_t ui32IntFlags)

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to enable.

Description:
This function enables the indicated GPIO interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

GPIO_INT_PIN_0 - interrupt due to activity on Pin 0.
GPIO_INT_PIN_1 - interrupt due to activity on Pin 1.
GPIO_INT_PIN_2 - interrupt due to activity on Pin 2.
GPIO_INT_PIN_3 - interrupt due to activity on Pin 3.
GPIO_INT_PIN_4 - interrupt due to activity on Pin 4.
GPIO_INT_PIN_5 - interrupt due to activity on Pin 5.
GPIO_INT_PIN_6 - interrupt due to activity on Pin 6.
GPIO_INT_PIN_7 - interrupt due to activity on Pin 7.
GPIO_INT_DMA - interrupt due to DMA activity on this GPIO module.

Note:
If this call is being used to enable summary interrupts on GPIO port P or Q (GPIOIntTypeSet()
with GPIO_DISCRETE_INT not enabled), then all individual interrupts for these ports must be
enabled in the GPIO module using GPIOIntEnable() and all but the interrupt for pin 0 must be
disabled in the NVIC using the IntDisable() function. The summary interrupts for the ports are
routed to the INT_GPIOP0 or INT_GPIOQ0 which must be enabled to handle the interrupt. If
this is not done then any individual GPIO pin interrupts that are left enabled also trigger the
individual interrupts.

Returns:
None.

256 July 25, 2016

GPIO

14.2.3.10 GPIOIntRegister

Registers an interrupt handler for a GPIO port.

Prototype:
void
GPIOIntRegister(uint32_t ui32Port,

void (*pfnIntHandler)(void))

Parameters:
ui32Port is the base address of the GPIO port.
pfnIntHandler is a pointer to the GPIO port interrupt handling function.

Description:
This function ensures that the interrupt handler specified by pfnIntHandler is called when an
interrupt is detected from the selected GPIO port. This function also enables the corresponding
GPIO interrupt in the interrupt controller; individual pin interrupts and interrupt sources must
be enabled with GPIOIntEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

14.2.3.11 GPIOIntStatus

Gets interrupt status for the specified GPIO port.

Prototype:
uint32_t
GPIOIntStatus(uint32_t ui32Port,

bool bMasked)

Parameters:
ui32Port is the base address of the GPIO port.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified GPIO module. The value returned is the
logical OR of the GPIO_INT_∗ values that are currently active.

14.2.3.12 GPIOIntTypeGet

Gets the interrupt type for a pin.

July 25, 2016 257

GPIO

Prototype:
uint32_t
GPIOIntTypeGet(uint32_t ui32Port,

uint8_t ui8Pin)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.

Description:
This function gets the interrupt type for a specified pin on the selected GPIO port. The pin
can be configured as a falling-edge, rising-edge, or both-edges detected interrupt, or it can
be configured as a low-level or high-level detected interrupt. The type of interrupt detection
mechanism is returned and can include the GPIO_DISCRETE_INT flag.

Returns:
Returns one of the flags described for GPIOIntTypeSet().

14.2.3.13 GPIOIntTypeSet

Sets the interrupt type for the specified pin(s).

Prototype:
void
GPIOIntTypeSet(uint32_t ui32Port,

uint8_t ui8Pins,
uint32_t ui32IntType)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
ui32IntType specifies the type of interrupt trigger mechanism.

Description:
This function sets up the various interrupt trigger mechanisms for the specified pin(s) on the
selected GPIO port.

One of the following flags can be used to define the ui32IntType parameter:

GPIO_FALLING_EDGE sets detection to edge and trigger to falling
GPIO_RISING_EDGE sets detection to edge and trigger to rising
GPIO_BOTH_EDGES sets detection to both edges
GPIO_LOW_LEVEL sets detection to low level
GPIO_HIGH_LEVEL sets detection to high level

In addition to the above flags, the following flag can be OR’d in to the ui32IntType parameter:

GPIO_DISCRETE_INT sets discrete interrupts for each pin on a GPIO port.

The GPIO_DISCRETE_INT is not available on all devices or all GPIO ports, consult the data
sheet to ensure that the device and the GPIO port supports discrete interrupts.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

258 July 25, 2016

GPIO

Note:
In order to avoid any spurious interrupts, the user must ensure that the GPIO inputs remain
stable for the duration of this function.

Returns:
None.

14.2.3.14 GPIOIntUnregister

Removes an interrupt handler for a GPIO port.

Prototype:
void
GPIOIntUnregister(uint32_t ui32Port)

Parameters:
ui32Port is the base address of the GPIO port.

Description:
This function unregisters the interrupt handler for the specified GPIO port. This function also
disables the corresponding GPIO port interrupt in the interrupt controller; individual GPIO in-
terrupts and interrupt sources must be disabled with GPIOIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

14.2.3.15 GPIOPadConfigGet

Gets the pad configuration for a pin.

Prototype:
void
GPIOPadConfigGet(uint32_t ui32Port,

uint8_t ui8Pin,
uint32_t *pui32Strength,
uint32_t *pui32PinType)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.
pui32Strength is a pointer to storage for the output drive strength.
pui32PinType is a pointer to storage for the output drive type.

Description:
This function gets the pad configuration for a specified pin on the selected GPIO port. The
values returned in pui32Strength and pui32PinType correspond to the values used in GPI-
OPadConfigSet(). This function also works for pin(s) configured as input pin(s); however, the
only meaningful data returned is whether the pin is terminated with a pull-up or down resistor.

July 25, 2016 259

GPIO

Returns:
None

14.2.3.16 GPIOPadConfigSet

Sets the pad configuration for the specified pin(s).

Prototype:
void
GPIOPadConfigSet(uint32_t ui32Port,

uint8_t ui8Pins,
uint32_t ui32Strength,
uint32_t ui32PinType)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
ui32Strength specifies the output drive strength.
ui32PinType specifies the pin type.

Description:
This function sets the drive strength and type for the specified pin(s) on the selected GPIO
port. For pin(s) configured as input ports, the pad is configured as requested, but the only real
effect on the input is the configuration of the pull-up or pull-down termination.

The parameter ui32Strength can be one of the following values:

GPIO_STRENGTH_2MA
GPIO_STRENGTH_4MA
GPIO_STRENGTH_8MA
GPIO_STRENGTH_8MA_SC
GPIO_STRENGTH_6MA
GPIO_STRENGTH_10MA
GPIO_STRENGTH_12MA

where GPIO_STRENGTH_xMA specifies either 2, 4, or 8 mA output drive strength, and
GPIO_OUT_STRENGTH_8MA_SC specifies 8 mA output drive with slew control.

Some Tiva devices also support output drive strengths of 6, 10, and 12 mA.

The parameter ui32PinType can be one of the following values:

GPIO_PIN_TYPE_STD
GPIO_PIN_TYPE_STD_WPU
GPIO_PIN_TYPE_STD_WPD
GPIO_PIN_TYPE_OD
GPIO_PIN_TYPE_ANALOG
GPIO_PIN_TYPE_WAKE_HIGH
GPIO_PIN_TYPE_WAKE_LOW

where GPIO_PIN_TYPE_STD∗ specifies a push-pull pin, GPIO_PIN_TYPE_OD∗ specifies an
open-drain pin, ∗_WPU specifies a weak pull-up, ∗_WPD specifies a weak pull-down, and
GPIO_PIN_TYPE_ANALOG specifies an analog input.

260 July 25, 2016

GPIO

The GPIO_PIN_TYPE_WAKE_∗ settings specify the pin to be used as a hibernation wake
source. The pin sense level can be high or low. These settings are only available on some Tiva
devices.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.17 GPIOPinConfigure

Configures the alternate function of a GPIO pin.

Prototype:
void
GPIOPinConfigure(uint32_t ui32PinConfig)

Parameters:
ui32PinConfig is the pin configuration value, specified as only one of the GPIO_P??_???

values.

Description:
This function configures the pin mux that selects the peripheral function associated with a
particular GPIO pin. Only one peripheral function at a time can be associated with a GPIO
pin, and each peripheral function should only be associated with a single GPIO pin at a time
(despite the fact that many of them can be associated with more than one GPIO pin). To fully
configure a pin, a GPIOPinType∗() function should also be called.

The available mappings are supplied on a per-device basis in pin_map.h. The
PART_<partno> defines controls which set of defines are included so that they match the
device that is being used. For example, PART_TM4C129XNCZAD must be defined in order to
get the correct pin mappings for the TM4C129XNCZAD device.

Note:
If the same signal is assigned to two different GPIO port pins, the signal is assigned to the port
with the lowest letter and the assignment to the higher letter port is ignored.

Returns:
None.

July 25, 2016 261

GPIO

14.2.3.18 GPIOPinRead

Reads the values present of the specified pin(s).

Prototype:
int32_t
GPIOPinRead(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The values at the specified pin(s) are read, as specified by ui8Pins. Values are returned for
both input and output pin(s), and the value for pin(s) that are not specified by ui8Pins are set
to 0.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
Returns a bit-packed byte providing the state of the specified pin, where bit 0 of the byte
represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on. Any bit that is not
specified by ui8Pins is returned as a 0. Bits 31:8 should be ignored.

14.2.3.19 GPIOPinTypeADC

Configures pin(s) for use as analog-to-digital converter inputs.

Prototype:
void
GPIOPinTypeADC(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog-to-digital converter input pins must be properly configured for the analog-to-digital
peripheral to function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an ADC input; it only configures an ADC input
pin for proper operation.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.

262 July 25, 2016

GPIO

These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.20 GPIOPinTypeCAN

Configures pin(s) for use as a CAN device.

Prototype:
void
GPIOPinTypeCAN(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The CAN pins must be properly configured for the CAN peripherals to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a CAN pin; it only configures a CAN pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the CAN function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.21 GPIOPinTypeComparator

Configures pin(s) for use as an analog comparator input.

Prototype:
void
GPIOPinTypeComparator(uint32_t ui32Port,

uint8_t ui8Pins)

July 25, 2016 263

GPIO

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog comparator input pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an analog comparator input; it only configures
an analog comparator pin for proper operation. Note that a GPIOPinConfigure() function call is
also required to properly configure a pin for the analog comparator function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.22 GPIOPinTypeComparatorOutput

Configures pin(s) for use as an analog comparator output.

Prototype:
void
GPIOPinTypeComparatorOutput(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog comparator output pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

264 July 25, 2016

GPIO

14.2.3.23 GPIOPinTypeDIVSCLK

Configures pin(s) for use as an clock to be output from the device.

Prototype:
void
GPIOPinTypeDIVSCLK(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The system control output pin must be properly configured for the DIVSCLK to function cor-
rectly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

14.2.3.24 GPIOPinTypeEPI

Configures pin(s) for use by the external peripheral interface.

Prototype:
void
GPIOPinTypeEPI(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The external peripheral interface pins must be properly configured for the external peripheral
interface to function correctly. This function provides a typical configuration for those pin(s);
other configurations may work as well depending upon the board setup (for example, using the
on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an external peripheral interface pin; it only
configures an external peripheral interface pin for proper operation. Note that a GPIOPin-
Configure() function call is also required to properly configure a pin for the external peripheral
interface function.

July 25, 2016 265

GPIO

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.25 GPIOPinTypeEthernetLED

Configures pin(s) for use by the Ethernet peripheral as LED signals.

Prototype:
void
GPIOPinTypeEthernetLED(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The Ethernet peripheral provides four signals that can be used to drive an LED (for example,
for link status/activity). This function provides a typical configuration for the pins.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an Ethernet LED pin; it only configures an
Ethernet LED pin for proper operation. Note that a GPIOPinConfigure() function call is also
required to properly configure the pin for the Ethernet LED function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.26 GPIOPinTypeEthernetMII

Configures pin(s) for use by the Ethernet peripheral as MII signals.

266 July 25, 2016

GPIO

Prototype:
void
GPIOPinTypeEthernetMII(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The Ethernet peripheral on some parts provides a set of MII signals that are used to connect
to an external PHY. This function provides a typical configuration for the pins.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an Ethernet MII pin; it only configures an
Ethernet MII pin for proper operation. Note that a GPIOPinConfigure() function call is also
required to properly configure the pin for the Ethernet MII function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.27 GPIOPinTypeGPIOInput

Configures pin(s) for use as GPIO inputs.

Prototype:
void
GPIOPinTypeGPIOInput(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO inputs. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

July 25, 2016 267

GPIO

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.28 GPIOPinTypeGPIOOutput

Configures pin(s) for use as GPIO outputs.

Prototype:
void
GPIOPinTypeGPIOOutput(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.29 GPIOPinTypeGPIOOutputOD

Configures pin(s) for use as GPIO open drain outputs.

Prototype:
void
GPIOPinTypeGPIOOutputOD(uint32_t ui32Port,

uint8_t ui8Pins)

268 July 25, 2016

GPIO

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.30 GPIOPinTypeHibernateRTCCLK

Configures pin(s) for use as an Hibernate RTC Clock.

Prototype:
void
GPIOPinTypeHibernateRTCCLK(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The hibernate output pin must be properly configured for the RTCCLK to function correctly.
This function provides the proper configuration for the RTC Clock to be output from the device.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

14.2.3.31 GPIOPinTypeI2C

Configures pin for use as SDA by the I2C peripheral.

July 25, 2016 269

GPIO

Prototype:
void
GPIOPinTypeI2C(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin.

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for the SDA pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Note:
This function cannot be used to turn any pin into an I2C SDA pin; it only configures an I2C
SDA pin for proper operation. Note that a GPIOPinConfigure() function call is also required to
properly configure a pin for the I2C SDA function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.32 GPIOPinTypeI2CSCL

Configures pin for use as SCL by the I2C peripheral.

Prototype:
void
GPIOPinTypeI2CSCL(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin.

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for the SCL pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

270 July 25, 2016

GPIO

Note:
This function cannot be used to turn any pin into an I2C SCL pin; it only configures an I2C
SCL pin for proper operation. Note that a GPIOPinConfigure() function call is also required to
properly configure a pin for the I2C SCL function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.33 GPIOPinTypeLCD

Configures pin(s) for use by the LCD Controller.

Prototype:
void
GPIOPinTypeLCD(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The LCD controller pins must be properly configured for the LCD controller to function correctly.
This function provides a typical configuration for those pin(s); other configurations may work as
well depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an LCD pin; it only configures an LCD pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the LCD controller function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

July 25, 2016 271

GPIO

14.2.3.34 GPIOPinTypeOneWire

Configures pin(s) for use by the 1-Wire module.

Prototype:
void
GPIOPinTypeOneWire(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The 1-Wire pin must be properly configured for the 1-Wire peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a 1-Wire pin; it only configures a 1-Wire pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the 1-Wire function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.35 GPIOPinTypePWM

Configures pin(s) for use by the PWM peripheral.

Prototype:
void
GPIOPinTypePWM(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The PWM pins must be properly configured for the PWM peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

272 July 25, 2016

GPIO

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a PWM pin; it only configures a PWM pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the PWM function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.36 GPIOPinTypeQEI

Configures pin(s) for use by the QEI peripheral.

Prototype:
void
GPIOPinTypeQEI(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The QEI pins must be properly configured for the QEI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, not using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a QEI pin; it only configures a QEI pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the QEI function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

July 25, 2016 273

GPIO

Returns:
None.

14.2.3.37 GPIOPinTypeSSI

Configures pin(s) for use by the SSI peripheral.

Prototype:
void
GPIOPinTypeSSI(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The SSI pins must be properly configured for the SSI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a SSI pin; it only configures a SSI pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the SSI function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.38 GPIOPinTypeTimer

Configures pin(s) for use by the Timer peripheral.

Prototype:
void
GPIOPinTypeTimer(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

274 July 25, 2016

GPIO

ui8Pins is the bit-packed representation of the pin(s).

Description:
The CCP pins must be properly configured for the timer peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a timer pin; it only configures a timer pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the CCP function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.39 GPIOPinTypeTrace

Configures pin(s) for use by the Trace peripheral.

Prototype:
void
GPIOPinTypeTrace(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The Trace pins must be properly configured for the Trace peripheral to function correctly. This
function provides a typical configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a trace pin; it only configures a trace pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the Trace function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.

July 25, 2016 275

GPIO

These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.40 GPIOPinTypeUART

Configures pin(s) for use by the UART peripheral.

Prototype:
void
GPIOPinTypeUART(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The UART pins must be properly configured for the UART peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a UART pin; it only configures a UART pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the UART function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.41 GPIOPinTypeUSBAnalog

Configures pin(s) for use by the USB peripheral.

Prototype:
void
GPIOPinTypeUSBAnalog(uint32_t ui32Port,

uint8_t ui8Pins)

276 July 25, 2016

GPIO

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
USB analog pins must be properly configured for the USB peripheral to function correctly. This
function provides the proper configuration for any USB analog pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a USB pin; it only configures a USB pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the USB function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.42 GPIOPinTypeUSBDigital

Configures pin(s) for use by the USB peripheral.

Prototype:
void
GPIOPinTypeUSBDigital(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
USB digital pins must be properly configured for the USB peripheral to function correctly. This
function provides a typical configuration for the digital USB pin(s); other configurations may
work as well depending upon the board setup (for example, using the on-chip pull-ups).

This function should only be used with EPEN and PFAULT pins as all other USB pins are
analog in nature or are not used in devices without OTG functionality.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

July 25, 2016 277

GPIO

Note:
This function cannot be used to turn any pin into a USB pin; it only configures a USB pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the USB function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.43 GPIOPinTypeWakeHigh

Configures pin(s) for use as a hibernate wake-on-high source.

Prototype:
void
GPIOPinTypeWakeHigh(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as hibernate wake-
high inputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.44 GPIOPinTypeWakeLow

Configures pin(s) for use as a hibernate wake-on-low source.

278 July 25, 2016

GPIO

Prototype:
void
GPIOPinTypeWakeLow(uint32_t ui32Port,

uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as hibernate wake-low
inputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.45 GPIOPinWakeStatus

Retrieves the wake pins status.

Prototype:
uint32_t
GPIOPinWakeStatus(uint32_t ui32Port)

Parameters:
ui32Port is the base address of the GPIO port.

Description:
This function returns the GPIO wake pin status values. The returned bitfield shows low or high
pin state via a value of 0 or 1.

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO wake pins.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

July 25, 2016 279

GPIO

Returns:
Returns the wake pin status.

14.2.3.46 GPIOPinWrite

Writes a value to the specified pin(s).

Prototype:
void
GPIOPinWrite(uint32_t ui32Port,

uint8_t ui8Pins,
uint8_t ui8Val)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
ui8Val is the value to write to the pin(s).

Description:
Writes the corresponding bit values to the output pin(s) specified by ui8Pins. Writing to a pin
configured as an input pin has no effect.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

14.3 Programming Example

The following example shows how to use the GPIO API to initialize the GPIO, enable interrupts,
read data from pins, and write data to pins.

Example: Configure pins for use as input, interrupt, and output GPIOs.

int32_t i32Val;

//
// Enable the GPIOA peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

//
// Wait for the GPIOA module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_GPIOA))
{
}

//
// Register the port-level interrupt handler. This handler is the first
// level interrupt handler for all the pin interrupts.
//

280 July 25, 2016

GPIO

GPIOIntRegister(GPIO_PORTA_BASE, PortAIntHandler);

//
// Initialize the GPIO pin configuration.
//
// Set pins 2, 4, and 5 as input, SW controlled.
//
GPIOPinTypeGPIOInput(GPIO_PORTA_BASE,

GPIO_PIN_2 | GPIO_PIN_4 | GPIO_PIN_5);

//
// Set pins 0 and 3 as output, SW controlled.
//
GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_3);

//
// Make pins 2 and 4 rising edge triggered interrupts.
//
GPIOIntTypeSet(GPIO_PORTA_BASE, GPIO_PIN_2 | GPIO_PIN_4, GPIO_RISING_EDGE);

//
// Make pin 5 high level triggered interrupts.
//
GPIOIntTypeSet(GPIO_PORTA_BASE, GPIO_PIN_5, GPIO_HIGH_LEVEL);

//
// Read some pins.
//
i32Val = GPIOPinRead(GPIO_PORTA_BASE,

(GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5));

//
// Write some pins. Even though pins 2, 4, and 5 are specified, those pins
// are unaffected by this write because they are configured as inputs. At
// the end of this write, pin 0 is low, and pin 3 is high.
//
GPIOPinWrite(GPIO_PORTA_BASE,

(GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3 |
GPIO_PIN_4 | GPIO_PIN_5),
(GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 |
GPIO_PIN_7));

//
// Enable the pin interrupts.
//
GPIOIntEnable(GPIO_PORTA_BASE, GPIO_PIN_2 | GPIO_PIN_4 | GPIO_PIN_5);

Example: Configure Port B Pins for use as a UART 1.

//
// Enable the GPIOB peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

//
// Wait for the GPIOB module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_GPIOB))
{
}

//
// Configure GPIO Port B pins 0 and 1 to be used as UART1.
//

July 25, 2016 281

GPIO

GPIOPinTypeUART(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

//
// Enable UART1 functionality on GPIO Port B pins 0 and 1.
//
GPIOPinConfigure(GPIO_PB0_U1RX);
GPIOPinConfigure(GPIO_PB1_U1TX);

282 July 25, 2016

Hibernation Module

15 Hibernation Module
Introduction .283
API Functions . 283
Programming Example .311

15.1 Introduction

The Hibernate API provides a set of functions for using the Hibernation module on the Tiva mi-
crocontroller. The Hibernation module allows the software application to remove power from the
microcontroller, and then be powered on later based on specific time or when the external WAKE
pin is asserted. The API provides functions to configure wake conditions, manage interrupts, read
status, save and restore program state information, and request hibernation mode.

Some of the features of the Hibernation module are:

32-bit real time clock, with 15-bit subseconds counter on some devices

Internal low frequency oscillator

Calendar mode for the hibernation counter

Tamper detection and response

Trim register for fine tuning the RTC rate

One RTC match registers for generating RTC events

External WAKE pin to initiate a wake-up

External RST pin and/or four GPIO port pins as alternate wake-up sources.

Maintain GPIO state during hibernation.

Low-battery detection

16 32-bit words of battery-backed memory

Programmable interrupts for hibernation events Check the device data sheet to determine if a
selected MCU supports each of these features.

This driver is contained in driverlib/hibernate.c, with driverlib/hibernate.h contain-
ing the API declarations for use by applications.

15.2 API Functions

Functions
uint32_t HibernateBatCheckDone (void)
void HibernateBatCheckStart (void)
int HibernateCalendarGet (struct tm ∗psTime)
void HibernateCalendarMatchGet (uint32_t ui32Index, struct tm ∗psTime)
void HibernateCalendarMatchSet (uint32_t ui32Index, struct tm ∗psTime)
void HibernateCalendarSet (struct tm ∗psTime)

July 25, 2016 283

Hibernation Module

void HibernateClockConfig (uint32_t ui32Config)
void HibernateCounterMode (uint32_t ui32Config)
void HibernateDataGet (uint32_t ∗pui32Data, uint32_t ui32Count)
void HibernateDataSet (uint32_t ∗pui32Data, uint32_t ui32Count)
void HibernateDisable (void)
void HibernateEnableExpClk (uint32_t ui32HibClk)
void HibernateGPIORetentionDisable (void)
void HibernateGPIORetentionEnable (void)
bool HibernateGPIORetentionGet (void)
void HibernateIntClear (uint32_t ui32IntFlags)
void HibernateIntDisable (uint32_t ui32IntFlags)
void HibernateIntEnable (uint32_t ui32IntFlags)
void HibernateIntRegister (void (∗pfnHandler)(void))
uint32_t HibernateIntStatus (bool bMasked)
void HibernateIntUnregister (void)
uint32_t HibernateIsActive (void)
uint32_t HibernateLowBatGet (void)
void HibernateLowBatSet (uint32_t ui32LowBatFlags)
void HibernateRequest (void)
void HibernateRTCDisable (void)
void HibernateRTCEnable (void)
uint32_t HibernateRTCGet (void)
uint32_t HibernateRTCMatchGet (uint32_t ui32Match)
void HibernateRTCMatchSet (uint32_t ui32Match, uint32_t ui32Value)
void HibernateRTCSet (uint32_t ui32RTCValue)
uint32_t HibernateRTCSSGet (void)
uint32_t HibernateRTCSSMatchGet (uint32_t ui32Match)
void HibernateRTCSSMatchSet (uint32_t ui32Match, uint32_t ui32Value)
uint32_t HibernateRTCTrimGet (void)
void HibernateRTCTrimSet (uint32_t ui32Trim)
void HibernateTamperDisable (void)
void HibernateTamperEnable (void)
void HibernateTamperEventsClear (void)
void HibernateTamperEventsClearNoLock (void)
void HibernateTamperEventsConfig (uint32_t ui32Config)
bool HibernateTamperEventsGet (uint32_t ui32Index, uint32_t ∗pui32RTC, uint32_t
∗pui32Event)
void HibernateTamperExtOscRecover (void)
bool HibernateTamperExtOscValid (void)
void HibernateTamperIODisable (uint32_t ui32Input)
void HibernateTamperIOEnable (uint32_t ui32Input, uint32_t ui32Config)
void HibernateTamperLock (void)
uint32_t HibernateTamperStatusGet (void)
void HibernateTamperUnLock (void)
uint32_t HibernateWakeGet (void)
void HibernateWakeSet (uint32_t ui32WakeFlags)

284 July 25, 2016

Hibernation Module

15.2.1 Detailed Description

The Hibernation module must be enabled before it can be used. Use the HibernateEnableExpClk()
function to enable it. If a crystal is used for the clock source, then the initializing code must allow
time for the crystal to stabilize after calling the HibernateEnableExpClk() function. Refer to the
device data sheet for information about crystal stabilization time. If an oscillator is used, then no
delay is necessary. After the module is enabled, the clock source must be configured by calling
HibernateClockConfig().

In order to use the RTC feature of the Hibernation module, the RTC must be enabled by calling
HibernateRTCEnable(). It can be later disabled by calling HibernateRTCDisable(). These functions
can be called at any time to start and stop the RTC. The RTC value can be read or set by using
the HibernateRTCGet() and HibernateRTCSet() functions. The match register can be read and
set by using the HibernateRTCMatchGet(), and HibernateRTCMatchSet(), functions. The real-
time clock rate can be adjusted by using the trim register. Use the HibernateRTCTrimGet() and
HibernateRTCTrimSet() functions for this purpose. The value of the subseconds counter can be
read using HibernateRTCSSGet(). The match value of the subseconds counter can be set and
read using the HibernateRTCSSMatchSet() and HibernateRTCSSMatchSet() functions.

Some devices provide a calendar mode of operation for the RTC. The value of the RTC can be
read or set in calendar mode with the HibernateCalendarGet() and HibernateCalendarSet() func-
tions. The match register can also be read and set in calendar mode with the HibernatCalendar-
MatchGet() and HibernateCalendarMatchSet() functions.

The tamper feature provides mechanisms to detect, respond to, and log system tamper events. A
tamper event is detected by state transitions on select GPIOs or the failure of the external oscillator
if used as a clock source. Note that the tamper GPIOs do not require special configuration to be
used for the tamper function. See the device datasheet to determine which GPIOs support the
tamper function.

The tamper GPIOs are configured to use with HibernateTamperIOEnable() and HibernateTampe-
rIODisable(). None of the GPIO API functions are needed to configure the tamper GPIOs. The
tamper GPIOs configured by using these functions override any configuration by GPIO APIs. The
external oscillator state can be retrieved with HibernateTamperExtOscValid(). If an external oscilla-
tor failure is detected, a recovery attempt can be triggered with HibernateTamperExtOscRecover().

The module always reponds to a tamper event by generating a tamper event signal to the Sys-
tem Control module. The tamper feature can be also be configured to respond to a tamper event
by clearing all or part of the hibernate memory and/or waking from hibernate via HibernateTam-
perEventsConfig(). The detected events are logged with a real-time clock time stamp to allow
investigation. The logged events can be managed with HibernateTamperEventsGet() and Hiber-
nateTamperEventsClear().

The overall status of tamper retrieved with HibernateTamperStatusGet(). The tamper feature can
be enabled and disabled with HibernateTamperEnable() and HibernateTamperDisable().

Application state information can be stored in the battery-backed memory of the Hibernation module
when the processor is powered off. Use the HibernateDataSet() and HibernateDataGet() functions
to access the battery-backed memory area.

The module can be configured to wake when the external WAKE pin is asserted, when an RTC
match occurs, and when the battery level has reached a set level. On some devices, the module
can also be configured to wake when a GPIO pin is asserted or when the RESET pin is asserted.
Finally on devices that support tamper detection, the module can also be configured to wake on a
tamper related event. Use the HibernateWakeSet() function to configure the wake conditions. The
current configuration can be read by calling HibernateWakeGet().

July 25, 2016 285

Hibernation Module

The Hibernation module can detect a low battery and signal the processor. It can also be configured
to abort a hibernation request if the battery voltage is too low. Use the HibernateLowBatSet() and
HibernateLowBatGet() functions to configure this feature. The battery level can be measured using
the HibernateBatCheckStart() and HibernateBatCheckDone() functions.

Several functions are provided for managing interrupts. Use the HibernateIntRegister() and Hiber-
nateIntUnregister() functions to install or uninstall an interrupt handler into the vector table. Refer to
the IntRegister() function for notes about using the interrupt vector table. The module can generate
several different interrupts. Use the HibernateIntEnable() and HibernateIntDisable() functions to
enable and disable specific interrupt sources. The present interrupt status can be found by call-
ing HibernateIntStatus(). In the interrupt handler, all pending interrupts must be cleared. Use the
HibernateIntClear() function to clear pending interrupts.

Finally, once the module is appropriately configured, the state saved, and the software application
is ready to hibernate, call the HibernateRequest() function. This function initiates the sequence
to remove power from the processor. At a power-on reset, the software application can use the
HibernateIsActive() function to determine if the Hibernation module is already active and therefore
does not need to be enabled. This function can provide a hint to the software that the processor is
waking from hibernation instead of a cold start. The software can then use the HibernateIntStatus()
and HibernateDataGet() functions to discover the cause of the wake and to get the saved system
state.

The HibernateEnable() API from previous versions of the peripheral driver library has been re-
placed by the HibernateEnableExpClk() API. A macro has been provided in hibernate.h to map
the old API to the new API, allowing existing applications to link and run with the new API. It is
recommended that new applications use the new API in favor of the old one.

15.2.2 Function Documentation

15.2.2.1 HibernateBatCheckDone

Determines whether or not a forced battery check has completed.

Prototype:
uint32_t
HibernateBatCheckDone(void)

Description:
This function determines whether the forced battery check initiated by a call to the Hiber-
nateBatCheckStart() function has completed. This function returns a non-zero value until the
battery level check has completed. Once this function returns a value of zero, the Hiber-
nation module has completed the battery check and the HibernateIntStatus() function can
be used to check if the battery was low by checking if the value returned has the HIBER-
NATE_INT_LOW_BAT set.

Returns:
The value is zero when the battery level check has completed or non-zero if the check is still in
process.

15.2.2.2 HibernateBatCheckStart

Forces the Hibernation module to initiate a check of the battery voltage.

286 July 25, 2016

Hibernation Module

Prototype:
void
HibernateBatCheckStart(void)

Description:
This function forces the Hibernation module to initiate a check of the battery voltage imme-
diately rather than waiting for the next check interval to pass. After calling this function, the
application should call the HibernateBatCheckDone() function and wait for the function to re-
turn a zero value before calling the HibernateIntStatus() to check if the return code has the
HIBERNATE_INT_LOW_BAT set. If HIBERNATE_INT_LOW_BAT is set, the battery level is
low. The application can also enable the HIBERNATE_INT_LOW_BAT interrupt and wait for
an interrupt to indicate that the battery level is low.

Note:
A hibernation request is held off if a battery check is in progress.

Returns:
None.

15.2.2.3 HibernateCalendarGet

Returns the Hibernation module’s date and time in calendar mode.

Prototype:
int
HibernateCalendarGet(struct tm *psTime)

Parameters:
psTime is the structure that is filled with the current date and time.

Description:
This function returns the current date and time in the structure provided by the psTime param-
eter. Regardless of the calendar mode, the psTime parameter uses a 24-hour representation
of the time. This function can only be called when the Hibernation module is configured in
calendar mode using the HibernateCounterMode() function with one of the calendar modes.

The only case where this function fails and returns a non-zero value is when the function
detects that the counter is passing from the last second of the day to the first second of the
next day. This exception must be handled in the application by waiting at least one second
before calling again to get the updated calendar information.

Note:
The hibernate calendar mode is not available on all Tiva devices. Please consult the data sheet
to determine if the device you are using supports this feature in the Hibernation module.

Returns:
Returns zero if the time and date were read successfully and returns a non-zero value if the
psTime structure was not updated.

15.2.2.4 HibernateCalendarMatchGet

Returns the Hibernation module’s date and time match value in calendar mode.

July 25, 2016 287

Hibernation Module

Prototype:
void
HibernateCalendarMatchGet(uint32_t ui32Index,

struct tm *psTime)

Parameters:
ui32Index indicates which match register to access.
psTime is the structure to fill with the current date and time match value.

Description:
This function returns the current date and time match value in the structure provided by the
psTime parameter. Regardless of the mode, the psTime parameter uses a 24-hour clock rep-
resentation of time. This function can only be called when the Hibernation module is configured
in calendar mode using the HibernateCounterMode() function. The ui32Index value is reserved
for future use and should always be zero.

Note:
The hibernate calendar mode is not available on all Tiva devices. Please consult the data sheet
to determine if the device you are using supports this feature in the Hibernation module.

Returns:
Returns zero if the time and date match value were read successfully and returns a non-zero
value if the psTime structure was not updated.

15.2.2.5 HibernateCalendarMatchSet

Sets the Hibernation module’s date and time match value in calendar mode.

Prototype:
void
HibernateCalendarMatchSet(uint32_t ui32Index,

struct tm *psTime)

Parameters:
ui32Index indicates which match register to access.
psTime is the structure that holds all of the information to set the current date and time match

values.

Description:
This function uses the psTime parameter to set the current date and time match value in the
Hibernation module’s calendar. Regardless of the mode, the psTime parameter uses a 24-hour
clock representation of time. This function can only be called when the Hibernation module is
configured in calendar mode using the HibernateCounterMode() function. The ui32Index value
is reserved for future use and should always be zero. Calendar match can be enabled for every
day, every hour, every minute or every second, setting any of these fields to 0xFF causes a
match for that field. For example, setting the day of month field to 0xFF results in a calendar
match daily at the same time.

Note:
The hibernate calendar mode is not available on all Tiva devices. Please consult the data sheet
to determine if the device you are using supports this feature in the Hibernation module.

Returns:
None.

288 July 25, 2016

Hibernation Module

15.2.2.6 HibernateCalendarSet

Sets the Hibernation module’s date and time in calendar mode.

Prototype:
void
HibernateCalendarSet(struct tm *psTime)

Parameters:
psTime is the structure that holds the information for the current date and time.

Description:
This function uses the psTime parameter to set the current date and time when the Hibernation
module is in calendar mode. Regardless of whether 24-hour or 12-hour mode is in use, the
psTime structure uses a 24-hour representation of the time. This function can only be called
when the hibernate counter is configured in calendar mode using the HibernateCounterMode()
function with one of the calendar modes.

Note:
The hibernate calendar mode is not available on all Tiva devices. Please consult the data sheet
to determine if the device you are using supports this feature in the Hibernation module.

Returns:
None.

15.2.2.7 HibernateClockConfig

Configures the clock input for the Hibernation module.

Prototype:
void
HibernateClockConfig(uint32_t ui32Config)

Parameters:
ui32Config is one of the possible configuration options for the clock input listed below.

Description:
This function is used to configure the clock input for the Hibernation module. The ui32Config
parameter can be one of the following values:

HIBERNATE_OSC_DISABLE specifies that the internal oscillator is powered off. This
option is used when an externally supplied oscillator is connected to the XOSC0 pin or to
save power when the LFIOSC is used in devices that have an LFIOSC in the Hibernation
module.
HIBERNATE_OSC_HIGHDRIVE specifies a higher drive strength when a 24-pF filter ca-
pacitor is used with a crystal.
HIBERNATE_OSC_LOWDRIVE specifies a lower drive strength when a 12-pF filter ca-
pacitor is used with a crystal.

On some devices, there is an option to use an internal low frequency oscillator (LFIOSC) as
the clock source for the Hibernation module. Because of the low accuracy of this oscillator,
this option should not be used when the system requires a real time counter. Adding the
HIBERNATE_OSC_LFIOSC value enables the LFIOSC as the clock source to the Hibernation
module.

July 25, 2016 289

Hibernation Module

HIBERNATE_OSC_LFIOSC enables the Hibernation module’s internal low frequency os-
cillator as the clock to the Hibernation module.

This ui32Config also configures how the clock output from the hibernation is used to clock other
peripherals in the system. The ALT clock settings allow clocking a subset of the peripherals.
See the hibernate section in the datasheet to determine which peripherals can be clocked by
the ALT clock outputs from the Hibernation module. The ui32Config parameter can have any
combination of the following values:

HIBERNATE_OUT_SYSCLK enables the hibernate clock output to the system clock.

The HIBERNATE_OSC_DISABLE option is used to disable and power down the internal os-
cillator if an external clock source or no clock source is used instead of a 32.768-kHz crystal.
In the case where an external crystal is used, either the HIBERNATE_OSC_HIGHDRIVE or
HIBERNATE_OSC_LOWDRIVE is used. These settings optimizes the oscillator drive strength
to match the size of the filter capacitor that is used with the external crystal circuit.

Returns:
None.

15.2.2.8 HibernateCounterMode

Configures the Hibernation module’s internal counter mode.

Prototype:
void
HibernateCounterMode(uint32_t ui32Config)

Parameters:
ui32Config is the configuration to use for the Hibernation module’s counter.

Description:
This function configures the Hibernate module’s counter mode to operate as a standard RTC
counter or to operate in a calendar mode. The ui32Config parameter is used to provide the
configuration for the counter and must include only one of the following values:

HIBERNATE_COUNTER_24HR specifies 24-hour calendar mode.
HIBERNATE_COUNTER_12HR specifies 12-hour AM/PM calendar mode.
HIBERNATE_COUNTER_RTC specifies RTC counter mode.

The HibernateCalendar functions can only be called when either HIBER-
NATE_COUNTER_24HR or HIBERNATE_COUNTER_12HR is specified.

Example: Configure hibernate counter to 24-hour calendar mode.

//
// Configure the hibernate module counter to 24-hour calendar mode.
//
HibernateCounterMode(HIBERNATE_COUNTER_24HR);

Note:
The hibernate calendar mode is not available on all Tiva devices. Please consult the data sheet
to determine if the device you are using supports this feature in the Hibernation module.

Returns:
None.

290 July 25, 2016

Hibernation Module

15.2.2.9 HibernateDataGet

Reads a set of data from the battery-backed memory of the Hibernation module.

Prototype:
void
HibernateDataGet(uint32_t *pui32Data,

uint32_t ui32Count)

Parameters:
pui32Data points to a location where the data that is read from the Hibernation module is

stored.
ui32Count is the count of 32-bit words to read.

Description:
This function retrieves a set of data from the Hibernation module battery-backed memory
that was previously stored with the HibernateDataSet() function. The caller must ensure that
pui32Data points to a large enough memory block to hold all the data that is read from the
battery-backed memory.

Returns:
None.

15.2.2.10 HibernateDataSet

Stores data in the battery-backed memory of the Hibernation module.

Prototype:
void
HibernateDataSet(uint32_t *pui32Data,

uint32_t ui32Count)

Parameters:
pui32Data points to the data that the caller wants to store in the memory of the Hibernation

module.
ui32Count is the count of 32-bit words to store.

Description:
Stores a set of data in the Hibernation module battery-backed memory. This memory is pre-
served when the power to the processor is turned off and can be used to store application state
information that is needed when the processor wakes. Up to 16 32-bit words can be stored
in the battery-backed memory. The data can be restored by calling the HibernateDataGet()
function.

Returns:
None.

15.2.2.11 HibernateDisable

Disables the Hibernation module for operation.

July 25, 2016 291

Hibernation Module

Prototype:
void
HibernateDisable(void)

Description:
This function disables the Hibernation module. After this function is called, none of the Hiber-
nation module features are available.

Returns:
None.

15.2.2.12 HibernateEnableExpClk

Enables the Hibernation module for operation.

Prototype:
void
HibernateEnableExpClk(uint32_t ui32HibClk)

Parameters:
ui32HibClk is the rate of the clock supplied to the Hibernation module.

Description:
This function enables the Hibernation module for operation. This function should be called
before any of the Hibernation module features are used.

The peripheral clock is the same as the processor clock. The frequency of the system clock
is the value returned by SysCtlClockGet() for TM4C123x devices or the value returned by
SysCtlClockFreqSet() for TM4C129x devices, or it can be explicitly hard coded if it is constant
and known (to save the code/execution overhead of a call to SysCtlClockGet() or fetch of the
variable call holding the return value of SysCtlClockFreqSet()).

Returns:
None.

15.2.2.13 HibernateGPIORetentionDisable

Disables GPIO retention after wake from hibernation.

Prototype:
void
HibernateGPIORetentionDisable(void)

Description:
This function disables the retention of the GPIO pin state during hibernation and allows the
GPIO pins to be controlled by the system. If the HibernateGPIORetentionEnable() function is
called before entering hibernation, this function must be called after returning from hibernation
to allow the GPIO pins to be controlled by GPIO module.

Note:
The hibernate GPIO retention setting is not available on all Tiva devices. Please consult the
data sheet to determine if the device you are using supports this feature in the Hibernation
module.

292 July 25, 2016

Hibernation Module

Returns:
None.

15.2.2.14 HibernateGPIORetentionEnable

Enables GPIO retention after wake from hibernation.

Prototype:
void
HibernateGPIORetentionEnable(void)

Description:
This function enables the GPIO pin state to be maintained during hibernation and remain active
even when waking from hibernation. The GPIO module itself is reset upon entering hiberna-
tion and no longer controls the output pins. To maintain the current output level after waking
from hibernation, the GPIO module must be reconfigured and then the HibernateGPIOReten-
tionDisable() function must be called to return control of the GPIO pin to the GPIO module.

Note:
The hibernation GPIO retention setting is not available on all Tiva devices. Please consult the
data sheet to determine if the device you are using supports this feature in the Hibernation
module.

Returns:
None.

15.2.2.15 HibernateGPIORetentionGet

Returns the current setting for GPIO retention.

Prototype:
bool
HibernateGPIORetentionGet(void)

Description:
This function returns the current setting for GPIO retention in the hibernate module.

Note:
The hibernation GPIO retention setting is not available on all Tiva devices. Please consult the
data sheet to determine if the device you are using supports this feature in the Hibernation
module.

Returns:
Returns true if GPIO retention is enabled and false if GPIO retention is disabled.

15.2.2.16 HibernateIntClear

Clears pending interrupts from the Hibernation module.

July 25, 2016 293

Hibernation Module

Prototype:
void
HibernateIntClear(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is the bit mask of the interrupts to be cleared.

Description:
This function clears the specified interrupt sources. This function must be called within the
interrupt handler or else the handler is called again upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to the Hi-
bernateIntEnable() function.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.2.17 HibernateIntDisable

Disables interrupts for the Hibernation module.

Prototype:
void
HibernateIntDisable(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is the bit mask of the interrupts to be disabled.

Description:
This function disables the specified interrupt sources from the Hibernation module.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to the Hi-
bernateIntEnable() function.

Returns:
None.

15.2.2.18 HibernateIntEnable

Enables interrupts for the Hibernation module.

Prototype:
void
HibernateIntEnable(uint32_t ui32IntFlags)

294 July 25, 2016

Hibernation Module

Parameters:
ui32IntFlags is the bit mask of the interrupts to be enabled.

Description:
This function enables the specified interrupt sources from the Hibernation module.

The ui32IntFlags parameter must be the logical OR of any combination of the following:

HIBERNATE_INT_WR_COMPLETE - write complete interrupt
HIBERNATE_INT_PIN_WAKE - wake from pin interrupt
HIBERNATE_INT_LOW_BAT - low-battery interrupt
HIBERNATE_INT_RTC_MATCH_0 - RTC match 0 interrupt
HIBERNATE_INT_VDDFAIL - supply failure interrupt.
HIBERNATE_INT_RESET_WAKE - wake from reset pin interrupt
HIBERNATE_INT_GPIO_WAKE - wake from GPIO pin or reset pin interrupt.

Note:
The HIBERNATE_INT_RESET_WAKE, HIBERNATE_INT_GPIO_WAKE, and HIBER-
NATE_INT_VDDFAIL settings are not available on all Tiva devices. Please consult the
data sheet for the Tiva device that you are using to determine if these interrupt sources are
available.

Returns:
None.

15.2.2.19 HibernateIntRegister

Registers an interrupt handler for the Hibernation module interrupt.

Prototype:
void
HibernateIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler points to the function to be called when a hibernation interrupt occurs.

Description:
This function registers the interrupt handler in the system interrupt controller. The interrupt is
enabled at the global level, but individual interrupt sources must still be enabled with a call to
HibernateIntEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

15.2.2.20 HibernateIntStatus

Gets the current interrupt status of the Hibernation module.

July 25, 2016 295

Hibernation Module

Prototype:
uint32_t
HibernateIntStatus(bool bMasked)

Parameters:
bMasked is false to retrieve the raw interrupt status, and true to retrieve the masked interrupt

status.

Description:
This function returns the interrupt status of the Hibernation module. The caller can use this
function to determine the cause of a hibernation interrupt. Either the masked or raw interrupt
status can be returned.

Note:
A wake from reset pin also signals a wake from GPIO pin with the value returned being HI-
BERNATE_INT_GPIO_WAKE | HIBERNATE_INT_RESET_WAKE. Hence a wake from reset
pin should take priority over wake from GPIO pin.

Returns:
Returns the interrupt status as a bit field with the values as described in the HibernateIntEn-
able() function.

15.2.2.21 HibernateIntUnregister

Unregisters an interrupt handler for the Hibernation module interrupt.

Prototype:
void
HibernateIntUnregister(void)

Description:
This function unregisters the interrupt handler in the system interrupt controller. The interrupt
is disabled at the global level, and the interrupt handler is no longer called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

15.2.2.22 HibernateIsActive

Checks to see if the Hibernation module is already powered up.

Prototype:
uint32_t
HibernateIsActive(void)

Description:
This function queries the control register to determine if the module is already active. This
function can be called at a power-on reset to help determine if the reset is due to a wake from

296 July 25, 2016

Hibernation Module

hibernation or a cold start. If the Hibernation module is already active, then it does not need to
be re-enabled, and its status can be queried immediately.

The software application should also use the HibernateIntStatus() function to read the raw
interrupt status to determine the cause of the wake. The HibernateDataGet() function can
be used to restore state. These combinations of functions can be used by the software to
determine if the processor is waking from hibernation and the appropriate action to take as a
result.

Returns:
Returns true if the module is already active, and false if not.

15.2.2.23 HibernateLowBatGet

Gets the currently configured low-battery detection behavior.

Prototype:
uint32_t
HibernateLowBatGet(void)

Description:
This function returns a value representing the currently configured low battery detection be-
havior.

The return value is a combination of the values described in the HibernateLowBatSet() function.

Returns:
Returns a value indicating the configured low-battery detection.

15.2.2.24 HibernateLowBatSet

Configures the low-battery detection.

Prototype:
void
HibernateLowBatSet(uint32_t ui32LowBatFlags)

Parameters:
ui32LowBatFlags specifies behavior of low-battery detection.

Description:
This function enables the low-battery detection and whether hibernation is allowed if a low
battery is detected. If low-battery detection is enabled, then a low-battery condition is indicated
in the raw interrupt status register, which can be enabled to trigger an interrupt. Optionally,
hibernation can be aborted if a low battery condition is detected.

The ui32LowBatFlags parameter is one of the following values:

HIBERNATE_LOW_BAT_DETECT - detect a low-battery condition
HIBERNATE_LOW_BAT_ABORT - detect a low-battery condition and abort hibernation if
low-battery is detected

July 25, 2016 297

Hibernation Module

The other setting in the ui32LowBatFlags allows the caller to set one of the following voltage
level trigger values :

HIBERNATE_LOW_BAT_1_9V - voltage low level is 1.9 V
HIBERNATE_LOW_BAT_2_1V - voltage low level is 2.1 V
HIBERNATE_LOW_BAT_2_3V - voltage low level is 2.3 V
HIBERNATE_LOW_BAT_2_5V - voltage low level is 2.5 V

Example: Abort hibernate if the voltage level is below 2.1 V.

HibernateLowBatSet(HIBERNATE_LOW_BAT_ABORT | HIBERNATE_LOW_BAT_2_1V);

Returns:
None.

15.2.2.25 HibernateRequest

Requests hibernation mode.

Prototype:
void
HibernateRequest(void)

Description:
This function requests the Hibernation module to disable the external regulator, thus removing
power from the processor and all peripherals. The Hibernation module remains powered from
the battery or auxiliary power supply.

The Hibernation module re-enables the external regulator when one of the configured wake
conditions occurs (such as RTC match or external WAKE pin). When the power is restored,
the processor goes through a power-on reset although the Hibernation module is not reset.
The processor can retrieve saved state information with the HibernateDataGet() function. Prior
to calling the function to request hibernation mode, the conditions for waking must have already
been set by using the HibernateWakeSet() function.

Note that this function may return because some time may elapse before the power is actually
removed, or it may not be removed at all. For this reason, the processor continues to execute
instructions for some time, and the caller should be prepared for this function to return. There
are various reasons why the power may not be removed. For example, if the HibernateLowBat-
Set() function was used to configure an abort if low battery is detected, then the power is not
removed if the battery voltage is too low. There may be other reasons related to the external
circuit design, that a request for hibernation may not actually occur.

For all these reasons, the caller must be prepared for this function to return. The simplest way
to handle it is to just enter an infinite loop and wait for the power to be removed.

Returns:
None.

15.2.2.26 HibernateRTCDisable

Disables the RTC feature of the Hibernation module.

298 July 25, 2016

Hibernation Module

Prototype:
void
HibernateRTCDisable(void)

Description:
This function disables the RTC in the Hibernation module. After calling this function, the RTC
features of the Hibernation module are not available.

Returns:
None.

15.2.2.27 HibernateRTCEnable

Enables the RTC feature of the Hibernation module.

Prototype:
void
HibernateRTCEnable(void)

Description:
This function enables the RTC in the Hibernation module. The RTC can be used to wake the
processor from hibernation at a certain time, or to generate interrupts at certain times. This
function must be called before using any of the RTC features of the Hibernation module.

Returns:
None.

15.2.2.28 HibernateRTCGet

Gets the value of the real time clock (RTC) counter.

Prototype:
uint32_t
HibernateRTCGet(void)

Description:
This function gets the value of the RTC and returns it to the caller.

Returns:
Returns the value of the RTC counter in seconds.

15.2.2.29 HibernateRTCMatchGet

Gets the value of the requested RTC match register.

Prototype:
uint32_t
HibernateRTCMatchGet(uint32_t ui32Match)

July 25, 2016 299

Hibernation Module

Parameters:
ui32Match is the index of the match register.

Description:
This function gets the value of the match register for the RTC. The only value that can be used
with the ui32Match parameter is zero, other values are reserved for future use.

Returns:
Returns the value of the requested match register.

15.2.2.30 HibernateRTCMatchSet

Sets the value of the RTC match register.

Prototype:
void
HibernateRTCMatchSet(uint32_t ui32Match,

uint32_t ui32Value)

Parameters:
ui32Match is the index of the match register.
ui32Value is the value for the match register.

Description:
This function sets a match register for the RTC. The Hibernation module can be configured to
wake from hibernation, and/or generate an interrupt when the value of the RTC counter is the
same as the match register.

Returns:
None.

15.2.2.31 HibernateRTCSet

Sets the value of the real time clock (RTC) counter.

Prototype:
void
HibernateRTCSet(uint32_t ui32RTCValue)

Parameters:
ui32RTCValue is the new value for the RTC.

Description:
This function sets the value of the RTC. The RTC counter contains the count in seconds when a
32.768kHz clock source is in use. The RTC must be enabled by calling HibernateRTCEnable()
before calling this function.

Returns:
None.

300 July 25, 2016

Hibernation Module

15.2.2.32 HibernateRTCSSGet

Returns the current value of the RTC sub second count.

Prototype:
uint32_t
HibernateRTCSSGet(void)

Description:
This function returns the current value of the sub second count for the RTC in 1/32768 of a
second increments. The only value that can be used with the ui32Match parameter is zero,
other values are reserved for future use.

Returns:
The current RTC sub second count in 1/32768 seconds.

15.2.2.33 HibernateRTCSSMatchGet

Returns the value of the requested RTC sub second match register.

Prototype:
uint32_t
HibernateRTCSSMatchGet(uint32_t ui32Match)

Parameters:
ui32Match is the index of the match register.

Description:
This function returns the current value of the sub second match register for the RTC. The value
returned is in 1/32768 second increments. The only value that can be used with the ui32Match
parameter is zero, other values are reserved for future use.

Returns:
Returns the value of the requested sub section match register.

15.2.2.34 HibernateRTCSSMatchSet

Sets the value of the RTC sub second match register.

Prototype:
void
HibernateRTCSSMatchSet(uint32_t ui32Match,

uint32_t ui32Value)

Parameters:
ui32Match is the index of the match register.
ui32Value is the value for the sub second match register.

Description:
This function sets the sub second match register for the RTC in 1/32768 of a second incre-
ments. The Hibernation module can be configured to wake from hibernation, and/or generate

July 25, 2016 301

Hibernation Module

an interrupt when the value of the RTC counter is the same as the match combined with the
sub second match register. The only value that can be used with the ui32Match parameter is
zero, other values are reserved for future use.

Returns:
None.

15.2.2.35 HibernateRTCTrimGet

Gets the value of the RTC pre-divider trim register.

Prototype:
uint32_t
HibernateRTCTrimGet(void)

Description:
This function gets the value of the pre-divider trim register. This function can be used to get the
current value of the trim register prior to making an adjustment by using the HibernateRTCTrim-
Set() function.

Returns:
None.

15.2.2.36 HibernateRTCTrimSet

Sets the value of the RTC pre-divider trim register.

Prototype:
void
HibernateRTCTrimSet(uint32_t ui32Trim)

Parameters:
ui32Trim is the new value for the pre-divider trim register.

Description:
This function sets the value of the pre-divider trim register. The input time source is divided
by the pre-divider to achieve a one-second clock rate. Once every 64 seconds, the value of
the pre-divider trim register is applied to the pre-divider to allow fine-tuning of the RTC rate, in
order to make corrections to the rate. The software application can make adjustments to the
pre-divider trim register to account for variations in the accuracy of the input time source. The
nominal value is 0x7FFF, and it can be adjusted up or down in order to fine-tune the RTC rate.

Returns:
None.

15.2.2.37 HibernateTamperDisable

Disables the tamper feature.

302 July 25, 2016

Hibernation Module

Prototype:
void
HibernateTamperDisable(void)

Description:
This function is used to disable the tamper feature functionality. All other configuration settings
are left unmodified, allowing a call to HibernateTamperEnable() to quickly enable the tamper
feature with its previous configuration.

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.38 HibernateTamperEnable

Enables the tamper feature.

Prototype:
void
HibernateTamperEnable(void)

Description:
This function is used to enable the tamper feature functionality. This function should only be
called after the global configuration is set with a call to HibernateTamperEventsConfig() and
the tamper inputs have been configured with a call to HibernateTamperIOEnable().

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.39 HibernateTamperEventsClear

Clears the tamper feature events.

Prototype:
void
HibernateTamperEventsClear(void)

Description:
This function is used to clear all tamper events. This function always clears the tamper feature
event state indicator along with all tamper log entries. Logged event data should be retrieved
with HibernateTamperEventsGet() prior to requesting a event clear.

HibernateTamperEventsClear() should be called prior to clearing the system control NMI that
resulted from the tamper event.

July 25, 2016 303

Hibernation Module

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.40 HibernateTamperEventsClearNoLock

Clears the tamper feature events without Unlock and Lock.

Prototype:
void
HibernateTamperEventsClearNoLock(void)

Description:
This function is used to clear all tamper events without unlock/locking the tamper control reg-
isters, so API HibernateTamperUnLock() should be called before this function, and API Hiber-
nateTamperLock() should be called after to ensure that tamper control registers are locked.

This function doesn’t block until the write is complete. Therefore, care must be taken to ensure
the next immediate write will occure only after the write complete bit is set.

This function is used to implement a software workaround in NMI interrupt handler to fix an
issue when a new tamper event could be missed during the clear of current tamper event.

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.41 HibernateTamperEventsConfig

Configures the tamper feature event response.

Prototype:
void
HibernateTamperEventsConfig(uint32_t ui32Config)

Parameters:
ui32Config specifies the configuration options for tamper events.

Description:
This function is used to configure the event response options for the tamper feature. The
ui32Config parameter provides a combination of the HIBERNATE_TAMPER_EVENTS_∗ fea-
tures to set these options. The application should choose from the following set of defines to
determine what happens to the system when a tamper event occurs:

HIBERNATE_TAMPER_EVENTS_ERASE_ALL_HIB_MEM all of the Hibernation mod-
ule’s battery-backed RAM is cleared due to a tamper event

304 July 25, 2016

Hibernation Module

HIBERNATE_TAMPER_EVENTS_ERASE_HIGH_HIB_MEM the upper half of the Hiber-
nation module’s battery-backed RAM is cleared due to a tamper event
HIBERNATE_TAMPER_EVENTS_ERASE_LOW_HIB_MEM the lower half of the Hiber-
nation module’s battery-backed RAM is cleared due to a tamper event
HIBERNATE_TAMPER_EVENTS_ERASE_NO_HIB_MEM the Hibernation module’s
battery-backed RAM is not changed due to a tamper event
HIBERNATE_TAMPER_EVENTS_HIB_WAKE a tamper event wakes the MCU from hi-
bernation
HIBERNATE_TAMPER_EVENTS_NO_HIB_WAKE a tamper event does not wake the
MCU from hibernation

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.42 HibernateTamperEventsGet

Returns a tamper log entry.

Prototype:
bool
HibernateTamperEventsGet(uint32_t ui32Index,

uint32_t *pui32RTC,
uint32_t *pui32Event)

Parameters:
ui32Index is the index of the log entry to return.
pui32RTC is a pointer to the memory to store the logged RTC data.
pui32Event is a pointer to the memory to store the logged tamper event.

Description:
This function is used to return a tamper log entry from the hibernate feature. The ui32Index
specifies the zero-based index of the log entry to query and has a valid range of 0-3.

When this function returns, the pui32RTC value contains the time value and pui32Event pa-
rameter contains the tamper I/O event that triggered this log.

The format of the returned pui32RTC data is dependent on the configuration of the RTC within
the Hibernation module. If the RTC is configured for counter mode, the returned data contains
counted seconds from the RTC enable. If the RTC is configured for calendar mode, the data
returned is formatted as follows:

+--+
| 31:26 | 25:22 | 21:17 | 16:12 | 11:6 | 5:0 |
+--+
| year | month | day of month | hours | minutes | seconds |
+--+

The data returned in the pui32Events parameter could include any of the following flags:

HIBERNATE_TAMPER_EVENT_0 indicates a tamper event was triggered on I/O signal 0

July 25, 2016 305

Hibernation Module

HIBERNATE_TAMPER_EVENT_1 indicates a tamper event was triggered on I/O signal 1
HIBERNATE_TAMPER_EVENT_2 indicates a tamper event was triggered on I/O signal 2
HIBERNATE_TAMPER_EVENT_3 indicates a tamper event was triggered on I/O signal 3
HIBERNATE_TAMPER_EVENT_XOSC indicates an external oscillator failure triggered
the tamper event

Note:
Tamper event logs are not consumed when read and remain available until cleared. Events are
only logged if unused log space is available.

The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
Returns true if the pui32RTC and pui32Events were updated successfully and returns false if
the values were not updated.

15.2.2.43 HibernateTamperExtOscRecover

Attempts to recover the external oscillator.

Prototype:
void
HibernateTamperExtOscRecover(void)

Description:
This function is used to attempt to recover the external oscillator after a HIBER-
NATE_TAMPER_STATUS_EXT_OSC_FAILED status is reported. This function must not be
called if the external oscillator is not used as the hibernation clock input. HibernateTamperEx-
tOscValid() should be called before calling this function.

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.44 HibernateTamperExtOscValid

Reports if the external oscillator signal is active and stable.

Prototype:
bool
HibernateTamperExtOscValid(void)

Description:
This function should be used to verify the external oscillator is active and valid before attempt-
ing to recover from a HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED status by calling
HibernateTamperExtOscRecover().

306 July 25, 2016

Hibernation Module

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
Returns true if the external oscillator is both active and stable, otherwise a false indicator is
returned.

15.2.2.45 HibernateTamperIODisable

Disables an input to the tamper feature.

Prototype:
void
HibernateTamperIODisable(uint32_t ui32Input)

Parameters:
ui32Input is the tamper input to disable.

Description:
This function is used to disable an input to the tamper feature. The ui32Input parameter spec-
ifies the tamper signal to disable and has a valid range of 0-3.

Note:
None of the GPIO API functions are needed to configure the tamper pins. The tamper pins
configured by using this function overrides any configuration by GPIO APIs.

The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.46 HibernateTamperIOEnable

Configures an input to the tamper feature.

Prototype:
void
HibernateTamperIOEnable(uint32_t ui32Input,

uint32_t ui32Config)

Parameters:
ui32Input is the tamper input to configure.
ui32Config holds the configuration options for a given input to the tamper feature.

Description:
This function is used to configure an input to the tamper feature. The ui32Input parameter
specifies the tamper signal to configure and has a valid range of 0-3. The ui32Config parameter
provides the set of tamper features in the HIBERNATE_TAMPER_IO_∗ values. The values that
are valid in the ui32Config parameter are:

July 25, 2016 307

Hibernation Module

HIBERNATE_TAMPER_IO_MATCH_SHORT configures the trigger to match after 2 hiber-
nation clocks
HIBERNATE_TAMPER_IO_MATCH_LONG configures the trigger to match after 3071 hi-
bernation clocks
HIBERNATE_TAMPER_IO_WPU_ENABLED turns on an internal weak pull up
HIBERNATE_TAMPER_IO_WPU_DISABLED turns off an internal weak pull up
HIBERNATE_TAMPER_IO_TRIGGER_HIGH sets the tamper event to active high
HIBERNATE_TAMPER_IO_TRIGGER_LOW sets the tamper event to active low

Note:
None of the GPIO API functions are needed to configure the tamper pins. The tamper pins
configured by using this function overrides any configuration by GPIO APIs.

The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.47 HibernateTamperLock

Lock temper registers.

Prototype:
void
HibernateTamperLock(void)

Description:
This function is used to lock the temper control registers. This function should be used after
calling API HibernateTamperEventsClearNoLock().

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.48 HibernateTamperStatusGet

Returns the current tamper feature status.

Prototype:
uint32_t
HibernateTamperStatusGet(void)

Description:
This function is used to return the tamper feature status. This function returns one of the values
from this group of options:

HIBERNATE_TAMPER_STATUS_INACTIVE indicates tamper detection is disabled

308 July 25, 2016

Hibernation Module

HIBERNATE_TAMPER_STATUS_ACTIVE indicates tamper detection is enabled and
ready
HIBERNATE_TAMPER_STATUS_EVENT indicates tamper event was detected

In addition, one of the values is included from this group:

HIBERNATE_TAMPER_STATUS_EXT_OSC_INACTIVE indicates the external oscillator
is not active
HIBERNATE_TAMPER_STATUS_EXT_OSC_ACTIVE indicates the external oscillator is
active

And one of the values is included from this group:

HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED indicates the external oscillator
signal has transitioned from valid to invalid
HIBERNATE_TAMPER_STATUS_EXT_OSC_VALID indicates the external oscillator is
providing a valid signal

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
Returns a combination of the HIBERNATE_TAMPER_STATUS_∗ values.

15.2.2.49 HibernateTamperUnLock

Unlock temper registers.

Prototype:
void
HibernateTamperUnLock(void)

Description:
This function is used to unlock the temper control registers. This function should be only used
before calling API HibernateTamperEventsClearNoLock().

Note:
The hibernate tamper feature is not available on all Tiva devices. Please consult the data sheet
for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

15.2.2.50 HibernateWakeGet

Gets the currently configured wake conditions for the Hibernation module.

Prototype:
uint32_t
HibernateWakeGet(void)

July 25, 2016 309

Hibernation Module

Description:
This function returns the flags representing the wake configuration for the Hibernation module.
The return value is a combination of the following flags:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted
HIBERNATE_WAKE_RTC - wake when the RTC matches occurs
HIBERNATE_WAKE_LOW_BAT - wake from hibernation due to a low-battery level being
detected
HIBERNATE_WAKE_GPIO - wake when a GPIO pin is asserted
HIBERNATE_WAKE_RESET - wake when a reset pin is asserted

Note:
The HIBERNATE_WAKE_LOW_BAT, HIBERNATE_WAKE_GPIO, and HIBER-
NATE_WAKE_RESET parameters are only available on some Tiva devices.

On some Tiva devices a tamper event acts as a wake source for the Hibernation module. Refer
the function HibernateTamperEventsConfig() to wake from hibernation on a tamper event.

Returns:
Returns flags indicating the configured wake conditions.

15.2.2.51 HibernateWakeSet

Configures the wake conditions for the Hibernation module.

Prototype:
void
HibernateWakeSet(uint32_t ui32WakeFlags)

Parameters:
ui32WakeFlags specifies which conditions should be used for waking.

Description:
This function enables the conditions under which the Hibernation module wakes. The
ui32WakeFlags parameter is the logical OR of any combination of the following:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted.
HIBERNATE_WAKE_RTC - wake when the RTC match occurs.
HIBERNATE_WAKE_LOW_BAT - wake from hibernate due to a low-battery level being
detected.
HIBERNATE_WAKE_GPIO - wake when a GPIO pin is asserted.
HIBERNATE_WAKE_RESET - wake when a reset pin is asserted.

If the HIBERNATE_WAKE_GPIO flag is set, then one of the GPIO configuration functions
GPIOPinTypeWakeHigh() or GPIOPinTypeWakeLow() must be called to properly configure and
enable a GPIO as a wake source for hibernation.

Note:
The HIBERNATE_WAKE_GPIO and HIBERNATE_WAKE_RESET parameters are only avail-
able on some Tiva devices.

On some Tiva devices a tamper event acts as a wake source for the Hibernation module. Refer
the function HibernateTamperEventsConfig() to wake from hibernation on a tamper event.

310 July 25, 2016

Hibernation Module

Returns:
None.

15.3 Programming Example

The following example shows how to determine if the processor reset is due to a wake from hiber-
nation and to restore saved state:

uint32_t ui32Status;
uint32_t pui32NVData[64];

//
// Need to enable the hibernation peripheral after wake/reset, before using
// it.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//
// Wait for the Hibernate module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_HIBERNATE))
{
}

//
// Determine if the Hibernation module is active.
//
if(HibernateIsActive())
{

//
// Read the status to determine cause of wake.
//
ui32Status = HibernateIntStatus(false);

//
// Test the status bits to see the cause.
//
if(ui32Status & HIBERNATE_INT_PIN_WAKE)
{

//
// Wake up was due to WAKE pin assertion.
//

}
if(ui32Status & HIBERNATE_INT_RTC_MATCH_0)
{

//
// Wake up was due to RTC match register.
//

}

//
// Restore program state information that was saved prior to
// hibernation.
//
HibernateDataGet(pui32NVData, 64);

//
// Now that wake up cause has been determined and state has been
// restored, the program can proceed with normal processor and
// peripheral initialization.
//

July 25, 2016 311

Hibernation Module

}

//
// Hibernation module was not active, so this is a cold power-up/reset.
//
else
{

//
// Perform normal power-on initialization.
//

}

The following example shows how to set up the Hibernation module for a TM4C123x device and
initiate hibernation with wake up at a future time:

uint32_t ui32Status;
uint32_t pui32NVData[64];

//
// Need to enable the hibernation peripheral after wake/reset, before using
// it.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//
// Wait for the Hibernate module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_HIBERNATE))
{
}

//
// Enable clocking to the Hibernation module.
//
HibernateEnableExpClk(SysCtlClockGet());

//
// User-implemented delay here to allow crystal to power up and stabilize.
//

//
// Configure the clock source for Hibernation module and enable the RTC
// feature.
//
HibernateClockConfig(HIBERNATE_OSC_LOWDRIVE);
HibernateRTCEnable();

//
// Set the RTC to 0 or an initial value. The RTC can be set once when the
// system is initialized after the cold startup and then left to run. Or
// it can be initialized before every hibernate.
//
HibernateRTCSet(0);

//
// Set the match 0 register for 30 seconds from now.
//
HibernateRTCMatchSet(0, HibernateRTCGet() + 30);

//
// Clear any pending status.
//
ui32Status = HibernateIntStatus(0);
HibernateIntClear(ui32Status);

312 July 25, 2016

Hibernation Module

//
// Save the program state information. The state information is stored in
// the pui32NVData[] array. It is not necessary to save the full 16 words
// of data, only as much as is actually needed by the program.
//
HibernateDataSet(pui32NVData, 16);

//
// Configure to wake on RTC match.
//
HibernateWakeSet(HIBERNATE_WAKE_RTC);

//
// Request hibernation. The following call may return because it takes a
// finite amount of time for power to be removed.
//
HibernateRequest();

//
// Need a loop here to wait for the power to be removed. Power is
// removed while executing in this loop.
//
for(;;)
{
}

The following example shows how to use the Hibernation module RTC for a TM4C123x device to
generate an interrupt at a certain time:

//
// Handler for hibernate interrupts.
//
void
HibernateHandler(void)
{

uint32_t ui32Status;

//
// Get the interrupt status and clear any pending interrupts.
//
ui32Status = HibernateIntStatus(1);
HibernateIntClear(ui32Status);

//
// Process the RTC match 0 interrupt.
//
if(ui32Status & HIBERNATE_INT_RTC_MATCH_0)
{

//
// RTC match 0 interrupt actions go here.
//

}
}

//
// Main function.
//
int
main(void)
{

//
// System initialization code ...
//

//

July 25, 2016 313

Hibernation Module

// Enable the Hibernation module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

//
// Wait for the Hibernate module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_HIBERNATE))
{
}

HibernateEnableExpClk(SysCtlClockGet());

//
// Wait an amount of time for the module to power up.
//

//
// Configure the clock source for Hibernation module and enable the
// RTC feature.
//
HibernateClockConfig(HIBERNATE_OSC_LOWDRIVE);
HibernateRTCEnable();

//
// Set the RTC to an initial value.
//
HibernateRTCSet(0);

//
// Set Match 0 for 30 seconds from now.
//
HibernateRTCMatchSet(0, HibernateRTCGet() + 30);

//
// Set up interrupts on the Hibernation module to enable the RTC match
// 0 interrupt. Clear all pending interrupts and register the
// interrupt handler.
//
HibernateIntEnable(HIBERNATE_INT_RTC_MATCH_0);
HibernateIntClear(HIBERNATE_INT_PIN_WAKE | HIBERNATE_INT_LOW_BAT |

HIBERNATE_INT_RTC_MATCH_0);
HibernateIntRegister(HibernateHandler);

//
// Hibernate handler (above) is invoked in 30 seconds.
//

// ...

314 July 25, 2016

Inter-Integrated Circuit (I2C)

16 Inter-Integrated Circuit (I2C)
Introduction .315
API Functions . 316
Programming Example .343

16.1 Introduction

The Inter-Integrated Circuit (I2C) API provides a set of functions for using the Tiva I2C master and
slave modules. Functions are provided to initialize the I2C modules, to send and receive data,
obtain status, and to manage interrupts for the I2C modules.

The I2C master and slave modules provide the ability to communicate to other IC devices over an
I2C bus. The I2C bus is specified to support devices that can both transmit and receive (write and
read) data. Also, devices on the I2C bus can be designated as either a master or a slave. The
Tiva I2C modules support both sending and receiving data as either a master or a slave, and also
support the simultaneous operation as both a master and a slave. Finally, the Tiva I2C modules
can operate at the following speeds: Standard (100 kbps), Fast (400 kbps), Fast plus (1 Mbps) and
High Speed (3.33 Mbps).

Both the master and slave I2C modules can generate interrupts. The I2C master module generates
interrupts when a transmit or receive operation is completed (or aborted due to an error); and on
some devices when a clock low timeout has occurred. The I2C slave module generates interrupts
when data has been sent or requested by a master; and on some devices, when a START or STOP
condition is present.

16.1.1 Master Operations

When using this API to drive the I2C master module, the user must first initialize the I2C master
module with a call to I2CMasterInitExpClk(). That function sets the bus speed and enables the
master module.

The user may transmit or receive data after the successful initialization of the I2C master module.
Data is transferred by first setting the slave address using I2CMasterSlaveAddrSet(). That function
is also used to define whether the transfer is a send (a write to the slave from the master) or a
receive (a read from the slave by the master). Then, if connected to an I2C bus that has multiple
masters, the Tiva I2C master must first call I2CMasterBusBusy() before attempting to initiate the
desired transaction. After determining that the bus is not busy, if trying to send data, the user must
call the I2CMasterDataPut() function. The transaction can then be initiated on the bus by calling
the I2CMasterControl() function with any of the following commands:

I2C_MASTER_CMD_SINGLE_SEND
I2C_MASTER_CMD_SINGLE_RECEIVE
I2C_MASTER_CMD_BURST_SEND_START
I2C_MASTER_CMD_BURST_RECEIVE_START

Any of those commands results in the master arbitrating for the bus, driving the start sequence
onto the bus, and sending the slave address and direction bit across the bus. The remainder of the
transaction can then be driven using either a polling or interrupt-driven method.

July 25, 2016 315

Inter-Integrated Circuit (I2C)

For the single send and receive cases, the polling method involves looping on the return from
I2CMasterBusy(). Once that function indicates that the I2C master is no longer busy, the bus trans-
action has been completed and can be checked for errors using I2CMasterErr(). If there are no
errors, then the data has been sent or is ready to be read using I2CMasterDataGet(). For the burst
send and receive cases, the polling method also involves calling the I2CMasterControl() function for
each byte transmitted or received (using either the I2C_MASTER_CMD_BURST_SEND_CONT
or I2C_MASTER_CMD_BURST_RECEIVE_CONT commands), and for the last byte
sent or received (using either the I2C_MASTER_CMD_BURST_SEND_FINISH or
I2C_MASTER_CMD_BURST_RECEIVE_FINISH commands). If any error is detected
during the burst transfer, the I2CMasterControl() function should be called using the
appropriate stop command (I2C_MASTER_CMD_BURST_SEND_ERROR_STOP or
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP).

For the interrupt-driven transaction, the user must register an interrupt handler for the I2C devices
and enable the I2C master interrupt; the interrupt occurs when the master is no longer busy.

16.1.2 Slave Operations

When using this API to drive the I2C slave module, the user must first initialize the I2C slave
module with a call to I2CSlaveInit(). This function enables the I2C slave module and initializes
the slave’s own address. After the initialization is complete, the user may poll the slave status
using I2CSlaveStatus() to determine if a master requested a send or receive operation. Depending
on the type of operation requested, the user can call I2CSlaveDataPut() or I2CSlaveDataGet() to
complete the transaction. Alternatively, the I2C slave can handle transactions using an interrupt
handler registered with I2CIntRegister(), and by enabling the I2C slave interrupt.

This driver is contained in driverlib/i2c.c, with driverlib/i2c.h containing the API dec-
larations for use by applications.

16.2 API Functions

Functions
uint32_t I2CFIFODataGet (uint32_t ui32Base)
uint32_t I2CFIFODataGetNonBlocking (uint32_t ui32Base, uint8_t ∗pui8Data)
void I2CFIFODataPut (uint32_t ui32Base, uint8_t ui8Data)
uint32_t I2CFIFODataPutNonBlocking (uint32_t ui32Base, uint8_t ui8Data)
uint32_t I2CFIFOStatus (uint32_t ui32Base)
void I2CIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
void I2CIntUnregister (uint32_t ui32Base)
void I2CLoopbackEnable (uint32_t ui32Base)
uint32_t I2CMasterBurstCountGet (uint32_t ui32Base)
void I2CMasterBurstLengthSet (uint32_t ui32Base, uint8_t ui8Length)
bool I2CMasterBusBusy (uint32_t ui32Base)
bool I2CMasterBusy (uint32_t ui32Base)
void I2CMasterControl (uint32_t ui32Base, uint32_t ui32Cmd)
uint32_t I2CMasterDataGet (uint32_t ui32Base)

316 July 25, 2016

Inter-Integrated Circuit (I2C)

void I2CMasterDataPut (uint32_t ui32Base, uint8_t ui8Data)
void I2CMasterDisable (uint32_t ui32Base)
void I2CMasterEnable (uint32_t ui32Base)
uint32_t I2CMasterErr (uint32_t ui32Base)
void I2CMasterGlitchFilterConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void I2CMasterInitExpClk (uint32_t ui32Base, uint32_t ui32I2CClk, bool bFast)
void I2CMasterIntClear (uint32_t ui32Base)
void I2CMasterIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void I2CMasterIntDisable (uint32_t ui32Base)
void I2CMasterIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void I2CMasterIntEnable (uint32_t ui32Base)
void I2CMasterIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
bool I2CMasterIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t I2CMasterIntStatusEx (uint32_t ui32Base, bool bMasked)
uint32_t I2CMasterLineStateGet (uint32_t ui32Base)
void I2CMasterSlaveAddrSet (uint32_t ui32Base, uint8_t ui8SlaveAddr, bool bReceive)
void I2CMasterTimeoutSet (uint32_t ui32Base, uint32_t ui32Value)
void I2CRxFIFOConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void I2CRxFIFOFlush (uint32_t ui32Base)
void I2CSlaveACKOverride (uint32_t ui32Base, bool bEnable)
void I2CSlaveACKValueSet (uint32_t ui32Base, bool bACK)
void I2CSlaveAddressSet (uint32_t ui32Base, uint8_t ui8AddrNum, uint8_t ui8SlaveAddr)
uint32_t I2CSlaveDataGet (uint32_t ui32Base)
void I2CSlaveDataPut (uint32_t ui32Base, uint8_t ui8Data)
void I2CSlaveDisable (uint32_t ui32Base)
void I2CSlaveEnable (uint32_t ui32Base)
void I2CSlaveFIFODisable (uint32_t ui32Base)
void I2CSlaveFIFOEnable (uint32_t ui32Base, uint32_t ui32Config)
void I2CSlaveInit (uint32_t ui32Base, uint8_t ui8SlaveAddr)
void I2CSlaveIntClear (uint32_t ui32Base)
void I2CSlaveIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void I2CSlaveIntDisable (uint32_t ui32Base)
void I2CSlaveIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void I2CSlaveIntEnable (uint32_t ui32Base)
void I2CSlaveIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
bool I2CSlaveIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t I2CSlaveIntStatusEx (uint32_t ui32Base, bool bMasked)
uint32_t I2CSlaveStatus (uint32_t ui32Base)
void I2CTxFIFOConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void I2CTxFIFOFlush (uint32_t ui32Base)

16.2.1 Detailed Description

The I2C API is broken into three groups of functions: those that deal with interrupts, those that
handle status and initialization, and those that deal with sending and receiving data.

July 25, 2016 317

Inter-Integrated Circuit (I2C)

The I2C master and slave interrupts are handled by the I2CIntRegister(), I2CIntUnregister(),
I2CMasterIntEnable(), I2CMasterIntDisable(), I2CMasterIntClear(), I2CMasterIntStatus(),
I2CSlaveIntEnable(), I2CSlaveIntDisable(), I2CSlaveIntClear(), I2CSlaveIntStatus(),
I2CSlaveIntEnableEx(), I2CSlaveIntDisableEx(), I2CSlaveIntClearEx(), and I2CSlaveIntStatusEx()
functions.

Status and initialization functions for the I2C modules are I2CMasterInitExpClk(),
I2CMasterEnable(), I2CMasterDisable(), I2CMasterBusBusy(), I2CMasterBusy(), I2CMasterErr(),
I2CSlaveInit(), I2CSlaveEnable(), I2CSlaveDisable(), and I2CSlaveStatus().

Sending and receiving data from the I2C modules are handled by the I2CMasterSlaveAddrSet(),
I2CMasterControl(), I2CMasterDataGet(), I2CMasterDataPut(), I2CSlaveDataGet(), and
I2CSlaveDataPut() functions.

The I2CMasterInit() API from previous versions of the peripheral driver library has been replaced
by the I2CMasterInitExpClk() API. A macro has been provided in i2c.h to map the old API to the
new API, allowing existing applications to link and run with the new API. It is recommended that
new applications utilize the new API in favor of the old one.

16.2.2 Function Documentation

16.2.2.1 I2CFIFODataGet

Reads a byte from the I2C receive FIFO.

Prototype:
uint32_t
I2CFIFODataGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function reads a byte of data from I2C receive FIFO and places it in the location specified
by the pui8Data parameter. If there is no data available, this function waits until data is received
before returning.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
The data byte.

16.2.2.2 I2CFIFODataGetNonBlocking

Reads a byte from the I2C receive FIFO.

Prototype:
uint32_t
I2CFIFODataGetNonBlocking(uint32_t ui32Base,

uint8_t *pui8Data)

318 July 25, 2016

Inter-Integrated Circuit (I2C)

Parameters:
ui32Base is the base address of the I2C module.
pui8Data is a pointer where the read data is stored.

Description:
This function reads a byte of data from I2C receive FIFO and places it in the location specified
by the pui8Data parameter. If there is no data available, this functions returns 0.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
The number of elements read from the I2C receive FIFO.

16.2.2.3 I2CFIFODataPut

Writes a data byte to the I2C transmit FIFO.

Prototype:
void
I2CFIFODataPut(uint32_t ui32Base,

uint8_t ui8Data)

Parameters:
ui32Base is the base address of the I2C module.
ui8Data is the data to be placed into the transmit FIFO.

Description:
This function adds a byte of data to the I2C transmit FIFO. If there is no space available in the
FIFO, this function waits for space to become available before returning.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.4 I2CFIFODataPutNonBlocking

Writes a data byte to the I2C transmit FIFO.

Prototype:
uint32_t
I2CFIFODataPutNonBlocking(uint32_t ui32Base,

uint8_t ui8Data)

Parameters:
ui32Base is the base address of the I2C module.
ui8Data is the data to be placed into the transmit FIFO.

July 25, 2016 319

Inter-Integrated Circuit (I2C)

Description:
This function adds a byte of data to the I2C transmit FIFO. If there is no space available in the
FIFO, this function returns a zero.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
The number of elements added to the I2C transmit FIFO.

16.2.2.5 I2CFIFOStatus

Gets the current FIFO status.

Prototype:
uint32_t
I2CFIFOStatus(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function retrieves the status for both the transmit (TX) and receive (RX) FIFOs. The trigger
level for the transmit FIFO is set using I2CTxFIFOConfigSet() and for the receive FIFO using
I2CTxFIFOConfigSet().

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
Returns the FIFO status, enumerated as a bit field containing
I2C_FIFO_RX_BELOW_TRIG_LEVEL, I2C_FIFO_RX_FULL, I2C_FIFO_RX_EMPTY,
I2C_FIFO_TX_BELOW_TRIG_LEVEL, I2C_FIFO_TX_FULL, and I2C_FIFO_TX_EMPTY.

16.2.2.6 I2CIntRegister

Registers an interrupt handler for the I2C module.

Prototype:
void
I2CIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the I2C module.
pfnHandler is a pointer to the function to be called when the I2C interrupt occurs.

320 July 25, 2016

Inter-Integrated Circuit (I2C)

Description:
This function sets the handler to be called when an I2C interrupt occurs. This function en-
ables the global interrupt in the interrupt controller; specific I2C interrupts must be enabled
via I2CMasterIntEnable() and I2CSlaveIntEnable(). If necessary, it is the interrupt handler’s
responsibility to clear the interrupt source via I2CMasterIntClear() and I2CSlaveIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

16.2.2.7 I2CIntUnregister

Unregisters an interrupt handler for the I2C module.

Prototype:
void
I2CIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function clears the handler to be called when an I2C interrupt occurs. This function also
masks off the interrupt in the interrupt r controller so that the interrupt handler no longer is
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

16.2.2.8 I2CLoopbackEnable

Enables internal loopback mode for an I2C port.

Prototype:
void
I2CLoopbackEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function configures an I2C port in internal loopback mode to help with diagnostics and
debug. In this mode, the SDA and SCL signals from master and slave modules are internally
connected. This allows data to be transferred between the master and slave modules of the
same I2C port, without having to go through I/O’s. I2CMasterDataPut(), I2CSlaveDataPut(),
I2CMasterDataGet(), I2CSlaveDataGet() can be used along with this function.

July 25, 2016 321

Inter-Integrated Circuit (I2C)

Returns:
None.

16.2.2.9 I2CMasterBurstCountGet

Returns the current value of the burst transfer counter.

Prototype:
uint32_t
I2CMasterBurstCountGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns the current value of the burst transfer counter that is used by the FIFO
mechanism. Software can use this value to determine how many bytes remain in a transfer, or
where in the transfer the burst operation was if an error has occurred.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.10 I2CMasterBurstLengthSet

Set the burst length for a I2C master FIFO operation.

Prototype:
void
I2CMasterBurstLengthSet(uint32_t ui32Base,

uint8_t ui8Length)

Parameters:
ui32Base is the base address of the I2C module.
ui8Length is the length of the burst transfer.

Description:
This function configures the burst length for a I2C Master FIFO operation. The burst field is
limited to 8 bits or 256 bytes. The burst length applies to a single I2CMCS BURST operation
meaning that it specifies the burst length for only the current operation (can be TX or RX). Each
burst operation must configure the burst length prior to writing the BURST bit in the I2CMCS
using I2CMasterControl().

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

322 July 25, 2016

Inter-Integrated Circuit (I2C)

16.2.2.11 I2CMasterBusBusy

Indicates whether or not the I2C bus is busy.

Prototype:
bool
I2CMasterBusBusy(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns an indication of whether or not the I2C bus is busy. This function can be
used in a multi-master environment to determine if another master is currently using the bus.

Returns:
Returns true if the I2C bus is busy; otherwise, returns false.

16.2.2.12 I2CMasterBusy

Indicates whether or not the I2C Master is busy.

Prototype:
bool
I2CMasterBusy(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns an indication of whether or not the I2C Master is busy transmitting or
receiving data.

Returns:
Returns true if the I2C Master is busy; otherwise, returns false.

16.2.2.13 I2CMasterControl

Controls the state of the I2C Master.

Prototype:
void
I2CMasterControl(uint32_t ui32Base,

uint32_t ui32Cmd)

Parameters:
ui32Base is the base address of the I2C module.
ui32Cmd command to be issued to the I2C Master.

Description:
This function is used to control the state of the Master send and receive operations. The
ui8Cmd parameter can be one of the following values:

July 25, 2016 323

Inter-Integrated Circuit (I2C)

I2C_MASTER_CMD_SINGLE_SEND
I2C_MASTER_CMD_SINGLE_RECEIVE
I2C_MASTER_CMD_BURST_SEND_START
I2C_MASTER_CMD_BURST_SEND_CONT
I2C_MASTER_CMD_BURST_SEND_FINISH
I2C_MASTER_CMD_BURST_SEND_ERROR_STOP
I2C_MASTER_CMD_BURST_RECEIVE_START
I2C_MASTER_CMD_BURST_RECEIVE_CONT
I2C_MASTER_CMD_BURST_RECEIVE_FINISH
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP
I2C_MASTER_CMD_QUICK_COMMAND
I2C_MASTER_CMD_HS_MASTER_CODE_SEND
I2C_MASTER_CMD_FIFO_SINGLE_SEND
I2C_MASTER_CMD_FIFO_SINGLE_RECEIVE
I2C_MASTER_CMD_FIFO_BURST_SEND_START
I2C_MASTER_CMD_FIFO_BURST_SEND_CONT
I2C_MASTER_CMD_FIFO_BURST_SEND_FINISH
I2C_MASTER_CMD_FIFO_BURST_SEND_ERROR_STOP
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_START
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_CONT
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_FINISH
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_ERROR_STOP

Note:
Not all Tiva devices have an I2C FIFO and support the FIFO commands. Please consult the
device data sheet to determine if this feature is supported.

Returns:
None.

16.2.2.14 I2CMasterDataGet

Receives a byte that has been sent to the I2C Master.

Prototype:
uint32_t
I2CMasterDataGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function reads a byte of data from the I2C Master Data Register.

Returns:
Returns the byte received from by the I2C Master, cast as an uint32_t.

324 July 25, 2016

Inter-Integrated Circuit (I2C)

16.2.2.15 I2CMasterDataPut

Transmits a byte from the I2C Master.

Prototype:
void
I2CMasterDataPut(uint32_t ui32Base,

uint8_t ui8Data)

Parameters:
ui32Base is the base address of the I2C module.
ui8Data data to be transmitted from the I2C Master.

Description:
This function places the supplied data into I2C Master Data Register.

Returns:
None.

16.2.2.16 I2CMasterDisable

Disables the I2C master block.

Prototype:
void
I2CMasterDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables operation of the I2C master block.

Returns:
None.

16.2.2.17 I2CMasterEnable

Enables the I2C Master block.

Prototype:
void
I2CMasterEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables operation of the I2C Master block.

Returns:
None.

July 25, 2016 325

Inter-Integrated Circuit (I2C)

16.2.2.18 I2CMasterErr

Gets the error status of the I2C Master.

Prototype:
uint32_t
I2CMasterErr(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function is used to obtain the error status of the Master send and receive operations.

Returns:
Returns the error status, as one of I2C_MASTER_ERR_NONE,
I2C_MASTER_ERR_ADDR_ACK, I2C_MASTER_ERR_DATA_ACK, or
I2C_MASTER_ERR_ARB_LOST.

16.2.2.19 I2CMasterGlitchFilterConfigSet

Configures the I2C Master glitch filter.

Prototype:
void
I2CMasterGlitchFilterConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the glitch filter configuration.

Description:
This function configures the I2C Master glitch filter. The value passed in to ui32Config deter-
mines the sampling range of the glitch filter, which is configurable between 1 and 32 system
clock cycles. The default configuration of the glitch filter is 0 system clock cycles, which means
that it’s disabled.

The ui32Config field should be any of the following values:

I2C_MASTER_GLITCH_FILTER_DISABLED
I2C_MASTER_GLITCH_FILTER_1
I2C_MASTER_GLITCH_FILTER_2
I2C_MASTER_GLITCH_FILTER_3
I2C_MASTER_GLITCH_FILTER_4
I2C_MASTER_GLITCH_FILTER_8
I2C_MASTER_GLITCH_FILTER_16
I2C_MASTER_GLITCH_FILTER_32

Note:
Not all Tiva devices support this function. Please consult the device data sheet to determine if
this feature is supported.

326 July 25, 2016

Inter-Integrated Circuit (I2C)

Returns:
None.

16.2.2.20 I2CMasterInitExpClk

Initializes the I2C Master block.

Prototype:
void
I2CMasterInitExpClk(uint32_t ui32Base,

uint32_t ui32I2CClk,
bool bFast)

Parameters:
ui32Base is the base address of the I2C module.
ui32I2CClk is the rate of the clock supplied to the I2C module.
bFast set up for fast data transfers.

Description:
This function initializes operation of the I2C Master block by configuring the bus speed for the
master and enabling the I2C Master block.

If the parameter bFast is true, then the master block is set up to transfer data at 400 Kbps;
otherwise, it is set up to transfer data at 100 Kbps. If Fast Mode Plus (1 Mbps) is desired, soft-
ware should manually write the I2CMTPR after calling this function. For High Speed (3.4 Mbps)
mode, a specific command is used to switch to the faster clocks after the initial communication
with the slave is done at either 100 Kbps or 400 Kbps.

The peripheral clock is the same as the processor clock. The frequency of the system clock
is the value returned by SysCtlClockGet() for TM4C123x devices or the value returned by
SysCtlClockFreqSet() for TM4C129x devices, or it can be explicitly hard coded if it is constant
and known (to save the code/execution overhead of a call to SysCtlClockGet() or fetch of the
variable call holding the return value of SysCtlClockFreqSet()).

Returns:
None.

16.2.2.21 I2CMasterIntClear

Clears I2C Master interrupt sources.

Prototype:
void
I2CMasterIntClear(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
The I2C Master interrupt source is cleared, so that it no longer asserts. This function must
be called in the interrupt handler to keep the interrupt from being triggered again immediately
upon exit.

July 25, 2016 327

Inter-Integrated Circuit (I2C)

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

16.2.2.22 I2CMasterIntClearEx

Clears I2C Master interrupt sources.

Prototype:
void
I2CMasterIntClearEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified I2C Master interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
I2CMasterIntEnableEx().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

16.2.2.23 I2CMasterIntDisable

Disables the I2C Master interrupt.

Prototype:
void
I2CMasterIntDisable(uint32_t ui32Base)

328 July 25, 2016

Inter-Integrated Circuit (I2C)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables the I2C Master interrupt source.

Returns:
None.

16.2.2.24 I2CMasterIntDisableEx

Disables individual I2C Master interrupt sources.

Prototype:
void
I2CMasterIntDisableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated I2C Master interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
I2CMasterIntEnableEx().

Returns:
None.

16.2.2.25 I2CMasterIntEnable

Enables the I2C Master interrupt.

Prototype:
void
I2CMasterIntEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables the I2C Master interrupt source.

Returns:
None.

July 25, 2016 329

Inter-Integrated Circuit (I2C)

16.2.2.26 I2CMasterIntEnableEx

Enables individual I2C Master interrupt sources.

Prototype:
void
I2CMasterIntEnableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated I2C Master interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

I2C_MASTER_INT_RX_FIFO_FULL - RX FIFO Full interrupt
I2C_MASTER_INT_TX_FIFO_EMPTY - TX FIFO Empty interrupt
I2C_MASTER_INT_RX_FIFO_REQ - RX FIFO Request interrupt
I2C_MASTER_INT_TX_FIFO_REQ - TX FIFO Request interrupt
I2C_MASTER_INT_ARB_LOST - Arbitration Lost interrupt
I2C_MASTER_INT_STOP - Stop Condition interrupt
I2C_MASTER_INT_START - Start Condition interrupt
I2C_MASTER_INT_NACK - Address/Data NACK interrupt
I2C_MASTER_INT_TX_DMA_DONE - TX DMA Complete interrupt
I2C_MASTER_INT_RX_DMA_DONE - RX DMA Complete interrupt
I2C_MASTER_INT_TIMEOUT - Clock Timeout interrupt
I2C_MASTER_INT_DATA - Data interrupt

Note:
Not all Tiva devices support all of the listed interrupt sources. Please consult the device data
sheet to determine if these features are supported.

Returns:
None.

16.2.2.27 I2CMasterIntStatus

Gets the current I2C Master interrupt status.

Prototype:
bool
I2CMasterIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the I2C module.

330 July 25, 2016

Inter-Integrated Circuit (I2C)

bMasked is false if the raw interrupt status is requested and true if the masked interrupt status
is requested.

Description:
This function returns the interrupt status for the I2C module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

16.2.2.28 I2CMasterIntStatusEx

Gets the current I2C Master interrupt status.

Prototype:
uint32_t
I2CMasterIntStatusEx(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
I2CMasterIntEnableEx().

16.2.2.29 I2CMasterLineStateGet

Reads the state of the SDA and SCL pins.

Prototype:
uint32_t
I2CMasterLineStateGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns the state of the I2C bus by providing the real time values of the SDA and
SCL pins.

Note:
Not all Tiva devices support this function. Please consult the device data sheet to determine if
this feature is supported.

Returns:
Returns the state of the bus with SDA in bit position 1 and SCL in bit position 0.

July 25, 2016 331

Inter-Integrated Circuit (I2C)

16.2.2.30 I2CMasterSlaveAddrSet

Sets the address that the I2C Master places on the bus.

Prototype:
void
I2CMasterSlaveAddrSet(uint32_t ui32Base,

uint8_t ui8SlaveAddr,
bool bReceive)

Parameters:
ui32Base is the base address of the I2C module.
ui8SlaveAddr 7-bit slave address
bReceive flag indicating the type of communication with the slave

Description:
This function configures the address that the I2C Master places on the bus when initiating a
transaction. When the bReceive parameter is set to true, the address indicates that the I2C
Master is initiating a read from the slave; otherwise the address indicates that the I2C Master
is initiating a write to the slave.

Returns:
None.

16.2.2.31 I2CMasterTimeoutSet

Sets the Master clock timeout value.

Prototype:
void
I2CMasterTimeoutSet(uint32_t ui32Base,

uint32_t ui32Value)

Parameters:
ui32Base is the base address of the I2C module.
ui32Value is the number of I2C clocks before the timeout is asserted.

Description:
This function enables and configures the clock low timeout feature in the I2C peripheral. This
feature is implemented as a 12-bit counter, with the upper 8-bits being programmable. For
example, to program a timeout of 20ms with a 100-kHz SCL frequency, ui32Value is 0x7d.

Note:
Not all Tiva devices support this function. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

332 July 25, 2016

Inter-Integrated Circuit (I2C)

16.2.2.32 I2CRxFIFOConfigSet

Configures the I2C receive (RX) FIFO.

Prototype:
void
I2CRxFIFOConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the configuration of the FIFO using specified macros.

Description:
This configures the I2C peripheral’s receive FIFO. The receive FIFO can be used by the master
or slave, but not both. The following macros are used to configure the RX FIFO behavior for
master or slave, with or without DMA:

I2C_FIFO_CFG_RX_MASTER, I2C_FIFO_CFG_RX_SLAVE, I2C_FIFO_CFG_RX_MASTER_DMA,
I2C_FIFO_CFG_RX_SLAVE_DMA

To select the trigger level, one of the following macros should be used:

I2C_FIFO_CFG_RX_TRIG_1, I2C_FIFO_CFG_RX_TRIG_2, I2C_FIFO_CFG_RX_TRIG_3,
I2C_FIFO_CFG_RX_TRIG_4, I2C_FIFO_CFG_RX_TRIG_5, I2C_FIFO_CFG_RX_TRIG_6,
I2C_FIFO_CFG_RX_TRIG_7, I2C_FIFO_CFG_RX_TRIG_8

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.33 I2CRxFIFOFlush

Flushes the receive (RX) FIFO.

Prototype:
void
I2CRxFIFOFlush(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function flushes the I2C receive FIFO.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

July 25, 2016 333

Inter-Integrated Circuit (I2C)

16.2.2.34 I2CSlaveACKOverride

Configures ACK override behavior of the I2C Slave.

Prototype:
void
I2CSlaveACKOverride(uint32_t ui32Base,

bool bEnable)

Parameters:
ui32Base is the base address of the I2C module.
bEnable enables or disables ACK override.

Description:
This function enables or disables ACK override, allowing the user application to drive the value
on SDA during the ACK cycle.

Note:
Not all Tiva devices support this function. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.35 I2CSlaveACKValueSet

Writes the ACK value.

Prototype:
void
I2CSlaveACKValueSet(uint32_t ui32Base,

bool bACK)

Parameters:
ui32Base is the base address of the I2C module.
bACK chooses whether to ACK (true) or NACK (false) the transfer.

Description:
This function puts the desired ACK value on SDA during the ACK cycle. The value written is
only valid when ACK override is enabled using I2CSlaveACKOverride().

Returns:
None.

16.2.2.36 I2CSlaveAddressSet

Sets the I2C slave address.

Prototype:
void
I2CSlaveAddressSet(uint32_t ui32Base,

334 July 25, 2016

Inter-Integrated Circuit (I2C)

uint8_t ui8AddrNum,
uint8_t ui8SlaveAddr)

Parameters:
ui32Base is the base address of the I2C module.
ui8AddrNum determines which slave address is set.
ui8SlaveAddr is the 7-bit slave address

Description:
This function writes the specified slave address. The ui32AddrNum field dictates which slave
address is configured. For example, a value of 0 configures the primary address and a value
of 1 configures the secondary.

Note:
Not all Tiva devices support a secondary address. Please consult the device data sheet to
determine if this feature is supported.

Returns:
None.

16.2.2.37 I2CSlaveDataGet

Receives a byte that has been sent to the I2C Slave.

Prototype:
uint32_t
I2CSlaveDataGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function reads a byte of data from the I2C Slave Data Register.

Returns:
Returns the byte received from by the I2C Slave, cast as an uint32_t.

16.2.2.38 I2CSlaveDataPut

Transmits a byte from the I2C Slave.

Prototype:
void
I2CSlaveDataPut(uint32_t ui32Base,

uint8_t ui8Data)

Parameters:
ui32Base is the base address of the I2C module.
ui8Data is the data to be transmitted from the I2C Slave

Description:
This function places the supplied data into I2C Slave Data Register.

July 25, 2016 335

Inter-Integrated Circuit (I2C)

Returns:
None.

16.2.2.39 I2CSlaveDisable

Disables the I2C slave block.

Prototype:
void
I2CSlaveDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables operation of the I2C slave block.

Returns:
None.

16.2.2.40 I2CSlaveEnable

Enables the I2C Slave block.

Prototype:
void
I2CSlaveEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This fucntion enables operation of the I2C Slave block.

Returns:
None.

16.2.2.41 I2CSlaveFIFODisable

Disable FIFO usage for the I2C Slave.

Prototype:
void
I2CSlaveFIFODisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables the FIFOs for the I2C Slave. After calling this this function, the FIFOs
are disabled, but the Slave remains active.

336 July 25, 2016

Inter-Integrated Circuit (I2C)

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.42 I2CSlaveFIFOEnable

Enables FIFO usage for the I2C Slave.

Prototype:
void
I2CSlaveFIFOEnable(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the desired FIFO configuration of the I2C Slave.

Description:
This function configures the I2C Slave to use the FIFO(s). This function should be used
in combination with I2CTxFIFOConfigSet() and/or I2CRxFIFOConfigSet(), which configure
the FIFO trigger level and tell the FIFO hardware whether to interact with the I2C Master
or Slave. The application appropriate combination of I2C_SLAVE_TX_FIFO_ENABLE and
I2C_SLAVE_RX_FIFO_ENABLE should be passed in to the ui32Config field.

The Slave I2CSCSR register is write-only, so any call to I2CSlaveEnable(), I2CSlaveDisable
or I2CSlaveFIFOEnable() overwrites the slave configuration. Therefore, application software
should call I2CSlaveEnable() followed by I2CSlaveFIFOEnable() with the desired FIFO config-
uration.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.43 I2CSlaveInit

Initializes the I2C Slave block.

Prototype:
void
I2CSlaveInit(uint32_t ui32Base,

uint8_t ui8SlaveAddr)

Parameters:
ui32Base is the base address of the I2C module.
ui8SlaveAddr 7-bit slave address

July 25, 2016 337

Inter-Integrated Circuit (I2C)

Description:
This function initializes operation of the I2C Slave block by configuring the slave address and
enabling the I2C Slave block.

The parameter ui8SlaveAddr is the value that is compared against the slave address sent by
an I2C master.

Returns:
None.

16.2.2.44 I2CSlaveIntClear

Clears I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntClear(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
The I2C Slave interrupt source is cleared, so that it no longer asserts. This function must
be called in the interrupt handler to keep the interrupt from being triggered again immediately
upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

16.2.2.45 I2CSlaveIntClearEx

Clears I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntClearEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

338 July 25, 2016

Inter-Integrated Circuit (I2C)

Description:
The specified I2C Slave interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
I2CSlaveIntEnableEx().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

16.2.2.46 I2CSlaveIntDisable

Disables the I2C Slave interrupt.

Prototype:
void
I2CSlaveIntDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables the I2C Slave interrupt source.

Returns:
None.

16.2.2.47 I2CSlaveIntDisableEx

Disables individual I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntDisableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

July 25, 2016 339

Inter-Integrated Circuit (I2C)

Description:
This function disables the indicated I2C Slave interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
I2CSlaveIntEnableEx().

Returns:
None.

16.2.2.48 I2CSlaveIntEnable

Enables the I2C Slave interrupt.

Prototype:
void
I2CSlaveIntEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables the I2C Slave interrupt source.

Returns:
None.

16.2.2.49 I2CSlaveIntEnableEx

Enables individual I2C Slave interrupt sources.

Prototype:
void
I2CSlaveIntEnableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated I2C Slave interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

I2C_SLAVE_INT_RX_FIFO_FULL - RX FIFO Full interrupt
I2C_SLAVE_INT_TX_FIFO_EMPTY - TX FIFO Empty interrupt
I2C_SLAVE_INT_RX_FIFO_REQ - RX FIFO Request interrupt
I2C_SLAVE_INT_TX_FIFO_REQ - TX FIFO Request interrupt

340 July 25, 2016

Inter-Integrated Circuit (I2C)

I2C_SLAVE_INT_TX_DMA_DONE - TX DMA Complete interrupt
I2C_SLAVE_INT_RX_DMA_DONE - RX DMA Complete interrupt
I2C_SLAVE_INT_STOP - Stop condition detected interrupt
I2C_SLAVE_INT_START - Start condition detected interrupt
I2C_SLAVE_INT_DATA - Data interrupt

Note:
Not all Tiva devices support the all of the listed interrupts. Please consult the device data sheet
to determine if these features are supported.

Returns:
None.

16.2.2.50 I2CSlaveIntStatus

Gets the current I2C Slave interrupt status.

Prototype:
bool
I2CSlaveIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C Slave. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

16.2.2.51 I2CSlaveIntStatusEx

Gets the current I2C Slave interrupt status.

Prototype:
uint32_t
I2CSlaveIntStatusEx(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C Slave. Either the raw interrupt status or the
status of interrupts that are allowed to reflect to the processor can be returned.

July 25, 2016 341

Inter-Integrated Circuit (I2C)

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
I2CSlaveIntEnableEx().

16.2.2.52 I2CSlaveStatus

Gets the I2C Slave status

Prototype:
uint32_t
I2CSlaveStatus(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns the action requested from a master, if any. Possible values are:

I2C_SLAVE_ACT_NONE
I2C_SLAVE_ACT_RREQ
I2C_SLAVE_ACT_TREQ
I2C_SLAVE_ACT_RREQ_FBR
I2C_SLAVE_ACT_OWN2SEL
I2C_SLAVE_ACT_QCMD
I2C_SLAVE_ACT_QCMD_DATA

Note:
Not all Tiva devices support the second I2C slave’s own address or the quick command func-
tion. Please consult the device data sheet to determine if these features are supported.

Returns:
Returns I2C_SLAVE_ACT_NONE to indicate that no action has been requested of the I2C
Slave, I2C_SLAVE_ACT_RREQ to indicate that an I2C master has sent data to the I2C
Slave, I2C_SLAVE_ACT_TREQ to indicate that an I2C master has requested that the I2C
Slave send data, I2C_SLAVE_ACT_RREQ_FBR to indicate that an I2C master has sent
data to the I2C slave and the first byte following the slave’s own address has been re-
ceived, I2C_SLAVE_ACT_OWN2SEL to indicate that the second I2C slave address was
matched, I2C_SLAVE_ACT_QCMD to indicate that a quick command was received, and
I2C_SLAVE_ACT_QCMD_DATA to indicate that the data bit was set when the quick command
was received.

16.2.2.53 I2CTxFIFOConfigSet

Configures the I2C transmit (TX) FIFO.

Prototype:
void
I2CTxFIFOConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

342 July 25, 2016

Inter-Integrated Circuit (I2C)

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the configuration of the FIFO using specified macros.

Description:
This configures the I2C peripheral’s transmit FIFO. The transmit FIFO can be used by the
master or slave, but not both. The following macros are used to configure the TX FIFO behavior
for master or slave, with or without DMA:

I2C_FIFO_CFG_TX_MASTER, I2C_FIFO_CFG_TX_SLAVE, I2C_FIFO_CFG_TX_MASTER_DMA,
I2C_FIFO_CFG_TX_SLAVE_DMA

To select the trigger level, one of the following macros should be used:

I2C_FIFO_CFG_TX_TRIG_1, I2C_FIFO_CFG_TX_TRIG_2, I2C_FIFO_CFG_TX_TRIG_3,
I2C_FIFO_CFG_TX_TRIG_4, I2C_FIFO_CFG_TX_TRIG_5, I2C_FIFO_CFG_TX_TRIG_6,
I2C_FIFO_CFG_TX_TRIG_7, I2C_FIFO_CFG_TX_TRIG_8

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.2.2.54 I2CTxFIFOFlush

Flushes the transmit (TX) FIFO.

Prototype:
void
I2CTxFIFOFlush(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function flushes the I2C transmit FIFO.

Note:
Not all Tiva devices have an I2C FIFO. Please consult the device data sheet to determine if
this feature is supported.

Returns:
None.

16.3 Programming Example

The following example shows how to use the I2C API to send data as a master for a TM4C123x
device.

July 25, 2016 343

Inter-Integrated Circuit (I2C)

//
// Enable the I2C0 peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0);

//
// Wait for the I2C0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_I2C0))
{
}

//
// Initialize Master and Slave
//
I2CMasterInitExpClk(I2C0_BASE, SysCtlClockGet(), true);

//
// Specify slave address
//
I2CMasterSlaveAddrSet(I2C0_BASE, 0x3B, false);

//
// Place the character to be sent in the data register
//
I2CMasterDataPut(I2C0_BASE, ’Q’);

//
// Initiate send of character from Master to Slave
//
I2CMasterControl(I2C0_BASE, I2C_MASTER_CMD_SINGLE_SEND);

//
// Delay until transmission completes
//
while(I2CMasterBusBusy(I2C0_BASE))
{
}

344 July 25, 2016

Interrupt Controller (NVIC)

17 Interrupt Controller (NVIC)
Introduction .345
API Functions . 346
Programming Example .356

17.1 Introduction

The interrupt controller API provides a set of functions for dealing with the Nested Vectored Inter-
rupt Controller (NVIC). Functions are provided to enable and disable interrupts, register interrupt
handlers, and set the priority of interrupts.

The NVIC provides global interrupt masking, prioritization, and handler dispatching. Devices within
the Tiva family support up to 154 interrupt sources and eight priority levels. Individual interrupt
sources can be masked, and the processor interrupt can be globally masked as well (without af-
fecting the individual source masks).

The NVIC is tightly coupled with the Cortex-M microprocessor. When the processor responds to
an interrupt, the NVIC supplies the address of the function to handle the interrupt directly to the
processor. This action eliminates the need for a global interrupt handler that queries the interrupt
controller to determine the cause of the interrupt and branch to the appropriate handler, reducing
interrupt response time.

The interrupt prioritization in the NVIC allows higher priority interrupts to be handled before lower
priority interrupts, as well as allowing preemption of lower priority interrupt handlers by higher prior-
ity interrupts. Again, this helps reduce interrupt response time (for example, a 1 ms system control
interrupt is not held off by the execution of a lower priority 1 second housekeeping interrupt handler).

Sub-prioritization is also possible; instead of having N bits of preemptable prioritization, the NVIC
can be configured (via software) for N - M bits of preemptable prioritization and M bits of sub-priority.
In this scheme, two interrupts with the same preemptable prioritization but different sub-priorities
do not cause a preemption; tail chaining is used instead to process the two interrupts back-to-back.

If two interrupts with the same priority (and sub-priority if so configured) are asserted at the same
time, the one with the lower interrupt number is processed first. The NVIC keeps track of the nesting
of interrupt handlers, allowing the processor to return from interrupt context only once all nested
and pending interrupts have been handled.

Interrupt handlers can be configured in one of two ways; statically at compile time or dynamically at
run time. Static configuration of interrupt handlers is accomplished by editing the interrupt handler
table in the application’s startup code. When statically configured, the interrupts must be explicitly
enabled in the NVIC via IntEnable() before the processor can respond to the interrupt (in addition to
any interrupt enabling required within the peripheral itself). Statically configuring the interrupt table
provides the fastest interrupt response time because the stacking operation (a write to SRAM) can
be performed in parallel with the interrupt handler table fetch (a read from Flash), as well as the
prefetch of the interrupt handler itself (assuming it is also in Flash).

Alternatively, interrupts can be configured at run-time using IntRegister() (or the analog in each
individual driver). When using IntRegister(), the interrupt must also be enabled as before; when
using the analogue in each individual driver, IntEnable() is called by the driver and does not need
to be called by the application. Run-time configuration of interrupts adds a small latency to the
interrupt response time because the stacking operation (a write to SRAM) and the interrupt handler
table fetch (a read from SRAM) must be performed sequentially.

July 25, 2016 345

Interrupt Controller (NVIC)

Run-time configuration of interrupt handlers requires that the interrupt handler table be placed on a
1-kB boundary in SRAM (typically this is at the beginning of SRAM). Failure to do so results in an
incorrect vector address being fetched in response to an interrupt. The vector table is in a section
called “vtable” and must be placed appropriately with a linker script.

This driver is contained in driverlib/interrupt.c, with driverlib/interrupt.h contain-
ing the API declarations for use by applications.

17.2 API Functions

Functions
void IntDisable (uint32_t ui32Interrupt)
void IntEnable (uint32_t ui32Interrupt)
uint32_t IntIsEnabled (uint32_t ui32Interrupt)
bool IntMasterDisable (void)
bool IntMasterEnable (void)
void IntPendClear (uint32_t ui32Interrupt)
void IntPendSet (uint32_t ui32Interrupt)
int32_t IntPriorityGet (uint32_t ui32Interrupt)
uint32_t IntPriorityGroupingGet (void)
void IntPriorityGroupingSet (uint32_t ui32Bits)
uint32_t IntPriorityMaskGet (void)
void IntPriorityMaskSet (uint32_t ui32PriorityMask)
void IntPrioritySet (uint32_t ui32Interrupt, uint8_t ui8Priority)
void IntRegister (uint32_t ui32Interrupt, void (∗pfnHandler)(void))
void IntTrigger (uint32_t ui32Interrupt)
void IntUnregister (uint32_t ui32Interrupt)

17.2.1 Detailed Description

The primary function of the interrupt controller API is to manage the interrupt vector table used
by the NVIC to dispatch interrupt requests. Registering an interrupt handler is a simple matter of
inserting the handler address into the table. By default, the table is filled with pointers to an internal
handler that loops forever; it is an error for an interrupt to occur when there is no interrupt handler
registered to process it. Therefore, interrupt sources must not be enabled before a handler has
been registered, and interrupt sources must be disabled before a handler is unregistered. Interrupt
handlers are managed with IntRegister() and IntUnregister().

Each interrupt source can be individually enabled and disabled via IntEnable() and IntDisable().
The processor interrupt can be enabled and disabled via IntMasterEnable() and IntMasterDisable();
this does not affect the individual interrupt enable states. Masking of the processor interrupt can
be used as a simple critical section (only an NMI can interrupt the processor while the processor
interrupt is disabled), although masking the processor interrupt can have adverse effects on the
interrupt response time.

The priority of each interrupt source can be set and examined via IntPrioritySet() and IntPriori-
tyGet(). The priority assignments are defined by the hardware; the upper N bits of the 8-bit priority

346 July 25, 2016

Interrupt Controller (NVIC)

are examined to determine the priority of an interrupt (for the Tiva family, N is 3). This protocol al-
lows priorities to be defined without knowledge of the exact number of supported priorities; moving
to a device with more or fewer priority bits is made easier as the interrupt source continues to have
a similar level of priority. Smaller priority numbers correspond to higher interrupt priority, so 0 is the
highest priority.

17.2.2 Interrupt Mapping

The TM4C123 and TM4C129 devices have different interrupt mapping for the same peripheral in-
terrupts. This requires that the application have a way to control the mapping of interrupts so that
the correct interrupt number is used. For example the same interrupt name INT_USB0 has interrupt
number 60 on TM4C123 devices and 58 on TM4C129 devices. All of the interrupt number macros
start with INT_∗ and there are two defines that an application uses to allow the correct interrupt num-
ber to be mapped to these INT_∗ macros. The first set of macros that are the TARGET_IS_TM4C∗
which are used to define the class of part in use by the application. The second option is to
specify the exact part that the application is using by defining one of the PART_<partno> val-
ues. For example, for a board using a TM4C129XNCZAD device the application would define the
PART_TM4C129XNCZAD and/or one of the TARGET_IS_TM4C129_∗ macros depending on the
revision of the device that is in use by the application. This conditional mapping of the interrupts
allows applications to use a common name for the interrupt numbers without having to look up the
actual interrupt number.

Note:
The TARGET_IS_TM4C∗ and PART_<partno> macros also control ROM and pin mapping
functions as well. See the Direct ROM Calls and the GPIO Pin Configuration sections of this
document for more details on how these defines are used by these modules.

The valid interrupt for the interrupt API functions are the following: INT_ADC0SS0,
INT_ADC0SS1, INT_ADC0SS2, INT_ADC0SS3, INT_ADC1SS0, INT_ADC1SS1,
INT_ADC1SS2, INT_ADC1SS3, INT_AES0, INT_CAN0, INT_CAN1, INT_COMP0,
INT_COMP1, INT_COMP2, INT_DES0, INT_EMAC0, INT_EPI0, INT_FLASH, INT_GPIOA,
INT_GPIOB, INT_GPIOC, INT_GPIOD, INT_GPIOE, INT_GPIOF, INT_GPIOG, INT_GPIOH,
INT_GPIOJ, INT_GPIOK, INT_GPIOL, INT_GPIOM, INT_GPION, INT_GPIOP0, INT_GPIOP1,
INT_GPIOP2, INT_GPIOP3, INT_GPIOP4, INT_GPIOP5, INT_GPIOP6, INT_GPIOP7,
INT_GPIOQ0, INT_GPIOQ1, INT_GPIOQ2, INT_GPIOQ3, INT_GPIOQ4, INT_GPIOQ5,
INT_GPIOQ6, INT_GPIOQ7, INT_GPIOR, INT_GPIOS, INT_GPIOT, INT_HIBERNATE,
INT_I2C0, INT_I2C1, INT_I2C2, INT_I2C3, INT_I2C4, INT_I2C5, INT_I2C6, INT_I2C7,
INT_I2C8, INT_I2C9, INT_LCD0, INT_ONEWIRE0, INT_PWM0_0, INT_PWM0_1, INT_PWM0_2,
INT_PWM0_3, INT_PWM0_FAULT, INT_PWM1_0, INT_PWM1_1, INT_PWM1_2, INT_PWM1_3,
INT_PWM1_FAULT, INT_QEI0, INT_QEI1, INT_SHA0, INT_SSI0, INT_SSI1, INT_SSI2,
INT_SSI3, INT_SYSCTL, INT_SYSEXC, INT_TAMPER0, INT_TIMER0A, INT_TIMER0B,
INT_TIMER1A, INT_TIMER1B, INT_TIMER2A, INT_TIMER2B, INT_TIMER3A, INT_TIMER3B,
INT_TIMER4A, INT_TIMER4B, INT_TIMER5A, INT_TIMER5B, INT_TIMER6A, INT_TIMER6B,
INT_TIMER7A, INT_TIMER7B, INT_UART0, INT_UART1, INT_UART2, INT_UART3,
INT_UART4, INT_UART5, INT_UART6, INT_UART7, INT_UDMA, INT_UDMAERR, INT_USB0,
INT_WATCHDOG, INT_WTIMER0A, INT_WTIMER0B, INT_WTIMER1A, INT_WTIMER1B,
INT_WTIMER2A, INT_WTIMER2B, INT_WTIMER3A, INT_WTIMER3B, INT_WTIMER4A,
INT_WTIMER4B, INT_WTIMER5A, INT_WTIMER5B

July 25, 2016 347

Interrupt Controller (NVIC)

17.2.3 Function Documentation

17.2.3.1 IntDisable

Disables an interrupt.

Prototype:
void
IntDisable(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt to be disabled.

Description:
The specified interrupt is disabled in the interrupt controller. The ui32Interrupt parameter must
be one of the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined in
the inc/hw_ints.h header file. Other enables for the interrupt (such as at the peripheral level)
are unaffected by this function.

Example: Disable the UART 0 interrupt.

//
// Disable the UART 0 interrupt in the interrupt controller.
//
IntDisable(INT_UART0);

Returns:
None.

17.2.3.2 IntEnable

Enables an interrupt.

Prototype:
void
IntEnable(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt to be enabled.

Description:
The specified interrupt is enabled in the interrupt controller. The ui32Interrupt parameter must
be one of the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined in
the inc/hw_ints.h header file. Other enables for the interrupt (such as at the peripheral level)
are unaffected by this function.

Example: Enable the UART 0 interrupt.

//
// Enable the UART 0 interrupt in the interrupt controller.
//
IntEnable(INT_UART0);

Returns:
None.

348 July 25, 2016

Interrupt Controller (NVIC)

17.2.3.3 IntIsEnabled

Returns if a peripheral interrupt is enabled.

Prototype:
uint32_t
IntIsEnabled(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt to check.

Description:
This function checks if the specified interrupt is enabled in the interrupt controller. The
ui32Interrupt parameter must be one of the valid INT_∗ values listed in Peripheral Driver Library
User’s Guide and defined in the inc/hw_ints.h header file.

Example: Disable the UART 0 interrupt if it is enabled.

//
// Disable the UART 0 interrupt if it is enabled.
//
if(IntIsEnabled(INT_UART0))
{

IntDisable(INT_UART0);
}

Returns:
A non-zero value if the interrupt is enabled.

17.2.3.4 IntMasterDisable

Disables the processor interrupt.

Prototype:
bool
IntMasterDisable(void)

Description:
This function prevents the processor from receiving interrupts. This function does not affect
the set of interrupts enabled in the interrupt controller; it just gates the single interrupt from the
controller to the processor.

Note:
Previously, this function had no return value. As such, it was possible to include interrupt.h
and call this function without having included hw_types.h. Now that the return is a bool, a
compiler error occurs in this case. The solution is to include hw_types.h before including
interrupt.h.

Example: Disable interrupts to the processor.

//
// Disable interrupts to the processor.
//
IntMasterDisable();

July 25, 2016 349

Interrupt Controller (NVIC)

Returns:
Returns true if interrupts were already disabled when the function was called or false if they
were initially enabled.

17.2.3.5 IntMasterEnable

Enables the processor interrupt.

Prototype:
bool
IntMasterEnable(void)

Description:
This function allows the processor to respond to interrupts. This function does not affect the
set of interrupts enabled in the interrupt controller; it just gates the single interrupt from the
controller to the processor.

Example: Enable interrupts to the processor.

//
// Enable interrupts to the processor.
//
IntMasterEnable();

Returns:
Returns true if interrupts were disabled when the function was called or false if they were
initially enabled.

17.2.3.6 IntPendClear

Un-pends an interrupt.

Prototype:
void
IntPendClear(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt to be un-pended. The ui32Interrupt parameter must be

one of the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined
in the inc/hw_ints.h header file.

Description:
The specified interrupt is un-pended in the interrupt controller. This causes any previously
generated interrupts that have not been handled yet (due to higher priority interrupts or the
interrupt not having been enabled yet) to be discarded.

Example: Un-pend a UART 0 interrupt.

//
// Un-pend a UART 0 interrupt.
//
IntPendClear(INT_UART0);

Returns:
None.

350 July 25, 2016

Interrupt Controller (NVIC)

17.2.3.7 IntPendSet

Pends an interrupt.

Prototype:
void
IntPendSet(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt to be pended.

Description:
The specified interrupt is pended in the interrupt controller. The ui32Interrupt parameter must
be one of the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined in
the inc/hw_ints.h header file. Pending an interrupt causes the interrupt controller to execute the
corresponding interrupt handler at the next available time, based on the current interrupt state
priorities. For example, if called by a higher priority interrupt handler, the specified interrupt
handler is not called until after the current interrupt handler has completed execution. The
interrupt must have been enabled for it to be called.

Example: Pend a UART 0 interrupt.

//
// Pend a UART 0 interrupt.
//
IntPendSet(INT_UART0);

Returns:
None.

17.2.3.8 IntPriorityGet

Gets the priority of an interrupt.

Prototype:
int32_t
IntPriorityGet(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt in question.

Description:
This function gets the priority of an interrupt. The ui32Interrupt parameter must be one of
the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined in the
inc/hw_ints.h header file. See IntPrioritySet() for a full definition of the priority value.

Example: Get the current UART 0 interrupt priority.

//
// Get the current UART 0 interrupt priority.
//
IntPriorityGet(INT_UART0);

Returns:
Returns the interrupt priority for the given interrupt.

July 25, 2016 351

Interrupt Controller (NVIC)

17.2.3.9 IntPriorityGroupingGet

Gets the priority grouping of the interrupt controller.

Prototype:
uint32_t
IntPriorityGroupingGet(void)

Description:
This function returns the split between preemptable priority levels and sub-priority levels in the
interrupt priority specification.

Example: Get the priority grouping for the interrupt controller.

//
// Get the priority grouping for the interrupt controller.
//
IntPriorityGroupingGet();

Returns:
The number of bits of preemptable priority.

17.2.3.10 IntPriorityGroupingSet

Sets the priority grouping of the interrupt controller.

Prototype:
void
IntPriorityGroupingSet(uint32_t ui32Bits)

Parameters:
ui32Bits specifies the number of bits of preemptable priority.

Description:
This function specifies the split between preemptable priority levels and sub-priority levels in
the interrupt priority specification. The range of the grouping values are dependent upon the
hardware implementation; on the Tiva C and E Series family, three bits are available for hard-
ware interrupt prioritization and therefore priority grouping values of three through seven have
the same effect.

Example: Set the priority grouping for the interrupt controller.

//
// Set the priority grouping for the interrupt controller to 2 bits.
//
IntPriorityGroupingSet(2);

Returns:
None.

17.2.3.11 IntPriorityMaskGet

Gets the priority masking level

352 July 25, 2016

Interrupt Controller (NVIC)

Prototype:
uint32_t
IntPriorityMaskGet(void)

Description:
This function gets the current setting of the interrupt priority masking level. The value returned
is the priority level such that all interrupts of that and lesser priority are masked. A value of 0
means that priority masking is disabled.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask
of 4 allows interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and greater
are blocked.

The hardware priority mechanism only looks at the upper 3 bits of the priority level, so any
prioritization must be performed in those bits.

Example: Get the current interrupt priority mask.

//
// Get the current interrupt priority mask.
//
IntPriorityMaskGet();

Returns:
Returns the value of the interrupt priority level mask.

17.2.3.12 IntPriorityMaskSet

Sets the priority masking level

Prototype:
void
IntPriorityMaskSet(uint32_t ui32PriorityMask)

Parameters:
ui32PriorityMask is the priority level that is masked.

Description:
This function sets the interrupt priority masking level so that all interrupts at the specified or
lesser priority level are masked. Masking interrupts can be used to globally disable a set of
interrupts with priority below a predetermined threshold. A value of 0 disables priority masking.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask
of 4 allows interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and greater
are blocked.

Note:
The hardware priority mechanism only looks at the upper 3 bits of the priority level, so any
prioritization must be performed in those bits.

Example: Mask of interrupt priorities greater than or equal to 0x80.

//
// Mask of interrupt priorities greater than or equal to 0x80.
//
IntPriorityMaskSet(0x80);

July 25, 2016 353

Interrupt Controller (NVIC)

Returns:
None.

17.2.3.13 IntPrioritySet

Sets the priority of an interrupt.

Prototype:
void
IntPrioritySet(uint32_t ui32Interrupt,

uint8_t ui8Priority)

Parameters:
ui32Interrupt specifies the interrupt in question.
ui8Priority specifies the priority of the interrupt.

Description:
This function is used to set the priority of an interrupt. The ui32Interrupt parameter must be
one of the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined in the
inc/hw_ints.h header file. The ui8Priority parameter specifies the interrupts hardware priority
level of the interrupt in the interrupt controller. When multiple interrupts are asserted simulta-
neously, the ones with the highest priority are processed before the lower priority interrupts.
Smaller numbers correspond to higher interrupt priorities; priority 0 is the highest interrupt
priority.

Note:
The hardware priority mechanism only looks at the upper 3 bits of the priority level, so any pri-
oritization must be performed in those bits. The remaining bits can be used to sub-prioritize the
interrupt sources, and may be used by the hardware priority mechanism on a future part. This
arrangement allows priorities to migrate to different NVIC implementations without changing
the gross prioritization of the interrupts.

Example: Set priorities for UART 0 and USB interrupts.

//
// Set the UART 0 interrupt priority to the lowest priority.
//
IntPrioritySet(INT_UART0, 0xE0);

//
// Set the USB 0 interrupt priority to the highest priority.
//
IntPrioritySet(INT_USB0, 0);

Returns:
None.

17.2.3.14 IntRegister

Registers a function to be called when an interrupt occurs.

354 July 25, 2016

Interrupt Controller (NVIC)

Prototype:
void
IntRegister(uint32_t ui32Interrupt,

void (*pfnHandler)(void))

Parameters:
ui32Interrupt specifies the interrupt in question.
pfnHandler is a pointer to the function to be called.

Description:
This function is used to specify the handler function to be called when the given interrupt is
asserted to the processor. The ui32Interrupt parameter must be one of the valid INT_∗ values
listed in Peripheral Driver Library User’s Guide and defined in the inc/hw_ints.h header file.
When the interrupt occurs, if it is enabled (via IntEnable()), the handler function is called in
interrupt context. Because the handler function can preempt other code, care must be taken to
protect memory or peripherals that are accessed by the handler and other non-handler code.

Note:
The use of this function (directly or indirectly via a peripheral driver interrupt register function)
moves the interrupt vector table from flash to SRAM. Therefore, care must be taken when
linking the application to ensure that the SRAM vector table is located at the beginning of
SRAM; otherwise the NVIC does not look in the correct portion of memory for the vector table
(it requires the vector table be on a 1 kB memory alignment). Normally, the SRAM vector table
is so placed via the use of linker scripts. See the discussion of compile-time versus run-time
interrupt handler registration in the introduction to this chapter.

Example: Set the UART 0 interrupt handler.

//
// UART 0 interrupt handler.
//
void
UART0Handler(void)
{

//
// Handle interrupt.
//

}

//
// Set the UART 0 interrupt handler.
//
IntRegister(INT_UART0, UART0Handler);

Returns:
None.

17.2.3.15 IntTrigger

Triggers an interrupt.

Prototype:
void
IntTrigger(uint32_t ui32Interrupt)

July 25, 2016 355

Interrupt Controller (NVIC)

Parameters:
ui32Interrupt specifies the interrupt to be triggered.

Description:
This function performs a software trigger of an interrupt. The ui32Interrupt parameter must be
one of the valid INT_∗ values listed in Peripheral Driver Library User’s Guide and defined in
the inc/hw_ints.h header file. The interrupt controller behaves as if the corresponding interrupt
line was asserted, and the interrupt is handled in the same manner (meaning that it must be
enabled in order to be processed, and the processing is based on its priority with respect to
other unhandled interrupts).

Returns:
None.

17.2.3.16 IntUnregister

Unregisters the function to be called when an interrupt occurs.

Prototype:
void
IntUnregister(uint32_t ui32Interrupt)

Parameters:
ui32Interrupt specifies the interrupt in question.

Description:
This function is used to indicate that no handler is called when the given interrupt is asserted
to the processor. The ui32Interrupt parameter must be one of the valid INT_∗ values listed
in Peripheral Driver Library User’s Guide and defined in the inc/hw_ints.h header file. The
interrupt source is automatically disabled (via IntDisable()) if necessary.

See also:
IntRegister() for important information about registering interrupt handlers.

Example: Reset the UART 0 interrupt handler to the default handler.

//
// Reset the UART 0 interrupt handler to the default handler.
//
IntUnregister(INT_UART0);

Returns:
None.

17.3 Programming Example

The following example shows how to use the Interrupt Controller API to register an interrupt handler
for UART 0 and enable the interrupt.

356 July 25, 2016

Interrupt Controller (NVIC)

//
// The interrupt handler function.
//
extern void IntHandler(void);

//
// Register the interrupt handler function for UART 0.
//
IntRegister(INT_UART0, IntHandler);

//
// Enable the interrupt for UART 0.
//
IntEnable(INT_UART0);

//
// Enable UART 0.
//
IntMasterEnable();

July 25, 2016 357

Interrupt Controller (NVIC)

358 July 25, 2016

LCD Controller (LCD)

18 LCD Controller (LCD)
Introduction .359
API Functions . 359
Programming Example .387

18.1 Introduction

The LCD Controller allows a variety of different character and graphic displays to be connected
to and driven by the microcontroller. The LCD module contains two independent controllers, one
supporting LCD Interface Display Driver (LIDD) mode command and data transactions to character
displays as well as displays containing an integrated controller with a packet-based interface, and
the other driving clock, syncs and data suitable for RGB raster displays. Up to two simultaneous
LIDD displays or a single RGB raster mode display may be driven.

The LCD API provides functions to configure the interface type and timing for the attached display
or displays. For LIDD mode displays, functions allow an application to send commands or data to
the display or read back status or data. For raster displays, functions allow the pixel clock, HSYNC,
VSYNC and ACTIVE timings to be set. Additional functions allow the frame buffer memory to be
configured and the color palette to be set.

This driver is contained in driverlib/lcd.c, with driverlib/lcd.h containing the API dec-
larations for use by applications.

18.2 API Functions

Data Structures
tLCDIDDTiming
tLCDRasterTiming

Defines
CYCLES_FROM_TIME_NS(ui32ClockFreq, ui32Time_nS)
CYCLES_FROM_TIME_US(ui32ClockFreq, ui32Time_uS)
PAL_FROM_RGB(ui32RGBColor)

Functions
void LCDClockReset (uint32_t ui32Base, uint32_t ui32Clocks)
void LCDDMAConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void LCDIDDCommandWrite (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Cmd)
void LCDIDDConfigSet (uint32_t ui32Base, uint32_t ui32Config)
uint16_t LCDIDDDataRead (uint32_t ui32Base, uint32_t ui32CS)

July 25, 2016 359

LCD Controller (LCD)

void LCDIDDDataWrite (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Data)
void LCDIDDDMADisable (uint32_t ui32Base)
void LCDIDDDMAWrite (uint32_t ui32Base, uint32_t ui32CS, const uint32_t ∗pui32Data,
uint32_t ui32Count)
uint16_t LCDIDDIndexedRead (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Addr)
void LCDIDDIndexedWrite (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Addr, uint16_t
ui16Data)
uint16_t LCDIDDStatusRead (uint32_t ui32Base, uint32_t ui32CS)
void LCDIDDTimingSet (uint32_t ui32Base, uint32_t ui32CS, const tLCDIDDTiming ∗pTiming)
void LCDIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void LCDIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void LCDIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void LCDIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t LCDIntStatus (uint32_t ui32Base, bool bMasked)
void LCDIntUnregister (uint32_t ui32Base)
uint32_t LCDModeSet (uint32_t ui32Base, uint8_t ui8Mode, uint32_t ui32PixClk, uint32_t
ui32SysClk)
void LCDRasterACBiasIntCountSet (uint32_t ui32Base, uint8_t ui8Count)
void LCDRasterConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint8_t ui8PalLoadDelay)
void LCDRasterDisable (uint32_t ui32Base)
void LCDRasterEnable (uint32_t ui32Base)
bool LCDRasterEnabled (uint32_t ui32Base)
void LCDRasterFrameBufferSet (uint32_t ui32Base, uint8_t ui8Buffer, uint32_t ∗pui32Addr,
uint32_t ui32NumBytes)
void LCDRasterPaletteSet (uint32_t ui32Base, uint32_t ui32Type, uint32_t ∗pui32Addr, const
uint32_t ∗pui32SrcColors, uint32_t ui32Start, uint32_t ui32Count)
void LCDRasterSubPanelConfigSet (uint32_t ui32Base, uint32_t ui32Flags, uint32_t
ui32BottomLines, uint32_t ui32DefaultPixel)
void LCDRasterSubPanelDisable (uint32_t ui32Base)
void LCDRasterSubPanelEnable (uint32_t ui32Base)
void LCDRasterTimingSet (uint32_t ui32Base, const tLCDRasterTiming ∗pTiming)

18.2.1 Detailed Description

The LCD Controller API is broken into 4 groups of functions: those that deal with configuration,
those relating to control when in LCD Interface Display Driver (LIDD) mode, those relating to control
when in Raster mode, and those that manage interrupts.

The configuration of the LCD Controller module is managed by the LCDModeSet(), LCDIDD-
ConfigSet(), LCDIDDTimingSet(), LCDRasterConfigSet(), LCDRasterTimingSet(), LCDRasterSub-
PanelConfigSet(), LCDDMAConfigSet(), LCDRasterPaletteSet(), and LCDRasterFrameBufferSet()
functions.

When in LIDD mode, data transfer to and from the display is controlled by theLCDIDDCommand-
Write(), LCDIDDDataWrite(), LCDIDDIndexedWrite(), LCDIDDStatusRead(), LCDIDDDataRead(),
LCDIDDIndexedRead(), LCDIDDDMAWrite() and LCDIDDDMADisable() functions.

When in raster mode, communication with the display is controlled by the LCDRasterEn-
able(), LCDRasterDisable(), LCDRasterSubPanelEnable(), LCDRasterSubPanelDisable() and
LCDRasterACBiasIntCountSet() functions.

360 July 25, 2016

LCD Controller (LCD)

Interrupts from the LCD Controller module are managed using the LCDIntStatus(), LCDIntClear(),
LCDIntDisable(), LCDIntEnable(), LCDIntRegister() and LCDIntUnregister() functions.

18.2.2 LCD Interface Display Driver (LIDD) Mode

The LIDD mode controller allows connection of displays via a synchronous or asynchronous inter-
face using Chip Select (CS), Write Enable (WE), Output Enable (OE) and Address Latch Enable
(ALE) signals along with a parallel data bus of 8 to 16 bits.

Several different bus signaling modes are supported to allow connection of devices making use of
Hitachi, Motorola or Intel bus conventions. For timing diagrams showing the operation of each of
these modes, please consult the datasheet for your particular Tiva part.

LIDD mode would typically be used with displays where updates are made via a packet-based
command and data protocol rather than by direct access to a local frame buffer. These will generally
be lower resolution RGB panels or character-mode displays.

Interface signaling, timing and basic mode are set using three API functions. To select LIDD mode,
LCDModeSet() is called with the ui8Mode parameter set to LCD_MODE_LIDD and the desired
bit clock rate. LCDIDDConfigSet() is then called to set the basic operating mode of the LIDD
interface (synchronous or asynchronous Motorola or Intel mode, or asynchronous Hitachi mode)
and configure the polarities of the various interface control signals. Finally LCDIDDTimingSet() is
called to set the timings associated with the interface strobes. When using the asynchronous Intel
or Motorola interface modes, two independent chip select (CS) signals are available and timings
may be set for these individually allowing two different LIDD panels to be attached simultaneously.

Data may be transfered to or from the panel either one item (8-bit byte or 16-bit word depending
upon the panel) at a time or in blocks using DMA. In basic operation, the API provides two sets of
functions which allow reading and writing. The choice of function is dictated by the specification
of the display in use and the hardware interface it uses. Functions LCDIDDDataRead(), LCDID-
DDataWrite(), LCDIDDCommandWrite() and LCDIDDStatusRead() can be used with panels which
support a Data/Control (DC) signal to control command or data accesses. Command writes and
status reads are performed with the DC signal (on the ALE pin) active whereas data operations
occur with the DC signal inactive.

For displays using an external address latch and configured in one of the Intel or Motorola modes,
LCDIDDIndexedRead() and LCDIDDIndexedWrite() may be used to read or write indexed registers
in the display.

To transfer large blocks of data to the display, DMA may be used via the LCDIDDDMAWrite() func-
tion. This function enables the DMA engine in the LCD controller before transfering the required
block of data to the display. The DMA engine transfers data 16 bits at a time so data must be
padded if a display with an 8 bit interface is used. The completion of a DMA transfer is indicated
via the LCD_INT_DMA_DONE interrupt.

Care must be taken when mixing DMA and non-DMA accesses to the display. The application is
responsible for ensuring that any previous DMA operation has completed before another is sched-
uled. Similarly, the application must ensure that it disables DMA using LCDIDDDMADisable() be-
fore making a call to LCDIDDCommandWrite(), LCDIDDStatusRead(), LCDIDDDataWrite(), LC-
DIDDDataRead(), LCDIDDIndexedWrite() or LCDIDDIndexedRead().

July 25, 2016 361

LCD Controller (LCD)

18.2.3 Raster Mode

Raster mode connects both passive- and active-matrix displays using a traditional video-style, syn-
chronous interface based on VSYNC (LCDFP), HSYNC (LCDLP), VALID (LCDAC), CLK (LCPCP)
and DATA (LCDDATA) signals. Unlike LIDD displays which contain their own frame buffer, the dis-
play image for a raster display is stored in internal or EPI-attached memory and is scanned to the
display using the LCD controller hardware and appropriate refresh rate and line timings provided
by the application.

The function LCDModeSet() with parameter ui8Mode set to LCD_MODE_RASTER will select the
raster controller mode. This function also sets the required pixel clock frequency. Note that this
must be an integer factor of the system clock frequency so applications must ensure that they
choose an appropriate system clock frequency to allow the required pixel clock to be set. In cases
where the current system clock setting is such that the exact requested pixel clock cannot be set,
LCDModeSet() will set the closest lower pixel clock that can be derived given the current system
clock frequency and will return that frequency to the caller.

Properties of the display being driven can be set using a call to the function LCDRasterConfigSet().
This configures active- or passive-matrix display, how the color palette is used and various param-
eters relating to the packing order of pixels in memory. Raster timings and signal polarities are
configured using a call to LCDRasterTimingSet().

The frame buffer, whose layout is described in the following section, is configured using a call to
LCDRasterFrameBufferSet() which accepts parameters indicating the address of the start of the
buffer in memory and its size. Because the frame buffer also contains the pixel format identifier
and color palette in addition to the pixel data, LCDRasterPaletteSet() must be called to initialize the
palette and format header before the raster is enabled. This is required for all pixel formats, even
those which do not require a color lookup table, to ensure correct display.

Once all controller and frame buffer initialization is complete, the display raster can be enabled by
calling LCDRasterEnable(). If the display is to be shut down at any point, LCDRasterDisable() may
be used.

The LCD controller also supports a subpanel mode which may be helpful in memory constrained
systems. This allows the active area on the display to be set to use a number of lines less than the
native height. Lines above or below the active area are filled with a default color. The subpanel may
be configured using LCDRasterSubPanelConfigSet() which defines the split point between active
image and default color and also determines whether the active image area is above or below the
split line. When a subpanel is configured, LCDRasterFrameBufferSet() can be called with a frame
buffer sized for the number of lines in the subpanel rather than the whole screen. The subpanel may
be enabled using LCDRasterSubPanelEnable() and disabled using LCDRasterSubPanelDisable().

362 July 25, 2016

LCD Controller (LCD)

18.2.4 Frame Buffer and Palette Formats

When using raster mode, the frame buffer is stored in local SRAM or EPI- connected SDRAM
and the application is responsible for ensuring that it is formatted correctly for the LCD controller’s
current configuration.

The frame buffer contains two sections:

A header containing the pixel format identifier and palette (color lookup table). This contains
either 16 or 128 16-bit entries.

An array of pixels comprising the image to display.

The frame buffer header is 8 words (or 16 half-word palette entries) long when displaying any pixel
format other than 8 bits-per-pixel in which case it is 128 words (256 half-word palette entries) in
length. Note that the header cannot be removed even when using pixel formats which do not
require a palette.

Each entry in the header comprises a 16-bit half-word containing a 12-bit RGB444 color in the
bottom 12 bits. The top 4 bits of each entry other than the first are reserved and must be set to 0.
The top 4 bits of the first entry contains an identifier informing the LCD controller of the color depth
(1-, 2-, 4- or 8-bpp palettized, or direct color 12-, 16- or 24-bpp) in use for the following image data.

The frame buffer type identifier may be set by calling LCDRasterPaletteSet() or by di-
rectly writing the first half-word of the frame buffer header with LCD_PALETTE_TYPE_1BPP,
LCD_PALETTE_TYPE_2BPP, LCD_PALETTE_TYPE_4BPP, LCD_PALETTE_TYPE_8BPP or
LCD_PALETTE_TYPE_DIRECT.

July 25, 2016 363

LCD Controller (LCD)

Palette Entry 0

Palette Entry 1

Palette Entry N

Image Pixel Data

...

Palette Entry 0

Subsequent Palette Entries

15 12 8 4 0

Frame Buffer Pointer

N = 16 unless TYPE is 8bpp
in which case it is 256.

Image buffer occupies
(WIDTH * HEIGHT * BPP) / 8 bytes.

Fram
e Buffer Size

Im
age Buffer Size

0 0 0 0 RED GREEN BLUE

0 RED GREEN BLUETYPE

18.2.5 Data Structure Documentation

18.2.5.1 tLCDIDDTiming

Definition:
typedef struct
{

uint8_t ui8WSSetup;
uint8_t ui8WSDuration;
uint8_t ui8WSHold;
uint8_t ui8RSSetup;
uint8_t ui8RSDuration;
uint8_t ui8RSHold;

364 July 25, 2016

LCD Controller (LCD)

uint8_t ui8DelayCycles;
}
tLCDIDDTiming

Members:
ui8WSSetup Write Strobe Set-Up cycles. When performing a write access, this field defines

the number of MCLK cycles that Data Bus/Pad Output Enable, ALE, the Direction bit, and
Chip Select have to be ready before the Write Strobe is asserted. Valid values are from 0
to 31.

ui8WSDuration Write Strobe Duration cycles. Field value defines the number of MCLK cycles
for which the Write Strobe is held active when performing a write access. Valid values are
from 1 to 63.

ui8WSHold Write Strobe Hold cycles. Field value defines the number of MCLK cycles for
which Data Bus/Pad Output Enable, ALE, the Direction bit, and Chip Select are held after
the Write Strobe is deasserted when performing a write access. Valid values are from 1 to
15.

ui8RSSetup Read Strobe Set-Up cycles. When performing a read access, this field defines
the number of MCLK cycles that Data Bus/Pad Output Enable, ALE, the Direction bit, and
Chip Select have to be ready before the Read Strobe is asserted. Valid values are from 0
to 31.

ui8RSDuration Read Strobe Duration cycles. Field value defines the number of MCLK cycles
for which the Read Strobe is held active when performing a read access. Valid values are
from 1 to 63.

ui8RSHold Read Strobe Hold cycles. Field value defines the number of MCLK cycles for
which Data Bus/Pad Output Enable, ALE, the Direction bit, and Chip Select are held after
the Read Strobe is deasserted when performing a read access. Valid values are from 1 to
15.

ui8DelayCycles Field value defines the number of MCLK cycles between the end of one de-
vice access and the start of another device access using the same Chip Select unless the
two accesses are both Reads. In this case, this delay is not incurred. Valid vales are from
1 to 4.

Description:
A structure containing timing parameters for the LIDD (LCD Interface Display Driver) interface.
This is used with the LCDIDDTimingSet function.

18.2.5.2 tLCDRasterTiming

Definition:
typedef struct
{

uint32_t ui32Flags;
uint16_t ui16PanelWidth;
uint16_t ui16PanelHeight;
uint16_t ui16HFrontPorch;
uint16_t ui16HBackPorch;
uint16_t ui16HSyncWidth;
uint8_t ui8VFrontPorch;
uint8_t ui8VBackPorch;
uint8_t ui8VSyncWidth;
uint8_t ui8ACBiasLineCount;

July 25, 2016 365

LCD Controller (LCD)

}
tLCDRasterTiming

Members:
ui32Flags Flags configuring the polarity and active edges of the various signals in the

raster interface. This field is comprised of a logical OR of the labels with prefix
“RASTER_TIMING_”.

ui16PanelWidth The number of pixels contained within each line on the LCD display. Valid
values are multiple of 16 less than or equal to 2048.

ui16PanelHeight The number of lines on the LCD display. Valid values are from 1 to 2048.
ui16HFrontPorch A value from 1 to 1024 that specifies the number of pixel clock periods to

add to the end of each line after active video has ended.
ui16HBackPorch A value from 1 to 1024 that specifies the number of pixel clock periods to

add to the beginning of a line before active video is asserted.
ui16HSyncWidth A value from 1 to 1024 that specifies the number of pixel clock periods to

pulse the line clock at the end of each line.
ui8VFrontPorch A value from 0 to 255 that specifies the number of line clock periods to add

to the end of each frame after the last active line.
ui8VBackPorch A value from 0 to 255 that specifies the number of line clock periods to add

to the beginning of a frame before the first active line is output to the display.
ui8VSyncWidth In active mode, a value from 1 to 64 that specifies the number of line clock

periods to set the lcd_fp pin active at the end of each frame after the vertical front porch
period elapses. The number of The frame clock is used as the VSYNC signal in active
mode.
In passive mode, a value from 1 to 64 that specifies the number of extra line clock periods
to insert after the vertical front porch period has elapsed. Note that the width of lcd_fp is
not affected by this value in passive mode.

ui8ACBiasLineCount A value from 0 to 255 that specifies the number of line clocks to count
before transitioning the AC Bias pin. This pin is used to periodically invert the polarity of
the power supply to prevent DC charge build-up within the display.

Description:
A structure containing timing parameters for the raster interface. This is used with the
LCDRasterTimingSet function.

18.2.6 Define Documentation

18.2.6.1 CYCLES_FROM_TIME_NS

This macro can be used to convert from time in nanoseconds to periods of the supplied clock
in Hertz as required when setting up the LIDD and raster timing structures. The calculation will
round such that the number of cycles returned represents no longer a time than specified in the
ui32Time_nS parameter. Values of ui32Time_nS less than or equal to 35791394 (35.79 millisec-
onds) are supported by the macro. Larger values will cause arithmetic overflow and yield incorrect
values. It is further assumed that ui32ClockFreq is a non-zero multiple of 1000000 (1MHz).

366 July 25, 2016

LCD Controller (LCD)

18.2.6.2 #define CYCLES_FROM_TIME_US(ui32ClockFreq, ui32Time_uS)

Definition:
#define CYCLES_FROM_TIME_NS(ui32ClockFreq,

ui32Time_nS)

Description:
This macro can be used to convert from time in microseconds to periods of the supplied clock
in Hertz as required when setting up the LIDD and raster timing structures. The calculation will
round such that the number of cycles returned represents no longer a time than specified in
the ui32Time_uS parameter. Values of ui32Time_uS less than or equal to 4294967uS (4.29
seconds) are supported by the macro. Larger values will cause arithmetic overflow and yield
incorrect values. It is further assumed that ui32ClockFreq is a non-zero multiple of 1000000
(1MHz).

18.2.6.3 #define PAL_FROM_RGB(ui32RGBColor)

This macro can be used to convert a 24-bit RGB color value as used by the TivaWare Graphics
Library into a 12-bit LCD controller color palette entry.

18.2.7 Function Documentation

18.2.7.1 LCDClockReset

Resets one or more of the LCD controller clock domains.

Prototype:
void
LCDClockReset(uint32_t ui32Base,

uint32_t ui32Clocks)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32Clocks defines the subset of clock domains to be reset.

Description:
This function allows sub-modules of the LCD controller to be reset under software control. The
ui32Clocks parameter is the logical OR of the following clocks:

LCD_CLOCK_MAIN causes the entire LCD controller module to be reset.
LCD_CLOCK_DMA causes the DMA controller submodule to be reset.
LCD_CLOCK_LIDD causes the LIDD submodule to be reset.
LCD_CLOCK_CORE causes the core module, including the raster logic to be reset.

In all cases, LCD controller register values are preserved across these resets.

Returns:
None.

July 25, 2016 367

LCD Controller (LCD)

18.2.7.2 LCDDMAConfigSet

Configures the LCD controller’s internal DMA engine.

Prototype:
void
LCDDMAConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.
ui32Config provides flags defining the desired DMA parameters.

Description:
This function is used to configure the DMA engine within the LCD controller. This engine is re-
sponsible for performing bulk data transfers to the display when in LIDD mode or for transferring
palette and pixel data from SRAM to the display panel when in raster mode.

The ui32Config parameter is a logical OR of various flags. It must contain one value from each
of the following groups.

The first group of flags set the number of words that have to be in the FIFO before it signals
that it is ready:

LCD_DMA_FIFORDY_8_WORDS
LCD_DMA_FIFORDY_16_WORDS
LCD_DMA_FIFORDY_32_WORDS
LCD_DMA_FIFORDY_64_WORDS
LCD_DMA_FIFORDY_128_WORDS
LCD_DMA_FIFORDY_256_WORDS
LCD_DMA_FIFORDY_512_WORDS

The second group of flags set the number of 32-bit words in each DMA burst transfer:

LCD_DMA_BURST_1
LCD_DMA_BURST_2
LCD_DMA_BURST_4
LCD_DMA_BURST_8
LCD_DMA_BURST_16

The final group of flags set internal byte lane controls and allow byte swapping within the DMA
engine. The label represents the output byte order for an input 32-bit word ordered “0123”.

LCD_DMA_BYTE_ORDER_0123
LCD_DMA_BYTE_ORDER_1023
LCD_DMA_BYTE_ORDER_3210
LCD_DMA_BYTE_ORDER_2301

Additionally, LCD_DMA_PING_PONG may be specified. This flag configures the controller
to operate in double-buffered mode. When data is scanned out from the first frame buffer,
the DMA engine immediately moves to the second frame buffer and scans from there before
moving back to the first. If this flag is clear, the DMA engine uses a single frame buffer,
restarting the scan from the beginning of the buffer each time it completes a frame.

368 July 25, 2016

LCD Controller (LCD)

Note:
DMA burst size LCD_DMA_BURST_16 should be set when using frame buffers in external,
EPI-connected memory. Using a smaller burst size in this case is likely to result in occasional
FIFO underflows and associated display glitches.

Returns:
None.

18.2.7.3 LCDIDDCommandWrite

Writes a command to the display when the LCD controller is in LIDD mode.

Prototype:
void
LCDIDDCommandWrite(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Cmd)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Cmd is the 16-bit command word to write.

Description:
This function writes a 16-bit command word to the display when the LCD controller is in LIDD
mode. A command write occurs with the ALE signal active.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, LCDIDDDMADisable() must be
called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

18.2.7.4 LCDIDDConfigSet

Sets the LCD controller communication parameters when in LIDD mode.

Prototype:
void
LCDIDDConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32Config defines the display interface configuration.

July 25, 2016 369

LCD Controller (LCD)

Description:
This function is used when the LCD controller is configured in LIDD mode and specifies the
configuration of the interface between the controller and the display panel. The ui32Config
parameter is comprised of one of the following modes:

LIDD_CONFIG_SYNC_MPU68 selects Sync MPU68 mode. LCDCP = EN, LCDLP = DIR,
LCDFP = ALE, LCDAC = CS0, LCDMCLK = MCLK.
LIDD_CONFIG_ASYNC_MPU68 selects Async MPU68 mode. LCDCP = EN, LCDLP =
DIR, LCDFP = ALE, LCDAC = CS0, LCDMCLK = CS1.
LIDD_CONFIG_SYNC_MPU80 selects Sync MPU80 mode. LCDCP = RS, LCDLP = WS,
LCDFP = ALE, LCDAC = CS0, LCDMCLK = MCLK.
LIDD_CONFIG_ASYNC_MPU80 selects Async MPU80 mode. LCDCP = RS, LCDLP =
WS, LCDFP = ALE, LCDAC = CS0, LCDMCLK = CS1.
LIDD_CONFIG_ASYNC_HITACHI selects Hitachi (async) mode. LCDCP = N/C, LCDLP
= DIR, LCDFP = ALE, LCDAC = E0, LCDMCLK = E1.

Additional flags may be ORed into ui32Config to control the polarities of various control signals:

LIDD_CONFIG_INVERT_ALE - Address Latch Enable (ALE) polarity control. By default,
ALE is active low. If this flag is set, it becomes active high.
LIDD_CONFIG_INVERT_RS_EN - Read Strobe/Enable polarity control. By default, RS is
active low and Enable is active high. If this flag is set, RS becomes active high and Enable
active low.
LIDD_CONFIG_INVERT_WS_DIR - Write Strobe/Direction polarity control. By default,
WS is active low and Direction write low/read high. If this flag is set, WS becomes active
high and Direction becomes write high/read low.
LIDD_CONFIG_INVERT_CS0 - Chip Select 0/Enable 0 polarity control. By default, CS0
and E0 are active high. If this flag is set, they become active low.
LIDD_CONFIG_INVERT_CS1 - Chip Select 1/Enable 1 polarity control. By default, CS1
and E1 are active high. If this flag is set, they become active low.

Returns:
None.

18.2.7.5 LCDIDDDataRead

Reads a data word from the display when the LCD controller is in LIDD mode.

Prototype:
uint16_t
LCDIDDDataRead(uint32_t ui32Base,

uint32_t ui32CS)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.

Description:
This function reads the 16-bit data word from the display when the LCD controller is in LIDD
mode. A data read occurs with the ALE signal inactive.

370 July 25, 2016

LCD Controller (LCD)

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, LCDIDDDMADisable() must be
called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
Returns the status word read from the display panel.

18.2.7.6 LCDIDDDataWrite

Writes a data value to the display when the LCD controller is in LIDD mode.

Prototype:
void
LCDIDDDataWrite(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Data)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Data is the 16-bit data word to write.

Description:
This function writes a 16-bit data word to the display when the LCD controller is in LIDD mode.
A data write occurs with the ALE signal inactive.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, LCDIDDDMADisable() must be
called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

18.2.7.7 LCDIDDDMADisable

Disables internal DMA operation when the LCD controller is in LIDD mode.

Prototype:
void
LCDIDDDMADisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the LCD controller module base address.

July 25, 2016 371

LCD Controller (LCD)

Description:
When the LCD controller is operating in LCD Interface Display Driver mode, this function
must be called after completion of a DMA transaction and before calling LCDIDDCommand-
Write(), LCDIDDDataWrite(), LCDIDDStatusRead(), LCDIDDIndexedWrite(), LCDIDDIndexe-
dRead() or LCDIDDDataRead() to disable DMA mode and allow CPU-initiated transactions to
the display.

Note:
LIDD DMA mode is enabled automatically when LCDIDDDMAWrite() is called.

Returns:
None.

18.2.7.8 LCDIDDDMAWrite

Writes a block of data to the display using DMA when the LCD controller is in LIDD mode.

Prototype:
void
LCDIDDDMAWrite(uint32_t ui32Base,

uint32_t ui32CS,
const uint32_t *pui32Data,
uint32_t ui32Count)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
pui32Data is the address of the first 16-bit word to write. This address must be aligned on a

32-bit word boundary.
ui32Count is the number of 16-bit words to write. This value must be a multiple of 2.

Description:
This function writes a block of 16-bit data words to the display using DMA. It is only valid
when the LCD controller is in LIDD mode. Completion of the DMA transfer is signaled by the
LCD_INT_DMA_DONE interrupt.

This function enables DMA mode prior to starting the transfer. The caller is responsible for
ensuring that any earlier DMA transfer has completed before initiating another transfer.

During the time that DMA is enabled, none of the other LCD LIDD data transfer functions
may be called. When the DMA transfer is complete and the application wishes to use the
CPU to communicate with the display, LCDIDDDMADisable() must be called to disable DMA
access prior to calling LCDIDDCommandWrite(), LCDIDDDataWrite(), LCDIDDStatusRead(),
LCDIDDIndexedWrite(), LCDIDDIndexedRead() or LCDIDDDataRead().

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

372 July 25, 2016

LCD Controller (LCD)

18.2.7.9 LCDIDDIndexedRead

Reads a given display register when the LCD controller is in LIDD mode.

Prototype:
uint16_t
LCDIDDIndexedRead(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Addr)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Addr is the address of the display register to read.

Description:
This function reads a 16-bit word from a register in the display when the LCD controller is in
LIDD mode and configured to use either the Motorola (LIDD_CONFIG_SYNC_MPU68
or LIDD_CONFIG_ASYNC_MPU68) or Intel (LIDD_CONFIG_SYNC_MPU80 or
LIDD_CONFIG_ASYNC_MPU80) modes that employ an external address latch.

When configured in Hitachi mode (LIDD_CONFIG_ASYNC_HITACHI), this function should
not be used. In this case, the functions LCDIDDStatusRead() and LCDIDDDataRead() may be
used to read status and data bytes from the panel.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, LCDIDDDMADisable() must be
called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

18.2.7.10 LCDIDDIndexedWrite

Writes data to a given display register when the LCD controller is in LIDD mode.

Prototype:
void
LCDIDDIndexedWrite(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Addr,
uint16_t ui16Data)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Addr is the address of the display register to write.
ui16Data is the data to write.

July 25, 2016 373

LCD Controller (LCD)

Description:
This function writes a 16-bit data word to a register in the display when the LCD controller is in
LIDD mode and configured to use either the Motorola (LIDD_CONFIG_SYNC_MPU68
or LIDD_CONFIG_ASYNC_MPU68) or Intel (LIDD_CONFIG_SYNC_MPU80 or
LIDD_CONFIG_ASYNC_MPU80) modes that employ an external address latch.

When configured in Hitachi mode (LIDD_CONFIG_ASYNC_HITACHI), this function should not
be used. In this case the functions LCDIDDCommandWrite() and LCDIDDDataWrite() may be
used to transfer command and data bytes to the panel.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, LCDIDDDMADisable() must be
called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

18.2.7.11 LCDIDDStatusRead

Reads a status word from the display when the LCD controller is in LIDD mode.

Prototype:
uint16_t
LCDIDDStatusRead(uint32_t ui32Base,

uint32_t ui32CS)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.

Description:
This function reads the 16-bit status word from the display when the LCD controller is in LIDD
mode. A status read occurs with the ALE signal active. If the interface is configured in Hitachi
mode (LIDD_CONFIG_ASYNC_HITACHI), this operation corresponds to a command mode
read.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, LCDIDDDMADisable() must be
called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
Returns the status word read from the display panel.

18.2.7.12 LCDIDDTimingSet

Sets the LCD controller interface timing when in LIDD mode.

374 July 25, 2016

LCD Controller (LCD)

Prototype:
void
LCDIDDTimingSet(uint32_t ui32Base,

uint32_t ui32CS,
const tLCDIDDTiming *pTiming)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select whose timings are to be set.
pTiming points to a structure containing the desired timing parameters.

Description:
This function is used in LIDD mode to set the setup, strobe and hold times for the various
interface control signals. Independent timings are stored for each of the two supported chip
selects offered by the LCD controller.

For a definition of the timing parameters required, see the definition of tLCDIDDTiming.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None

18.2.7.13 LCDIntClear

Clears LCD controller interrupt sources.

Prototype:
void
LCDIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the controller.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified LCD controller interrupt sources are cleared so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter is the logical OR of any of the following:

LCD_INT_DMA_DONE - indicates that a LIDD DMA transfer is complete.
LCD_INT_RASTER_FRAME_DONE - indicates that a raster-mode frame is complete.
LCD_INT_SYNC_LOST - indicates that frame synchronization was lost.
LCD_INT_AC_BIAS_CNT - indicates that that AC bias transition counter has decremented
to zero and is is valid for passive matrix panels only. The counter, set by a call to
LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this interrupt is
cleared.
LCD_INT_UNDERFLOW - indicates that a data underflow occurred. The internal FIFO
was empty when the output logic attempted to read data to send to the display.

July 25, 2016 375

LCD Controller (LCD)

LCD_INT_PAL_LOAD - indicates that the color palette has been loaded.
LCD_INT_EOF0 - indicates that the raw End-of-Frame 0 has been signaled.
LCD_INT_EOF2 - indicates that the raw End-of-Frame 1 has been signaled.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

18.2.7.14 LCDIntDisable

Disables individual LCD controller interrupt sources.

Prototype:
void
LCDIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the controller.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated LCD controller interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

LCD_INT_DMA_DONE - indicates that a LIDD DMA transfer is complete.
LCD_INT_RASTER_FRAME_DONE - indicates that a raster-mode frame is complete.
LCD_INT_SYNC_LOST - indicates that frame synchronization was lost.
LCD_INT_AC_BIAS_CNT - indicates that that AC bias transition counter has decremented
to zero and is is valid for passive matrix panels only. The counter, set by a call to
LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this interrupt is
cleared.
LCD_INT_UNDERFLOW - indicates that a data underflow occurred. The internal FIFO
was empty when the output logic attempted to read data to send to the display.
LCD_INT_PAL_LOAD - indicates that the color palette has been loaded.
LCD_INT_EOF0 - indicates that the raw End-of-Frame 0 has been signaled.
LCD_INT_EOF2 - indicates that the raw End-of-Frame 1 has been signaled.

Returns:
None.

376 July 25, 2016

LCD Controller (LCD)

18.2.7.15 LCDIntEnable

Enables individual LCD controller interrupt sources.

Prototype:
void
LCDIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the controller.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated LCD controller interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

LCD_INT_DMA_DONE - indicates that a LIDD DMA transfer is complete.
LCD_INT_RASTER_FRAME_DONE - indicates that a raster-mode frame is complete.
LCD_INT_SYNC_LOST - indicates that frame synchronization was lost.
LCD_INT_AC_BIAS_CNT - indicates that that AC bias transition counter has decremented
to zero and is is valid for passive matrix panels only. The counter, set by a call to
LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this interrupt is
cleared.
LCD_INT_UNDERFLOW - indicates that a data underflow occurred. The internal FIFO
was empty when the output logic attempted to read data to send to the display.
LCD_INT_PAL_LOAD - indicates that the color palette has been loaded.
LCD_INT_EOF0 - indicates that the raw End-of-Frame 0 has been signaled.
LCD_INT_EOF2 - indicates that the raw End-of-Frame 1 has been signaled.

Returns:
None.

18.2.7.16 LCDIntRegister

Registers an interrupt handler for the LCD controller module.

Prototype:
void
LCDIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base specifies the LCD controller module base address.
pfnHandler is a pointer to the function to be called when the LCD controller interrupt occurs.

Description:
This function registers the handler to be called when the LCD controller module interrupt oc-
curs.

July 25, 2016 377

LCD Controller (LCD)

Note:
This function need not be called if the appropriate interrupt vector is statically linked into the
vector table in the application startup code.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

18.2.7.17 LCDIntStatus

Gets the current LCD controller interrupt status.

Prototype:
uint32_t
LCDIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the controller.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the LCD controller. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status as the logical OR of any of the following:

LCD_INT_DMA_DONE - indicates that a LIDD DMA transfer is complete.

LCD_INT_RASTER_FRAME_DONE - indicates that a raster-mode frame is complete.

LCD_INT_SYNC_LOST - indicates that frame synchronization was lost.

LCD_INT_AC_BIAS_CNT - indicates that that AC bias transition counter has decremented to
zero and is is valid for passive matrix panels only. The counter, set by a call to LCDRaster-
ACBiasIntCountSet(), is reloaded but remains disabled until this interrupt is cleared.

LCD_INT_UNDERFLOW - indicates that a data underflow occurred. The internal FIFO was
empty when the output logic attempted to read data to send to the display.

LCD_INT_PAL_LOAD - indicates that the color palette has been loaded.

LCD_INT_EOF0 - indicates that the raw End-of-Frame 0 has been signaled.

LCD_INT_EOF2 - indicates that the raw End-of-Frame 1 has been signaled.

18.2.7.18 LCDIntUnregister

Unregisters the interrupt handler for the LCD controller module.

378 July 25, 2016

LCD Controller (LCD)

Prototype:
void
LCDIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base specifies the LCD controller module base address.

Description:
This function unregisters the interrupt handler and disables the global LCD controller interrupt
in the interrupt controller.

Note:
This function need not be called if the appropriate interrupt vector is statically linked into the
vector table in the application startup code.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

18.2.7.19 LCDModeSet

Configures the basic operating mode and clock rate for the LCD controller.

Prototype:
uint32_t
LCDModeSet(uint32_t ui32Base,

uint8_t ui8Mode,
uint32_t ui32PixClk,
uint32_t ui32SysClk)

Parameters:
ui32Base specifies the LCD controller module base address.
ui8Mode specifies the basic operating mode to be used.
ui32PixClk specifies the desired LCD controller pixel or master clock rate in Hz.
ui32SysClk specifies the current system clock rate in Hz.

Description:
This function sets the basic operating mode of the LCD controller and also its master clock.
The ui8Mode parameter may be set to either LCD_MODE_LIDD or LCD_MODE_RASTER.
LCD_MODE_LIDD is used to select LCD Interface Display Driver mode for character panels
connected via an asynchronous interface (CS, WE, OE, ALE, data) and LCD_MODE_RASTER
is used to communicate with panels via a synchronous video interface using data and sync
signals. Additionally, LCD_MODE_AUTO_UFLOW_RESTART may be ORed with either of
these modes to indicate that the hardware should restart automatically if a data underflow
occurs.

The ui32PixClk parameter specifies the desired master clock for the the LCD controller. In
LIDD mode, this value controls the MCLK used in communication with the display and valid
values are between ui32SysClk and ui32SysClk/255. In raster mode, ui32PixClk specifies
the pixel clock rate for the raster interface and valid values are between ui32SysClk/2 and
ui32SysClk/255. The actual clock rate set may differ slightly from the desired rate due to the

July 25, 2016 379

LCD Controller (LCD)

fact that only integer dividers are supported. The rate set will, however, be no higher than the
requested value.

The ui32SysClk parameter provides the current system clock rate and is used to allow the LCD
controller clock rate divisor to be correctly set to give the desired ui32PixClk rate.

Returns:
Returns the actual LCD controller pixel clock or MCLK rate set.

18.2.7.20 LCDRasterACBiasIntCountSet

Sets the number of AC bias pin transitions per interrupt.

Prototype:
void
LCDRasterACBiasIntCountSet(uint32_t ui32Base,

uint8_t ui8Count)

Parameters:
ui32Base is the base address of the controller.
ui8Count is the number of AC bias pin transitions to count before the AC bias count interrupt

is asserted. Valid values are from 0 to 15.

Description:
This function is used to set the number of AC bias transitions between each AC bias count
interrupt (LCD_INT_AC_BIAS_CNT). If ui8Count is 0, no AC bias count interrupt is generated.

Returns:
None.

18.2.7.21 LCDRasterConfigSet

Sets the LCD controller interface timing when in raster mode.

Prototype:
void
LCDRasterConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint8_t ui8PalLoadDelay)

Parameters:
ui32Base specifies the LCD controller module base address.
ui32Config specifies properties of the raster interface and the attached display panel.
ui8PalLoadDelay specifies the number of system clocks to wait between each 16 halfword

(16-bit) burst when loading the palette from SRAM into the internal palette RAM of the
controller.

Description:
This function configures the basic operating mode of the raster interface and specifies the type
of panel that the controller is to drive.

The ui32Config parameter must be defined as one of the following to select the required target
panel type and output pixel format:

380 July 25, 2016

LCD Controller (LCD)

RASTER_FMT_ACTIVE_24BPP_PACKED selects an active matrix display and uses a
packed 24-bit per pixel packet frame buffer where 4 pixels are described within 3 consec-
utive 32-bit words.
RASTER_FMT_ACTIVE_24BPP_UNPACKED selects an active matrix display and uses
an unpacked 24-bit per pixel packet frame buffer where each 32-bit word contains a single
pixel and 8 bits of padding.
RASTER_FMT_ACTIVE_16BPP selects an active matrix display and uses a 16-bit per
pixel frame buffer with 2 pixels in each 32-bit word.
RASTER_FMT_ACTIVE_PALETTIZED_12BIT selects an active matrix display and uses
a 1, 2, 4 or 8bpp frame buffer with palette lookup. Output color data is described in 12-bit
format using bits 11:0 of the data bus. The frame buffer pixel format is defined by the value
passed in the ui32Type parameter to LCDRasterPaletteSet().
RASTER_FMT_ACTIVE_PALETTIZED_16BIT selects an active matrix display and uses
a 1, 2, 4 or 8bpp frame buffer with palette lookup. Output color data is described in 16-bit
5:6:5 format. The frame buffer pixel format is defined by the value passed in the ui32Type
parameter to LCDRasterPaletteSet().
RASTER_FMT_PASSIVE_MONO_4PIX selects a monochrome, passive matrix display
that outputs 4 pixels on each pixel clock.
RASTER_FMT_PASSIVE_MONO_8PIX selects a monochrome, passive matrix display
that outputs 8 pixels on each pixel clock.
RASTER_FMT_PASSIVE_COLOR_12BIT selects a passive matrix display and uses a
12bpp frame buffer. The palette is bypassed and 12-bit pixel data is sent to the grayscaler
for the display.
RASTER_FMT_PASSIVE_COLOR_16BIT selects a passive matrix display and uses a
16bpp frame buffer with pixels in 5:6:5 format. Only the 4 most significant bits of each
color component are sent to the grayscaler for the display.

Additionally, the following flags may be ORed into ui32Config:

RASTER_ACTVID_DURING_BLANK sets Actvid to toggle during vertical blanking.
RASTER_NIBBLE_MODE_ENABLED enables nibble mode. This parameter works with
RASTER_READ_ORDER_REVERSED to determine how 1, 2 and 4bpp pixels are ex-
tracted from words read from the frame buffer. If specified, words read from the frame
buffer are byte swapped prior to individual pixels being parsed from them.
RASTER_LOAD_DATA_ONLY tells the controller to read only pixel data from the frame
buffer and to use the last palette read. No palette load is performed.
RASTER_LOAD_PALETTE_ONLY tells the controller to read only the palette data from
the frame buffer.
RASTER_READ_ORDER_REVERSED when using 1, 2, 4 and 8bpp frame buffers, this
option reverses the order in which frame buffer words are parsed. When this option is
specified, the leftmost pixel in a word is taken from the most significant bits. When absent,
the leftmost pixel is parsed from the least significant bits.

If the LCD controller’s raster engine is enabled when this function is called, it is disabled as a
result of the call.

Returns:
None.

18.2.7.22 LCDRasterDisable

Disables the raster output.

July 25, 2016 381

LCD Controller (LCD)

Prototype:
void
LCDRasterDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function disables the LCD controller raster output and stops driving the attached display.

Note:
Once disabled, the raster engine continues to scan data until the end of the current frame. If
the display is to be re-enabled, wait until after the final LCD_INT_RASTER_FRAME_DONE
has been received, indicating that the raster engine has stopped.

Returns:
None.

18.2.7.23 LCDRasterEnable

Enables the raster output.

Prototype:
void
LCDRasterEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function enables the LCD controller raster output and starts displaying the content of the
current frame buffer on the attached panel. Prior to enabling the raster output, LCDModeSet(),
LCDRasterConfigSet(), LCDDMAConfigSet(), LCDRasterTimingSet(), LCDRasterPaletteSet()
and LCDRasterFrameBufferSet() must have been called.

Returns:
None.

18.2.7.24 LCDRasterEnabled

Determines whether or not the raster output is currently enabled.

Prototype:
bool
LCDRasterEnabled(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to query whether or not the raster output is currently enabled.

Returns:
Returns true if the raster is enabled or false if it is disabled.

382 July 25, 2016

LCD Controller (LCD)

18.2.7.25 LCDRasterFrameBufferSet

Sets the LCD controller frame buffer start address and size in raster mode.

Prototype:
void
LCDRasterFrameBufferSet(uint32_t ui32Base,

uint8_t ui8Buffer,
uint32_t *pui32Addr,
uint32_t ui32NumBytes)

Parameters:
ui32Base is the base address of the controller.
ui8Buffer specifies which frame buffer to configure. Valid values are 0 and 1.
pui32Addr points to the first byte of the frame buffer. This pointer must be aligned on a 32-bit

(word) boundary.
ui32NumBytes specifies the size of the frame buffer in bytes. This value must be a multiple

of 4.

Description:
This function is used to configure the position and size of one of the two supported frame
buffers while in raster mode. The second frame buffer (configured when ui8Buffer is set
to 1) is only used if the controller is set to operate in ping-pong mode (by specifying the
LCD_DMA_PING_PONG configuration flag on a call to LCDDMAConfigSet()).

The format of the frame buffer depends on the image type in use and the current raster configu-
ration settings. If RASTER_LOAD_DATA_ONLY was specified in a previous call to LCDRaster-
ConfigSet(), the frame buffer contains only packed pixel data in the required bit depth and
format. In other cases, the frame buffer comprises a palette of either 8 or 128 32-bit words
followed by the packed pixel data. The palette size is 8 words (16 16-bit entries) for all pixel
formats other than 8bpp which uses a palette of 128 words (256 16-bit entries). Note that the
8 word palette is still present even for 12, 16 and 24-bit formats, which do not use the lookup
table.

The frame buffer size, specified using the ui32NumBytes parameter, must be the palette size (if
any) plus the size of the image bitmap required for the currently configured display resolution.

ui32NumBytes = (Palette Size) + ((Width ∗ Height) ∗ BPP) / 8)

If RASTER_LOAD_DATA_ONLY is not specified, frame buffers passed to this function must
be initialized using a call to LCDRasterPaletteSet() prior to enabling the raster output. If this is
not done, the pixel format identifier and color table required by the hardware is not present and
the results are unpredictable.

Returns:
None.

18.2.7.26 LCDRasterPaletteSet

Initializes the color palette in a frame buffer.

Prototype:
void
LCDRasterPaletteSet(uint32_t ui32Base,

July 25, 2016 383

LCD Controller (LCD)

uint32_t ui32Type,
uint32_t *pui32Addr,
const uint32_t *pui32SrcColors,
uint32_t ui32Start,
uint32_t ui32Count)

Parameters:
ui32Base is the base address of the controller.
ui32Type specifies the type of pixel data to be held in the frame buffer and also the format of

the source color values passed.
pui32Addr points to the start of the frame buffer into which the palette information is to be

written.
pui32SrcColors points to the first color value that is to be written into the frame buffer palette.
ui32Start specifies the index of the first color in the palette to update.
ui32Count specifies the number of source colors to be copied into the frame buffer palette.

Description:
This function is used to initialize the color palette stored at the beginning of a frame buffer. It
writes the relevant pixel type into the first entry of the frame buffer and copies the requested
number of colors from a source buffer into the palette starting at the required index, optionally
converting them from 24-bit color format into the 12-bit format used by the LCD controller.

ui32Type must be set to one of the following values to indicate the type of frame buffer for which
the palette is being initialized:

LCD_PALETTE_TYPE_1BPP indicates a 1 bit per pixel (monochrome) frame buffer. This
format requires a 2 entry palette.
LCD_PALETTE_TYPE_2BPP indicates a 2 bit per pixel frame buffer. This format requires
a 4 entry palette.
LCD_PALETTE_TYPE_4BPP indicates a 4 bit per pixel frame buffer. This format requires
a 4 entry palette.
LCD_PALETTE_TYPE_8BPP indicates an 8 bit per pixel frame buffer. This format re-
quires a 256 entry palette.
LCD_PALETTE_TYPE_DIRECT indicates a direct color (12, 16 or 24 bit per pixel). The
color palette is not used in these modes, but the frame buffer type must still be initialized to
ensure that the hardware uses the correct pixel type. When this value is used, the format
of the pixels in the frame buffer is defined by the ui32Config parameter previously passed
to LCDRasterConfigSet().

Optionally, the LCD_PALETTE_SRC_24BIT flag may be ORed into ui32Type to indicate that
the supplied colors in the pui32SrcColors array are in the 24-bit format as used by the TivaWare
Graphics Library with one color stored in each 32-bit word. In this case, the colors read from
the source array are converted to the 12-bit format used by the LCD controller before being
written into the frame buffer palette.

If LCD_PALETTE_SRC_24BIT is not present, it is assumed that the pui32SrcColors array
contains 12-bit colors in the format required by the LCD controller with 2 colors stored in each
32-bit word. In this case, the values are copied directly into the frame buffer palette without any
reformatting.

Returns:
None.

384 July 25, 2016

LCD Controller (LCD)

18.2.7.27 LCDRasterSubPanelConfigSet

Sets the position and size of the subpanel on the raster display.

Prototype:
void
LCDRasterSubPanelConfigSet(uint32_t ui32Base,

uint32_t ui32Flags,
uint32_t ui32BottomLines,
uint32_t ui32DefaultPixel)

Parameters:
ui32Base is the base address of the controller.
ui32Flags may be either LCD_SUBPANEL_AT_TOP to show frame buffer image data

in the top portion of the display and default color in the bottom portion, or
LCD_SUBPANEL_AT_BOTTOM to show image data at the bottom of the display and
default color at the top.

ui32BottomLines defines the number of lines comprising the bottom portion of the display. If
LCD_SUBPANEL_AT_TOP is set in ui32Flags, these lines contain the default pixel color
when the subpanel is enabled, otherwise they contain image data.

ui32DefaultPixel is the 24-bit RGB color to show in the portion of the display not configured
to show image data.

Description:
The LCD controller provides a feature that allows a portion of the display to be filled with
a default color rather than image data from the frame buffer. This feature reduces SRAM
bandwidth requirements because no data is fetched for lines containing the default color. This
feature is only available when the LCD controller is in raster mode and configured to drive an
active matrix display.

The subpanel area containing image data from the frame buffer may be positioned either at the
top or bottom of the display as controlled by the value of ui32Flags. The height of the bottom
portion of the display is defined by ui32BottomLines.

When a subpanel is configured, the application must also reconfigure the frame buffer to ensure
that it contains the correct number of lines for the subpanel size in use. This configuration
can be achieved by calling LCDRasterFrameBufferSet() with the ui32NumBytes parameter set
appropriately to describe the required number of active video lines in the subpanel area.

The subpanel display mode is not enabled using this function. To enable the subpanel once it
has been configured, call LCDRasterSubPanelEnable().

Returns:
None.

18.2.7.28 LCDRasterSubPanelDisable

Disables subpanel display mode.

Prototype:
void
LCDRasterSubPanelDisable(uint32_t ui32Base)

July 25, 2016 385

LCD Controller (LCD)

Parameters:
ui32Base is the base address of the controller.

Description:
This function disables subpanel display mode and reverts to showing the entire frame buffer
image on the display. After the subpanel is disabled, the frame buffer size must be reconfigured
to match the full dimensions of the display area by calling LCDRasterFrameBufferSet() with an
appropriate value for the ui32NumBytes parameter.

Returns:
None.

18.2.7.29 LCDRasterSubPanelEnable

Enables subpanel display mode.

Prototype:
void
LCDRasterSubPanelEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function enables subpanel display mode and displays a default color rather than image
data in the number of lines and at the position specified by a previous call to LCDRasterSub-
PanelConfigSet(). Prior to calling LCDRasterSubPanelEnable(), the frame buffer should have
been reconfigured to match the desired subpanel size using a call to LCDRasterFrameBuffer-
Set().

Subpanel display is only possible when the LCD controller is in raster mode and is configured
to drive an active matrix display.

Returns:
None.

18.2.7.30 LCDRasterTimingSet

Sets the LCD controller interface timing when in raster mode.

Prototype:
void
LCDRasterTimingSet(uint32_t ui32Base,

const tLCDRasterTiming *pTiming)

Parameters:
ui32Base specifies the LCD controller module base address.
pTiming points to a structure containing the desired timing parameters.

Description:
This function is used in raster mode to set the panel size and sync timing parameters.

For a definition of the timing parameters required, see the definition of tLCDRasterTiming.

386 July 25, 2016

LCD Controller (LCD)

Returns:
None

18.3 Programming Example

The following example shows how to use the LCD Controller API to configure an 800x480 resolution
raster panel and start it displaying from an 8bpp frame buffer. Note that raster timing configuration
varies from display to display. Consult your display’s datasheet and modify tLCDRasterTiming
values as required for your display.

//***
//
// Define the frame buffer dimensions and format.
//
//***
#define SCREEN_WIDTH 800
#define SCREEN_HEIGHT 480
#define SCREEN_BPP 8

//***
//
// Define labels containing the size of the image bitmap and palette.
//
//***
#define SIZE_IMAGE ((SCREEN_WIDTH * SCREEN_HEIGHT * SCREEN_BPP) / 8)
#define SIZE_PALETTE ((SCREEN_BPP == 8) ? (256 * 2) : (16 * 2))

//***
//
// Position the frame buffer at an appropriate point in memory, most likely in
// EPI-connected SDRAM at 0x10000000. The frame buffer will be (SIZE_IMAGE +
// SIZE_PALETTE) bytes long.
//
//***
uint32_t *g_pui32DisplayBuffer = (uint32_t *)LCD_FRAME_BUFFER_ADDR;

//***
//
// Calculate pointers to the frame buffer palette and the first byte of the
// actual image bitmap.
//
//***
uint16_t *g_pui16Palette = (uint16_t *)LCD_FRAME_BUFFER_ADDR;
uint8_t *g_pBitmap = (uint8_t *)(LCD_FRAME_BUFFER_ADDR + SIZE_PALETTE);

//***
//
// Initialize our source color palette. These colors are defined in RGB888
// format as used by the TivaWare Graphics Library.
//
//***
const uint32_t g_pulSrcPalette[256] =
{

ClrBlack,
ClrWhite,
ClrRed,
ClrLightGreen,
ClrBlue,
ClrYellow,
ClrMagenta,
ClrCyan,

July 25, 2016 387

LCD Controller (LCD)

ClrOrange,
//
// and so on...
//

};

//***
//
// Labels defining the desired pixel clock, PLL VCO frequency and system clock.
// Note that the system clock must be an integer multiple of the pixel clock.
//
//***
#define PIXEL_CLOCK_FREQ 30000000
#define SYSTEM_VCO_FREQ SYSCTL_CFG_VCO_480
#define SYSTEM_CLOCK_FREQ 120000000

//***
//
// The timings and signal polarities for the various raster interface signals.
// Timing parameters are defined in terms of pixel clocks (for horizontal
// timings) and lines (for vertical timings).
//
//***
tLCDRasterTiming g_sRasterTimings =
{

(RASTER_TIMING_ACTIVE_HIGH_PIXCLK |
RASTER_TIMING_SYNCS_ON_RISING_PIXCLK),
SCREEN_WIDTH, SCREEN_HEIGHT,
2, 30, 8,
10, 10, 8,
0

};

//***
//
// The interrupt handler for the LCD controller. This function merely
// counts the interrupts received.
//
//***
void
LCDIntHandler(void)
{

uint32_t ui32Status;

//
// Get the current interrupt status and clear any active interrupts.
//
ui32Status = LCDIntStatus(LCD0_BASE, true);
LCDIntClear(LCD0_BASE, ui32Status);

//
// Handle any interrupts as required by the application. In normal
// operation, no action is required at interrupt time to keep the raster
// scan running.
//

}

//***
//
// Initialize the LCD controller to drive the display in raster mode and
// enable the raster engine.
//
//***
void
InitDisplay(uint32_t ui32SysClkHz, uint32_t ui32PixClock,

tLCDRasterTiming *psTimings)

388 July 25, 2016

LCD Controller (LCD)

{
uint32_t ui32Loop;

//
// Enable the LCD controller peripheral.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_LCD0);

//
// Wait for the LCD controller module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_LCD0))
{
}

//
// Configure the LCD controller for raster operation with a pixel clock
// as close to the requested pixel clock as possible.
//
ui32PixClock = LCDModeSet(LCD0_BASE, (LCD_MODE_RASTER |

LCD_MODE_AUTO_UFLOW_RESTART),
ui32PixClock, ui32SysClkHz);

//
// Set the output format for the raster interface.
//
LCDRasterConfigSet(LCD0_BASE, RASTER_FMT_ACTIVE_PALETTIZED_16BIT, 0);

//
// Program the raster engine timings according to the display requirements.
//
LCDRasterTimingSet(LCD0_BASE, psTimings);

//
// Configure LCD DMA-related parameters.
//
LCDDMAConfigSet(LCD0_BASE, LCD_DMA_BURST_4);

//
// Set up the frame buffer.
//
LCDRasterFrameBufferSet(LCD0_BASE, 0, g_pui32DisplayBuffer,

SIZE_PALETTE + SIZE_IMAGE);

//
// Write the palette to the frame buffer.
//
LCDRasterPaletteSet(LCD0_BASE,

LCD_PALETTE_SRC_24BIT | LCD_PALETTE_TYPE_8BPP,
(uint32_t *)g_pui16Palette, g_pulSrcPalette, 0,
(SIZE_PALETTE / 2));

//
// Fill the frame buffer with black (pixel value 0 corresponds to black
// in the palette we just set).
//
for(ui32Loop = 0; ui32Loop < (SIZE_IMAGE / sizeof(uint32_t)); ui32Loop++)
{

g_pui32DisplayBuffer[ui32Loop] = 0;
}

//
// Enable the LCD interrupts.
//
LCDIntEnable(LCD0_BASE, (LCD_INT_DMA_DONE | LCD_INT_RASTER_FRAME_DONE |

LCD_INT_SYNC_LOST | LCD_INT_AC_BIAS_CNT | LCD_INT_UNDERFLOW |

July 25, 2016 389

LCD Controller (LCD)

LCD_INT_PAL_LOAD | LCD_INT_EOF0 | LCD_INT_EOF1));

IntEnable(INT_LCD0);

//
// Enable the raster output.
//
LCDRasterEnable(LCD0_BASE);

}

//***
//
// This example demonstrates the use of the LCD Controller in raster mode.
//
//***
int
main(void)
{

uint32_t ui32SysClock;

//
// Set the system clock to run from the PLL at 120 MHz.
//
ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |

SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSTEM_VCO_FREQ), SYSTEM_CLOCK_FREQ);

//
// Configure the device pins.
//
PinoutSet();

//
// Enable interrupts in the CPU.
//
IntMasterEnable();

//
// Initialize the display controller and start the raster engine.
//
InitDisplay(ui32SysClock, PIXEL_CLOCK_FREQ, &g_sRasterTimings);

while(1)
{
//
// Other application code...
//

}
}

390 July 25, 2016

Memory Protection Unit (MPU)

19 Memory Protection Unit (MPU)
Introduction .391
API Functions . 391
Programming Example .398

19.1 Introduction

The Memory Protection Unit (MPU) API provides functions to configure the MPU. The MPU is tightly
coupled to the Cortex-M processor core and provides a means to establish access permissions on
regions of memory.

Up to eight memory regions can be defined. Each region has a base address and a size. The size
is specified as a power of 2 between 32 bytes and 4 GB, inclusive. The region’s base address must
be aligned to the size of the region. Each region also has access permissions. Code execution can
be allowed or disallowed for a region. A region can be configured for read-only access, read/write
access, or no access for both privileged and user modes. Access permissions can be used to
create an environment where only kernel or system code can access certain hardware registers or
sections of code.

The MPU creates 8 sub-regions within each region. Any sub-region or combination of sub-regions
can be disabled, allowing creation of “holes” or complex overlaying regions with different permis-
sions. The sub-regions can also be used to create an unaligned beginning or ending of a region by
disabling one or more of the leading or trailing sub-regions.

Once the regions are defined and the MPU is enabled, any access violation of a region causes a
memory management fault, and the fault handler is activated.

This driver is contained in driverlib/mpu.c, with driverlib/mpu.h containing the API dec-
larations for use by applications.

19.2 API Functions

Functions
void MPUDisable (void)
void MPUEnable (uint32_t ui32MPUConfig)
void MPUIntRegister (void (∗pfnHandler)(void))
void MPUIntUnregister (void)
uint32_t MPURegionCountGet (void)
void MPURegionDisable (uint32_t ui32Region)
void MPURegionEnable (uint32_t ui32Region)
void MPURegionGet (uint32_t ui32Region, uint32_t ∗pui32Addr, uint32_t ∗pui32Flags)
void MPURegionSet (uint32_t ui32Region, uint32_t ui32Addr, uint32_t ui32Flags)

July 25, 2016 391

Memory Protection Unit (MPU)

19.2.1 Detailed Description

The MPU APIs provide a means to enable and configure the MPU and memory protection regions.

Generally, the memory protection regions should be defined before enabling the MPU. The regions
can be configured by calling MPURegionSet() once for each region to be configured.

A region that is defined by MPURegionSet() can be initially enabled or disabled. If the region is not
initially enabled, it can be enabled later by calling MPURegionEnable(). An enabled region can be
disabled by calling MPURegionDisable(). When a region is disabled, its configuration is preserved
as long as it is not overwritten. In this case, it can be enabled again with MPURegionEnable()
without the need to reconfigure the region.

Care must be taken when setting up a protection region using MPURegionSet(). The function writes
to multiple registers and is not protected from interrupts. Therefore, it is possible that an interrupt
which accesses a region may occur while that region is in the process of being changed. The
safest way to protect against this is to make sure that a region is always disabled before making
any changes. Otherwise, it is up to the caller to ensure that MPURegionSet() is always called from
within code that cannot be interrupted, or from code that is not be affected if an interrupt occurs
while the region attributes are being changed.

The attributes of a region that have already been programmed can be retrieved and saved using
the MPURegionGet() function. This function is intended to save the attributes in a format that can
be used later to reload the region using the MPURegionSet() function. Note that the enable state
of the region is saved with the attributes and takes effect when the region is reloaded.

When one or more regions are defined, the MPU can be enabled by calling MPUEnable(). This
function turns on the MPU and also defines the behavior in privileged mode and in the Hard Fault
and NMI fault handlers. The MPU can be configured so that when in privileged mode and no re-
gions are enabled, a default memory map is applied. If this feature is not enabled, then a memory
management fault is generated if the MPU is enabled and no regions are configured and enabled.
The MPU can also be set to use a default memory map when in the Hard Fault or NMI handlers, in-
stead of using the configured regions. All of these features are selected when calling MPUEnable().
When the MPU is enabled, it can be disabled by calling MPUDisable().

Finally, if the application is using run-time interrupt registration (see IntRegister()), then the func-
tion MPUIntRegister() can be used to install the fault handler which is called whenever a memory
protection violation occurs. This function also enables the fault handler. If compile-time interrupt
registration is used, then the IntEnable() function with the parameter FAULT_MPU must be used to
enable the memory management fault handler. When the memory management fault handler has
been installed with MPUIntRegister(), it can be removed by calling MPUIntUnregister().

19.2.2 Function Documentation

19.2.2.1 MPUDisable

Disables the MPU for use.

Prototype:
void
MPUDisable(void)

Description:
This function disables the Cortex-M memory protection unit. When the MPU is disabled, the

392 July 25, 2016

Memory Protection Unit (MPU)

default memory map is used and memory management faults are not generated.

Returns:
None.

19.2.2.2 MPUEnable

Enables and configures the MPU for use.

Prototype:
void
MPUEnable(uint32_t ui32MPUConfig)

Parameters:
ui32MPUConfig is the logical OR of the possible configurations.

Description:
This function enables the Cortex-M memory protection unit. It also configures the default be-
havior when in privileged mode and while handling a hard fault or NMI. Prior to enabling the
MPU, at least one region must be set by calling MPURegionSet() or else by enabling the default
region for privileged mode by passing the MPU_CONFIG_PRIV_DEFAULT flag to MPUEn-
able(). Once the MPU is enabled, a memory management fault is generated for memory
access violations.

The ui32MPUConfig parameter should be the logical OR of any of the following:

MPU_CONFIG_PRIV_DEFAULT enables the default memory map when in privileged
mode and when no other regions are defined. If this option is not enabled, then there
must be at least one valid region already defined when the MPU is enabled.
MPU_CONFIG_HARDFLT_NMI enables the MPU while in a hard fault or NMI exception
handler. If this option is not enabled, then the MPU is disabled while in one of these
exception handlers and the default memory map is applied.
MPU_CONFIG_NONE chooses none of the above options. In this case, no default mem-
ory map is provided in privileged mode, and the MPU is not enabled in the fault handlers.

Returns:
None.

19.2.2.3 MPUIntRegister

Registers an interrupt handler for the memory management fault.

Prototype:
void
MPUIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the memory management fault oc-

curs.

July 25, 2016 393

Memory Protection Unit (MPU)

Description:
This function sets and enables the handler to be called when the MPU generates a memory
management fault due to a protection region access violation.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

19.2.2.4 MPUIntUnregister

Unregisters an interrupt handler for the memory management fault.

Prototype:
void
MPUIntUnregister(void)

Description:
This function disables and clears the handler to be called when a memory management fault
occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

19.2.2.5 MPURegionCountGet

Gets the count of regions supported by the MPU.

Prototype:
uint32_t
MPURegionCountGet(void)

Description:
This function is used to get the total number of regions that are supported by the MPU, including
regions that are already programmed.

Returns:
The number of memory protection regions that are available for programming using MPURe-
gionSet().

19.2.2.6 MPURegionDisable

Disables a specific region.

394 July 25, 2016

Memory Protection Unit (MPU)

Prototype:
void
MPURegionDisable(uint32_t ui32Region)

Parameters:
ui32Region is the region number to disable.

Description:
This function is used to disable a previously enabled memory protection region. The region
remains configured if it is not overwritten with another call to MPURegionSet(), and can be
enabled again by calling MPURegionEnable().

Returns:
None.

19.2.2.7 MPURegionEnable

Enables a specific region.

Prototype:
void
MPURegionEnable(uint32_t ui32Region)

Parameters:
ui32Region is the region number to enable.

Description:
This function is used to enable a memory protection region. The region should already be
configured with the MPURegionSet() function. Once enabled, the memory protection rules of
the region are applied and access violations cause a memory management fault.

Returns:
None.

19.2.2.8 MPURegionGet

Gets the current settings for a specific region.

Prototype:
void
MPURegionGet(uint32_t ui32Region,

uint32_t *pui32Addr,
uint32_t *pui32Flags)

Parameters:
ui32Region is the region number to get.
pui32Addr points to storage for the base address of the region.
pui32Flags points to the attribute flags for the region.

July 25, 2016 395

Memory Protection Unit (MPU)

Description:
This function retrieves the configuration of a specific region. The meanings and format of the
parameters is the same as that of the MPURegionSet() function.

This function can be used to save the configuration of a region for later use with the MPURe-
gionSet() function. The region’s enable state is preserved in the attributes that are saved.

Returns:
None.

19.2.2.9 MPURegionSet

Sets up the access rules for a specific region.

Prototype:
void
MPURegionSet(uint32_t ui32Region,

uint32_t ui32Addr,
uint32_t ui32Flags)

Parameters:
ui32Region is the region number to set up.
ui32Addr is the base address of the region. It must be aligned according to the size of the

region specified in ui32Flags.
ui32Flags is a set of flags to define the attributes of the region.

Description:
This function sets up the protection rules for a region. The region has a base address and a
set of attributes including the size. The base address parameter, ui32Addr , must be aligned
according to the size, and the size must be a power of 2.

The ui32Flags parameter is the logical OR of all of the attributes of the region. It is a com-
bination of choices for region size, execute permission, read/write permissions, disabled sub-
regions, and a flag to determine if the region is enabled.

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

396 July 25, 2016

Memory Protection Unit (MPU)

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user modes.
The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, user no access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, user no access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

The region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-regions
can only be used in regions of size 256 bytes or larger. Any of these 8 sub-regions can be
disabled, allowing for creation of “holes” in a region which can be left open, or overlaid by
another region with different attributes. Any of the 8 sub-regions can be disabled with a logical
OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

July 25, 2016 397

Memory Protection Unit (MPU)

As an example, to set a region with the following attributes: size of 32 KB, execution en-
abled, read-only for both privileged and user, one sub-region disabled, and initially enabled;
the ui32Flags parameter would have the following value:

(MPU_RGN_SIZE_32K | MPU_RGN_PERM_EXEC | MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_2 | MPU_RGN_ENABLE)

Note:
This function writes to multiple registers and is not protected from interrupts. It is possible that
an interrupt which accesses a region may occur while that region is in the process of being
changed. The safest way to handle this is to disable a region before changing it. Refer to the
discussion of this in the API Detailed Description section.

Returns:
None.

19.3 Programming Example

The following example sets up a basic set of protection regions to provide the following:

a 28-KB region in flash for read-only code execution

32 KB of RAM for read-write access in privileged and user modes

an additional 8 KB of RAM for use only in privileged mode

1 MB of peripheral space for access only in privileged mode, except for a 128-KB hole that is
not accessible at all, and another 128-KB region that is accessible from user mode

//
// Define a 28-KB region of flash from 0x00000000 to 0x00007000. The
// region is executable, and read-only for both privileged and user
// modes. To set up the region, a 32-KB region (#0) is defined
// starting at address 0, and then a 4 KB hole removed at the end by
// disabling the last sub-region. The region is initially enabled.
//
MPURegionSet(0, 0,

MPU_RGN_SIZE_32K |
MPU_RGN_PERM_EXEC |
MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_7 |
MPU_RGN_ENABLE);

//
// Define a 32-KB region (#1) of RAM from 0x20000000 to 0x20008000. The
// region is not executable, and is read/write access for
// privileged and user modes.
//
MPURegionSet(1, 0x20000000,

MPU_RGN_SIZE_32K |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_RW |
MPU_RGN_ENABLE);

//
// Define an additional 8-KB region (#2) in RAM from 0x20008000 to
// 0x2000A000 that is read/write accessible only from privileged
// mode. This region is initially disabled, to be enabled later.
//

398 July 25, 2016

Memory Protection Unit (MPU)

MPURegionSet(2, 0x20008000,
MPU_RGN_SIZE_8K |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_NO|
MPU_RGN_DISABLE);

//
// Define a region (#3) in peripheral space from 0x40000000 to 0x40100000
// (1 MB). This region is accessible only in privileged mode. There is
// an area from 0x40020000 to 0x40040000 that has no peripherals and is not
// accessible at all. This inaccessible region is created by disabling the
// second sub-region(1) and creating a hole. Further, there is an area
// from 0x40080000 to 0x400A0000 that should be accessible from user mode
// as well. This area is created by disabling the fifth sub-region (4),
// and overlaying an additional region (#4) in that space with the
// appropriate permissions.
//
MPURegionSet(3, 0x40000000,

MPU_RGN_SIZE_1M |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_NO |
MPU_SUB_RGN_DISABLE_1 | MPU_SUB_RGN_DISABLE_4 |
MPU_RGN_ENABLE);

MPURegionSet(4, 0x40080000,
MPU_RGN_SIZE_128K |
MPU_RGN_PERM_NOEXEC |
MPU_RGN_PERM_PRV_RW_USR_RW |
MPU_RGN_ENABLE);

//
// In this example, compile-time registration of interrupts is used, so the
// handler does not have to be registered. However, it must be enabled.
//
IntEnable(FAULT_MPU);

//
// When setting up the regions, region 2 was initially disabled for some
// reason. At some point it must be enabled.
//
MPURegionEnable(2);

//
// Now the MPU is enabled. It is configured so that a default
// map is available in privileged mode if no regions are defined. The MPU
// is not enabled for the hard fault and NMI handlers, meaning that a
// default is not used whenever these handlers are active, effectively
// giving the fault handlers access to all of memory without any
// protection.
//
MPUEnable(MPU_CONFIG_PRIV_DEFAULT);

//
// At this point, the MPU is configured and enabled and if any code causes
// an access violation, the memory management fault occurs.
//

The following example shows how to save and restore region configurations.

//
// The following arrays provide space for saving the address and
// attributes for 4 region configurations.
//
uint32_t ui32RegionAddr[4];
uint32_t ui32RegionAttr[4];

July 25, 2016 399

Memory Protection Unit (MPU)

...

//
// At some point in the system code, we want to save the state of 4 regions
// (0-3).
//
for(ui8Idx = 0; ui8Idx < 4; ui8Idx++)
{

MPURegionGet(ui8Idx, &ui32RegionAddr[ui8Idx], &ui32RegionAttr[ui8Idx]);
}

...

//
// At some other point, the previously saved regions should be restored.
//
for(ui8Idx = 0; ui8Idx < 4; ui8Idx++)
{

MPURegionSet(ui8Idx, ui32RegionAddr[ui8Idx], ui32RegionAttr[ui8Idx]);
}

400 July 25, 2016

1-Wire Master Module

20 1-Wire Master Module
Introduction .401
API Functions . 401
Programming Example .409

20.1 Introduction

The 1-Wire API provides functions to use the 1-Wire Master module in the Tiva microcontroller.

The 1-Wire specification defines a bi-directional serial communication protocol that provides both
power and data over a single wire. The 1-Wire Master module can interface with one or more
slave devices. Typical slave devices include thermometers, mixed-signal devices, memory, and
authentication devices.

Some features of the 1-Wire Master module include:

Support for standard and overdrive speeds, including a late-sample mechanism

Data size transfers of 1, 2, 3, or 4 bytes with sub-byte support

Interrupt capability for transaction pacing and line error

This driver is contained in driverlib/onewire.c, with driverlib/onewire.h containing the
API declarations for use by applications.

20.2 API Functions

Functions
void OneWireBusReset (uint32_t ui32Base)
uint32_t OneWireBusStatus (uint32_t ui32Base)
void OneWireDataGet (uint32_t ui32Base, uint32_t ∗pui32Data)
bool OneWireDataGetNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Data)
void OneWireDMADisable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void OneWireDMAEnable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void OneWireInit (uint32_t ui32Base, uint32_t ui32InitFlags)
void OneWireIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void OneWireIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void OneWireIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void OneWireIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t OneWireIntStatus (uint32_t ui32Base, bool bMasked)
void OneWireIntUnregister (uint32_t ui32Base)
void OneWireTransaction (uint32_t ui32Base, uint32_t ui32OpMode, uint32_t ui32Data,
uint32_t ui32BitCnt)

July 25, 2016 401

1-Wire Master Module

20.2.1 Function Documentation

20.2.1.1 OneWireBusReset

Issues a reset on the 1-Wire bus.

Prototype:
void
OneWireBusReset(uint32_t ui32Base)

Parameters:
ui32Base specifies the base address of the 1-Wire module.

Description:
This function causes the 1-Wire module to generate a reset signal on the 1-Wire bus.

Returns:
None.

20.2.1.2 OneWireBusStatus

Retrieves the 1-Wire bus condition status.

Prototype:
uint32_t
OneWireBusStatus(uint32_t ui32Base)

Parameters:
ui32Base specifies the base address of the 1-Wire module.

Description:
This function returns the 1-Wire bus conditions reported by the 1-Wire module. These condi-
tions could be a logical OR of any of the following:

ONEWIRE_BUS_STATUS_BUSY - A read, write, or reset is active.
ONEWIRE_BUS_STATUS_NO_SLAVE - No slave presence pulses detected.
ONEWIRE_BUS_STATUS_STUCK - The bus is being held low by non-master.

Returns:
Returns the 1-Wire bus conditions if detected else zero.

20.2.1.3 OneWireDataGet

Retrieves data from the 1-Wire interface.

Prototype:
void
OneWireDataGet(uint32_t ui32Base,

uint32_t *pui32Data)

402 July 25, 2016

1-Wire Master Module

Parameters:
ui32Base specifies the base address of the 1-Wire module.
pui32Data is a pointer to storage to hold the read data.

Description:
This function reads data from the 1-Wire module once all active bus operations are completed.
By protocol definition, bit data defaults to a 1. Thus if a slave did not signal any 0-bit data, this
read returns 0xffffffff.

Returns:
None.

20.2.1.4 OneWireDataGetNonBlocking

Retrieves data from the 1-Wire interface.

Prototype:
bool
OneWireDataGetNonBlocking(uint32_t ui32Base,

uint32_t *pui32Data)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
pui32Data is a pointer to storage to hold the read data.

Description:
This function reads data from the 1-Wire module if there are no active operations on the bus.
Otherwise it returns without reading the data from the module.

By protocol definition, bit data defaults to a 1. Thus if a slave did not signal any 0-bit data, this
read returns 0xffffffff.

Returns:
Returns true if a data read was performed, or false if the bus was not idle and no data was
read.

20.2.1.5 OneWireDMADisable

Disables 1-Wire DMA operations.

Prototype:
void
OneWireDMADisable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

Parameters:
ui32Base is the base address of the 1-Wire module.
ui32DMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable 1-Wire DMA features that were enabled by OneWireDMAEn-
able(). The specified 1-Wire DMA features are disabled. The ui32DMAFlags parameter is a
combination of the following:

July 25, 2016 403

1-Wire Master Module

ONEWIRE_DMA_BUS_RESET - Issue a 1-Wire bus reset before starting
ONEWIRE_DMA_OP_READ - Read after each module transaction
ONEWIRE_DMA_OP_MULTI_WRITE - Write after each previous write
ONEWIRE_DMA_OP_MULTI_READ - Read after each previous read
ONEWIRE_DMA_MODE_SG - Start DMA on enable then repeat on each completion
ONEWIRE_DMA_OP_SZ_8 - Bus read/write of 8 bits
ONEWIRE_DMA_OP_SZ_16 - Bus read/write of 16 bits
ONEWIRE_DMA_OP_SZ_32 - Bus read/write of 32 bits

Returns:
None.

20.2.1.6 OneWireDMAEnable

Enables 1-Wire DMA operations.

Prototype:
void
OneWireDMAEnable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

Parameters:
ui32Base is the base address of the 1-Wire module.
ui32DMAFlags is a bit mask of the DMA features to enable.

Description:
This function enables the specified 1-Wire DMA features. The 1-Wire module can be config-
ured for write operations, read operations, small write and read operations, and scatter-gather
support of mixed operations.

The ui32DMAFlags parameter is a combination of the following:

ONEWIRE_DMA_BUS_RESET - Issue a 1-Wire bus reset before starting
ONEWIRE_DMA_OP_READ - Read after each module transaction
ONEWIRE_DMA_OP_MULTI_WRITE - Write after each previous write
ONEWIRE_DMA_OP_MULTI_READ - Read after each previous read
ONEWIRE_DMA_MODE_SG - Start DMA on enable then repeat on each completion
ONEWIRE_DMA_OP_SZ_8 - Bus read/write of 8 bits
ONEWIRE_DMA_OP_SZ_16 - Bus read/write of 16 bits
ONEWIRE_DMA_OP_SZ_32 - Bus read/write of 32 bits

Note:
The uDMA controller must be properly configured before DMA can be used with the 1-Wire
module.

Returns:
None.

404 July 25, 2016

1-Wire Master Module

20.2.1.7 OneWireInit

Initializes the 1-Wire module.

Prototype:
void
OneWireInit(uint32_t ui32Base,

uint32_t ui32InitFlags)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32InitFlags provides the initialization flags.

Description:
This function configures and initializes the 1-Wire interface for use.

The ui32InitFlags parameter is a combination of the following:

ONEWIRE_INIT_SPD_STD - standard speed bus timings
ONEWIRE_INIT_SPD_OD - overdrive speed bus timings
ONEWIRE_INIT_READ_STD - standard read sampling timing
ONEWIRE_INIT_READ_LATE - late read sampling timing
ONEWIRE_INIT_ATR - standard answer-to-reset presence detect
ONEWIRE_INIT_NO_ATR - no answer-to-reset presence detect
ONEWIRE_INIT_STD_POL - normal signal polarity
ONEWIRE_INIT_ALT_POL - alternate (reverse) signal polarity
ONEWIRE_INIT_1_WIRE_CFG - standard 1-Wire (1 data pin) setup
ONEWIRE_INIT_2_WIRE_CFG - alternate 2-Wire (2 data pin) setup

Returns:
None.

20.2.1.8 OneWireIntClear

Clears the 1-Wire module interrupt sources.

Prototype:
void
OneWireIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
This function clears the specified 1-Wire interrupt sources so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupts from being triggered again
immediately upon exit. The ui32IntFlags parameter can be a logical OR of any of the following:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.

July 25, 2016 405

1-Wire Master Module

ONEWIRE_INT_OP_DONE - Read or write operation completed. If a combined write and
read operation was set up, the interrupt signals the read is done.
ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.
ONEWIRE_INT_STUCK - Bus is being held low by non-master.
ONEWIRE_INT_DMA_DONE - DMA operation has completed.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

20.2.1.9 OneWireIntDisable

Disables individual 1-Wire module interrupt sources.

Prototype:
void
OneWireIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32IntFlags is a bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated 1-Wire interrupt sources. The ui32IntFlags parameter can
be a logical OR of any of the following:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.
ONEWIRE_INT_OP_DONE - Read or write operation completed. If a combined write and
read operation was set up, the interrupt signals the read is done.
ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.
ONEWIRE_INT_STUCK - Bus is being held low by non-master.
ONEWIRE_INT_DMA_DONE - DMA operation has completed

Returns:
None.

20.2.1.10 OneWireIntEnable

Enables individual 1-Wire module interrupt sources.

406 July 25, 2016

1-Wire Master Module

Prototype:
void
OneWireIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated 1-Wire interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.
The ui32IntFlags parameter can be a logical OR of any of the following:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.
ONEWIRE_INT_OP_DONE - Read or write operation completed. If a combined write and
read operation was set up, the interrupt signals the read is done.
ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.
ONEWIRE_INT_STUCK - Bus is being held low by non-master.
ONEWIRE_INT_DMA_DONE - DMA operation has completed

Returns:
None.

20.2.1.11 OneWireIntRegister

Registers an interrupt handler for the 1-Wire module.

Prototype:
void
OneWireIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the 1-Wire module.
pfnHandler is a pointer to the function to be called when the 1-Wire interrupt occurs.

Description:
This function sets the handler to be called when a 1-Wire interrupt occurs. This function en-
ables the global interrupt in the interrupt controller; specific 1-Wire interrupts must be enabled
via OneWireIntEnable(). If necessary, it is the interrupt handler’s responsibility to clear the
interrupt source via OneWireIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

July 25, 2016 407

1-Wire Master Module

20.2.1.12 OneWireIntStatus

Gets the current 1-Wire interrupt status.

Prototype:
uint32_t
OneWireIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
bMasked is false if the raw interrupt status is required or true if the masked interrupt status is

required.

Description:
This function returns the interrupt status for the 1-Wire module. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the masked or raw 1-Wire interrupt status, as a bit field of any of the following values:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.

ONEWIRE_INT_OP_DONE - Read or write operation completed.

ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.

ONEWIRE_INT_STUCK - Bus is being held low by non-master.

ONEWIRE_INT_DMA_DONE - DMA operation has completed

20.2.1.13 OneWireIntUnregister

Unregisters an interrupt handler for the 1-Wire module.

Prototype:
void
OneWireIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the 1-Wire module.

Description:
This function clears the handler to be called when an 1-Wire interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

408 July 25, 2016

1-Wire Master Module

20.2.1.14 OneWireTransaction

Performs a 1-Wire protocol transaction on the bus.

Prototype:
void
OneWireTransaction(uint32_t ui32Base,

uint32_t ui32OpMode,
uint32_t ui32Data,
uint32_t ui32BitCnt)

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32OpMode sets the transaction type.
ui32Data is the data for a write operation.
ui32BitCnt specifies the number of valid bits (1-32) for the operation.

Description:
This function performs a 1-Wire protocol transaction, read and/or write, on the bus. The appli-
cation should confirm the bus is idle before starting a read or write transaction.

The ui32OpMode defines the activity for the bus operations and is a logical OR of the following:

ONEWIRE_OP_RESET - Indicates the operation should be started with a bus reset.
ONEWIRE_OP_WRITE - A write operation
ONEWIRE_OP_READ - A read operation

Note:
If both a read and write operation are requested, the write will be performed prior to the read.

Returns:
None.

20.3 Programming Example

The following example sets up the 1-Wire Master module and sends a command sequence over
a single slave device connection. A connection with multiple slave devices would require enumer-
ation and selection of an individual device. This example assumes that the interrupt handler was
allocated statically in the vector table and the GPIOs are properly configured.

//
// Enable the 1-Wire peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_ONEWIRE0);

//
// Wait for the 1-Wire module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_ONEWIRE0))
{
}

//

July 25, 2016 409

1-Wire Master Module

// Initialize the module to use standard speed and read distance.
//
OneWireInit(ONEWIRE0_BASE, (ONEWIRE_INIT_READ_STD | ONEWIRE_INIT_SPD_STD));

//
// Clear any pending interrupts.
//
OneWireIntClear(ONEWIRE0_BASE, (ONEWIRE_INT_STUCK | ONEWIRE_INT_NO_SLAVE |

ONEWIRE_INT_RESET_DONE |
ONEWIRE_INT_OP_DONE));

//
// Enable the interrupts for operation done and the stuck bus error
// condition.
//
OneWireIntEnable(ONEWIRE0_BASE, (ONEWIRE_INT_OP_DONE |

ONEWIRE_INT_BUS_STUCK));
IntEnable(INT_ONEWIRE0);

//
// Setup a four byte sequence and a bit count.
//
ulData = ((0x01 << 24) | (0x12 << 16) | (0x10 << 8) | 0xcc;
ulBitCount = sizeof(ulData) * 8;

//
// Initiate a Reset and Write operation on the 1-Wire bus.
//
OneWireTransaction(ONEWIRE0_BASE, (ONEWIRE_OP_RESET | ONEWIRE_OP_WRITE),

ulData, ulBitCount);

410 July 25, 2016

Pulse Width Modulator (PWM)

21 Pulse Width Modulator (PWM)
Introduction .411
API Functions . 411
Programming Example .433

21.1 Introduction

Each instance of a Tiva PWM module provides up to four instances of a PWM generator block, and
an output control block. Each generator block has two PWM output signals, which can be operated
independently or as a pair of signals with dead band delays inserted. Each generator block also
has an interrupt output and a trigger output. The control block determines the polarity of the PWM
signals and which signals are passed through to the pins.

Some of the features of the Tiva PWM module are:

Up to four generator blocks, each containing

• One 16-bit down or up/down counter
• Two comparators
• PWM generator
• Dead band generator

Control block

• PWM output enable
• Output polarity control
• Synchronization
• Fault handling
• Interrupt status

This driver is contained in driverlib/pwm.c, with driverlib/pwm.h containing the API dec-
larations for use by applications.

21.2 API Functions

Functions
uint32_t PWMClockGet (uint32_t ui32Base)
void PWMClockSet (uint32_t ui32Base, uint32_t ui32Config)
void PWMDeadBandDisable (uint32_t ui32Base, uint32_t ui32Gen)
void PWMDeadBandEnable (uint32_t ui32Base, uint32_t ui32Gen, uint16_t ui16Rise, uint16_t
ui16Fall)
void PWMFaultIntClear (uint32_t ui32Base)
void PWMFaultIntClearExt (uint32_t ui32Base, uint32_t ui32FaultInts)
void PWMFaultIntRegister (uint32_t ui32Base, void (∗pfnIntHandler)(void))
void PWMFaultIntUnregister (uint32_t ui32Base)

July 25, 2016 411

Pulse Width Modulator (PWM)

void PWMGenConfigure (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Config)
void PWMGenDisable (uint32_t ui32Base, uint32_t ui32Gen)
void PWMGenEnable (uint32_t ui32Base, uint32_t ui32Gen)
void PWMGenFaultClear (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Group, uint32_t
ui32FaultTriggers)
void PWMGenFaultConfigure (uint32_t ui32Base, uint32_t ui32Gen, uint32_t
ui32MinFaultPeriod, uint32_t ui32FaultSenses)
uint32_t PWMGenFaultStatus (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Group)
uint32_t PWMGenFaultTriggerGet (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Group)
void PWMGenFaultTriggerSet (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Group,
uint32_t ui32FaultTriggers)
void PWMGenIntClear (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Ints)
void PWMGenIntRegister (uint32_t ui32Base, uint32_t ui32Gen, void (∗pfnIntHandler)(void))
uint32_t PWMGenIntStatus (uint32_t ui32Base, uint32_t ui32Gen, bool bMasked)
void PWMGenIntTrigDisable (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32IntTrig)
void PWMGenIntTrigEnable (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32IntTrig)
void PWMGenIntUnregister (uint32_t ui32Base, uint32_t ui32Gen)
uint32_t PWMGenPeriodGet (uint32_t ui32Base, uint32_t ui32Gen)
void PWMGenPeriodSet (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Period)
void PWMIntDisable (uint32_t ui32Base, uint32_t ui32GenFault)
void PWMIntEnable (uint32_t ui32Base, uint32_t ui32GenFault)
uint32_t PWMIntStatus (uint32_t ui32Base, bool bMasked)
void PWMOutputFault (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bFaultSuppress)
void PWMOutputFaultLevel (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bDriveHigh)
void PWMOutputInvert (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bInvert)
void PWMOutputState (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bEnable)
void PWMOutputUpdateMode (uint32_t ui32Base, uint32_t ui32PWMOutBits, uint32_t
ui32Mode)
uint32_t PWMPulseWidthGet (uint32_t ui32Base, uint32_t ui32PWMOut)
void PWMPulseWidthSet (uint32_t ui32Base, uint32_t ui32PWMOut, uint32_t ui32Width)
void PWMSyncTimeBase (uint32_t ui32Base, uint32_t ui32GenBits)
void PWMSyncUpdate (uint32_t ui32Base, uint32_t ui32GenBits)

21.2.1 Detailed Description

These functions perform high-level operations on PWM modules.

The following functions provide the user with a way to configure the PWM for the most common
operations, such as setting the period, generating left- and center-aligned pulses, modifying the
pulse width, and controlling interrupts, triggers, and output characteristics. However, the PWM
module is very versatile and can be configured in a number of different ways, many of which are
beyond the scope of this API. In order to fully exploit the many features of the PWM module, users
are advised to use register access macros.

When discussing the various components of a PWM module, this API uses the following labeling
convention:

The generator blocks are called Gen0, Gen1, Gen2 and Gen3.

412 July 25, 2016

Pulse Width Modulator (PWM)

The two PWM output signals associated with each generator block are called OutA and OutB.

The output signals are called PWM0, PWM1, PWM2, PWM3, PWM4, PWM5, PWM6 and
PWM7.

PWM0 and PWM1 are associated with Gen0, PWM2 and PWM3 are associated with Gen1,
PWM4 and PWM5 are associated with Gen2 and PWM6 and PWM7 are associated with
Gen3.

Also, as a simplifying assumption for this API, comparator A for each generator block is used ex-
clusively to adjust the pulse width of the even numbered PWM outputs (PWM0, PWM2, PWM4 and
PWM6). In addition, comparator B is used exclusively for the odd numbered PWM outputs (PWM1,
PWM3, PWM5 and PWM7).

Note that the number of generators and PWM outputs supported varies depending upon the Tiva
part in use. Please consult the datasheet for the part you are using to determine whether it supports
1 or 2 modules with 3 or 4 generators each and 6 or 8 outputs each.

21.2.2 Function Documentation

21.2.2.1 PWMClockGet

Gets the current PWM clock configuration.

Prototype:
uint32_t
PWMClockGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the PWM module.

Description:
This function returns the current PWM clock configuration.

Note:
This function should not be used with TM4C123 devices. For TM4C123 devices, the SysCtlP-
WMClockGet() function should be used.

Returns:
Returns the current PWM clock configuration; is one of PWM_SYSCLK_DIV_1,
PWM_SYSCLK_DIV_2, PWM_SYSCLK_DIV_4, PWM_SYSCLK_DIV_8,
PWM_SYSCLK_DIV_16, PWM_SYSCLK_DIV_32, or PWM_SYSCLK_DIV_64.

21.2.2.2 PWMClockSet

Sets the PWM clock configuration.

Prototype:
void
PWMClockSet(uint32_t ui32Base,

uint32_t ui32Config)

July 25, 2016 413

Pulse Width Modulator (PWM)

Parameters:
ui32Base is the base address of the PWM module.
ui32Config is the configuration for the PWM clock; it must be one of PWM_SYSCLK_DIV_1,

PWM_SYSCLK_DIV_2, PWM_SYSCLK_DIV_4, PWM_SYSCLK_DIV_8,
PWM_SYSCLK_DIV_16, PWM_SYSCLK_DIV_32, or PWM_SYSCLK_DIV_64.

Description:
This function sets the PWM clock divider as the PWM clock source. It also configures the clock
frequency to the PWM module as a division of the system clock. This clock is used by the
PWM module to generate PWM signals; its rate forms the basis for all PWM signals.

Note:
This function should not be used with TM4C123 devices. For TM4C123 devices, the SysCtlP-
WMClockGet() function should be used.

The clocking of the PWM is dependent upon the system clock rate as configured by SysCtl-
ClockFreqSet().

Returns:
None.

21.2.2.3 PWMDeadBandDisable

Disables the PWM dead band output.

Prototype:
void
PWMDeadBandDisable(uint32_t ui32Base,

uint32_t ui32Gen)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to modify. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function disables the dead band mode for the specified PWM generator. Doing so decou-
ples the OutA and OutB signals.

Returns:
None.

21.2.2.4 PWMDeadBandEnable

Enables the PWM dead band output and sets the dead band delays.

Prototype:
void
PWMDeadBandEnable(uint32_t ui32Base,

uint32_t ui32Gen,
uint16_t ui16Rise,
uint16_t ui16Fall)

414 July 25, 2016

Pulse Width Modulator (PWM)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to modify. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui16Rise specifies the width of delay from the rising edge.
ui16Fall specifies the width of delay from the falling edge.

Description:
This function sets the dead bands for the specified PWM generator, where the dead bands
are defined as the number of PWM clock ticks from the rising or falling edge of the generator’s
OutA signal. Note that this function causes the coupling of OutB to OutA.

Returns:
None.

21.2.2.5 PWMFaultIntClear

Clears the fault interrupt for a PWM module.

Prototype:
void
PWMFaultIntClear(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the PWM module.

Description:
This function clears the fault interrupt by writing to the appropriate bit of the interrupt status
register for the selected PWM module.

This function clears only the FAULT0 interrupt and is retained for backwards compatibility. It
is recommended that PWMFaultIntClearExt() be used instead because it supports all fault
interrupts supported on devices with and without extended PWM fault handling support.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

21.2.2.6 PWMFaultIntClearExt

Clears the fault interrupt for a PWM module.

July 25, 2016 415

Pulse Width Modulator (PWM)

Prototype:
void
PWMFaultIntClearExt(uint32_t ui32Base,

uint32_t ui32FaultInts)

Parameters:
ui32Base is the base address of the PWM module.
ui32FaultInts specifies the fault interrupts to clear.

Description:
This function clears one or more fault interrupts by writing to the appropriate bit of the PWM
interrupt status register. The parameter ui32FaultInts must be the logical OR of any of
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

The fault interrupts are derived by performing a logical OR of each of the configured fault
trigger signals for a given generator. Therefore, these interrupts are not directly related to the
four possible FAULTn inputs to the device but indicate that a fault has been signaled to one of
the four possible PWM generators.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

21.2.2.7 PWMFaultIntRegister

Registers an interrupt handler for a fault condition detected in a PWM module.

Prototype:
void
PWMFaultIntRegister(uint32_t ui32Base,

void (*pfnIntHandler)(void))

Parameters:
ui32Base is the base address of the PWM module.
pfnIntHandler is a pointer to the function to be called when the PWM fault interrupt occurs.

Description:
This function ensures that the interrupt handler specified by pfnIntHandler is called when a
fault interrupt is detected for the selected PWM module. This function also enables the PWM
fault interrupt in the NVIC; the PWM fault interrupt must also be enabled at the module level
using PWMIntEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

416 July 25, 2016

Pulse Width Modulator (PWM)

21.2.2.8 PWMFaultIntUnregister

Removes the PWM fault condition interrupt handler.

Prototype:
void
PWMFaultIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the PWM module.

Description:
This function removes the interrupt handler for a PWM fault interrupt from the selected PWM
module. This function also disables the PWM fault interrupt in the NVIC; the PWM fault interrupt
must also be disabled at the module level using PWMIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

21.2.2.9 PWMGenConfigure

Configures a PWM generator.

Prototype:
void
PWMGenConfigure(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to configure. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Config is the configuration for the PWM generator.

Description:
This function is used to set the mode of operation for a PWM generator. The counting mode,
synchronization mode, and debug behavior are all configured. After configuration, the genera-
tor is left in the disabled state.

A PWM generator can count in two different modes: count down mode or count up/down mode.
In count down mode, it counts from a value down to zero, and then resets to the preset value,
producing left-aligned PWM signals (that is, the rising edge of the two PWM signals produced
by the generator occur at the same time). In count up/down mode, it counts up from zero to
the preset value, counts back down to zero, and then repeats the process, producing center-
aligned PWM signals (that is, the middle of the high/low period of the PWM signals produced
by the generator occurs at the same time).

When the PWM generator parameters (period and pulse width) are modified, their effect on
the output PWM signals can be delayed. In synchronous mode, the parameter updates are

July 25, 2016 417

Pulse Width Modulator (PWM)

not applied until a synchronization event occurs. This mode allows multiple parameters to be
modified and take effect simultaneously, instead of one at a time. Additionally, parameters to
multiple PWM generators in synchronous mode can be updated simultaneously, allowing them
to be treated as if they were a unified generator. In non-synchronous mode, the parameter
updates are not delayed until a synchronization event. In either mode, the parameter updates
only occur when the counter is at zero to help prevent oddly formed PWM signals during the
update (that is, a PWM pulse that is too short or too long).

The PWM generator can either pause or continue running when the processor is stopped via
the debugger. If configured to pause, it continues to count until it reaches zero, at which point
it pauses until the processor is restarted. If configured to continue running, it keeps counting
as if nothing had happened.

The ui32Config parameter contains the desired configuration. It is the logical OR of the follow-
ing:

PWM_GEN_MODE_DOWN or PWM_GEN_MODE_UP_DOWN to specify the counting
mode
PWM_GEN_MODE_SYNC or PWM_GEN_MODE_NO_SYNC to specify the counter load
and comparator update synchronization mode
PWM_GEN_MODE_DBG_RUN or PWM_GEN_MODE_DBG_STOP to specify the debug
behavior
PWM_GEN_MODE_GEN_NO_SYNC, PWM_GEN_MODE_GEN_SYNC_LOCAL, or
PWM_GEN_MODE_GEN_SYNC_GLOBAL to specify the update synchronization mode
for generator counting mode changes
PWM_GEN_MODE_DB_NO_SYNC, PWM_GEN_MODE_DB_SYNC_LOCAL, or
PWM_GEN_MODE_DB_SYNC_GLOBAL to specify the deadband parameter syn-
chronization mode
PWM_GEN_MODE_FAULT_LATCHED or PWM_GEN_MODE_FAULT_UNLATCHED to
specify whether fault conditions are latched or not
PWM_GEN_MODE_FAULT_MINPER or PWM_GEN_MODE_FAULT_NO_MINPER to
specify whether minimum fault period support is required
PWM_GEN_MODE_FAULT_EXT or PWM_GEN_MODE_FAULT_LEGACY to specify
whether extended fault source selection support is enabled or not

Setting PWM_GEN_MODE_FAULT_MINPER allows an application to set the minimum dura-
tion of a PWM fault signal. Faults are signaled for at least this time even if the external fault
pin deasserts earlier. Care should be taken when using this mode because during the fault
signal period, the fault interrupt from the PWM generator remains asserted. The fault interrupt
handler may, therefore, reenter immediately if it exits prior to expiration of the fault timer.

Note:
Changes to the counter mode affect the period of the PWM signals produced. PWMGenPeri-
odSet() and PWMPulseWidthSet() should be called after any changes to the counter mode of
a generator.

Returns:
None.

21.2.2.10 PWMGenDisable

Disables the timer/counter for a PWM generator block.

418 July 25, 2016

Pulse Width Modulator (PWM)

Prototype:
void
PWMGenDisable(uint32_t ui32Base,

uint32_t ui32Gen)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to be disabled. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function blocks the PWM clock from driving the timer/counter for the specified generator
block.

Returns:
None.

21.2.2.11 PWMGenEnable

Enables the timer/counter for a PWM generator block.

Prototype:
void
PWMGenEnable(uint32_t ui32Base,

uint32_t ui32Gen)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to be enabled. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function allows the PWM clock to drive the timer/counter for the specified generator block.

Returns:
None.

21.2.2.12 PWMGenFaultClear

Clears one or more latched fault triggers for a given PWM generator.

Prototype:
void
PWMGenFaultClear(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group,
uint32_t ui32FaultTriggers)

Parameters:
ui32Base is the base address of the PWM module.

July 25, 2016 419

Pulse Width Modulator (PWM)

ui32Gen is the PWM generator for which fault trigger states are being queried. This parameter
must be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

ui32Group indicates the subset of faults that are being queried. This parameter must be
PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

ui32FaultTriggers is the set of fault triggers which are to be cleared.

Description:
This function allows an application to clear the fault triggers for a given PWM generator.
This function is only required if PWMGenConfigure() has previously been called with flag
PWM_GEN_MODE_FAULT_LATCHED in parameter ui32Config.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

21.2.2.13 PWMGenFaultConfigure

Configures the minimum fault period and fault pin senses for a given PWM generator.

Prototype:
void
PWMGenFaultConfigure(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32MinFaultPeriod,
uint32_t ui32FaultSenses)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault configuration is being set. This function must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32MinFaultPeriod is the minimum fault active period expressed in PWM clock cycles.
ui32FaultSenses indicates which sense of each FAULT input should be considered the “as-

serted” state. Valid values are logical OR combinations of PWM_FAULTn_SENSE_HIGH
and PWM_FAULTn_SENSE_LOW.

Description:
This function configures the minimum fault period for a given generator along with the
sense of each of the 4 possible fault inputs. The minimum fault period is expressed
in PWM clock cycles and takes effect only if PWMGenConfigure() is called with flag
PWM_GEN_MODE_FAULT_PER set in the ui32Config parameter. When a fault input is as-
serted, the minimum fault period timer ensures that it remains asserted for at least the number
of clock cycles specified.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

420 July 25, 2016

Pulse Width Modulator (PWM)

21.2.2.14 PWMGenFaultStatus

Returns the current state of the fault triggers for a given PWM generator.

Prototype:
uint32_t
PWMGenFaultStatus(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault trigger states are being queried. This parameter

must be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Group indicates the subset of faults that are being queried. This parameter must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

Description:
This function allows an application to query the current state of each of the fault trigger inputs to
a given PWM generator. The current state of each fault trigger input is returned unless PWM-
GenConfigure() has previously been called with flag PWM_GEN_MODE_FAULT_LATCHED in
the ui32Config parameter, in which case the returned status is the latched fault trigger status.

If latched faults are configured, the application must call PWMGenFaultClear() to clear each
trigger.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
Returns the current state of the fault triggers for the given PWM generator. A set bit indicates
that the associated trigger is active. For PWM_FAULT_GROUP_0, the returned value is
a logical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2,
or PWM_FAULT_FAULT3. For PWM_FAULT_GROUP_1, the return value is the log-
ical OR of PWM_FAULT_DCMP0, PWM_FAULT_DCMP1, PWM_FAULT_DCMP2,
PWM_FAULT_DCMP3, PWM_FAULT_DCMP4, PWM_FAULT_DCMP5,
PWM_FAULT_DCMP6, or PWM_FAULT_DCMP7.

21.2.2.15 PWMGenFaultTriggerGet

Returns the set of fault triggers currently configured for a given PWM generator.

Prototype:
uint32_t
PWMGenFaultTriggerGet(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault triggers are being queried. This parameter must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

July 25, 2016 421

Pulse Width Modulator (PWM)

ui32Group indicates the subset of faults that are being queried. This parameter must be
PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

Description:
This function allows an application to query the current set of inputs that contribute to the
generation of a fault condition to a given PWM generator.

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
Returns the current fault triggers configured for the fault group provided. For
PWM_FAULT_GROUP_0, the returned value is a logical OR of PWM_FAULT_FAULT0,
PWM_FAULT_FAULT1, PWM_FAULT_FAULT2, or PWM_FAULT_FAULT3. For
PWM_FAULT_GROUP_1, the return value is the logical OR of PWM_FAULT_DCMP0,
PWM_FAULT_DCMP1, PWM_FAULT_DCMP2, PWM_FAULT_DCMP3,
PWM_FAULT_DCMP4, PWM_FAULT_DCMP5, PWM_FAULT_DCMP6, or
PWM_FAULT_DCMP7.

21.2.2.16 PWMGenFaultTriggerSet

Configures the set of fault triggers for a given PWM generator.

Prototype:
void
PWMGenFaultTriggerSet(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group,
uint32_t ui32FaultTriggers)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault triggers are being set. This parameter must be

one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Group indicates the subset of possible faults that are to be configured. This parameter

must be PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.
ui32FaultTriggers defines the set of inputs that are to contribute towards generation of the

fault signal to the given PWM generator. For PWM_FAULT_GROUP_0, this is the log-
ical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2,
or PWM_FAULT_FAULT3. For PWM_FAULT_GROUP_1, this is the logical
OR of PWM_FAULT_DCMP0, PWM_FAULT_DCMP1, PWM_FAULT_DCMP2,
PWM_FAULT_DCMP3, PWM_FAULT_DCMP4, PWM_FAULT_DCMP5,
PWM_FAULT_DCMP6, or PWM_FAULT_DCMP7.

Description:
This function allows selection of the set of fault inputs that is combined to generate a fault
condition to a given PWM generator. By default, all generators use only FAULT0 (for backwards
compatibility) but if PWMGenConfigure() is called with flag PWM_GEN_MODE_FAULT_SRC
in the ui32Config parameter, extended fault handling is enabled and this function must be called
to configure the fault triggers.

422 July 25, 2016

Pulse Width Modulator (PWM)

The fault signal to the PWM generator is generated by ORing together each of the signals
specified in the ui32FaultTriggers parameter after having adjusted the sense of each FAULTn
input based on the configuration previously set using a call to PWMGenFaultConfigure().

Note:
This function is only available on devices supporting extended PWM fault handling.

Returns:
None.

21.2.2.17 PWMGenIntClear

Clears the specified interrupt(s) for the specified PWM generator block.

Prototype:
void
PWMGenIntClear(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Ints)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to query. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Ints specifies the interrupts to be cleared.

Description:
This function clears the specified interrupt(s) by writing a 1 to the specified bits of the interrupt
status register for the specified PWM generator. The ui32Ints parameter is the logical OR of
PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU, PWM_INT_CNT_AD,
PWM_INT_CNT_BU, or PWM_INT_CNT_BD.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

21.2.2.18 PWMGenIntRegister

Registers an interrupt handler for the specified PWM generator block.

Prototype:
void
PWMGenIntRegister(uint32_t ui32Base,

July 25, 2016 423

Pulse Width Modulator (PWM)

uint32_t ui32Gen,
void (*pfnIntHandler)(void))

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator in question. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
pfnIntHandler is a pointer to the function to be called when the PWM generator interrupt

occurs.

Description:
This function ensures that the interrupt handler specified by pfnIntHandler is called when an
interrupt is detected for the specified PWM generator block. This function also enables the cor-
responding PWM generator interrupt in the interrupt controller; individual generator interrupts
and interrupt sources must be enabled with PWMIntEnable() and PWMGenIntTrigEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

21.2.2.19 PWMGenIntStatus

Gets interrupt status for the specified PWM generator block.

Prototype:
uint32_t
PWMGenIntStatus(uint32_t ui32Base,

uint32_t ui32Gen,
bool bMasked)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to query. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the contents of the interrupt status register or the contents of the raw interrupt status
register for the specified PWM generator.

21.2.2.20 PWMGenIntTrigDisable

Disables interrupts for the specified PWM generator block.

424 July 25, 2016

Pulse Width Modulator (PWM)

Prototype:
void
PWMGenIntTrigDisable(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32IntTrig)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to have interrupts and triggers disabled. This parameter must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32IntTrig specifies the interrupts and triggers to be disabled.

Description:
This function masks the specified interrupt(s) and trigger(s) by clearing the specified bits of the
interrupt/trigger enable register for the specified PWM generator. The ui32IntTrig parameter
is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

21.2.2.21 PWMGenIntTrigEnable

Enables interrupts and triggers for the specified PWM generator block.

Prototype:
void
PWMGenIntTrigEnable(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32IntTrig)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to have interrupts and triggers enabled. This parameter must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32IntTrig specifies the interrupts and triggers to be enabled.

Description:
This function unmasks the specified interrupt(s) and trigger(s) by setting the specified bits of
the interrupt/trigger enable register for the specified PWM generator. The ui32IntTrig parame-
ter is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

July 25, 2016 425

Pulse Width Modulator (PWM)

21.2.2.22 PWMGenIntUnregister

Removes an interrupt handler for the specified PWM generator block.

Prototype:
void
PWMGenIntUnregister(uint32_t ui32Base,

uint32_t ui32Gen)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator in question. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function unregisters the interrupt handler for the specified PWM generator block. This
function also disables the corresponding PWM generator interrupt in the interrupt controller;
individual generator interrupts and interrupt sources must be disabled with PWMIntDisable()
and PWMGenIntTrigDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

21.2.2.23 PWMGenPeriodGet

Gets the period of a PWM generator block.

Prototype:
uint32_t
PWMGenPeriodGet(uint32_t ui32Base,

uint32_t ui32Gen)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to query. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function gets the period of the specified PWM generator block. The period of the generator
block is defined as the number of PWM clock ticks between pulses on the generator block zero
signal.

If the update of the counter for the specified PWM generator has yet to be completed, the
value returned may not be the active period. The value returned is the programmed period,
measured in PWM clock ticks.

Returns:
Returns the programmed period of the specified generator block in PWM clock ticks.

426 July 25, 2016

Pulse Width Modulator (PWM)

21.2.2.24 PWMGenPeriodSet

Sets the period of a PWM generator.

Prototype:
void
PWMGenPeriodSet(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Period)

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to be modified. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Period specifies the period of PWM generator output, measured in clock ticks.

Description:
This function sets the period of the specified PWM generator block, where the period of the
generator block is defined as the number of PWM clock ticks between pulses on the generator
block zero signal.

Note:
Any subsequent calls made to this function before an update occurs cause the previous values
to be overwritten.

Returns:
None.

21.2.2.25 PWMIntDisable

Disables generator and fault interrupts for a PWM module.

Prototype:
void
PWMIntDisable(uint32_t ui32Base,

uint32_t ui32GenFault)

Parameters:
ui32Base is the base address of the PWM module.
ui32GenFault contains the interrupts to be disabled. This parameter must be a logical OR of

any of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
This function masks the specified interrupt(s) by clearing the specified bits of the interrupt
enable register for the selected PWM module.

Returns:
None.

July 25, 2016 427

Pulse Width Modulator (PWM)

21.2.2.26 PWMIntEnable

Enables generator and fault interrupts for a PWM module.

Prototype:
void
PWMIntEnable(uint32_t ui32Base,

uint32_t ui32GenFault)

Parameters:
ui32Base is the base address of the PWM module.
ui32GenFault contains the interrupts to be enabled. This parameter must be a logical OR of

any of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
This function unmasks the specified interrupt(s) by setting the specified bits of the interrupt
enable register for the selected PWM module.

Returns:
None.

21.2.2.27 PWMIntStatus

Gets the interrupt status for a PWM module.

Prototype:
uint32_t
PWMIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the PWM module.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
The current interrupt status, enumerated as a bit field of PWM_INT_GEN_0,
PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3, PWM_INT_FAULT0,
PWM_INT_FAULT1, PWM_INT_FAULT2, and PWM_INT_FAULT3.

21.2.2.28 PWMOutputFault

Specifies the state of PWM outputs in response to a fault condition.

Prototype:
void
PWMOutputFault(uint32_t ui32Base,

428 July 25, 2016

Pulse Width Modulator (PWM)

uint32_t ui32PWMOutBits,
bool bFaultSuppress)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bFaultSuppress determines if the signal is suppressed or passed through during an active
fault condition.

Description:
This function sets the fault handling characteristics of the selected PWM outputs. The outputs
are selected using the parameter ui32PWMOutBits. The parameter bFaultSuppress deter-
mines the fault handling characteristics for the selected outputs. If bFaultSuppress is true,
then the selected outputs are made inactive. If bFaultSuppress is false, then the selected
outputs are unaffected by the detected fault.

On devices supporting extended PWM fault handling, the state the affected output pins are
driven to can be configured with PWMOutputFaultLevel(). If not configured, or if the device
does not support extended PWM fault handling, affected outputs are driven low on a fault
condition.

Returns:
None.

21.2.2.29 PWMOutputFaultLevel

Specifies the level of PWM outputs suppressed in response to a fault condition.

Prototype:
void
PWMOutputFaultLevel(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bDriveHigh)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bDriveHigh determines if the signal is driven high or low during an active fault condition.

Description:
This function determines whether a PWM output pin that is suppressed in response to a
fault condition is driven high or low. The affected outputs are selected using the parameter
ui32PWMOutBits. The parameter bDriveHigh determines the output level for the pins identi-
fied by ui32PWMOutBits. If bDriveHigh is true then the selected outputs are driven high when
a fault is detected. If it is false, the pins are driven low.

In a fault condition, pins which have not been configured to be suppressed via a call to PW-
MOutputFault() are unaffected by this function.

July 25, 2016 429

Pulse Width Modulator (PWM)

Note:
This function is available only on devices which support extended PWM fault handling.

Returns:
None.

21.2.2.30 PWMOutputInvert

Selects the inversion mode for PWM outputs.

Prototype:
void
PWMOutputInvert(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bInvert)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bInvert determines if the signal is inverted or passed through.

Description:
This function is used to select the inversion mode for the selected PWM outputs. The outputs
are selected using the parameter ui32PWMOutBits. The parameter bInvert determines the
inversion mode for the selected outputs. If bInvert is true, this function causes the specified
PWM output signals to be inverted or made active low. If bInvert is false, the specified outputs
are passed through as is or made active high.

Returns:
None.

21.2.2.31 PWMOutputState

Enables or disables PWM outputs.

Prototype:
void
PWMOutputState(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bEnable)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bEnable determines if the signal is enabled or disabled.

430 July 25, 2016

Pulse Width Modulator (PWM)

Description:
This function enables or disables the selected PWM outputs. The outputs are selected using
the parameter ui32PWMOutBits. The parameter bEnable determines the state of the selected
outputs. If bEnable is true, then the selected PWM outputs are enabled, or placed in the active
state. If bEnable is false, then the selected outputs are disabled or placed in the inactive state.

Returns:
None.

21.2.2.32 PWMOutputUpdateMode

Sets the update mode or synchronization mode to the PWM outputs.

Prototype:
void
PWMOutputUpdateMode(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
uint32_t ui32Mode)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

ui32Mode specifies the enable update mode to use when enabling or disabling PWM outputs.

Description:
This function sets one of three possible update modes to enable or disable the requested PWM
outputs. The ui32Mode parameter controls when changes made via calls to PWMOutputState()
take effect. Possible values are:

PWM_OUTPUT_MODE_NO_SYNC, which enables/disables changes to take effect imme-
diately.
PWM_OUTPUT_MODE_SYNC_LOCAL, which causes changes to take effect when the
local PWM generator’s count next reaches 0.
PWM_OUTPUT_MODE_SYNC_GLOBAL, which causes changes to take effect when the
local PWM generator’s count next reaches 0 following a call to PWMSyncUpdate() which
specifies the same generator in its ui32GenBits parameter.

Note:
This function is only available on Snowflake class devices.

Returns:
None.

21.2.2.33 PWMPulseWidthGet

Gets the pulse width of a PWM output.

July 25, 2016 431

Pulse Width Modulator (PWM)

Prototype:
uint32_t
PWMPulseWidthGet(uint32_t ui32Base,

uint32_t ui32PWMOut)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOut is the PWM output to query. This parameter must be one of PWM_OUT_0,

PWM_OUT_1, PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5,
PWM_OUT_6, or PWM_OUT_7.

Description:
This function gets the currently programmed pulse width for the specified PWM output. If the
update of the comparator for the specified output has yet to be completed, the value returned
may not be the active pulse width. The value returned is the programmed pulse width, mea-
sured in PWM clock ticks.

Returns:
Returns the width of the pulse in PWM clock ticks.

21.2.2.34 PWMPulseWidthSet

Sets the pulse width for the specified PWM output.

Prototype:
void
PWMPulseWidthSet(uint32_t ui32Base,

uint32_t ui32PWMOut,
uint32_t ui32Width)

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOut is the PWM output to modify. This parameter must be one of PWM_OUT_0,

PWM_OUT_1, PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5,
PWM_OUT_6, or PWM_OUT_7.

ui32Width specifies the width of the positive portion of the pulse.

Description:
This function sets the pulse width for the specified PWM output, where the pulse width is
defined as the number of PWM clock ticks.

Note:
Any subsequent calls made to this function before an update occurs cause the previous values
to be overwritten.

Returns:
None.

21.2.2.35 PWMSyncTimeBase

Synchronizes the counters in one or multiple PWM generator blocks.

432 July 25, 2016

Pulse Width Modulator (PWM)

Prototype:
void
PWMSyncTimeBase(uint32_t ui32Base,

uint32_t ui32GenBits)

Parameters:
ui32Base is the base address of the PWM module.
ui32GenBits are the PWM generator blocks to be synchronized. This parameter must be

the logical OR of any of PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or
PWM_GEN_3_BIT.

Description:
For the selected PWM module, this function synchronizes the time base of the generator blocks
by causing the specified generator counters to be reset to zero.

Returns:
None.

21.2.2.36 PWMSyncUpdate

Synchronizes all pending updates.

Prototype:
void
PWMSyncUpdate(uint32_t ui32Base,

uint32_t ui32GenBits)

Parameters:
ui32Base is the base address of the PWM module.
ui32GenBits are the PWM generator blocks to be updated. This parameter must be

the logical OR of any of PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or
PWM_GEN_3_BIT.

Description:
For the selected PWM generators, this function causes all queued updates to the period or
pulse width to be applied the next time the corresponding counter becomes zero.

Returns:
None.

21.3 Programming Example

The following example shows how to use the PWM API to initialize the PWM0 with a 50 KHz
frequency, and with a 25% duty cycle on PWM0 and a 75% duty cycle on PWM1.

//
// Enable the PWM0 peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0);

//

July 25, 2016 433

Pulse Width Modulator (PWM)

// Wait for the PWM0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_PWM0))
{
}

//
// Configure the PWM generator for count down mode with immediate updates
// to the parameters.
//
PWMGenConfigure(PWM_BASE, PWM_GEN_0,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_NO_SYNC);

//
// Set the period. For a 50 KHz frequency, the period = 1/50,000, or 20
// microseconds. For a 20 MHz clock, this translates to 400 clock ticks.
// Use this value to set the period.
//
PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, 400);

//
// Set the pulse width of PWM0 for a 25% duty cycle.
//
PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, 100);

//
// Set the pulse width of PWM1 for a 75% duty cycle.
//
PWMPulseWidthSet(PWM_BASE, PWM_OUT_1, 300);

//
// Start the timers in generator 0.
//
PWMGenEnable(PWM_BASE, PWM_GEN_0);

//
// Enable the outputs.
//
PWMOutputState(PWM_BASE, (PWM_OUT_0_BIT | PWM_OUT_1_BIT), true);

434 July 25, 2016

Quadrature Encoder (QEI)

22 Quadrature Encoder (QEI)
Introduction .435
API Functions . 435
Programming Example .445

22.1 Introduction

The quadrature encoder API provides a set of functions for dealing with the Quadrature Encoder
with Index (QEI). Functions are provided to configure and read the position and velocity captures,
register a QEI interrupt handler, and handle QEI interrupt masking/clearing.

The quadrature encoder module provides hardware encoding of the two channels and the index
signal from a quadrature encoder device into an absolute or relative position. There is additional
hardware for capturing a measure of the encoder velocity, which is simply a count of encoder pulses
during a fixed time period; the number of pulses is directly proportional to the encoder speed. Note
that the velocity capture can only operate when the position capture is enabled.

The QEI module supports two modes of operation: phase mode and clock/direction mode. In phase
mode, the encoder produces two clocks that are 90 degrees out of phase; the edge relationship is
used to determine the direction of rotation. In clock/direction mode, the encoder produces a clock
signal to indicate steps and a direction signal to indicate the direction of rotation.

When in phase mode, edges on the first channel or edges on both channels can be counted;
counting edges on both channels provides higher encoder resolution if required. In either mode,
the input signals can be swapped before being processed, allowing wiring mistakes to be corrected
without modifying the circuit board.

The index pulse can be used to reset the position counter, allowing the position counter to maintain
the absolute encoder position. Otherwise, the position counter maintains the relative position and
is never reset.

The velocity capture has a timer to measure equal periods of time. The number of encoder pulses
over each time period is accumulated as a measure of the encoder velocity. The running total for
the current time period and the final count for the previous time period are available to be read. The
final count for the previous time period is usually used as the velocity measure.

The QEI module generates interrupts when the index pulse is detected, when the velocity timer
expires, when the encoder direction changes, and when a phase signal error is detected. These
interrupt sources can be individually masked so that only the events of interest cause a processor
interrupt.

This driver is contained in driverlib/qei.c, with driverlib/qei.h containing the API dec-
larations for use by applications.

22.2 API Functions

Functions
void QEIConfigure (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxPosition)

July 25, 2016 435

Quadrature Encoder (QEI)

int32_t QEIDirectionGet (uint32_t ui32Base)
void QEIDisable (uint32_t ui32Base)
void QEIEnable (uint32_t ui32Base)
bool QEIErrorGet (uint32_t ui32Base)
void QEIFilterConfigure (uint32_t ui32Base, uint32_t ui32FiltCnt)
void QEIFilterDisable (uint32_t ui32Base)
void QEIFilterEnable (uint32_t ui32Base)
void QEIIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void QEIIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void QEIIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void QEIIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t QEIIntStatus (uint32_t ui32Base, bool bMasked)
void QEIIntUnregister (uint32_t ui32Base)
uint32_t QEIPositionGet (uint32_t ui32Base)
void QEIPositionSet (uint32_t ui32Base, uint32_t ui32Position)
void QEIVelocityConfigure (uint32_t ui32Base, uint32_t ui32PreDiv, uint32_t ui32Period)
void QEIVelocityDisable (uint32_t ui32Base)
void QEIVelocityEnable (uint32_t ui32Base)
uint32_t QEIVelocityGet (uint32_t ui32Base)

22.2.1 Detailed Description

The quadrature encoder API is broken into three groups of functions: those that deal with position
capture, those that deal with velocity capture, and those that deal with interrupt handling.

The position capture is managed with QEIEnable(), QEIDisable(), QEIConfigure(), and QEIPosi-
tionSet(). The positional information is retrieved with QEIPositionGet(), QEIDirectionGet(), and
QEIErrorGet().

The velocity capture is managed with QEIVelocityEnable(), QEIVelocityDisable(), and QEIVelocity-
Configure(). The computed encoder velocity is retrieved with QEIVelocityGet().

The interrupt handler for the QEI interrupt is managed with QEIIntRegister() and QEIIntUnregis-
ter(). The individual interrupt sources within the QEI module are managed with QEIIntEnable(),
QEIIntDisable(), QEIIntStatus(), and QEIIntClear().

22.2.2 Function Documentation

22.2.2.1 QEIConfigure

Configures the quadrature encoder.

Prototype:
void
QEIConfigure(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32MaxPosition)

436 July 25, 2016

Quadrature Encoder (QEI)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32Config is the configuration for the quadrature encoder. See below for a description of this

parameter.
ui32MaxPosition specifies the maximum position value.

Description:
This function configures the operation of the quadrature encoder. The ui32Config parameter
provides the configuration of the encoder and is the logical OR of several values:

QEI_CONFIG_CAPTURE_A or QEI_CONFIG_CAPTURE_A_B specify if edges on chan-
nel A or on both channels A and B should be counted by the position integrator and velocity
accumulator.
QEI_CONFIG_NO_RESET or QEI_CONFIG_RESET_IDX specify if the position integrator
should be reset when the index pulse is detected.
QEI_CONFIG_QUADRATURE or QEI_CONFIG_CLOCK_DIR specify if quadrature sig-
nals are being provided on ChA and ChB, or if a direction signal and a clock are being
provided instead.
QEI_CONFIG_NO_SWAP or QEI_CONFIG_SWAP to specify if the signals provided on
ChA and ChB should be swapped before being processed.

ui32MaxPosition is the maximum value of the position integrator and is the value used to reset
the position capture when in index reset mode and moving in the reverse (negative) direction.

Returns:
None.

22.2.2.2 QEIDirectionGet

Gets the current direction of rotation.

Prototype:
int32_t
QEIDirectionGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the current direction of rotation. In this case, current means the most re-
cently detected direction of the encoder; it may not be presently moving but this is the direction
it last moved before it stopped.

Returns:
Returns 1 if moving in the forward direction or -1 if moving in the reverse direction.

22.2.2.3 QEIDisable

Disables the quadrature encoder.

July 25, 2016 437

Quadrature Encoder (QEI)

Prototype:
void
QEIDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function disables operation of the quadrature encoder module.

Returns:
None.

22.2.2.4 QEIEnable

Enables the quadrature encoder.

Prototype:
void
QEIEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function enables operation of the quadrature encoder module. The module must be con-
figured before it is enabled.

See also:
QEIConfigure()

Returns:
None.

22.2.2.5 QEIErrorGet

Gets the encoder error indicator.

Prototype:
bool
QEIErrorGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the error indicator for the quadrature encoder. It is an error for both of the
signals of the quadrature input to change at the same time.

Returns:
Returns true if an error has occurred and false otherwise.

438 July 25, 2016

Quadrature Encoder (QEI)

22.2.2.6 QEIFilterConfigure

Configures the input filter.

Prototype:
void
QEIFilterConfigure(uint32_t ui32Base,

uint32_t ui32FiltCnt)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32FiltCnt specifies the filter count applied to the input quadrature signal before it is counted;

can be one of QEI_FILTCNT_2, QEI_FILTCNT_3, QEI_FILTCNT_4, QEI_FILTCNT_5,
QEI_FILTCNT_6, QEI_FILTCNT_7, QEI_FILTCNT_8, QEI_FILTCNT_9,
QEI_FILTCNT_10, QEI_FILTCNT_11, QEI_FILTCNT_12, QEI_FILTCNT_13,
QEI_FILTCNT_14, QEI_FILTCNT_15, QEI_FILTCNT_16 or QEI_FILTCNT_17

Description:
This function configures the operation of the input filter prescale count. as specified by
ui32FiltCnt before the input signals are sent to the quadrature encoder module.

Returns:
None.

22.2.2.7 QEIFilterDisable

Disables the input filter.

Prototype:
void
QEIFilterDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function disables operation of the input filter in the quadrature encoder module.

Returns:
None.

22.2.2.8 QEIFilterEnable

Enables the input filter.

Prototype:
void
QEIFilterEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

July 25, 2016 439

Quadrature Encoder (QEI)

Description:
This function enables operation of the input filter in the quadrature encoder module. The mod-
ule must be configured before input filter is enabled.

See also:
QEIFilterConfigure() and QEIEnable()

Returns:
None.

22.2.2.9 QEIIntClear

Clears quadrature encoder interrupt sources.

Prototype:
void
QEIIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared. This parameter can be any

of the QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
The specified quadrature encoder interrupt sources are cleared, so that they no longer assert.
This function must be called in the interrupt handler to keep the interrupt from being triggered
again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

22.2.2.10 QEIIntDisable

Disables individual quadrature encoder interrupt sources.

Prototype:
void
QEIIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the quadrature encoder module.

440 July 25, 2016

Quadrature Encoder (QEI)

ui32IntFlags is a bit mask of the interrupt sources to be disabled. This parameter can be any
of the QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
This function disables the indicated quadrature encoder interrupt sources. Only the sources
that are enabled can be reflected to the processor interrupt; disabled sources have no effect
on the processor.

Returns:
None.

22.2.2.11 QEIIntEnable

Enables individual quadrature encoder interrupt sources.

Prototype:
void
QEIIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32IntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
This function enables the indicated quadrature encoder interrupt sources. Only the sources
that are enabled can be reflected to the processor interrupt; disabled sources have no effect
on the processor.

Returns:
None.

22.2.2.12 QEIIntRegister

Registers an interrupt handler for the quadrature encoder interrupt.

Prototype:
void
QEIIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the quadrature encoder module.
pfnHandler is a pointer to the function to be called when the quadrature encoder interrupt

occurs.

Description:
This function registers the handler to be called when a quadrature encoder interrupt occurs.
This function enables the global interrupt in the interrupt controller; specific quadrature encoder
interrupts must be enabled via QEIIntEnable(). It is the interrupt handler’s responsibility to clear
the interrupt source via QEIIntClear().

July 25, 2016 441

Quadrature Encoder (QEI)

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

22.2.2.13 QEIIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
QEIIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the quadrature encoder module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the quadrature encoder module. Either the raw
interrupt status or the status of interrupts that are allowed to reflect to the processor can be
returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of QEI_INTERROR,
QEI_INTDIR, QEI_INTTIMER, and QEI_INTINDEX.

22.2.2.14 QEIIntUnregister

Unregisters an interrupt handler for the quadrature encoder interrupt.

Prototype:
void
QEIIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function unregisters the handler to be called when a quadrature encoder interrupt occurs.
This function also masks off the interrupt in the interrupt controller so that the interrupt handler
no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

442 July 25, 2016

Quadrature Encoder (QEI)

22.2.2.15 QEIPositionGet

Gets the current encoder position.

Prototype:
uint32_t
QEIPositionGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the current position of the encoder. Depending upon the configuration of
the encoder, and the incident of an index pulse, this value may or may not contain the expected
data (that is, if in reset on index mode, if an index pulse has not been encountered, the position
counter is not yet aligned with the index pulse).

Returns:
The current position of the encoder.

22.2.2.16 QEIPositionSet

Sets the current encoder position.

Prototype:
void
QEIPositionSet(uint32_t ui32Base,

uint32_t ui32Position)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32Position is the new position for the encoder.

Description:
This function sets the current position of the encoder; the encoder position is then measured
relative to this value.

Returns:
None.

22.2.2.17 QEIVelocityConfigure

Configures the velocity capture.

Prototype:
void
QEIVelocityConfigure(uint32_t ui32Base,

uint32_t ui32PreDiv,
uint32_t ui32Period)

July 25, 2016 443

Quadrature Encoder (QEI)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32PreDiv specifies the predivider applied to the input quadrature signal before it is counted;

can be one of QEI_VELDIV_1, QEI_VELDIV_2, QEI_VELDIV_4, QEI_VELDIV_8,
QEI_VELDIV_16, QEI_VELDIV_32, QEI_VELDIV_64, or QEI_VELDIV_128.

ui32Period specifies the number of clock ticks over which to measure the velocity; must be
non-zero.

Description:
This function configures the operation of the velocity capture portion of the quadrature encoder.
The position increment signal is predivided as specified by ui32PreDiv before being accumu-
lated by the velocity capture. The divided signal is accumulated over ui32Period system clock
before being saved and resetting the accumulator.

Returns:
None.

22.2.2.18 QEIVelocityDisable

Disables the velocity capture.

Prototype:
void
QEIVelocityDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function disables operation of the velocity capture in the quadrature encoder module.

Returns:
None.

22.2.2.19 QEIVelocityEnable

Enables the velocity capture.

Prototype:
void
QEIVelocityEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function enables operation of the velocity capture in the quadrature encoder module. The
module must be configured before velocity capture is enabled.

See also:
QEIVelocityConfigure() and QEIEnable()

444 July 25, 2016

Quadrature Encoder (QEI)

Returns:
None.

22.2.2.20 QEIVelocityGet

Gets the current encoder speed.

Prototype:
uint32_t
QEIVelocityGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the current speed of the encoder. The value returned is the number of
pulses detected in the specified time period; this number can be multiplied by the number
of time periods per second and divided by the number of pulses per revolution to obtain the
number of revolutions per second.

Returns:
Returns the number of pulses captured in the given time period.

22.3 Programming Example

The following example shows how to use the Quadrature Encoder API to configure the quadrature
encoder read back an absolute position.

//
// Enable the QEI0 peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_QEI0);

//
// Wait for the QEI0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_QEI0))
{
}

//
// Configure the quadrature encoder to capture edges on both signals and
// maintain an absolute position by resetting on index pulses. Using a
// 1000 line encoder at four edges per line, there are 4000 pulses per
// revolution; therefore set the maximum position to 3999 as the count
// is zero based.
//
QEIConfigure(QEI_BASE, (QEI_CONFIG_CAPTURE_A_B | QEI_CONFIG_RESET_IDX |

QEI_CONFIG_QUADRATURE | QEI_CONFIG_NO_SWAP), 3999);

//
// Enable the quadrature encoder.
//
QEIEnable(QEI_BASE);

July 25, 2016 445

Quadrature Encoder (QEI)

//
// Delay for some time...
//

//
// Read the encoder position.
//
QEIPositionGet(QEI_BASE);

446 July 25, 2016

SHA/MD5

23 SHA/MD5
Introduction .447
API Functions . 447
Programming Examples . 457

23.1 Introduction

The SHA/MD% module driver provides a method for generating hash values and hash-based mes-
sage authentication codes. The configuration and feature highlights are:

Supports MD5, SHA-1, SHA-224, and SHA-256 hashing algorithms.

Allows pre-processing of the HMAC key to speed processing of later messages.

This driver is contained in driverlib/shamd5.c, with driverlib/shamd5.h containing the
API declarations for use by applications.

23.2 API Functions

Functions
void SHAMD5ConfigSet (uint32_t ui32Base, uint32_t ui32Mode)
void SHAMD5DataProcess (uint32_t ui32Base, uint32_t ∗pui32DataSrc, uint32_t
ui32DataLength, uint32_t ∗pui32HashResult)
void SHAMD5DataWrite (uint32_t ui32Base, uint32_t ∗pui32Src)
bool SHAMD5DataWriteNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Src)
void SHAMD5DMADisable (uint32_t ui32Base)
void SHAMD5DMAEnable (uint32_t ui32Base)
void SHAMD5HashLengthSet (uint32_t ui32Base, uint32_t ui32Length)
void SHAMD5HMACKeySet (uint32_t ui32Base, uint32_t ∗pui32Src)
void SHAMD5HMACPPKeyGenerate (uint32_t ui32Base, uint32_t ∗pui32Key, uint32_t
∗pui32PPKey)
void SHAMD5HMACPPKeySet (uint32_t ui32Base, uint32_t ∗pui32Src)
void SHAMD5HMACProcess (uint32_t ui32Base, uint32_t ∗pui32DataSrc, uint32_t
ui32DataLength, uint32_t ∗pui32HashResult)
void SHAMD5IntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void SHAMD5IntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void SHAMD5IntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void SHAMD5IntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t SHAMD5IntStatus (uint32_t ui32Base, bool bMasked)
void SHAMD5IntUnregister (uint32_t ui32Base)
void SHAMD5Reset (uint32_t ui32Base)
void SHAMD5ResultRead (uint32_t ui32Base, uint32_t ∗pui32Dest)

July 25, 2016 447

SHA/MD5

23.2.1 Detailed Description

The SHA/MD5 API consists of functions for configuring the SHA/MD5 module, processing data,
and reading the resultant hash.

23.2.2 Function Documentation

23.2.2.1 SHAMD5ConfigSet

Writes the mode in the SHA/MD5 module.

Prototype:
void
SHAMD5ConfigSet(uint32_t ui32Base,

uint32_t ui32Mode)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
ui32Mode is the mode of the SHA/MD5 module.

Description:
This function writes the mode register configuring the SHA/MD5 module.

The ui32Mode parameter is a bit-wise OR of values:

SHAMD5_ALGO_MD5 - Regular hash with MD5
SHAMD5_ALGO_SHA1 - Regular hash with SHA-1
SHAMD5_ALGO_SHA224 - Regular hash with SHA-224
SHAMD5_ALGO_SHA256 - Regular hash with SHA-256
SHAMD5_ALGO_HMAC_MD5 - HMAC with MD5
SHAMD5_ALGO_HMAC_SHA1 - HMAC with SHA-1
SHAMD5_ALGO_HMAC_SHA224 - HMAC with SHA-224
SHAMD5_ALGO_HMAC_SHA256 - HMAC with SHA-256

Returns:
None

23.2.2.2 SHAMD5DataProcess

Compute a hash using the SHA/MD5 module.

Prototype:
void
SHAMD5DataProcess(uint32_t ui32Base,

uint32_t *pui32DataSrc,
uint32_t ui32DataLength,
uint32_t *pui32HashResult)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

448 July 25, 2016

SHA/MD5

pui32DataSrc is a pointer to an array of data that contains the data that will be hashed.
ui32DataLength specifies the length of the data to be hashed in bytes.
pui32HashResult is a pointer to an array that holds the result of the hashing operation.

Description:
This function computes the hash of an array of data using the SHA/MD5 module.

The length of the hash result is dependent on the algorithm that is in use. The following table
shows the correct array size for each algorithm:

—————————————– | Algorithm | Number of Words in Result |—————————
————– | MD5 | 4 Words (128 bits) | | SHA-1 | 5 Words (160 bits) | | SHA-224 | 7 Words (224
bits) | | SHA-256 | 8 Words (256 bits) |—————————————–

Returns:
None

23.2.2.3 SHAMD5DataWrite

Perform a blocking write of 16 words of data to the SHA/MD5 module.

Prototype:
void
SHAMD5DataWrite(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
pui32Src is the pointer to the 16-word array of data that will be written.

Description:
This function does not return until the module is ready to accept data and the data has been
written.

Returns:
None.

23.2.2.4 SHAMD5DataWriteNonBlocking

Perform a non-blocking write of 16 words of data to the SHA/MD5 module.

Prototype:
bool
SHAMD5DataWriteNonBlocking(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
pui32Src is the pointer to the 16-word array of data that will be written.

July 25, 2016 449

SHA/MD5

Description:
This function writes 16 words of data into the data register regardless of whether or not the
module is ready to accept the data.

Returns:
This function returns true if the write completed successfully. It returns false if the module was
not ready.

23.2.2.5 SHAMD5DMADisable

Disables the uDMA requests in the SHA/MD5 module.

Prototype:
void
SHAMD5DMADisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

Description:
This function configures the DMA options of the SHA/MD5 module.

Returns:
None

23.2.2.6 SHAMD5DMAEnable

Enables the uDMA requests in the SHA/MD5 module.

Prototype:
void
SHAMD5DMAEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

Description:
This function configures the DMA options of the SHA/MD5 module.

Returns:
None

23.2.2.7 SHAMD5HashLengthSet

Write the hash length to the SHA/MD5 module.

Prototype:
void
SHAMD5HashLengthSet(uint32_t ui32Base,

uint32_t ui32Length)

450 July 25, 2016

SHA/MD5

Parameters:
ui32Base is the base address of the SHA/MD5 module.
ui32Length is the hash length in bytes.

Description:
This function writes the length of the hash data of the current operation to the SHA/MD5 mod-
ule. The value must be a multiple of 64 if the close hash is not set in the mode register.

Note:
When this register is written, hash processing is triggered.

Returns:
None.

23.2.2.8 SHAMD5HMACKeySet

Writes an HMAC key to the digest registers in the SHA/MD5 module.

Prototype:
void
SHAMD5HMACKeySet(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
pui32Src is the pointer to the 16-word array of the HMAC key.

Description:
This function is used to write HMAC key to the digest registers for key preprocessing. The size
of pui32Src must be 512 bytes. If the key is less than 512 bytes, then it must be padded with
zeros.

Note:
It is recommended to use the SHAMD5IntStatus() function to check whether the context is
ready before writing the key.

Returns:
None

23.2.2.9 SHAMD5HMACPPKeyGenerate

Process an HMAC key using the SHA/MD5 module.

Prototype:
void
SHAMD5HMACPPKeyGenerate(uint32_t ui32Base,

uint32_t *pui32Key,
uint32_t *pui32PPKey)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

July 25, 2016 451

SHA/MD5

pui32Key is a pointer to an array that contains the key to be processed.
pui32PPKey is the pointer to the array that contains the pre-processed key.

Description:
This function processes an HMAC key using the SHA/MD5. The resultant pre-processed key
can then be used with later HMAC operations to speed processing time.

The pui32Key array must be 16 words (512 bits) long. If the key is less than 512 bits, it must
be padded with zeros. The pui32PPKey array must each be 16 words (512 bits) long.

Returns:
None

23.2.2.10 SHAMD5HMACPPKeySet

Writes a pre-processed HMAC key to the digest registers in the SHA/MD5 module.

Prototype:
void
SHAMD5HMACPPKeySet(uint32_t ui32Base,

uint32_t *pui32Src)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
pui32Src is the pointer to the 16-word array of the HMAC key.

Description:
This function is used to write HMAC key to the digest registers for key preprocessing. The size
of pui32Src must be 512 bytes. If the key is less than 512 bytes, then it must be padded with
zeros.

Note:
It is recommended to use the SHAMD5IntStatus() function to check whether the context is
ready before writing the key.

Returns:
None

23.2.2.11 SHAMD5HMACProcess

Compute a HMAC with key pre-processing using the SHA/MD5 module.

Prototype:
void
SHAMD5HMACProcess(uint32_t ui32Base,

uint32_t *pui32DataSrc,
uint32_t ui32DataLength,
uint32_t *pui32HashResult)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

452 July 25, 2016

SHA/MD5

pui32DataSrc is a pointer to an array of data that contains the data that is to be hashed.
ui32DataLength specifies the length of the data to be hashed in bytes.
pui32HashResult is a pointer to an array that holds the result of the hashing operation.

Description:
This function computes a HMAC with the given data using the SHA/MD5 module with a pre-
processed key.

The length of the hash result is dependent on the algorithm that is selected with the ui32Algo
argument. The following table shows the correct array size for each algorithm:

—————————————– | Algorithm | Number of Words in Result |—————————
————– | MD5 | 4 Words (128 bits) | | SHA-1 | 5 Words (160 bits) | | SHA-224 | 7 Words (224
bits) | | SHA-256 | 8 Words (256 bits) |—————————————–

Returns:
None

23.2.2.12 SHAMD5IntClear

Clears interrupt sources in the SHA/MD5 module.

Prototype:
void
SHAMD5IntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
ui32IntFlags contains desired interrupts to disable.

Description:
ui32IntFlags must be a logical OR of one or more of the following values:

SHAMD5_INT_CONTEXT_READY - Context input registers are ready.
SHAMD5_INT_PARTHASH_READY - Context output registers are ready after a context
switch.
SHAMD5_INT_INPUT_READY - Data FIFO is ready to receive data.
SHAMD5_INT_OUTPUT_READY - Context output registers are ready.

Returns:
None.

23.2.2.13 SHAMD5IntDisable

Disable interrupt sources in the SHA/MD5 module.

Prototype:
void
SHAMD5IntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

July 25, 2016 453

SHA/MD5

Parameters:
ui32Base is the base address of the SHA/MD5 module.
ui32IntFlags contains desired interrupts to disable.

Description:
ui32IntFlags must be a logical OR of one or more of the following values:

SHAMD5_INT_CONTEXT_READY - Context input registers are ready.
SHAMD5_INT_PARTHASH_READY - Context output registers are ready after a context
switch.
SHAMD5_INT_INPUT_READY - Data FIFO is ready to receive data.
SHAMD5_INT_OUTPUT_READY - Context output registers are ready.

Returns:
None.

23.2.2.14 SHAMD5IntEnable

Enable interrupt sources in the SHA/MD5 module.

Prototype:
void
SHAMD5IntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
ui32IntFlags contains desired interrupts to enable.

Description:
This function enables interrupt sources in the SHA/MD5 module. ui32IntFlags must be a logical
OR of one or more of the following values:

SHAMD5_INT_CONTEXT_READY - Context input registers are ready.
SHAMD5_INT_PARTHASH_READY - Context output registers are ready after a context
switch.
SHAMD5_INT_INPUT_READY - Data FIFO is ready to receive data.
SHAMD5_INT_OUTPUT_READY - Context output registers are ready.

Returns:
None.

23.2.2.15 SHAMD5IntRegister

Registers an interrupt handler for the SHA/MD5 module.

Prototype:
void
SHAMD5IntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

454 July 25, 2016

SHA/MD5

Parameters:
ui32Base is the base address of the SHA/MD5 module.
pfnHandler is a pointer to the function to be called when the enabled SHA/MD5 interrupts

occur.

Description:
This function registers the interrupt handler in the interrupt vector table, and enables SHA/MD5
interrupts on the interrupt controller; specific SHA/MD5 interrupt sources must be enabled
using SHAMD5IntEnable(). The interrupt handler being registered must clear the source of the
interrupt using SHAMD5IntClear().

If the application is using a static interrupt vector table stored in flash, then it is not necessary to
register the interrupt handler this way. Instead, IntEnable() should be used to enable SHA/MD5
interrupts on the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

23.2.2.16 SHAMD5IntStatus

Get the interrupt status of the SHA/MD5 module.

Prototype:
uint32_t
SHAMD5IntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the current value of the IRQSTATUS register. The value will be a logical
OR of the following:

SHAMD5_INT_CONTEXT_READY - Context input registers are ready.
SHAMD5_INT_PARTHASH_READY - Context output registers are ready after a context
switch.
SHAMD5_INT_INPUT_READY - Data FIFO is ready to receive data.
SHAMD5_INT_OUTPUT_READY - Context output registers are ready.

Returns:
Interrupt status

23.2.2.17 SHAMD5IntUnregister

Unregisters an interrupt handler for the SHA/MD5 module.

July 25, 2016 455

SHA/MD5

Prototype:
void
SHAMD5IntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

23.2.2.18 SHAMD5Reset

Resets the SHA/MD5 module.

Prototype:
void
SHAMD5Reset(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SHA/MD5 module.

Description:
This function performs a soft-reset of the SHA/MD5 module using the SYSCONFIG register.

Returns:
None.

23.2.2.19 SHAMD5ResultRead

Reads the result of a hashing operation.

Prototype:
void
SHAMD5ResultRead(uint32_t ui32Base,

uint32_t *pui32Dest)

Parameters:
ui32Base is the base address of the SHA/MD5 module.
pui32Dest is the pointer to the 16-word array of data that will be written.

Description:
This function does not return until the module is ready to accept data and the data has been
written.

Returns:
None.

456 July 25, 2016

SHA/MD5

23.3 Hashing Programming Example

The following example generates a hash using the SHA-1 algorithm.

//
// Random data to be hashed.
//
uint32_t g_ui32RandomData[16] =
{

0xe2bec16b, 0x969f402e, 0x117e3de9, 0x2a179373,
0x578a2dae, 0x9cac031e, 0xac6fb79e, 0x518eaf45,
0x461cc830, 0x11e45ca3, 0x19c1fbe5, 0xef520a1a,
0x45249ff6, 0x179b4fdf, 0x7b412bad, 0x10376ce6

};

int
main(void)
{

uint32_t ui32HashResult[5];

//
// Enable the CCM module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CCM0);

//
// Wait for the CCM module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CCM0))
{
}

//
// Reset the SHA/MD5 module before use.
//
SHAMD5Reset(SHAMD5_BASE);

//
// Configure the SHA/MD5 module.
//
SHAMD5ConfigSet(SHAMD5_BASE, SHAMD5_ALGO_SHA1);

//
// Generate the hash from the data.
//
// The resulting hash should be:
// {0x856210e0, 0xfa2dffe6, 0x94be52d0, 0xca7b2491
// 0x40d53371}
//
SHAMD5ProcessData(SHAMD5_BASE, g_ui32RandomData, 64, ui32HashResult);

}

23.4 HMAC Programming Example

The following example generates an HMAC using the SHA-1 algorithm.

//
// Random data to be hashed.
//
uint32_t g_ui32RandomData[16] =

July 25, 2016 457

SHA/MD5

{
0xe2bec16b, 0x969f402e, 0x117e3de9, 0x2a179373,
0x578a2dae, 0x9cac031e, 0xac6fb79e, 0x518eaf45,
0x461cc830, 0x11e45ca3, 0x19c1fbe5, 0xef520a1a,
0x45249ff6, 0x179b4fdf, 0x7b412bad, 0x10376ce6

};

//
// HMAC key
//
uint32_t g_ui32HMACKey[16] =
{

0x8a5f1b22, 0xcb935d29, 0xcc1ac092, 0x5dad8c9e,
0x6a83b39f, 0x8607dc60, 0xda0ba4d2, 0xf49b0fa2,
0xaf35d524, 0xffa8001d, 0xbcc931e8, 0x4a2c99ef,
0x7fa297ab, 0xab943bae, 0x07c61cc4, 0x47c8627d

};

int
main(void)
{

uint32_t pui32HashResult[5];

//
// Enable the CCM module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_CCM0);

//
// Wait for the CCM module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_CCM0))
{
}

//
// Reset the SHA/MD5 module before use.
//
SHAMD5Reset(SHAMD5_BASE);

//
// Configure the SHA/MD5 module.
//
SHAMD5ConfigSet(SHAMD5_BASE, SHAMD5_ALGO_HMAC_SHA1);

//
// Set the HMAC key.
//
SHAMD5HMACKeySet(SHAMD5_BASE, g_ui32HMACKey);

//
// Generate the hash from the data.
//
// The resulting hash should be:
// {0x326e8759, 0xf138cd36, 0xfb44cd58, 0x132b563a
// 0x76772c4b}
//
SHAMD5HMACProcessData(SHAMD5_BASE, g_ui32RandomData, 64, ui32HashResult);

}

458 July 25, 2016

Synchronous Serial Interface (SSI)

24 Synchronous Serial Interface (SSI)
Introduction .459
API Functions . 459
Programming Example .472

24.1 Introduction

The Synchronous Serial Interface (SSI) module provides the functionality for synchronous se-
rial communications with peripheral devices, and can be configured to use either the Mo-
torola® SPI™or the Texas Instruments® synchronous serial interface frame formats. In addtion,
some devices also can be configured to use the National Semiconductor® Microwire format. The
size of the data frame is also configurable, and can be set to be between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel data conversion on data received from a peripheral
device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX
paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or a slave device. As a slave device, the SSI
module can also be configured to disable its output, which allows a master device to be coupled
with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate
the output serial clock derived from the SSI module’s input clock. Some Tiva devices can use the
PIOSC as the serial bit clock. Bit rates are generated based on the input clock and the maximum
bit rate supported by the connected peripheral.

For parts that include a DMA controller, the SSI module also provides a DMA interface to facilitate
data transfer via DMA.

This driver is contained in driverlib/ssi.c, with driverlib/ssi.h containing the API dec-
larations for use by applications.

24.2 API Functions

Functions
void SSIAdvDataPutFrameEnd (uint32_t ui32Base, uint32_t ui32Data)
int32_t SSIAdvDataPutFrameEndNonBlocking (uint32_t ui32Base, uint32_t ui32Data)
void SSIAdvFrameHoldDisable (uint32_t ui32Base)
void SSIAdvFrameHoldEnable (uint32_t ui32Base)
void SSIAdvModeSet (uint32_t ui32Base, uint32_t ui32Mode)
bool SSIBusy (uint32_t ui32Base)
uint32_t SSIClockSourceGet (uint32_t ui32Base)
void SSIClockSourceSet (uint32_t ui32Base, uint32_t ui32Source)
void SSIConfigSetExpClk (uint32_t ui32Base, uint32_t ui32SSIClk, uint32_t ui32Protocol,
uint32_t ui32Mode, uint32_t ui32BitRate, uint32_t ui32DataWidth)
void SSIDataGet (uint32_t ui32Base, uint32_t ∗pui32Data)

July 25, 2016 459

Synchronous Serial Interface (SSI)

int32_t SSIDataGetNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Data)
void SSIDataPut (uint32_t ui32Base, uint32_t ui32Data)
int32_t SSIDataPutNonBlocking (uint32_t ui32Base, uint32_t ui32Data)
void SSIDisable (uint32_t ui32Base)
void SSIDMADisable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void SSIDMAEnable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void SSIEnable (uint32_t ui32Base)
void SSIIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void SSIIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void SSIIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void SSIIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t SSIIntStatus (uint32_t ui32Base, bool bMasked)
void SSIIntUnregister (uint32_t ui32Base)

24.2.1 Detailed Description

The SSI API is broken into several groups of functions. Each of those groups is addressed below.

The configuration of the SSI module is managed by the SSIConfigSetExpClk() function, while state
is managed by the SSIEnable() and SSIDisable() functions. The DMA interface is enabled or dis-
abled by the SSIDMAEnable() and SSIDMADisable() functions. The SSI baud clock is managed by
the SSIClockSourceGet() and SSIClockSourceSet() functions.

Data handling is performed by the SSIDataPut(), SSIDataPutNonBlocking(), SSIDataGet(), and
SSIDataGetNonBlocking() functions.

Interrupts from the SSI module are managed using the SSIIntClear(), SSIIntDisable(), SSIIntEn-
able(), SSIIntRegister(), SSIIntStatus(), and SSIIntUnregister() functions.

The SSIConfig(), SSIDataNonBlockingGet(), and SSIDataNonBlockingPut() APIs from previous
versions of the peripheral driver library have been replaced by the SSIConfigSetExpClk(), SSI-
DataGetNonBlocking(), and SSIDataPutNonBlocking() APIs. Macros have been provided in ssi.h
to map the old APIs to the new APIs, allowing existing applications to link and run with the new
APIs. It is recommended that new applications utilize the new APIs in favor of the old ones.

24.2.2 Function Documentation

24.2.2.1 SSIAdvDataPutFrameEnd

Puts a data element into the SSI transmit FIFO as the end of a frame.

Prototype:
void
SSIAdvDataPutFrameEnd(uint32_t ui32Base,

uint32_t ui32Data)

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

460 July 25, 2016

Synchronous Serial Interface (SSI)

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module,
marking it as the end of a frame. If there is no space available in the transmit FIFO, this
function waits until there is space available before returning. After this byte is transmitted by
the SSI module, the FSS signal de-asserts for at least one SSI clock.

Note:
The upper 24 bits of ui32Data are discarded by the hardware.

The availability of the advanced mode of SSI operation varies with the Tiva part and SSI in use.
Please consult the data sheet for the part in use to determine whether this support is available.

Returns:
None.

24.2.2.2 SSIAdvDataPutFrameEndNonBlocking

Puts a data element into the SSI transmit FIFO as the end of a frame.

Prototype:
int32_t
SSIAdvDataPutFrameEndNonBlocking(uint32_t ui32Base,

uint32_t ui32Data)

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module,
marking it as the end of a frame. After this byte is transmitted by the SSI module, the FSS
signal de-asserts for at least one SSI clock. If there is no space in the FIFO, then this function
returns a zero.

Note:
The upper 24 bits of ui32Data are discarded by the hardware.

The availability of the advanced mode of SSI operation varies with the Tiva part and SSI in use.
Please consult the data sheet for the part in use to determine whether this support is available.

Returns:
Returns the number of elements written to the SSI transmit FIFO.

24.2.2.3 SSIAdvFrameHoldDisable

Configures the SSI advanced mode to de-assert the SSIFss signal after every byte transfer.

Prototype:
void
SSIAdvFrameHoldDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SSI module.

July 25, 2016 461

Synchronous Serial Interface (SSI)

Description:
This function configures the SSI module to de-assert the SSIFss signal for one SSI clock cycle
after every byte is transferred using one of the advanced modes (instead of leaving it asserted
for the entire transfer). This mode is the default operation.

Note:
The availability of the advanced mode of SSI operation varies with the Tiva part and SSI in use.
Please consult the data sheet for the part in use to determine whether this support is available.

Returns:
None.

24.2.2.4 SSIAdvFrameHoldEnable

Configures the SSI advanced mode to hold the SSIFss signal during the full transfer.

Prototype:
void
SSIAdvFrameHoldEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SSI module.

Description:
This function configures the SSI module to de-assert the SSIFss signal during the entire data
transfer when using one of the advanced modes (instead of briefly de-asserting it after every
byte). When using this mode, SSIFss can be directly controlled via SSIAdvDataPutFrameEnd()
and SSIAdvDataPutFrameEndNonBlocking().

Note:
The availability of the advanced mode of SSI operation varies with the Tiva part and SSI in use.
Please consult the data sheet for the part in use to determine whether this support is available.

Returns:
None.

24.2.2.5 SSIAdvModeSet

Selects the advanced mode of operation for the SSI module.

Prototype:
void
SSIAdvModeSet(uint32_t ui32Base,

uint32_t ui32Mode)

Parameters:
ui32Base is the base address of the SSI module.
ui32Mode is the mode of operation to use.

Description:
This function selects the mode of operation for the SSI module, which is needed when using
the advanced operation modes (Bi- or Quad-SPI). One of the following modes can be selected:

462 July 25, 2016

Synchronous Serial Interface (SSI)

SSI_ADV_MODE_LEGACY - Disables the advanced modes of operation, resulting in
legacy, or backwards-compatible, operation. When this mode is selected, it is not valid
to switch to Bi- or Quad-SPI operation. This mode is the default.
SSI_ADV_MODE_WRITE - The advanced mode of operation where data is only written to
the slave; any data clocked in via the SSIRx pin is thrown away (instead of being placed
into the SSI Rx FIFO).
SSI_ADV_MODE_READ_WRITE - The advanced mode of operation where data is written
to and read from the slave; this mode is the same as SSI_ADV_MODE_LEGACY but
allows transitions to Bi- or Quad-SPI operation.
SSI_ADV_MODE_BI_READ - The advanced mode of operation where data is read from
the slave in Bi-SPI mode, with two bits of data read on every SSI clock.
SSI_ADV_MODE_BI_WRITE - The advanced mode of operation where data is written to
the slave in Bi-SPI mode, with two bits of data written on every SSI clock.
SSI_ADV_MODE_QUAD_READ - The advanced mode of operation where data is read
from the slave in Quad-SPI mode, with four bits of data read on every SSI clock.
SSI_ADV_MODE_QUAD_WRITE - The advanced mode of operation where data is written
to the slave in Quad-SPI mode, with four bits of data written on every SSI clock.

The following mode transitions are valid (other transitions produce undefined results):

+----------+---+
|FROM | TO |
| |Legacy|Write|Read Write|Bi Read|Bi Write|Quad Read|Quad Write|
+----------+------+-----+----------+-------+--------+---------+----------+
Legacy	yes	yes	yes				
Write	yes	yes	yes	yes	yes	yes	yes
Read/Write	yes	yes	yes	yes	yes	yes	yes
Bi Read		yes	yes	yes	yes		
Bi write		yes	yes	yes	yes		
Quad read		yes	yes			yes	yes
Quad write		yes	yes			yes	yes
+----------+------+-----+----------+-------+--------+---------+----------+

When using an advanced mode of operation, the SSI module must have been configured for
eight data bits and the SSI_FRF_MOTO_MODE_0 protocol. The advanced mode operation
that is selected applies only to data newly written into the FIFO; the data that is already present
in the FIFO is handled using the advanced mode of operation in effect when that data was
written.

Switching into and out of legacy mode should only occur when the FIFO is empty.

Note:
The availability of the advanced mode of SSI operation varies with the Tiva part and SSI in use.
Please consult the data sheet for the part in use to determine whether this support is available.

Returns:
None.

24.2.2.6 SSIBusy

Determines whether the SSI transmitter is busy or not.

Prototype:
bool
SSIBusy(uint32_t ui32Base)

July 25, 2016 463

Synchronous Serial Interface (SSI)

Parameters:
ui32Base is the base address of the SSI module.

Description:
This function allows the caller to determine whether all transmitted bytes have cleared the
transmitter hardware. If false is returned, then the transmit FIFO is empty and all bits of the
last transmitted word have left the hardware shift register.

Returns:
Returns true if the SSI is transmitting or false if all transmissions are complete.

24.2.2.7 SSIClockSourceGet

Gets the data clock source for the specified SSI peripheral.

Prototype:
uint32_t
SSIClockSourceGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the SSI module.

Description:
This function returns the data clock source for the specified SSI.

Note:
The ability to specify the SSI data clock source varies with the Tiva part and SSI in use. Please
consult the data sheet for the part in use to determine whether this support is available.

Returns:
Returns the current clock source, which is either SSI_CLOCK_SYSTEM or
SSI_CLOCK_PIOSC.

24.2.2.8 SSIClockSourceSet

Sets the data clock source for the specified SSI peripheral.

Prototype:
void
SSIClockSourceSet(uint32_t ui32Base,

uint32_t ui32Source)

Parameters:
ui32Base is the base address of the SSI module.
ui32Source is the baud clock source for the SSI.

Description:
This function allows the baud clock source for the SSI to be selected. The possible clock
source are the system clock (SSI_CLOCK_SYSTEM) or the precision internal oscillator
(SSI_CLOCK_PIOSC).

Changing the baud clock source changes the data rate generated by the SSI. Therefore, the
data rate should be reconfigured after any change to the SSI clock source.

464 July 25, 2016

Synchronous Serial Interface (SSI)

Note:
The ability to specify the SSI baud clock source varies with the Tiva part and SSI in use. Please
consult the data sheet for the part in use to determine whether this support is available.

Returns:
None.

24.2.2.9 SSIConfigSetExpClk

Configures the synchronous serial interface.

Prototype:
void
SSIConfigSetExpClk(uint32_t ui32Base,

uint32_t ui32SSIClk,
uint32_t ui32Protocol,
uint32_t ui32Mode,
uint32_t ui32BitRate,
uint32_t ui32DataWidth)

Parameters:
ui32Base specifies the SSI module base address.
ui32SSIClk is the rate of the clock supplied to the SSI module.
ui32Protocol specifies the data transfer protocol.
ui32Mode specifies the mode of operation.
ui32BitRate specifies the clock rate.
ui32DataWidth specifies number of bits transferred per frame.

Description:
This function configures the synchronous serial interface. It sets the SSI protocol, mode of
operation, bit rate, and data width.

The ui32Protocol parameter defines the data frame format. The ui32Protocol parameter
can be one of the following values: SSI_FRF_MOTO_MODE_0, SSI_FRF_MOTO_MODE_1,
SSI_FRF_MOTO_MODE_2, SSI_FRF_MOTO_MODE_3, SSI_FRF_TI, or SSI_FRF_NMW.
Note that the SSI_FRF_NMW option is only available on some devices. Refer to the device
data sheet to determine if the Microwire format is supported on a particular device. The Mo-
torola frame formats encode the following polarity and phase configurations:

Polarity Phase Mode
0 0 SSI_FRF_MOTO_MODE_0
0 1 SSI_FRF_MOTO_MODE_1
1 0 SSI_FRF_MOTO_MODE_2
1 1 SSI_FRF_MOTO_MODE_3

The ui32Mode parameter defines the operating mode of the SSI module. The SSI module
can operate as a master or slave; if it is a slave, the SSI can be configured to disable out-
put on its serial output line. The ui32Mode parameter can be one of the following values:
SSI_MODE_MASTER, SSI_MODE_SLAVE, or SSI_MODE_SLAVE_OD.

The ui32BitRate parameter defines the bit rate for the SSI. This bit rate must satisfy the follow-
ing clock ratio criteria:

July 25, 2016 465

Synchronous Serial Interface (SSI)

FSSI >= 2 ∗ bit rate (master mode)
FSSI >= 12 ∗ bit rate (slave modes)

where FSSI is the frequency of the clock supplied to the SSI module. Note that there are
frequency limits for FSSI that are described in the Bit Rate Generation section of the SSI
chapter in the data sheet.

The ui32DataWidth parameter defines the width of the data transfers and can be a value be-
tween 4 and 16, inclusive.

The peripheral clock is the same as the processor clock. The frequency of the system clock
is the value returned by SysCtlClockGet() for TM4C123x devices or the value returned by
SysCtlClockFreqSet() for TM4C129x devices, or it can be explicitly hard coded if it is constant
and known (to save the code/execution overhead of a call to SysCtlClockGet() or fetch of the
variable call holding the return value of SysCtlClockFreqSet()).

Returns:
None.

24.2.2.10 SSIDataGet

Gets a data element from the SSI receive FIFO.

Prototype:
void
SSIDataGet(uint32_t ui32Base,

uint32_t *pui32Data)

Parameters:
ui32Base specifies the SSI module base address.
pui32Data is a pointer to a storage location for data that was received over the SSI interface.

Description:
This function gets received data from the receive FIFO of the specified SSI module and places
that data into the location specified by the pui32Data parameter. If there is no data available,
this function waits until data is received before returning.

Note:
Only the lower N bits of the value written to pui32Data contain valid data, where N is the data
width as configured by SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, only the lower 8 bits of the value written to pui32Data contain valid data.

Returns:
None.

24.2.2.11 SSIDataGetNonBlocking

Gets a data element from the SSI receive FIFO.

Prototype:
int32_t
SSIDataGetNonBlocking(uint32_t ui32Base,

uint32_t *pui32Data)

466 July 25, 2016

Synchronous Serial Interface (SSI)

Parameters:
ui32Base specifies the SSI module base address.
pui32Data is a pointer to a storage location for data that was received over the SSI interface.

Description:
This function gets received data from the receive FIFO of the specified SSI module and places
that data into the location specified by the ui32Data parameter. If there is no data in the FIFO,
then this function returns a zero.

Note:
Only the lower N bits of the value written to pui32Data contain valid data, where N is the data
width as configured by SSIConfigSetExpClk(). For example, if the interface is configured for
8-bit data width, only the lower 8 bits of the value written to pui32Data contain valid data.

Returns:
Returns the number of elements read from the SSI receive FIFO.

24.2.2.12 SSIDataPut

Puts a data element into the SSI transmit FIFO.

Prototype:
void
SSIDataPut(uint32_t ui32Base,

uint32_t ui32Data)

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module. If
there is no space available in the transmit FIFO, this function waits until there is space available
before returning.

Note:
The upper 32 - N bits of ui32Data are discarded by the hardware, where N is the data width as
configured by SSIConfigSetExpClk(). For example, if the interface is configured for 8-bit data
width, the upper 24 bits of ui32Data are discarded.

Returns:
None.

24.2.2.13 SSIDataPutNonBlocking

Puts a data element into the SSI transmit FIFO.

Prototype:
int32_t
SSIDataPutNonBlocking(uint32_t ui32Base,

uint32_t ui32Data)

July 25, 2016 467

Synchronous Serial Interface (SSI)

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module. If
there is no space in the FIFO, then this function returns a zero.

Note:
The upper 32 - N bits of ui32Data are discarded by the hardware, where N is the data width as
configured by SSIConfigSetExpClk(). For example, if the interface is configured for 8-bit data
width, the upper 24 bits of ui32Data are discarded.

Returns:
Returns the number of elements written to the SSI transmit FIFO.

24.2.2.14 SSIDisable

Disables the synchronous serial interface.

Prototype:
void
SSIDisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the SSI module base address.

Description:
This function disables operation of the synchronous serial interface.

Returns:
None.

24.2.2.15 SSIDMADisable

Disables SSI DMA operation.

Prototype:
void
SSIDMADisable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

Parameters:
ui32Base is the base address of the SSI module.
ui32DMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable SSI DMA features that were enabled by SSIDMAEnable(). The
specified SSI DMA features are disabled. The ui32DMAFlags parameter is the logical OR of
any of the following values:

468 July 25, 2016

Synchronous Serial Interface (SSI)

SSI_DMA_RX - disable DMA for receive
SSI_DMA_TX - disable DMA for transmit

Returns:
None.

24.2.2.16 SSIDMAEnable

Enables SSI DMA operation.

Prototype:
void
SSIDMAEnable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

Parameters:
ui32Base is the base address of the SSI module.
ui32DMAFlags is a bit mask of the DMA features to enable.

Description:
This function enables the specified SSI DMA features. The SSI can be configured to use DMA
for transmit and/or receive data transfers. The ui32DMAFlags parameter is the logical OR of
any of the following values:

SSI_DMA_RX - enable DMA for receive
SSI_DMA_TX - enable DMA for transmit

Note:
The uDMA controller must also be set up before DMA can be used with the SSI.

Returns:
None.

24.2.2.17 SSIEnable

Enables the synchronous serial interface.

Prototype:
void
SSIEnable(uint32_t ui32Base)

Parameters:
ui32Base specifies the SSI module base address.

Description:
This function enables operation of the synchronous serial interface. The synchronous serial
interface must be configured before it is enabled.

Returns:
None.

July 25, 2016 469

Synchronous Serial Interface (SSI)

24.2.2.18 SSIIntClear

Clears SSI interrupt sources.

Prototype:
void
SSIIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base specifies the SSI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
This function clears the specified SSI interrupt sources so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupts from being triggered
again immediately upon exit. The ui32IntFlags parameter can consist of either or both the
SSI_RXTO and SSI_RXOR values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

24.2.2.19 SSIIntDisable

Disables individual SSI interrupt sources.

Prototype:
void
SSIIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base specifies the SSI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated SSI interrupt sources. The ui32IntFlags parameter can be
any of the SSI_TXFF, SSI_RXFF, SSI_RXTO, or SSI_RXOR values.

Returns:
None.

470 July 25, 2016

Synchronous Serial Interface (SSI)

24.2.2.20 SSIIntEnable

Enables individual SSI interrupt sources.

Prototype:
void
SSIIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base specifies the SSI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated SSI interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the proces-
sor. The ui32IntFlags parameter can be any of the SSI_TXFF, SSI_RXFF, SSI_RXTO, or
SSI_RXOR values.

Returns:
None.

24.2.2.21 SSIIntRegister

Registers an interrupt handler for the synchronous serial interface.

Prototype:
void
SSIIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base specifies the SSI module base address.
pfnHandler is a pointer to the function to be called when the synchronous serial interface

interrupt occurs.

Description:
This function registers the handler to be called when an SSI interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific SSI interrupts must be enabled
via SSIIntEnable(). If necessary, it is the interrupt handler’s responsibility to clear the interrupt
source via SSIIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

July 25, 2016 471

Synchronous Serial Interface (SSI)

24.2.2.22 SSIIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
SSIIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base specifies the SSI module base address.
bMasked is false if the raw interrupt status is required or true if the masked interrupt status is

required.

Description:
This function returns the interrupt status for the SSI module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of SSI_TXFF, SSI_RXFF, SSI_RXTO,
and SSI_RXOR.

24.2.2.23 SSIIntUnregister

Unregisters an interrupt handler for the synchronous serial interface.

Prototype:
void
SSIIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base specifies the SSI module base address.

Description:
This function clears the handler to be called when an SSI interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

24.3 Programming Example

The following example shows how to use the SSI API to configure the SSI module as a master
device for a TM4C123x device, and how to do a simple send of data.

472 July 25, 2016

Synchronous Serial Interface (SSI)

char *pcChars = "SSI Master send data.";
int32_t i32Idx;

//
// Enable the SSI0 peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);

//
// Wait for the SSI0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_SSI0))
{
}

//
// Configure the SSI.
//
SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE0,

SSI_MODE_MASTER, 2000000, 8);

//
// Enable the SSI module.
//
SSIEnable(SSI0_BASE);

//
// Send some data.
//
i32Idx = 0;
while(pcChars[i32Idx])
{

SSIDataPut(SSI0_BASE, pcChars[i32Idx]);
i32Idx++;

}

July 25, 2016 473

Synchronous Serial Interface (SSI)

474 July 25, 2016

Software CRC Module

25 Software CRC Module
Introduction .475
API Functions . 475
Programming Example .478

25.1 Introduction

The CRC module provides functions to compute the CRC-8-CCITT and CRC-16 of a buffer of data.
Support is provided for computing a running CRC, where a partial CRC is computed on one portion
of the data, and then continued at a later time on another portion of the data. A running CRC is
useful when computing the CRC on a stream of data that is coming in via a serial link for example).

A CRC is useful for detecting errors that occur during the transmission of data over a communica-
tions channel or during storage in a memory (such as flash). However, a CRC does not provide
protection against an intentional modification or tampering of the data.

This module is contained in driverlib/sw_crc.c, with driverlib/sw_crc.h containing the
API declarations for use by applications.

25.2 API Functions

Functions
uint16_t Crc16 (uint16_t ui16Crc, const uint8_t ∗pui8Data, uint32_t ui32Count)
uint16_t Crc16Array (uint32_t ui32WordLen, const uint32_t ∗pui32Data)
void Crc16Array3 (uint32_t ui32WordLen, const uint32_t ∗pui32Data, uint16_t ∗pui16Crc3)
uint32_t Crc32 (uint32_t ui32Crc, const uint8_t ∗pui8Data, uint32_t ui32Count)
uint8_t Crc8CCITT (uint8_t ui8Crc, const uint8_t ∗pui8Data, uint32_t ui32Count)

25.2.1 Function Documentation

25.2.1.1 Crc16

Calculates the CRC-16 of an array of bytes.

Prototype:
uint16_t
Crc16(uint16_t ui16Crc,

const uint8_t *pui8Data,
uint32_t ui32Count)

Parameters:
ui16Crc is the starting CRC-16 value.
pui8Data is a pointer to the data buffer.

July 25, 2016 475

Software CRC Module

ui32Count is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-16 of the input buffer. The CRC-16 is computed in a
running fashion, meaning that the entire data block that is to have its CRC-16 computed does
not need to be supplied all at once. If the input buffer contains the entire block of data, then
ui16Crc should be set to 0. If, however, the entire block of data is not available, then ui16Crc
should be set to 0 for the first portion of the data, and then the returned value should be passed
back in as ui16Crc for the next portion of the data.

For example, to compute the CRC-16 of a block that has been split into three pieces, use the
following:

ui16Crc = Crc16(0, pui8Data1, ui32Len1);
ui16Crc = Crc16(ui16Crc, pui8Data2, ui32Len2);
ui16Crc = Crc16(ui16Crc, pui8Data3, ui32Len3);

Computing a CRC-16 in a running fashion is useful in cases where the data is arriving via a
serial link (for example) and is therefore not all available at one time.

Returns:
The CRC-16 of the input data.

25.2.1.2 Crc16Array

Calculates the CRC-16 of an array of words.

Prototype:
uint16_t
Crc16Array(uint32_t ui32WordLen,

const uint32_t *pui32Data)

Parameters:
ui32WordLen is the length of the array in words (the number of bytes divided by 4).
pui32Data is a pointer to the data buffer.

Description:
This function is a wrapper around the running CRC-16 function, providing the CRC-16 for a
single block of data.

Returns:
The CRC-16 of the input data.

25.2.1.3 Crc16Array3

Calculates three CRC-16s of an array of words.

Prototype:
void
Crc16Array3(uint32_t ui32WordLen,

const uint32_t *pui32Data,
uint16_t *pui16Crc3)

476 July 25, 2016

Software CRC Module

Parameters:
ui32WordLen is the length of the array in words (the number of bytes divided by 4).
pui32Data is a pointer to the data buffer.
pui16Crc3 is a pointer to an array in which to place the three CRC-16 values.

Description:
This function is used to calculate three CRC-16s of the input buffer; the first uses every byte
from the array, the second uses only the even-index bytes from the array (in other words, bytes
0, 2, 4, etc.), and the third uses only the odd-index bytes from the array (in other words, bytes
1, 3, 5, etc.).

Returns:
None

25.2.1.4 Crc32

Calculates the CRC-32 of an array of bytes.

Prototype:
uint32_t
Crc32(uint32_t ui32Crc,

const uint8_t *pui8Data,
uint32_t ui32Count)

Parameters:
ui32Crc is the starting CRC-32 value.
pui8Data is a pointer to the data buffer.
ui32Count is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-32 of the input buffer. The CRC-32 is computed in a
running fashion, meaning that the entire data block that is to have its CRC-32 computed does
not need to be supplied all at once. If the input buffer contains the entire block of data, then
ui32Crc should be set to 0xFFFFFFFF. If, however, the entire block of data is not available, then
ui32Crc should be set to 0xFFFFFFFF for the first portion of the data, and then the returned
value should be passed back in as ui32Crc for the next portion of the data. Once all data has
been passed to the function, the final CRC-32 can be obtained by inverting the last returned
value.

For example, to compute the CRC-32 of a block that has been split into three pieces, use the
following:

ui32Crc = Crc32(0xFFFFFFFF, pui8Data1, ui32Len1);
ui32Crc = Crc32(ui32Crc, pui8Data2, ui32Len2);
ui32Crc = Crc32(ui32Crc, pui8Data3, ui32Len3);
ui32Crc ^= 0xFFFFFFFF;

Computing a CRC-32 in a running fashion is useful in cases where the data is arriving via a
serial link (for example) and is therefore not all available at one time.

Returns:
The accumulated CRC-32 of the input data.

July 25, 2016 477

Software CRC Module

25.2.1.5 Crc8CCITT

Calculates the CRC-8-CCITT of an array of bytes.

Prototype:
uint8_t
Crc8CCITT(uint8_t ui8Crc,

const uint8_t *pui8Data,
uint32_t ui32Count)

Parameters:
ui8Crc is the starting CRC-8-CCITT value.
pui8Data is a pointer to the data buffer.
ui32Count is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-8-CCITT of the input buffer. The CRC-8-CCITT is
computed in a running fashion, meaning that the entire data block that is to have its CRC-8-
CCITT computed does not need to be supplied all at once. If the input buffer contains the
entire block of data, then ui8Crc should be set to 0. If, however, the entire block of data is not
available, then ui8Crc should be set to 0 for the first portion of the data, and then the returned
value should be passed back in as ui8Crc for the next portion of the data.

For example, to compute the CRC-8-CCITT of a block that has been split into three pieces, use
the following:

ui8Crc = Crc8CCITT(0, pui8Data1, ui32Len1);
ui8Crc = Crc8CCITT(ui8Crc, pui8Data2, ui32Len2);
ui8Crc = Crc8CCITT(ui8Crc, pui8Data3, ui32Len3);

Computing a CRC-8-CCITT in a running fashion is useful in cases where the data is arriving
via a serial link (for example) and is therefore not all available at one time.

Returns:
The CRC-8-CCITT of the input data.

25.3 Programming Example

The following example shows how to compute the CRC-16 of a buffer of data.

unsigned long ulIdx, ulValue;
unsigned char pucData[256];

//
// Fill pucData with some data.
//
for(ulIdx = 0; ulIdx < 256; ulIdx++)
{

pucData[ulIdx] = ulIdx;
}

//
// Compute the CRC-16 of the data.
//
ulValue = Crc16(0, pucData, 256);

478 July 25, 2016

System Control

26 System Control
Introduction .479
API Functions . 480
Programming Example .517

26.1 Introduction

System control determines the overall operation of the device. It controls the clocking of the device,
the set of peripherals that are enabled, configuration of the device and its resets, and provides
information about the device.

The members of the Tiva family have a varying peripheral set and memory sizes. The device has
a set of read-only registers that indicate the size of the memories, the peripherals that are present,
and the pins that are present for peripherals that have a varying number of pins. This information
can be used to write adaptive software that can run on more than one member of the Tiva family.

The device can be clocked from several sources: an external oscillator, the main oscillator, the
internal oscillator, the precision internal oscillator (PIOSC) or the PLL. The PLL can use any of the
oscillators as its input. Because the internal oscillator has a very wide error range (+/- 50%), it
cannot be used for applications that require specific timing; its real use is for detecting failures of
the main oscillator and the PLL, and for applications that strictly respond to external events and do
not use time-based peripherals (such as a UART). When using the PLL, the input clock frequency is
constrained to specific frequencies that are specified in the device data sheet. When direct clocking
with an external oscillator or the main oscillator, the frequency is constrained to between 0 Hz and
50 MHz (depending on the part). The frequency of the internal oscillator varies by device, with
voltage, and with temperature. The internal oscillator provides no tuning or frequency measurement
mechanism; its frequency is not adjustable.

Almost the entire device operates from a single clock. See the device data sheet for more informa-
tion on how clocking for the various periphersals is configured.

Three modes of operation are supported by the Tiva family: run mode, sleep mode, and deep-
sleep mode. In run mode, the processor is actively executing code. In sleep mode, the clocking
of the device is unchanged but the processor no longer executes code (and is no longer clocked).
In deep-sleep mode, the clocking of the device may change (depending upon the run mode clock
configuration) and the processor no longer executes code (and is no longer clocked). An interrupt
returns the device to run mode from one of the sleep modes; the sleep modes are entered upon
request from the code.

The device has an internal LDO for generating the core power supply. On some devices, the output
voltage of the LDO can be adjusted between 2.25 V and 2.75 V. Depending upon the application,
lower voltage may be advantageous for its power savings, or higher voltage may be advantageous
for its improved performance. The default setting of 2.5 V is a good compromise between the two,
and should not be changed without careful consideration and evaluation.

There are several system events that, when detected, cause system control to reset the device.
These events are a power-on, the input voltage dropping too low, an external reset, a software
reset request, waking from hibernation, a watchdog timeout, a hardware system service request,
and a main oscillator failure. The properties of some of these events can be configured, and the
reason for a reset can be determined from system control. Not all of these reset causes are on all
devices, see the device data sheet for more details.

July 25, 2016 479

System Control

Each peripheral in the device can be individually enabled, disabled, or reset. Additionally, the set
of peripherals that remain enabled during sleep mode and deep-sleep mode can be configured,
allowing custom sleep and deep-sleep modes to be defined. Care must be taken with deep-sleep
mode, though, because in this mode, the PLL is no longer used and the system is clocked by the
input crystal. Peripherals that depend on a particular input clock rate (such as a UART) require
special consideration in deep-sleep mode due to a clock rate change; these peripherals must either
be reconfigured upon entry to and exit from deep-sleep mode, or simply not enabled in deep-sleep
mode. Some devices provide the option to clock some peripherals with the PIOSC, even while in
deep-sleep mode so the peripheral clocking does not have to be reconfigured upon entry and exit.

There are various system events that, when detected, cause system control to generate a pro-
cessor interrupt. These events are the PLL achieving lock, the internal LDO current limit being
exceeded, the internal oscillator failing, the main oscillator failing, the input voltage dropping too
low, the internal LDO voltage dropping too low, and the PLL failing. Not all of these interrupts are
available on all Tiva devices, see the device data sheet for more details. Each of these interrupts
can be individually enabled or disabled, and the sources must be cleared by the interrupt handler
when they occur.

This driver is contained in driverlib/sysctl.c, with driverlib/sysctl.h containing the
API declarations for use by applications.

26.2 API Functions

Functions
void SysCtlAltClkConfig (uint32_t ui32Config)
uint32_t SysCtlClockFreqSet (uint32_t ui32Config, uint32_t ui32SysClock)
uint32_t SysCtlClockGet (void)
void SysCtlClockOutConfig (uint32_t ui32Config, uint32_t ui32Div)
void SysCtlClockSet (uint32_t ui32Config)
void SysCtlDeepSleep (void)
void SysCtlDeepSleepClockConfigSet (uint32_t ui32Div, uint32_t ui32Config)
void SysCtlDeepSleepClockSet (uint32_t ui32Config)
void SysCtlDeepSleepPowerSet (uint32_t ui32Config)
void SysCtlDelay (uint32_t ui32Count)
uint32_t SysCtlFlashSectorSizeGet (void)
uint32_t SysCtlFlashSizeGet (void)
void SysCtlGPIOAHBDisable (uint32_t ui32GPIOPeripheral)
void SysCtlGPIOAHBEnable (uint32_t ui32GPIOPeripheral)
void SysCtlIntClear (uint32_t ui32Ints)
void SysCtlIntDisable (uint32_t ui32Ints)
void SysCtlIntEnable (uint32_t ui32Ints)
void SysCtlIntRegister (void (∗pfnHandler)(void))
uint32_t SysCtlIntStatus (bool bMasked)
void SysCtlIntUnregister (void)
uint32_t SysCtlLDODeepSleepGet (void)
void SysCtlLDODeepSleepSet (uint32_t ui32Voltage)
uint32_t SysCtlLDOSleepGet (void)

480 July 25, 2016

System Control

void SysCtlLDOSleepSet (uint32_t ui32Voltage)
void SysCtlMOSCConfigSet (uint32_t ui32Config)
void SysCtlNMIClear (uint32_t ui32Ints)
uint32_t SysCtlNMIStatus (void)
void SysCtlPeripheralClockGating (bool bEnable)
void SysCtlPeripheralDeepSleepDisable (uint32_t ui32Peripheral)
void SysCtlPeripheralDeepSleepEnable (uint32_t ui32Peripheral)
void SysCtlPeripheralDisable (uint32_t ui32Peripheral)
void SysCtlPeripheralEnable (uint32_t ui32Peripheral)
void SysCtlPeripheralPowerOff (uint32_t ui32Peripheral)
void SysCtlPeripheralPowerOn (uint32_t ui32Peripheral)
bool SysCtlPeripheralPresent (uint32_t ui32Peripheral)
bool SysCtlPeripheralReady (uint32_t ui32Peripheral)
void SysCtlPeripheralReset (uint32_t ui32Peripheral)
void SysCtlPeripheralSleepDisable (uint32_t ui32Peripheral)
void SysCtlPeripheralSleepEnable (uint32_t ui32Peripheral)
uint32_t SysCtlPIOSCCalibrate (uint32_t ui32Type)
uint32_t SysCtlPWMClockGet (void)
void SysCtlPWMClockSet (uint32_t ui32Config)
void SysCtlReset (void)
uint32_t SysCtlResetBehaviorGet (void)
void SysCtlResetBehaviorSet (uint32_t ui32Behavior)
void SysCtlResetCauseClear (uint32_t ui32Causes)
uint32_t SysCtlResetCauseGet (void)
void SysCtlSleep (void)
void SysCtlSleepPowerSet (uint32_t ui32Config)
uint32_t SysCtlSRAMSizeGet (void)
void SysCtlUSBPLLDisable (void)
void SysCtlUSBPLLEnable (void)
bool SysCtlVCOGet (uint32_t ui32Crystal, uint32_t ∗pui32VCOFrequency)
void SysCtlVoltageEventClear (uint32_t ui32Status)
void SysCtlVoltageEventConfig (uint32_t ui32Config)
uint32_t SysCtlVoltageEventStatus (void)

26.2.1 Detailed Description

The SysCtl API is broken up into eight groups of functions: those that provide device information,
those that deal with device clocking, those that provide peripheral control, those that deal with the
SysCtl interrupt, those that deal with the LDO, those that deal with sleep modes, those that deal with
reset reasons, those that deal with the brown-out reset, and those that deal with clock verification
timers.

Information about the device is provided by SysCtlSRAMSizeGet(), SysCtlFlashSizeGet(), and
SysCtlPeripheralPresent().

Clocking of the device is configured with SysCtlClockSet() and SysCtlPWMClockSet(). Information
about device clocking is provided by SysCtlClockGet() and SysCtlPWMClockGet().

July 25, 2016 481

System Control

Peripheral enabling and reset are controlled with SysCtlPeripheralReset(), SysCtlPeripheralEn-
able(), SysCtlPeripheralDisable(), SysCtlPeripheralSleepEnable(), SysCtlPeripheralSleepDisable(),
SysCtlPeripheralDeepSleepEnable(), SysCtlPeripheralDeepSleepDisable(), and SysCtlPeripheral-
ClockGating().

The system control interrupt is managed with SysCtlIntRegister(), SysCtlIntUnregister(), SysCtlIn-
tEnable(), SysCtlIntDisable(), SysCtlIntClear(), SysCtlIntStatus().

The LDO is controlled with SysCtlLDOSet() and SysCtlLDOConfigSet(). Its status is provided by
SysCtlLDOGet().

The device is put into sleep modes with SysCtlSleep() and SysCtlDeepSleep().

The reset reason is managed with SysCtlResetCauseGet() and SysCtlResetCauseClear(). A soft-
ware reset is performed with SysCtlReset().

The brown-out reset is configured with SysCtlBrownOutConfigSet().

The clock verification timers are managed with SysCtlIOSCVerificationSet(), SysCtlMOSCVerifica-
tionSet(), SysCtlPLLVerificationSet(), and SysCtlClkVerificationClear().

26.2.2 Function Documentation

26.2.2.1 SysCtlAltClkConfig

Configures the alternate peripheral clock source.

Prototype:
void
SysCtlAltClkConfig(uint32_t ui32Config)

Parameters:
ui32Config holds the configuration options for the alternate peripheral clock.

Description:
This function configures the alternate peripheral clock. The alternate peripheral clock is used
to provide a known clock in all operating modes to peripherals that support using the alternate
peripheral clock as an input clock. The ui32Config parameter value provides the clock input
source using one of the following values:

SYSCTL_ALTCLK_PIOSC - use the PIOSC as the alternate clock source (default).
SYSCTL_ALTCLK_RTCOSC - use the Hibernate module RTC clock as the alternate clock
source.
SYSCTL_ALTCLK_LFIOSC - use the low-frequency internal oscillator as the alternate
clock source.

Example: Select the Hibernate module RTC clock as the alternate clock source.

//
// Select the Hibernate module RTC clock as the alternate clock source.
//
SysCtlAltClkConfig(SYSCTL_ALTCLK_RTCOSC);

Note:
The availability of the alternate peripheral clock varies with the Tiva part in use. Please consult
the data sheet for the part you are using to determine which interrupt sources are available.

482 July 25, 2016

System Control

Returns:
None.

26.2.2.2 SysCtlClockFreqSet

Configures the system clock.

Prototype:
uint32_t
SysCtlClockFreqSet(uint32_t ui32Config,

uint32_t ui32SysClock)

Parameters:
ui32Config is the required configuration of the device clocking.
ui32SysClock is the requested processor frequency.

Description:
This function configures the main system clocking for the device. The input frequency, oscillator
source, whether or not to enable the PLL, and the system clock divider are all configured with
this function. This function configures the system frequency to the closest available divisor of
one of the fixed PLL VCO settings provided in the ui32Config parameter. The caller sets the
ui32SysClock parameter to request the system clock frequency, and this function then attempts
to match this using the values provided in the ui32Config parameter. If this function cannot
exactly match the requested frequency, it picks the closest frequency that is lower than the
requested frequency. The ui32Config parameter provides the remaining configuration options
using a set of defines that are a logical OR of several different values, many of which are
grouped into sets where only one of the set can be chosen. This function returns the current
system frequency which may not match the requested frequency.

If the application is using an external crystal then the frequency is set by using one of the fol-
lowing values: SYSCTL_XTAL_5MHZ, SYSCTL_XTAL_6MHZ, SYSCTL_XTAL_8MHZ,
SYSCTL_XTAL_10MHZ, SYSCTL_XTAL_12MHZ, SYSCTL_XTAL_16MHZ,
SYSCTL_XTAL_18MHZ, SYSCTL_XTAL_20MHZ, SYSCTL_XTAL_24MHZ, or
SYSCTL_XTAL_25MHz.

The oscillator source is chosen with one of the following values:

SYSCTL_OSC_MAIN to use an external crystal or oscillator.
SYSCTL_OSC_INT to use the 16-MHz precision internal oscillator.
SYSCTL_OSC_INT30 to use the internal low frequency oscillator.
SYSCTL_OSC_EXT32 to use the hibernate modules 32.786-kHz oscillator. This option is
only available on devices that include the hibernation module.

The system clock source is chosen with one of the following values:

SYSCTL_USE_PLL is used to select the PLL output as the system clock.
SYSCTL_USE_OSC is used to choose one of the oscillators as the system clock.

The PLL VCO frequency is chosen with one of the the following values:

SYSCTL_CFG_VCO_480 to set the PLL VCO output to 480-MHz
SYSCTL_CFG_VCO_320 to set the PLL VCO output to 320-MHz

July 25, 2016 483

System Control

Example: Configure the system clocking to be 40 MHz with a 320-MHz PLL setting using the
16-MHz internal oscillator.

SysCtlClockFreqSet(SYSCTL_OSC_INT | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_320,
40000000);

Note:
This function cannot be used with TM4C123 devices. For TM4C123 devices use the SysCtl-
ClockSet() function.

Returns:
The actual configured system clock frequency in Hz or zero if the value could not be changed
due to a parameter error or PLL lock failure.

26.2.2.3 SysCtlClockGet

Gets the processor clock rate.

Prototype:
uint32_t
SysCtlClockGet(void)

Description:
This function determines the clock rate of the processor clock, which is also the clock rate
of the peripheral modules (with the exception of PWM, which has its own clock divider; other
peripherals may have different clocking, see the device data sheet for details).

Note:
This cannot return accurate results if SysCtlClockSet() has not been called to configure the
clocking of the device, or if the device is directly clocked from a crystal (or a clock source)
that is not one of the supported crystal frequencies. In the latter case, this function should be
modified to directly return the correct system clock rate.

This function can only be called on TM4C123 devices. For TM4C129 devices, the return value
from SysCtlClockFreqSet() indicates the system clock frequency.

Returns:
The processor clock rate for TM4C123 devices only.

26.2.2.4 SysCtlClockOutConfig

Configures and enables or disables the clock output on the DIVSCLK pin.

Prototype:
void
SysCtlClockOutConfig(uint32_t ui32Config,

uint32_t ui32Div)

Parameters:
ui32Config holds the configuration options including enabling or disabling the clock output on

the DIVSCLK pin.
ui32Div is the divisor for the clock selected in the ui32Config parameter.

484 July 25, 2016

System Control

Description:
This function selects the source for the DIVSCLK, enables or disables the clock output and
provides an output divider value. The ui32Div parameter specifies the divider for the selected
clock source and has a valid range of 1-256. The ui32Config parameter configures the DIVS-
CLK output based on the following settings:

The first setting allows the output to be enabled or disabled.

SYSCTL_CLKOUT_EN - enable the DIVSCLK output.
SYSCTL_CLKOUT_DIS - disable the DIVSCLK output (default).

The next group of settings selects the source for the DIVSCLK.

SYSCTL_CLKOUT_SYSCLK - use the current system clock as the source (default).
SYSCTL_CLKOUT_PIOSC - use the PIOSC as the source.
SYSCTL_CLKOUT_MOSC - use the MOSC as the source.

Example: Enable the PIOSC divided by 4 as the DIVSCLK output.

//
// Enable the PIOSC divided by 4 as the DIVSCLK output.
//
SysCtlClockOutConfig(SYSCTL_DIVSCLK_EN | SYSCTL_DIVSCLK_SRC_PIOSC, 4);

Note:
The availability of the DIVSCLK output varies with the Tiva part in use. Please consult the data
sheet for the part you are using to determine which interrupt sources are available.

Returns:
None.

26.2.2.5 SysCtlClockSet

Sets the clocking of the device.

Prototype:
void
SysCtlClockSet(uint32_t ui32Config)

Parameters:
ui32Config is the required configuration of the device clocking.

Description:
This function configures the clocking of the device. The input crystal frequency, oscillator to be
used, use of the PLL, and the system clock divider are all configured with this function.

The ui32Config parameter is the logical OR of several different values, many of which are
grouped into sets where only one can be chosen.

The system clock divider is chosen with one of the following values: SYSCTL_SYSDIV_1,
SYSCTL_SYSDIV_2, SYSCTL_SYSDIV_3, ... SYSCTL_SYSDIV_64.

The use of the PLL is chosen with either SYSCTL_USE_PLL or SYSCTL_USE_OSC.

The external crystal frequency is chosen with one of the following values:
SYSCTL_XTAL_4MHZ, SYSCTL_XTAL_4_09MHZ, SYSCTL_XTAL_4_91MHZ,

July 25, 2016 485

System Control

SYSCTL_XTAL_5MHZ, SYSCTL_XTAL_5_12MHZ, SYSCTL_XTAL_6MHZ,
SYSCTL_XTAL_6_14MHZ, SYSCTL_XTAL_7_37MHZ, SYSCTL_XTAL_8MHZ,
SYSCTL_XTAL_8_19MHZ, SYSCTL_XTAL_10MHZ, SYSCTL_XTAL_12MHZ,
SYSCTL_XTAL_12_2MHZ, SYSCTL_XTAL_13_5MHZ, SYSCTL_XTAL_14_3MHZ,
SYSCTL_XTAL_16MHZ, SYSCTL_XTAL_16_3MHZ, SYSCTL_XTAL_18MHZ,
SYSCTL_XTAL_20MHZ, SYSCTL_XTAL_24MHZ, or SYSCTL_XTAL_25MHz. Values
below SYSCTL_XTAL_5MHZ are not valid when the PLL is in operation.

The oscillator source is chosen with one of the following values: SYSCTL_OSC_MAIN,
SYSCTL_OSC_INT, SYSCTL_OSC_INT4, SYSCTL_OSC_INT30, or SYSCTL_OSC_EXT32.
SYSCTL_OSC_EXT32 is only available on devices with the hibernate module, and then only
when the hibernate module has been enabled.

The internal and main oscillators are disabled with the SYSCTL_INT_OSC_DIS and
SYSCTL_MAIN_OSC_DIS flags, respectively. The external oscillator must be enabled in order
to use an external clock source. Note that attempts to disable the oscillator used to clock the
device is prevented by the hardware.

To clock the system from an external source (such as an external crystal oscillator), use
SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the main oscillator,
use SYSCTL_USE_OSC | SYSCTL_OSC_MAIN. To clock the system from the PLL, use
SYSCTL_USE_PLL | SYSCTL_OSC_MAIN, and select the appropriate crystal with one of
the SYSCTL_XTAL_xxx values.

Note:
This function should only be called on TM4C123 devices. For all other devices use the SysCtl-
ClockFreqSet() function.

If selecting the PLL as the system clock source (that is, via SYSCTL_USE_PLL), this function
polls the PLL lock interrupt to determine when the PLL has locked. If an interrupt handler for
the system control interrupt is in place, and it responds to and clears the PLL lock interrupt,
this function delays until its timeout has occurred instead of completing as soon as PLL lock is
achieved.

Returns:
None.

26.2.2.6 SysCtlDeepSleep

Puts the processor into deep-sleep mode.

Prototype:
void
SysCtlDeepSleep(void)

Description:
This function places the processor into deep-sleep mode; it does not return until the processor
returns to run mode. The peripherals that are enabled via SysCtlPeripheralDeepSleepEnable()
continue to operate and can wake up the processor (if automatic clock gating is enabled with
SysCtlPeripheralClockGating(), otherwise all peripherals continue to operate).

Returns:
None.

486 July 25, 2016

System Control

26.2.2.7 SysCtlDeepSleepClockConfigSet

Sets the clock configuration of the device while in deep-sleep mode.

Prototype:
void
SysCtlDeepSleepClockConfigSet(uint32_t ui32Div,

uint32_t ui32Config)

Parameters:
ui32Div is the clock divider when in deep-sleep mode.
ui32Config is the configuration of the device clocking while in deep-sleep mode.

Description:
This function configures the clocking of the device while in deep-sleep mode. The ui32Config
parameter selects the oscillator and the ui32Div parameter sets the clock divider used in deep-
sleep mode. The valid values for the ui32Div parameter range from 1 to 1024, however not
all Tiva microcontrollers support this full range. This function replaces the SysCtlDeepSleep-
ClockSet() function and can be used on Tiva devices that support deep-sleep mode.

The oscillator source is chosen from one of the following values: SYSCTL_DSLP_OSC_MAIN,
SYSCTL_DSLP_OSC_INT, SYSCTL_DSLP_OSC_INT30, or SYSCTL_DSLP_OSC_EXT32.
The SYSCTL_DSLP_OSC_EXT32 option is only available on devices with the hibernation
module, and then only when the hibernation module is enabled.

The precision internal oscillator can be powered down in deep-sleep mode by specifying
SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is not powered down if it is re-
quired for operation while in deep-sleep (based on other configuration settings).

The main oscillator can be powered down in deep-sleep mode by specifying
SYSCTL_DSLP_MOSC_PD. The main oscillator is not powered down if it is required for oper-
ation while in deep-sleep (based on other configuration settings).

Note:
The availability of deep-sleep clocking configuration and the configuration values vary with the
Tiva device in use. Please consult the data sheet for the device you are using to determine
whether the desired configuration options are available and to determine the valid range for the
clock divider.

Returns:
None.

26.2.2.8 SysCtlDeepSleepClockSet

Sets the clocking of the device while in deep-sleep mode.

Prototype:
void
SysCtlDeepSleepClockSet(uint32_t ui32Config)

Parameters:
ui32Config is the required configuration of the device clocking while in deep-sleep mode.

July 25, 2016 487

System Control

Description:
This function configures the clocking of the device while in deep-sleep mode. The oscillator to
be used and the system clock divider are configured with this function.

The ui32Config parameter is the logical OR of the following values:

The system clock divider is chosen from one of the following values: SYSCTL_DSLP_DIV_1,
SYSCTL_DSLP_DIV_2, SYSCTL_DSLP_DIV_3, ... SYSCTL_DSLP_DIV_64.

The oscillator source is chosen from one of the following values: SYSCTL_DSLP_OSC_MAIN,
SYSCTL_DSLP_OSC_INT, SYSCTL_DSLP_OSC_INT30, or SYSCTL_DSLP_OSC_EXT32.
SYSCTL_OSC_EXT32 is only available on devices with the hibernation module, and then only
when the hibernation module has been enabled.

The precision internal oscillator can be powered down in deep-sleep mode by specifying
SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is not powered down if it is re-
quired for operation while in deep-sleep (based on other configuration settings.)

Note:
This function should only be called on TM4C123 devices. For other devices use the
SysCtlDeepSleepClockConfigSet() function.

The availability of deep-sleep clocking configuration varies with the Tiva part in use. Please
consult the data sheet for the part you are using to determine whether this support is available.

Returns:
None.

26.2.2.9 SysCtlDeepSleepPowerSet

Configures the power to the flash and SRAM while in deep-sleep mode.

Prototype:
void
SysCtlDeepSleepPowerSet(uint32_t ui32Config)

Parameters:
ui32Config is the required flash and SRAM power configuration.

Description:
This function allows the power configuration of the flash and SRAM while in deep-sleep mode
to be set. The ui32Config parameter is the logical OR of the flash power configuration and the
SRAM power configuration.

The flash power configuration is specified as either:

SYSCTL_FLASH_NORMAL - The flash is left in fully powered mode, providing fast wake-
up time but higher power consumption.
SYSCTL_FLASH_LOW_POWER - The flash is in low power mode, providing reduced
power consumption but longer wake-up time.

The SRAM power configuration is specified as one of:

SYSCTL_LDO_SLEEP - The LDO is in sleep mode.
SYSCTL_TEMP_LOW_POWER - The temperature sensor in low power mode.

488 July 25, 2016

System Control

SYSCTL_SRAM_NORMAL - The SRAM is left in fully powered mode, providing fast wake-
up time but higher power consumption.
SYSCTL_SRAM_STANDBY - The SRAM is placed into a lower power mode, providing
reduced power consumption but longer wake-up time.
SYSCTL_SRAM_LOW_POWER - The SRAM is placed into lowest power mode, providing
further reduced power consumption but longer wake-up time.

Note:
The availability of this feature varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine whether this support is available.

Returns:
None.

26.2.2.10 SysCtlDelay

Provides a small delay.

Prototype:
void
SysCtlDelay(uint32_t ui32Count)

Parameters:
ui32Count is the number of delay loop iterations to perform.

Description:
This function provides a means of generating a delay by executing a simple 3 instruction cycle
loop a given number of times. It is written in assembly to keep the loop instruction count
consistent across tool chains.

It is important to note that this function does NOT provide an accurate timing mechanism.
Although the delay loop is 3 instruction cycles long, the execution time of the loop will vary dra-
matically depending upon the application’s interrupt environment (the loop will be interrupted
unless run with interrupts disabled and this is generally an unwise thing to do) and also the
current system clock rate and flash timings (wait states and the operation of the prefetch buffer
affect the timing).

For better accuracy, the ROM version of this function may be used. This version will not suf-
fer from flash- and prefect buffer-related timing variability but will still be delayed by interrupt
service routines.

For best accuracy, a system timer should be used with code either polling for a particular timer
value being exceeded or processing the timer interrupt to determine when a particular time
period has elapsed.

Returns:
None.

26.2.2.11 SysCtlFlashSectorSizeGet

Gets the size of a single eraseable sector of flash.

July 25, 2016 489

System Control

Prototype:
uint32_t
SysCtlFlashSectorSizeGet(void)

Description:
This function determines the flash sector size on the Tiva device. This size determines the
erase granularity of the device flash.

Returns:
The number of bytes in a single flash sector.

26.2.2.12 SysCtlFlashSizeGet

Gets the size of the flash.

Prototype:
uint32_t
SysCtlFlashSizeGet(void)

Description:
This function determines the size of the flash on the Tiva device.

Returns:
The total number of bytes of flash.

26.2.2.13 SysCtlGPIOAHBDisable

Disables access to a GPIO peripheral via the AHB.

Prototype:
void
SysCtlGPIOAHBDisable(uint32_t ui32GPIOPeripheral)

Parameters:
ui32GPIOPeripheral is the GPIO peripheral to disable.

Description:
This function disables the specified GPIO peripheral for access from the Advanced Host Bus
(AHB). Once disabled, the GPIO peripheral is accessed from the legacy Advanced Peripheral
Bus (APB).

The ui32GPIOPeripheral argument must be only one of the following values:
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, or SYSCTL_PERIPH_GPIOJ.

Note:
Some devices allow disabling AHB access to GPIO ports that are only present on the AHB. Dis-
abling AHB access to these ports will disable access to these GPIO ports. On some devices,
all GPIO ports are only available on AHB.

Returns:
None.

490 July 25, 2016

System Control

26.2.2.14 SysCtlGPIOAHBEnable

Enables access to a GPIO peripheral via the AHB.

Prototype:
void
SysCtlGPIOAHBEnable(uint32_t ui32GPIOPeripheral)

Parameters:
ui32GPIOPeripheral is the GPIO peripheral to enable.

Description:
This function is used to enable the specified GPIO peripheral to be accessed from the Ad-
vanced Host Bus (AHB) instead of the legacy Advanced Peripheral Bus (APB). When a GPIO
peripheral is enabled for AHB access, the _AHB_BASE form of the base address should be
used for GPIO functions. For example, instead of using GPIO_PORTA_BASE as the base
address for GPIO functions, use GPIO_PORTA_AHB_BASE instead.

The ui32GPIOPeripheral argument must be only one of the following values:
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, or SYSCTL_PERIPH_GPIOJ.

Note:
On some devices, all GPIO ports are only available on AHB.

Returns:
None.

26.2.2.15 SysCtlIntClear

Clears system control interrupt sources.

Prototype:
void
SysCtlIntClear(uint32_t ui32Ints)

Parameters:
ui32Ints is a bit mask of the interrupt sources to be cleared. Must

be a logical OR of SYSCTL_INT_BOR0, SYSCTL_INT_VDDA_OK,
SYSCTL_INT_MOSC_PUP, SYSCTL_INT_USBPLL_LOCK, SYSCTL_INT_PLL_LOCK,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_BOR, and/or SYSCTL_INT_BOR1.

Description:
The specified system control interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep it from being called again immediately
on exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to

July 25, 2016 491

System Control

do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
None.

26.2.2.16 SysCtlIntDisable

Disables individual system control interrupt sources.

Prototype:
void
SysCtlIntDisable(uint32_t ui32Ints)

Parameters:
ui32Ints is a bit mask of the interrupt sources to be disabled. Must

be a logical OR of SYSCTL_INT_BOR0, SYSCTL_INT_VDDA_OK,
SYSCTL_INT_MOSC_PUP, SYSCTL_INT_USBPLL_LOCK, SYSCTL_INT_PLL_LOCK,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_BOR, and/or SYSCTL_INT_BOR1.

Description:
This function disables the indicated system control interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Note:
The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
None.

26.2.2.17 SysCtlIntEnable

Enables individual system control interrupt sources.

Prototype:
void
SysCtlIntEnable(uint32_t ui32Ints)

Parameters:
ui32Ints is a bit mask of the interrupt sources to be enabled. Must

be a logical OR of SYSCTL_INT_BOR0, SYSCTL_INT_VDDA_OK,
SYSCTL_INT_MOSC_PUP, SYSCTL_INT_USBPLL_LOCK, SYSCTL_INT_PLL_LOCK,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_BOR, and/or SYSCTL_INT_BOR1.

Description:
This function enables the indicated system control interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

492 July 25, 2016

System Control

Note:
The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
None.

26.2.2.18 SysCtlIntRegister

Registers an interrupt handler for the system control interrupt.

Prototype:
void
SysCtlIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the system control interrupt occurs.

Description:
This function registers the handler to be called when a system control interrupt occurs. This
function enables the global interrupt in the interrupt controller; specific system control interrupts
must be enabled via SysCtlIntEnable(). It is the interrupt handler’s responsibility to clear the
interrupt source via SysCtlIntClear().

System control can generate interrupts when the PLL achieves lock, if the internal LDO current
limit is exceeded, if the internal oscillator fails, if the main oscillator fails, if the internal LDO
output voltage droops too much, if the external voltage droops too much, or if the PLL fails.

See also:
IntRegister() for important information about registering interrupt handlers.

Note:
The events that cause system control interrupts vary based on the Tiva part in use. Please
consult the data sheet for the part you are using to determine which interrupt sources are
available.

Returns:
None.

26.2.2.19 SysCtlIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
SysCtlIntStatus(bool bMasked)

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

July 25, 2016 493

System Control

Description:
This function returns the interrupt status for the system controller. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Note:
The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
The current interrupt status, enumerated as a bit field of SYSCTL_INT_BOR0,
SYSCTL_INT_VDDA_OK, SYSCTL_INT_MOSC_PUP, SYSCTL_INT_USBPLL_LOCK,
SYSCTL_INT_PLL_LOCK, SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_BOR, and/or
SYSCTL_INT_BOR1.

26.2.2.20 SysCtlIntUnregister

Unregisters the interrupt handler for the system control interrupt.

Prototype:
void
SysCtlIntUnregister(void)

Description:
This function unregisters the handler to be called when a system control interrupt occurs. This
function also masks off the interrupt in the interrupt controller so that the interrupt handler no
longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

26.2.2.21 SysCtlLDODeepSleepGet

Returns the output voltage of the LDO when the device enters deep-sleep mode.

Prototype:
uint32_t
SysCtlLDODeepSleepGet(void)

Description:
This function returns the output voltage of the LDO when the device is in deep-sleep mode, as
specified by the control register.

Note:
The availability of this feature, the default LDO voltage, and the adjustment range varies with
the Tiva part in use. Please consult the data sheet for the part you are using to determine
whether this support is available.

494 July 25, 2016

System Control

Returns:
Returns the deep-sleep-mode voltage of the LDO; is one of SYSCTL_LDO_0_90V,
SYSCTL_LDO_0_95V, SYSCTL_LDO_1_00V, SYSCTL_LDO_1_05V,
SYSCTL_LDO_1_10V, SYSCTL_LDO_1_15V, or SYSCTL_LDO_1_20V.

26.2.2.22 SysCtlLDODeepSleepSet

Sets the output voltage of the LDO when the device enters deep-sleep mode.

Prototype:
void
SysCtlLDODeepSleepSet(uint32_t ui32Voltage)

Parameters:
ui32Voltage is the required output voltage from the LDO while in deep-sleep mode.

Description:
This function sets the output voltage of the LDO while in deep-sleep mode. The
ui32Voltage parameter specifies the output voltage of the LDO and must be one of the
following values: SYSCTL_LDO_0_90V, SYSCTL_LDO_0_95V, SYSCTL_LDO_1_00V,
SYSCTL_LDO_1_05V, SYSCTL_LDO_1_10V, SYSCTL_LDO_1_15V, or
SYSCTL_LDO_1_20V.

Note:
The availability of this feature, the default LDO voltage, and the adjustment range varies with
the Tiva part in use. Please consult the data sheet for the part you are using to determine
whether this support is available.

Returns:
None.

26.2.2.23 SysCtlLDOSleepGet

Returns the output voltage of the LDO when the device enters sleep mode.

Prototype:
uint32_t
SysCtlLDOSleepGet(void)

Description:
This function determines the output voltage of the LDO while in sleep mode, as specified by
the control register.

Note:
The availability of this feature, the default LDO voltage, and the adjustment range varies with
the Tiva part in use. Please consult the data sheet for the part you are using to determine
whether this support is available.

Returns:
Returns the sleep-mode voltage of the LDO and is one of SYSCTL_LDO_0_90V,
SYSCTL_LDO_0_95V, SYSCTL_LDO_1_00V, SYSCTL_LDO_1_05V,
SYSCTL_LDO_1_10V, SYSCTL_LDO_1_15V, or SYSCTL_LDO_1_20V.

July 25, 2016 495

System Control

26.2.2.24 SysCtlLDOSleepSet

Sets the output voltage of the LDO when the device enters sleep mode.

Prototype:
void
SysCtlLDOSleepSet(uint32_t ui32Voltage)

Parameters:
ui32Voltage is the required output voltage from the LDO while in sleep mode.

Description:
This function sets the output voltage of the LDO while in sleep mode. The ui32Voltage pa-
rameter must be one of the following values: SYSCTL_LDO_0_90V, SYSCTL_LDO_0_95V,
SYSCTL_LDO_1_00V, SYSCTL_LDO_1_05V, SYSCTL_LDO_1_10V,
SYSCTL_LDO_1_15V, or SYSCTL_LDO_1_20V.

Note:
The availability of this feature, the default LDO voltage, and the adjustment range varies with
the Tiva part in use. Please consult the data sheet for the part you are using to determine
whether this support is available.

Returns:
None.

26.2.2.25 SysCtlMOSCConfigSet

Sets the configuration of the main oscillator (MOSC) control.

Prototype:
void
SysCtlMOSCConfigSet(uint32_t ui32Config)

Parameters:
ui32Config is the required configuration of the MOSC control.

Description:
This function configures the control of the main oscillator. The ui32Config is specified as the
logical OR of the following values:

SYSCTL_MOSC_VALIDATE enables the MOSC verification circuit that detects a failure of
the main oscillator (such as a loss of the clock).
SYSCTL_MOSC_INTERRUPT indicates that a MOSC failure should generate an interrupt
instead of resetting the processor.
SYSCTL_MOSC_NO_XTAL indicates that there is no crystal or oscillator connected to the
OSC0/OSC1 pins, allowing power consumption to be reduced.
SYSCTL_MOSC_PWR_DIS disable power to the main oscillator. If this parameter is not
specified, the MOSC input remains powered.
SYSCTL_MOSC_LOWFREQ MOSC is less than 10 MHz.
SYSCTL_MOSC_HIGHFREQ MOSC is greater than 10 MHz.
SYSCTL_MOSC_SESRC specifies that the MOSC is a single-ended oscillator connected
to OSC0. If this parameter is not specified, the input is assumed to be a crystal.

496 July 25, 2016

System Control

Note:
The availability of MOSC control varies based on the Tiva part in use. Please consult the data
sheet for the part you are using to determine whether this support is available. In addition, the
capability of MOSC control varies based on the Tiva part in use.

Returns:
None.

26.2.2.26 SysCtlNMIClear

Clears NMI sources.

Prototype:
void
SysCtlNMIClear(uint32_t ui32Ints)

Parameters:
ui32Ints is a bit mask of the non-maskable interrupt sources.

Description:
This function clears the current NMI status specified in the ui32Ints parameter. The valid values
for the ui32Ints parameter are a logical OR of the following values:

SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not start.
SYSCTL_NMI_TAMPER a tamper event has been detected.
SYSCTL_NMI_WDT0 watchdog 0 generated a timeout.
SYSCTL_NMI_WDT1 watchdog 1 generated a timeout.
SYSCTL_NMI_POWER a power event occurred.
SYSCTL_NMI_EXTERNAL an external NMI pin asserted.

Example: Clear all current NMI status flags.

//
// Clear all the current NMI sources.
//
SysCtlNMIClear(SysCtlNMIStatus());

Note:
The availability of the NMI status varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine which interrupt sources are available.

Returns:
None.

26.2.2.27 SysCtlNMIStatus

Returns the current NMI status.

Prototype:
uint32_t
SysCtlNMIStatus(void)

July 25, 2016 497

System Control

Description:
This function returns the NMI status for the system controller. The valid values for the ui32Ints
parameter are a logical OR of the following values:

SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not start.
SYSCTL_NMI_TAMPER a tamper event has been detected.
SYSCTL_NMI_WDT0 watchdog 0 generated a timeout.
SYSCTL_NMI_WDT1 watchdog 1 generated a timeout.
SYSCTL_NMI_POWER a power event occurred.
SYSCTL_NMI_EXTERNAL an external NMI pin asserted.

Example: Clear all current NMI status flags.

//
// Clear all the current NMI sources.
//
SysCtlNMIClear(SysCtlNMIStatus());

Note:
The availability of the NMI status varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine which interrupt sources are available.

Returns:
The current NMI status.

26.2.2.28 SysCtlPeripheralClockGating

Controls peripheral clock gating in sleep and deep-sleep mode.

Prototype:
void
SysCtlPeripheralClockGating(bool bEnable)

Parameters:
bEnable is a boolean that is true if the sleep and deep-sleep peripheral configuration should

be used and false if not.

Description:
This function controls how peripherals are clocked when the processor goes into sleep or deep-
sleep mode. By default, the peripherals are clocked the same as in run mode; if peripheral
clock gating is enabled, they are clocked according to the configuration set by SysCtlPeriph-
eralSleepEnable(), SysCtlPeripheralSleepDisable(), SysCtlPeripheralDeepSleepEnable(), and
SysCtlPeripheralDeepSleepDisable().

Returns:
None.

26.2.2.29 SysCtlPeripheralDeepSleepDisable

Disables a peripheral in deep-sleep mode.

498 July 25, 2016

System Control

Prototype:
void
SysCtlPeripheralDeepSleepDisable(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to disable in deep-sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into deep-sleep
mode. Disabling peripherals while in deep-sleep mode helps to lower the current draw of the
device, and can keep peripherals that require a particular clock frequency from operating when
the clock changes as a result of entering deep-sleep mode. If enabled (via SysCtlPeripheralEn-
able()), the peripheral automatically resumes operation when the processor leaves deep-sleep
mode, maintaining its entire state from before deep-sleep mode was entered.

Deep-sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating();
if disabled, the peripheral deep-sleep mode configuration is maintained but has no effect when
deep-sleep mode is entered.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
None.

26.2.2.30 SysCtlPeripheralDeepSleepEnable

Enables a peripheral in deep-sleep mode.

July 25, 2016 499

System Control

Prototype:
void
SysCtlPeripheralDeepSleepEnable(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to enable in deep-sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into deep-
sleep mode. Because the clocking configuration of the device may change, not all peripherals
can safely continue operating while the processor is in deep-sleep mode. Those that must run
at a particular frequency (such as a UART) do not work as expected if the clock changes. It is
the responsibility of the caller to make sensible choices.

Deep-sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating();
if disabled, the peripheral deep-sleep mode configuration is maintained but has no effect when
deep-sleep mode is entered.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
None.

26.2.2.31 SysCtlPeripheralDisable

Disables a peripheral.

500 July 25, 2016

System Control

Prototype:
void
SysCtlPeripheralDisable(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to disable.

Description:
This function disables a peripheral. Once disabled, they do not operate or respond to register
reads/writes.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
None.

26.2.2.32 SysCtlPeripheralEnable

Enables a peripheral.

Prototype:
void
SysCtlPeripheralEnable(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to enable.

July 25, 2016 501

System Control

Description:
This function enables a peripheral. At power-up, all peripherals are disabled; they must be
enabled in order to operate or respond to register reads/writes.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Note:
It takes five clock cycles after the write to enable a peripheral before the the peripheral is
actually enabled. During this time, attempts to access the peripheral result in a bus fault. Care
should be taken to ensure that the peripheral is not accessed during this brief time period.

Returns:
None.

26.2.2.33 SysCtlPeripheralPowerOff

Powers off a peripheral.

Prototype:
void
SysCtlPeripheralPowerOff(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to be powered off.

502 July 25, 2016

System Control

Description:
This function allows the power to a peripheral to be turned off. The peripheral continues to
receive power when its clock is enabled, but the power is removed when its clock is disabled.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_USB0

Note:
The ability to power off a peripheral varies based on the Tiva part in use. Please consult the
data sheet for the part you are using to determine if this feature is available.

Returns:
None.

26.2.2.34 SysCtlPeripheralPowerOn

Powers on a peripheral.

Prototype:
void
SysCtlPeripheralPowerOn(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to be powered on.

Description:
This function turns on the power to a peripheral. The peripheral continues to receive power
even when its clock is not enabled.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_USB0

Note:
The ability to power off a peripheral varies based on the Tiva part in use. Please consult the
data sheet for the part you are using to determine if this feature is available.

Returns:
None.

26.2.2.35 SysCtlPeripheralPresent

Determines if a peripheral is present.

Prototype:
bool
SysCtlPeripheralPresent(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral in question.

July 25, 2016 503

System Control

Description:
This function determines if a particular peripheral is present in the device. Each member of
the Tiva family has a different peripheral set; this function determines which peripherals are
present on this device.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
Returns true if the specified peripheral is present and false if it is not.

26.2.2.36 SysCtlPeripheralReady

Determines if a peripheral is ready.

Prototype:
bool
SysCtlPeripheralReady(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral in question.

Description:
This function determines if a particular peripheral is ready to be accessed. The peripheral
may be in a non-ready state if it is not enabled, is being held in reset, or is in the process of
becoming ready after being enabled or taken out of reset.

504 July 25, 2016

System Control

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Note:
The ability to check for a peripheral being ready varies based on the Tiva part in use. Please
consult the data sheet for the part you are using to determine if this feature is available.

Returns:
Returns true if the specified peripheral is ready and false if it is not.

26.2.2.37 SysCtlPeripheralReset

Performs a software reset of a peripheral.

Prototype:
void
SysCtlPeripheralReset(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to reset.

Description:
This function performs a software reset of the specified peripheral. An individual peripheral
reset signal is asserted for a brief period and then de-asserted, returning the internal state of
the peripheral to its reset condition.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,

July 25, 2016 505

System Control

SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
None.

26.2.2.38 SysCtlPeripheralSleepDisable

Disables a peripheral in sleep mode.

Prototype:
void
SysCtlPeripheralSleepDisable(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to disable in sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into sleep mode.
Disabling peripherals while in sleep mode helps to lower the current draw of the device. If
enabled (via SysCtlPeripheralEnable()), the peripheral automatically resumes operation when
the processor leaves sleep mode, maintaining its entire state from before sleep mode was
entered.

Sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating(); if dis-
abled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,

506 July 25, 2016

System Control

SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,
SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
None.

26.2.2.39 SysCtlPeripheralSleepEnable

Enables a peripheral in sleep mode.

Prototype:
void
SysCtlPeripheralSleepEnable(uint32_t ui32Peripheral)

Parameters:
ui32Peripheral is the peripheral to enable in sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into sleep
mode. Because the clocking configuration of the device does not change, any peripheral can
safely continue operating while the processor is in sleep mode and can therefore wake the
processor from sleep mode.

Sleep mode clocking of peripherals must be enabled via SysCtlPeripheralClockGating(); if dis-
abled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ui32Peripheral parameter must be only one of the follow-
ing values: SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1,
SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CCM0,

July 25, 2016 507

System Control

SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EMAC,
SYSCTL_PERIPH_EPHY, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,
SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2C8,
SYSCTL_PERIPH_I2C9, SYSCTL_PERIPH_LCD0, SYSCTL_PERIPH_ONEWIRE0,
SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0,
SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1,
SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_TIMER6,
SYSCTL_PERIPH_TIMER7, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3, SYSCTL_PERIPH_UART4,
SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6, SYSCTL_PERIPH_UART7,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0,
SYSCTL_PERIPH_WDOG1, SYSCTL_PERIPH_WTIMER0, SYSCTL_PERIPH_WTIMER1,
SYSCTL_PERIPH_WTIMER2, SYSCTL_PERIPH_WTIMER3,
SYSCTL_PERIPH_WTIMER4, or SYSCTL_PERIPH_WTIMER5

Returns:
None.

26.2.2.40 SysCtlPIOSCCalibrate

Calibrates the precision internal oscillator.

Prototype:
uint32_t
SysCtlPIOSCCalibrate(uint32_t ui32Type)

Parameters:
ui32Type is the type of calibration to perform.

Description:
This function performs a calibration of the PIOSC. There are three types of calibration available;
the desired calibration type as specified in ui32Type is one of:

SYSCTL_PIOSC_CAL_AUTO to perform automatic calibration using the 32-kHz clock
from the hibernate module as a reference. This type is only possible on parts that have a
hibernate module, and then only if it is enabled, a 32.768-kHz clock source is attached to
the XOSC0/1 pins and the hibernate module’s RTC is also enabled.

SYSCTL_PIOSC_CAL_FACT to reset the PIOSC calibration to the factory provided cali-
bration.

SYSCTL_PIOSC_CAL_USER to set the PIOSC calibration to a user-supplied value. The
value to be used is ORed into the lower 7-bits of this value, with 0x40 being the “nominal”

508 July 25, 2016

System Control

value (in other words, if everything were perfect, 0x40 provides exactly 16 MHz). Values
larger than 0x40 slow down PIOSC, and values smaller than 0x40 speed up PIOSC.

Returns:
Returns 1 if the calibration was successful and 0 if it failed.

26.2.2.41 SysCtlPWMClockGet

Gets the current PWM clock configuration.

Prototype:
uint32_t
SysCtlPWMClockGet(void)

Description:
This function returns the current PWM clock configuration.

Returns:
Returns the current PWM clock configuration; is one of SYSCTL_PWMDIV_1,
SYSCTL_PWMDIV_2, SYSCTL_PWMDIV_4, SYSCTL_PWMDIV_8, SYSCTL_PWMDIV_16,
SYSCTL_PWMDIV_32, or SYSCTL_PWMDIV_64.

Note:
This function should only be used with TM4C123 devices. For other TM4C devices, the PWM-
ClockGet() function should be used.

26.2.2.42 SysCtlPWMClockSet

Sets the PWM clock configuration.

Prototype:
void
SysCtlPWMClockSet(uint32_t ui32Config)

Parameters:
ui32Config is the configuration for the PWM clock; it must be one of SYSCTL_PWMDIV_1,

SYSCTL_PWMDIV_2, SYSCTL_PWMDIV_4, SYSCTL_PWMDIV_8,
SYSCTL_PWMDIV_16, SYSCTL_PWMDIV_32, or SYSCTL_PWMDIV_64.

Description:
This function configures the rate of the clock provided to the PWM module as a ratio of the
processor clock. This clock is used by the PWM module to generate PWM signals; its rate
forms the basis for all PWM signals.

Note:
This function should only be used with TM4C123 devices. For other TM4C devices, the PWM-
ClockSet() function should be used.

The clocking of the PWM is dependent on the system clock rate as configured by SysCtlClock-
Set().

Returns:
None.

July 25, 2016 509

System Control

26.2.2.43 SysCtlReset

Resets the device.

Prototype:
void
SysCtlReset(void)

Description:
This function performs a software reset of the entire device. The processor and all peripherals
are reset and all device registers are returned to their default values (with the exception of the
reset cause register, which maintains its current value but has the software reset bit set as
well).

Returns:
This function does not return.

26.2.2.44 SysCtlResetBehaviorGet

Returns the current types of reset issued due to reset events.

Prototype:
uint32_t
SysCtlResetBehaviorGet(void)

Description:
This function returns the types of resets issued when a configurable reset occurs. The value
returned is a logical OR combination of the valid values that are described in the documentation
for the ui32Behavior parameter of the SysCtlResetBehaviorSet() function.

Note:
This function should only be used with Flurry-class devices.

Returns:
The reset behaviors for all configurable resets.

26.2.2.45 SysCtlResetBehaviorSet

Sets the type of reset issued due to certain reset events.

Prototype:
void
SysCtlResetBehaviorSet(uint32_t ui32Behavior)

Parameters:
ui32Behavior specifies the types of resets for each of the configurable reset events.

Description:
This function sets the types of reset issued when a configurable reset event occurs. The reset
events that are configurable are: Watchdog 0 or 1, a brown out and the external RSTn pin. The
valid actions are either a system reset or a full POR sequence. See the data sheet for more

510 July 25, 2016

System Control

information on the differences between a full POR and a system reset. All reset behaviors can
be configured with a single call using the logical OR of the values defined below. Any reset
option that is not specifically set remains configured for its default behavior. Either POR or
system reset can be selected for each reset cause.

Valid values are logical combinations of the following:

SYSCTL_ONRST_WDOG0_POR configures a Watchdog 0 reset to perform a full POR.
SYSCTL_ONRST_WDOG0_SYS configures a Watchdog 0 reset to perform a system re-
set.
SYSCTL_ONRST_WDOG1_POR configures a Watchdog 1 reset to perform a full POR.
SYSCTL_ONRST_WDOG1_SYS configures a Watchdog 1 reset to perform a system re-
set.
SYSCTL_ONRST_BOR_POR configures a brown-out reset to perform a full POR.
SYSCTL_ONRST_BOR_SYS configures a brown-out reset to perform a system reset.
SYSCTL_ONRST_EXT_POR configures an external pin reset to perform a full POR.
SYSCTL_ONRST_EXT_SYS configures an external pin reset to perform a system reset.

Example: Set Watchdog 0 reset to trigger a POR and a brown-out reset to trigger a system
reset while leaving the remaining resets with their default behaviors.

SysCtlResetBehaviorSet(SYSCTL_ONRST_WDOG0_POR | SYSCTL_ONRST_BOR_SYS);

Note:
This function cannot be used with TM4C123 devices.

Returns:
None.

26.2.2.46 SysCtlResetCauseClear

Clears reset reasons.

Prototype:
void
SysCtlResetCauseClear(uint32_t ui32Causes)

Parameters:
ui32Causes are the reset causes to be cleared; must be a logical OR of

SYSCTL_CAUSE_HSRVREQ, SYSCTL_CAUSE_HIB, SYSCTL_CAUSE_WDOG1,
SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG0, SYSCTL_CAUSE_BOR,
SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Description:
This function clears the specified sticky reset reasons. Once cleared, another reset for the
same reason can be detected, and a reset for a different reason can be distinguished (instead
of having two reset causes set). If the reset reason is used by an application, all reset causes
should be cleared after they are retrieved with SysCtlResetCauseGet().

Returns:
None.

July 25, 2016 511

System Control

26.2.2.47 SysCtlResetCauseGet

Gets the reason for a reset.

Prototype:
uint32_t
SysCtlResetCauseGet(void)

Description:
This function returns the reason(s) for a reset. Because the reset reasons are sticky
until either cleared by software or a power-on reset, multiple reset reasons may
be returned if multiple resets have occurred. The reset reason is a logical OR of
SYSCTL_CAUSE_HSRVREQ, SYSCTL_CAUSE_HIB, SYSCTL_CAUSE_WDOG1,
SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG0, SYSCTL_CAUSE_BOR,
SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Returns:
Returns the reason(s) for a reset.

26.2.2.48 SysCtlSleep

Puts the processor into sleep mode.

Prototype:
void
SysCtlSleep(void)

Description:
This function places the processor into sleep mode; it does not return until the processor
returns to run mode. The peripherals that are enabled via SysCtlPeripheralSleepEnable() con-
tinue to operate and can wake up the processor (if automatic clock gating is enabled with
SysCtlPeripheralClockGating(), otherwise all peripherals continue to operate).

Returns:
None.

26.2.2.49 SysCtlSleepPowerSet

Configures the power to the flash and SRAM while in sleep mode.

Prototype:
void
SysCtlSleepPowerSet(uint32_t ui32Config)

Parameters:
ui32Config is the required flash and SRAM power configuration.

Description:
This function allows the power configuration of the flash and SRAM while in sleep mode to
be set. The ui32Config parameter is the logical OR of the flash power configuration and the
SRAM power configuration.

512 July 25, 2016

System Control

The flash power configuration is specified as either:

SYSCTL_FLASH_NORMAL - The flash is left in fully powered mode, providing fast wake-
up time but higher power consumption.
SYSCTL_FLASH_LOW_POWER - The flash is in low power mode, providing reduced
power consumption but longer wake-up time.

The SRAM power configuration is specified as one of:

SYSCTL_SRAM_NORMAL - The SRAM is left in fully powered mode, providing fast wake-
up time but higher power consumption.
SYSCTL_SRAM_STANDBY - The SRAM is placed into a lower power mode, providing
reduced power consumption but longer wake-up time.
SYSCTL_SRAM_LOW_POWER - The SRAM is placed into lowest power mode, providing
further reduced power consumption but longer wake-up time.

Note:
The availability of this feature varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine whether this support is available.

Returns:
None.

26.2.2.50 SysCtlSRAMSizeGet

Gets the size of the SRAM.

Prototype:
uint32_t
SysCtlSRAMSizeGet(void)

Description:
This function determines the size of the SRAM on the Tiva device.

Returns:
The total number of bytes of SRAM.

26.2.2.51 SysCtlUSBPLLDisable

Powers down the USB PLL.

Prototype:
void
SysCtlUSBPLLDisable(void)

Description:
This function disables the USB controller’s PLL, which is used by its physical layer. The USB
registers are still accessible, but the physical layer no longer functions.

Note:
This function should only be called on TM4C123 devices.

July 25, 2016 513

System Control

Returns:
None.

26.2.2.52 SysCtlUSBPLLEnable

Powers up the USB PLL.

Prototype:
void
SysCtlUSBPLLEnable(void)

Description:
This function enables the USB controller’s PLL, which is used by its physical layer. This call is
necessary before connecting to any external devices.

Note:
This function should only be called on TM4C123 devices.

Returns:
None.

26.2.2.53 SysCtlVCOGet

Gets the effective VCO frequency.

Prototype:
bool
SysCtlVCOGet(uint32_t ui32Crystal,

uint32_t *pui32VCOFrequency)

Parameters:
ui32Crystal holds the crystal value used for the PLL.
pui32VCOFrequency is a pointer to the storage location which holds value of the VCO com-

puted.

Description:
This function calculates the VCO of the PLL before the system divider is applied

Returns:
true if the PLL is configured correctly and a VCO is valid or false if the device is not TM4C129x
or the PLL is not used

26.2.2.54 SysCtlVoltageEventClear

Clears the voltage event status.

Prototype:
void
SysCtlVoltageEventClear(uint32_t ui32Status)

514 July 25, 2016

System Control

Parameters:
ui32Status is a bit mask of the voltage events to clear.

Description:
This function clears the current voltage events status for the values specified in the ui32Status
parameter. The ui32Status value must be a logical OR of the following values:

SYSCTL_VESTAT_VDDBOR a brown-out event occurred on the VDD rail.
SYSCTL_VESTAT_VDDABOR a brown-out event occurred on the VDDA rail.

Example: Clear the current voltage event status.

//
// Clear all the current voltage events.
//
SysCtlVoltageEventClear(SysCtlVoltageEventStatus());

Note:
The availability of voltage event status varies with the Tiva part in use. Please consult the data
sheet for the part you are using to determine which interrupt sources are available.

Returns:
None.

26.2.2.55 SysCtlVoltageEventConfig

Configures the response to system voltage events.

Prototype:
void
SysCtlVoltageEventConfig(uint32_t ui32Config)

Parameters:
ui32Config holds the configuration options for the voltage events.

Description:
This function configures the response to voltage-related events. These events are triggered
when the voltage rails drop below certain levels. The ui32Config parameter provides the con-
figuration for the voltage events and is a combination of the SYSCTL_VEVENT_∗ values.

The response to a brown out on the VDDA rail is set by using one of the following values:

SYSCTL_VEVENT_VDDABO_NONE - There is no action taken on a VDDA brown out.
SYSCTL_VEVENT_VDDABO_INT - A system interrupt is generated when a VDDA brown
out occurs.
SYSCTL_VEVENT_VDDABO_NMI - An NMI is generated when a VDDA brown out oc-
curs.
SYSCTL_VEVENT_VDDABO_RST - A reset is generated when a VDDA brown out oc-
curs. The type of reset that is generated is controller by the SYSCTL_ONRST_BOR_∗
setting passed into the SysCtlResetBehaviorSet() function.

The response to a brown out on the VDD rail is set by using one of the following values:

SYSCTL_VEVENT_VDDBO_NONE - There is no action taken on a VDD brown out.

July 25, 2016 515

System Control

SYSCTL_VEVENT_VDDBO_INT - A system interrupt is generated when a VDD brown
out occurs.
SYSCTL_VEVENT_VDDBO_NMI - An NMI is generated when a VDD brown out occurs.
SYSCTL_VEVENT_VDDBO_RST - A reset is generated when a VDD brown out occurs.
The type of reset that is generated is controller by the SYSCTL_ONRST_BOR_∗ setting
passed into the SysCtlResetBehaviorSet() function.

Example: Configure the voltage events to trigger an interrupt on a VDDA brown out, an NMI
on a VDDC brown out and a reset on a VDD brown out.

//
// Configure the BOR rest to trigger a full POR. This is needed because
// the SysCtlVoltageEventConfig() call is triggering a reset so the type
// of reset is specified by this call.
//
SysCtlResetBehaviorSet(SYSCTL_ONRST_BOR_POR);

//
// Trigger an interrupt on a VDDA brown out and a reset on a VDD brown out.
//
SysCtlVoltageEventConfig(SYSCTL_VEVENT_VDDABO_INT |

SYSCTL_VEVENT_VDDBO_RST);

Returns:
None.

26.2.2.56 SysCtlVoltageEventStatus

Returns the voltage event status.

Prototype:
uint32_t
SysCtlVoltageEventStatus(void)

Description:
This function returns the voltage event status for the system controller. The value returned is a
logical OR of the following values:

SYSCTL_VESTAT_VDDBOR a brown-out event occurred on the VDD rail.
SYSCTL_VESTAT_VDDABOR a brown-out event occurred on the VDDA rail.

The values returned from this function can be passed to the SysCtlVoltageEventClear() to clear
the current voltage event status. Because voltage events are not cleared due to a reset, the
voltage event status must be cleared by calling SysCtlVoltageEventClear().

Example: Clear the current voltage event status.

uint32_t ui32VoltageEvents;

//
// Read the current voltage event status.
//
ui32VoltageEvents = SysCtlVoltageEventStatus();

//
// Clear all the current voltage events.
//
SysCtlVoltageEventClear(ui32VoltageEvents);

516 July 25, 2016

System Control

Returns:
The current voltage event status.

Note:
The availability of voltage events varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine which interrupt sources are available.

26.3 Programming Example

The following example shows how to use the SysCtl API to configure the device for normal operation
on a TM4C123x device.

//
// Configure the device to run at 20 MHz from the PLL using a 4 MHz crystal
// as the input.
//
SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_XTAL_4MHZ |

SYSCTL_OSC_MAIN);

//
// Enable the GPIO blocks and the SSI.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI);

//
// Enable the GPIO blocks and the SSI in sleep mode.
//
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_SSI);

//
// Enable peripheral clock gating.
//
SysCtlPeripheralClockGating(true);

July 25, 2016 517

System Control

518 July 25, 2016

System Exception Module

27 System Exception Module
Introduction .519
API Functions . 519
Programming Example .522

27.1 Introduction

The system exception module driver provides methods for manipulating the behavior of the sys-
tem exception module that handles system-level Cortex-M4 FPU exceptions. The exceptions are
underflow, overflow, divide by zero, invalid operation, input denormal, and inexact exception. The
application can optionally choose to enable one or more of these interrupts and use the interrupt
handler to decide upon a course of action to be taken in each case. All the interrupt events are
ORed together before being sent to the interrupt controller, so the System Exception module can
only generate a single interrupt request to the controller at any given time.

This driver is contained in driverlib/sysexc.c, with driverlib/sysexc.h containing the
API declarations for use by applications.

27.2 API Functions

Functions
void SysExcIntClear (uint32_t ui32IntFlags)
void SysExcIntDisable (uint32_t ui32IntFlags)
void SysExcIntEnable (uint32_t ui32IntFlags)
void SysExcIntRegister (void (∗pfnHandler)(void))
uint32_t SysExcIntStatus (bool bMasked)
void SysExcIntUnregister (void)

27.2.1 Detailed Description

The system exception module interrupts are managed with SysExcIntRegister(), SysExcIntUnreg-
ister(), SysExcIntEnable(), SysExcIntDisable(), SysExcIntStatus(), and SysExcIntClear().

27.2.2 Function Documentation

27.2.2.1 SysExcIntClear

Clears system exception interrupt sources.

Prototype:
void
SysExcIntClear(uint32_t ui32IntFlags)

July 25, 2016 519

System Exception Module

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
This function clears the specified system exception interrupt sources, so that they no longer
assert. This function must be called in the interrupt handler to keep the interrupt from being
recognized again immediately upon exit.

The ui32IntFlags parameter is the logical OR of any of the following:

SYSEXC_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXC_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXC_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXC_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXC_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXC_INT_FP_IDC - Floating-point input denormal exception interrupt

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

27.2.2.2 SysExcIntDisable

Disables individual system exception interrupt sources.

Prototype:
void
SysExcIntDisable(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated system exception interrupt sources. Only sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

SYSEXC_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXC_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXC_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXC_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXC_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXC_INT_FP_IDC - Floating-point input denormal exception interrupt

520 July 25, 2016

System Exception Module

Returns:
None.

27.2.2.3 SysExcIntEnable

Enables individual system exception interrupt sources.

Prototype:
void
SysExcIntEnable(uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated system exception interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

SYSEXC_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXC_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXC_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXC_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXC_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXC_INT_FP_IDC - Floating-point input denormal exception interrupt

Returns:
None.

27.2.2.4 SysExcIntRegister

Registers an interrupt handler for the system exception interrupt.

Prototype:
void
SysExcIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the system exception interrupt oc-

curs.

Description:
This function places the address of the system exception interrupt handler into the interrupt
vector table in SRAM. This function also enables the global interrupt in the interrupt controller;
specific system exception interrupts must be enabled via SysExcIntEnable(). It is the interrupt
handler’s responsibility to clear the interrupt source.

See also:
IntRegister() for important information about registering interrupt handlers.

July 25, 2016 521

System Exception Module

Returns:
None.

27.2.2.5 SysExcIntStatus

Gets the current system exception interrupt status.

Prototype:
uint32_t
SysExcIntStatus(bool bMasked)

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the system exception interrupt status. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current system exception interrupt status, enumerated as the logi-
cal OR of SYSEXC_INT_FP_IXC, SYSEXC_INT_FP_OFC, SYSEXC_INT_FP_UFC, SY-
SEXC_INT_FP_IOC, SYSEXC_INT_FP_DZC, and SYSEXC_INT_FP_IDC.

27.2.2.6 SysExcIntUnregister

Unregisters the system exception interrupt handler.

Prototype:
void
SysExcIntUnregister(void)

Description:
This function removes the system exception interrupt handler from the vector table in SRAM.
This function also masks off the system exception interrupt in the interrupt controller so that
the interrupt handler is no longer called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

27.3 Programming Example

The following example shows how to use the system exception module API to register an interrupt
handler and enable an interrupt.

522 July 25, 2016

System Exception Module

//
// The interrupt handler function.
//
extern void SysExcIntHandler(void);

//
// Register the interrupt handler function for the system exception
// interrupt.
//
SysExcIntRegister(SysExcIntHandler);

//
// Enable the Floating-point overflow exception.
//
SysExcIntEnable(SYSEXC_INT_FP_OFC);

July 25, 2016 523

System Exception Module

524 July 25, 2016

System Tick (SysTick)

28 System Tick (SysTick)
Introduction .525
API Functions . 525
Programming Example .529

28.1 Introduction

SysTick is a simple timer that is part of the NVIC controller in the Cortex-M microprocessor. Its
intended purpose is to provide a periodic interrupt for an RTOS, but it can be used for other simple
timing purposes.

The SysTick interrupt handler does not need to clear the SysTick interrupt source as it is cleared
automatically by the NVIC when the SysTick interrupt handler is called.

This driver is contained in driverlib/systick.c, with driverlib/systick.h containing the
API declarations for use by applications.

28.2 API Functions

Functions
void SysTickDisable (void)
void SysTickEnable (void)
void SysTickIntDisable (void)
void SysTickIntEnable (void)
void SysTickIntRegister (void (∗pfnHandler)(void))
void SysTickIntUnregister (void)
uint32_t SysTickPeriodGet (void)
void SysTickPeriodSet (uint32_t ui32Period)
uint32_t SysTickValueGet (void)

28.2.1 Detailed Description

The SysTick API is fairly simple, like SysTick itself. There are functions for configuring and en-
abling SysTick (SysTickEnable(), SysTickDisable(), SysTickPeriodSet(), SysTickPeriodGet(), and
SysTickValueGet()) and functions for dealing with an interrupt handler for SysTick (SysTickIntReg-
ister(), SysTickIntUnregister(), SysTickIntEnable(), and SysTickIntDisable()).

28.2.2 Function Documentation

28.2.2.1 SysTickDisable

Disables the SysTick counter.

July 25, 2016 525

System Tick (SysTick)

Prototype:
void
SysTickDisable(void)

Description:
This function stops the SysTick counter. If an interrupt handler has been registered, it is not
called until SysTick is restarted.

Returns:
None.

28.2.2.2 SysTickEnable

Enables the SysTick counter.

Prototype:
void
SysTickEnable(void)

Description:
This function starts the SysTick counter. If an interrupt handler has been registered, it is called
when the SysTick counter rolls over.

Note:
Calling this function causes the SysTick counter to (re)commence counting from its current
value. The counter is not automatically reloaded with the period as specified in a previous call
to SysTickPeriodSet(). If an immediate reload is required, the NVIC_ST_CURRENT register
must be written to force the reload. Any write to this register clears the SysTick counter to 0
and causes a reload with the supplied period on the next clock.

Returns:
None.

28.2.2.3 SysTickIntDisable

Disables the SysTick interrupt.

Prototype:
void
SysTickIntDisable(void)

Description:
This function disables the SysTick interrupt, preventing it from being reflected to the processor.

Returns:
None.

526 July 25, 2016

System Tick (SysTick)

28.2.2.4 SysTickIntEnable

Enables the SysTick interrupt.

Prototype:
void
SysTickIntEnable(void)

Description:
This function enables the SysTick interrupt, allowing it to be reflected to the processor.

Note:
The SysTick interrupt handler is not required to clear the SysTick interrupt source because it is
cleared automatically by the NVIC when the interrupt handler is called.

Returns:
None.

28.2.2.5 SysTickIntRegister

Registers an interrupt handler for the SysTick interrupt.

Prototype:
void
SysTickIntRegister(void (*pfnHandler)(void))

Parameters:
pfnHandler is a pointer to the function to be called when the SysTick interrupt occurs.

Description:
This function registers the handler to be called when a SysTick interrupt occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

28.2.2.6 SysTickIntUnregister

Unregisters the interrupt handler for the SysTick interrupt.

Prototype:
void
SysTickIntUnregister(void)

Description:
This function unregisters the handler to be called when a SysTick interrupt occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

July 25, 2016 527

System Tick (SysTick)

Returns:
None.

28.2.2.7 SysTickPeriodGet

Gets the period of the SysTick counter.

Prototype:
uint32_t
SysTickPeriodGet(void)

Description:
This function returns the rate at which the SysTick counter wraps, which equates to the number
of processor clocks between interrupts.

Returns:
Returns the period of the SysTick counter.

28.2.2.8 SysTickPeriodSet

Sets the period of the SysTick counter.

Prototype:
void
SysTickPeriodSet(uint32_t ui32Period)

Parameters:
ui32Period is the number of clock ticks in each period of the SysTick counter and must be

between 1 and 16, 777, 216, inclusive.

Description:
This function sets the rate at which the SysTick counter wraps, which equates to the number
of processor clocks between interrupts.

Note:
Calling this function does not cause the SysTick counter to reload immediately. If an immediate
reload is required, the NVIC_ST_CURRENT register must be written. Any write to this register
clears the SysTick counter to 0 and causes a reload with the ui32Period supplied here on the
next clock after SysTick is enabled.

Returns:
None.

28.2.2.9 SysTickValueGet

Gets the current value of the SysTick counter.

Prototype:
uint32_t
SysTickValueGet(void)

528 July 25, 2016

System Tick (SysTick)

Description:
This function returns the current value of the SysTick counter, which is a value between the
period - 1 and zero, inclusive.

Returns:
Returns the current value of the SysTick counter.

28.3 Programming Example

The following example shows how to use the SysTick API to configure the SysTick counter and
read its value.

uint32_t ui32Value;

//
// Configure and enable the SysTick counter.
//
SysTickPeriodSet(1000);
SysTickEnable();

//
// Delay for some time...
//

//
// Read the current SysTick value.
//
ui32Value = SysTickValueGet();

July 25, 2016 529

System Tick (SysTick)

530 July 25, 2016

Timer

29 Timer
Introduction .531
API Functions . 532
Programming Example .554

29.1 Introduction

The timer API provides a set of functions for using the timer module. Functions are provided to
configure and control the timer, modify timer/counter values, and manage timer interrupt handling.

The timer module provides two half-width timers/counters that can be configured to operate inde-
pendently as timers or event counters or to operate as a combined full-width timer or Real Time
Clock (RTC). Some timers provide 16-bit half-width timers and a 32-bit full-width timer, while oth-
ers provide 32-bit half-width timers and a 64-bit full-width timer. For the purposes of this API, the
two half-width timers provided by a timer module are referred to as TimerA and TimerB, and the
full-width timer is referred to as TimerA.

When configured as either a full-width or half-width timer, a timer can be set up to run as a one-shot
timer or a continuous timer. If configured in one-shot mode, the timer ceases counting when it
reaches zero when counting down or the load value when counting up. If configured in continuous
mode, the timer counts to zero (counting down) or the load value (counting up), then reloads and
continues counting. When configured as a full-width timer, the timer can also be configured to
operate as an RTC. In this mode, the timer expects to be driven by a 32.768-KHz external clock,
which is divided down to produce 1 second clock ticks.

When in half-width mode, the timer can also be configured for event capture or as a Pulse Width
Modulation (PWM) generator. When configured for event capture, the timer acts as a counter. It
can be configured to either count the time between events or the events themselves. The type of
event being counted can be configured as a positive edge, a negative edge, or both edges. When
a timer is configured as a PWM generator, the input signal used to capture events becomes an
output signal, and the timer drives an edge-aligned pulse onto that signal.

The timer module also provides the ability to control other functional parameters, such as output
inversion, output triggers, and timer behavior during stalls.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured, or that a certain number of events have been captured. Interrupts
can also be generated when the timer has counted down to zero or when the timer matches a
certain value.

On some parts, the counters from multiple timer modules can be synchronized. Synchronized
counters are useful in PWM and edge time capture modes. In PWM mode, the PWM outputs from
multiple timers can be in lock-step by having the same load value and synchronizing the counters
(meaning that the counters always have the same value). Similarly, by using the same load value
and synchronized counters in edge time capture mode, the absolute time between two input edges
can be easily measured.

This driver is contained in driverlib/timer.c, with driverlib/timer.h containing the API
declarations for use by applications.

July 25, 2016 531

Timer

29.2 API Functions

Functions
uint32_t TimerADCEventGet (uint32_t ui32Base)
void TimerADCEventSet (uint32_t ui32Base, uint32_t ui32ADCEvent)
uint32_t TimerClockSourceGet (uint32_t ui32Base)
void TimerClockSourceSet (uint32_t ui32Base, uint32_t ui32Source)
void TimerConfigure (uint32_t ui32Base, uint32_t ui32Config)
void TimerControlEvent (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Event)
void TimerControlLevel (uint32_t ui32Base, uint32_t ui32Timer, bool bInvert)
void TimerControlStall (uint32_t ui32Base, uint32_t ui32Timer, bool bStall)
void TimerControlTrigger (uint32_t ui32Base, uint32_t ui32Timer, bool bEnable)
void TimerControlWaitOnTrigger (uint32_t ui32Base, uint32_t ui32Timer, bool bWait)
void TimerDisable (uint32_t ui32Base, uint32_t ui32Timer)
uint32_t TimerDMAEventGet (uint32_t ui32Base)
void TimerDMAEventSet (uint32_t ui32Base, uint32_t ui32DMAEvent)
void TimerEnable (uint32_t ui32Base, uint32_t ui32Timer)
void TimerIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void TimerIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void TimerIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void TimerIntRegister (uint32_t ui32Base, uint32_t ui32Timer, void (∗pfnHandler)(void))
uint32_t TimerIntStatus (uint32_t ui32Base, bool bMasked)
void TimerIntUnregister (uint32_t ui32Base, uint32_t ui32Timer)
uint32_t TimerLoadGet (uint32_t ui32Base, uint32_t ui32Timer)
uint64_t TimerLoadGet64 (uint32_t ui32Base)
void TimerLoadSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
void TimerLoadSet64 (uint32_t ui32Base, uint64_t ui64Value)
uint32_t TimerMatchGet (uint32_t ui32Base, uint32_t ui32Timer)
uint64_t TimerMatchGet64 (uint32_t ui32Base)
void TimerMatchSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
void TimerMatchSet64 (uint32_t ui32Base, uint64_t ui64Value)
uint32_t TimerPrescaleGet (uint32_t ui32Base, uint32_t ui32Timer)
uint32_t TimerPrescaleMatchGet (uint32_t ui32Base, uint32_t ui32Timer)
void TimerPrescaleMatchSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
void TimerPrescaleSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
void TimerRTCDisable (uint32_t ui32Base)
void TimerRTCEnable (uint32_t ui32Base)
void TimerSynchronize (uint32_t ui32Base, uint32_t ui32Timers)
void TimerUpdateMode (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Config)
uint32_t TimerValueGet (uint32_t ui32Base, uint32_t ui32Timer)
uint64_t TimerValueGet64 (uint32_t ui32Base)

532 July 25, 2016

Timer

29.2.1 Detailed Description

The timer API is broken into three groups of functions: those that deal with timer configuration and
control, those that deal with timer contents, and those that deal with interrupt handling.

Timer configuration is handled by TimerConfigure(), which performs the high level setup of the timer
module; that is, it is used to set up full- or half-width modes, and to select between PWM, capture,
and timer operations. Timer control is performed by TimerEnable(), TimerDisable(), TimerCon-
trolLevel(), TimerControlTrigger(), TimerControlEvent(), TimerControlStall(), TimerRTCEnable(),
and TimerRTCDisable().

Timer content is managed with TimerLoadSet(), TimerLoadGet(), TimerLoadSet64(), TimerLoad-
Get64(), TimerPrescaleSet(), TimerPrescaleGet(), TimerMatchSet(), TimerMatchGet(), Timer-
MatchSet64(), TimerMatchGet64(), TimerPrescaleMatchSet(), TimerPrescaleMatchGet(), Timer-
ValueGet(), TimerValueGet64(), and TimerSynchronize().

The interrupt handler for the Timer interrupt is managed with TimerIntRegister() and TimerIntUnreg-
ister(). The individual interrupt sources within the timer module are managed with TimerIntEnable(),
TimerIntDisable(), TimerIntStatus(), and TimerIntClear().

29.2.2 Function Documentation

29.2.2.1 TimerADCEventGet

Returns the events that can cause an ADC trigger event.

Prototype:
uint32_t
TimerADCEventGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

Description:
This function returns the timer events that can cause an ADC trigger event. The ADC trigger
events are the logical OR of any of the following values:

TIMER_ADC_MODEMATCH_B - The mode match ADC trigger for timer B is enabled.
TIMER_ADC_CAPEVENT_B - The capture event ADC trigger for timer B is enabled.
TIMER_ADC_CAPMATCH_B - The capture match ADC trigger for timer B is enabled.
TIMER_ADC_TIMEOUT_B - The timeout ADC trigger for timer B is enabled.
TIMER_ADC_MODEMATCH_A - The mode match ADC trigger for timer A is enabled.
TIMER_ADC_RTC_A - The RTC ADC trigger for timer A is enabled.
TIMER_ADC_CAPEVENT_A - The capture event ADC trigger for timer A is enabled.
TIMER_ADC_CAPMATCH_A - The capture match ADC trigger for timer A is enabled.
TIMER_ADC_TIMEOUT_A - The timeout ADC trigger for timer A is enabled.

Note:
The ability to specify ADC event triggers varies with the Tiva part in use. Please consult the
data sheet for the part you are using to determine whether this support is available.

Returns:
The timer events that trigger the ADC.

July 25, 2016 533

Timer

29.2.2.2 TimerADCEventSet

Enables the events that can cause an ADC trigger event.

Prototype:
void
TimerADCEventSet(uint32_t ui32Base,

uint32_t ui32ADCEvent)

Parameters:
ui32Base is the base address of the timer module.
ui32ADCEvent is a bit mask of the events that can cause an ADC trigger event.

Description:
This function enables the timer events that can cause an ADC trigger event. The ADC trigger
events are specified in the ui32ADCEvent parameter by passing in the logical OR of any of the
following values:

TIMER_ADC_MODEMATCH_B - Enables the mode match ADC trigger for timer B.
TIMER_ADC_CAPEVENT_B - Enables the capture event ADC trigger for timer B.
TIMER_ADC_CAPMATCH_B - Enables the capture match ADC trigger for timer B.
TIMER_ADC_TIMEOUT_B - Enables the timeout ADC trigger for timer B.
TIMER_ADC_MODEMATCH_A - Enables the mode match ADC trigger for timer A.
TIMER_ADC_RTC_A - Enables the RTC ADC trigger for timer A.
TIMER_ADC_CAPEVENT_A - Enables the capture event ADC trigger for timer A.
TIMER_ADC_CAPMATCH_A - Enables the capture match ADC trigger for timer A.
TIMER_ADC_TIMEOUT_A - Enables the timeout ADC trigger for timer A.

Note:
The ability to specify ADC event triggers varies with the Tiva part in use. Please consult the
data sheet for the part you are using to determine whether this support is available.

Returns:
None.

29.2.2.3 TimerClockSourceGet

Returns the clock source for the specified timer module.

Prototype:
uint32_t
TimerClockSourceGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

Description:
This function returns the clock source for the specified timer module. The possible clock
sources are the system clock (TIMER_CLOCK_SYSTEM) or the precision internal oscillator
(TIMER_CLOCK_PIOSC).

534 July 25, 2016

Timer

Note:
The ability to specify the timer clock source varies with the Tiva part in use. Please consult the
data sheet for the part you are using to determine whether this support is available.

Returns:
Returns either TIMER_CLOCK_SYSTEM or TIMER_CLOCK_PIOSC.

29.2.2.4 TimerClockSourceSet

Sets the clock source for the specified timer module.

Prototype:
void
TimerClockSourceSet(uint32_t ui32Base,

uint32_t ui32Source)

Parameters:
ui32Base is the base address of the timer module.
ui32Source is the clock source for the timer module.

Description:
This function sets the clock source for both timer A and timer B for the given timer module.
The possible clock sources are the system clock (TIMER_CLOCK_SYSTEM) or the precision
internal oscillator (TIMER_CLOCK_PIOSC).

Note:
The ability to specify the timer clock source varies with the Tiva part in use. Please consult the
data sheet for the part you are using to determine whether this support is available.

Returns:
None.

29.2.2.5 TimerConfigure

Configures the timer(s).

Prototype:
void
TimerConfigure(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base is the base address of the timer module.
ui32Config is the configuration for the timer.

Description:
This function configures the operating mode of the timer(s). The timer module is disabled
before being configured and is left in the disabled state. The timer can be configured to be a
single full-width timer by using the TIMER_CFG_∗ values or a pair of half-width timers using
the TIMER_CFG_A_∗ and TIMER_CFG_B_∗ values passed in the ui32Config parameter.

The configuration is specified in ui32Config as one of the following values:

July 25, 2016 535

Timer

TIMER_CFG_ONE_SHOT - Full-width one-shot timer
TIMER_CFG_ONE_SHOT_UP - Full-width one-shot timer that counts up instead of down
(not available on all parts)
TIMER_CFG_PERIODIC - Full-width periodic timer
TIMER_CFG_PERIODIC_UP - Full-width periodic timer that counts up instead of down
(not available on all parts)
TIMER_CFG_RTC - Full-width real time clock timer
TIMER_CFG_SPLIT_PAIR - Two half-width timers

When configured for a pair of half-width timers, each timer is separately configured. The first
timer is configured by setting ui32Config to the result of a logical OR operation between one of
the following values and ui32Config:

TIMER_CFG_A_ONE_SHOT - Half-width one-shot timer
TIMER_CFG_A_ONE_SHOT_UP - Half-width one-shot timer that counts up instead of
down (not available on all parts)
TIMER_CFG_A_PERIODIC - Half-width periodic timer
TIMER_CFG_A_PERIODIC_UP - Half-width periodic timer that counts up instead of down
(not available on all parts)
TIMER_CFG_A_CAP_COUNT - Half-width edge count capture
TIMER_CFG_A_CAP_COUNT_UP - Half-width edge count capture that counts up instead
of down (not available on all parts)
TIMER_CFG_A_CAP_TIME - Half-width edge time capture
TIMER_CFG_A_CAP_TIME_UP - Half-width edge time capture that counts up instead of
down (not available on all parts)
TIMER_CFG_A_PWM - Half-width PWM output

Some Tiva devices also allow configuring an action when the timers reach their timeout. Please
consult the data sheet for the part you are using to determine whether configuring actions on
timers is available.

One of the following can be combined with the TIMER_CFG_∗ values to enable an action on
timer A:

TIMER_CFG_A_ACT_TOINTD - masks the timeout interrupt of timer A.
TIMER_CFG_A_ACT_NONE - no additional action on timeout of timer A.
TIMER_CFG_A_ACT_TOGGLE - toggle CCP on timeout of timer A.
TIMER_CFG_A_ACT_SETTO - set CCP on timeout of timer A.
TIMER_CFG_A_ACT_CLRTO - clear CCP on timeout of timer A.
TIMER_CFG_A_ACT_SETTOGTO - set CCP immediately and then toggle it on timeout of
timer A.
TIMER_CFG_A_ACT_CLRTOGTO - clear CCP immediately and then toggle it on timeout
of timer A.
TIMER_CFG_A_ACT_SETCLRTO - set CCP immediately and then clear it on timeout of
timer A.
TIMER_CFG_A_ACT_CLRSETTO - clear CCP immediately and then set it on timeout of
timer A.

One of the following can be combined with the TIMER_CFG_∗ values to enable an action on
timer B:

TIMER_CFG_B_ACT_TOINTD - masks the timeout interrupt of timer B.

536 July 25, 2016

Timer

TIMER_CFG_B_ACT_NONE - no additional action on timeout of timer B.
TIMER_CFG_B_ACT_TOGGLE - toggle CCP on timeout of timer B.
TIMER_CFG_B_ACT_SETTO - set CCP on timeout of timer B.
TIMER_CFG_B_ACT_CLRTO - clear CCP on timeout of timer B.
TIMER_CFG_B_ACT_SETTOGTO - set CCP immediately and then toggle it on timeout of
timer B.
TIMER_CFG_B_ACT_CLRTOGTO - clear CCP immediately and then toggle it on timeout
of timer B.
TIMER_CFG_B_ACT_SETCLRTO - set CCP immediately and then clear it on timeout of
timer B.
TIMER_CFG_B_ACT_CLRSETTO - clear CCP immediately and then set it on timeout of
timer B.

Similarly, the second timer is configured by setting ui32Config to the result of a logical OR
operation between one of the corresponding TIMER_CFG_B_∗ values and ui32Config.

Returns:
None.

29.2.2.6 TimerControlEvent

Controls the event type.

Prototype:
void
TimerControlEvent(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Event)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ui32Event specifies the type of event; must be one of TIMER_EVENT_POS_EDGE,

TIMER_EVENT_NEG_EDGE, or TIMER_EVENT_BOTH_EDGES.

Description:
This function configures the signal edge(s) that triggers the timer when in capture mode.

Returns:
None.

29.2.2.7 TimerControlLevel

Controls the output level.

Prototype:
void
TimerControlLevel(uint32_t ui32Base,

uint32_t ui32Timer,
bool bInvert)

July 25, 2016 537

Timer

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bInvert specifies the output level.

Description:
This function configures the PWM output level for the specified timer. If the bInvert parameter
is true, then the timer’s output is made active low; otherwise, it is made active high.

Returns:
None.

29.2.2.8 TimerControlStall

Controls the stall handling.

Prototype:
void
TimerControlStall(uint32_t ui32Base,

uint32_t ui32Timer,
bool bStall)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bStall specifies the response to a stall signal.

Description:
This function controls the stall response for the specified timer. If the bStall parameter is true,
then the timer stops counting if the processor enters debug mode; otherwise the timer keeps
running while in debug mode.

Returns:
None.

29.2.2.9 TimerControlTrigger

Enables or disables the ADC trigger output.

Prototype:
void
TimerControlTrigger(uint32_t ui32Base,

uint32_t ui32Timer,
bool bEnable)

Parameters:
ui32Base is the base address of the timer module.

538 July 25, 2016

Timer

ui32Timer specifies the timer to adjust; must be one of TIMER_A, TIMER_B, or
TIMER_BOTH.

bEnable specifies the desired ADC trigger state.

Description:
This function controls the ADC trigger output for the specified timer. If the bEnable parameter
is true, then the timer’s ADC output trigger is enabled; otherwise it is disabled.

Returns:
None.

29.2.2.10 TimerControlWaitOnTrigger

Controls the wait on trigger handling.

Prototype:
void
TimerControlWaitOnTrigger(uint32_t ui32Base,

uint32_t ui32Timer,
bool bWait)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bWait specifies if the timer should wait for a trigger input.

Description:
This function controls whether or not a timer waits for a trigger input to start counting. When
enabled, the previous timer in the trigger chain must count to its timeout in order for this timer
to start counting. Refer to the part’s data sheet for a description of the trigger chain.

Note:
This functionality is not available on all parts. This function should not be used for Timer 0A or
Wide Timer 0A.

Returns:
None.

29.2.2.11 TimerDisable

Disables the timer(s).

Prototype:
void
TimerDisable(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.

July 25, 2016 539

Timer

ui32Timer specifies the timer(s) to disable; must be one of TIMER_A, TIMER_B, or
TIMER_BOTH.

Description:
This function disables operation of the timer module.

Returns:
None.

29.2.2.12 TimerDMAEventGet

Returns the events that can trigger a uDMA request.

Prototype:
uint32_t
TimerDMAEventGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

Description:
This function returns the timer events that can trigger the start of a uDMA sequence. The
uDMA trigger events are the logical OR of the following values:

TIMER_DMA_MODEMATCH_B - Enables the mode match uDMA trigger for timer B.
TIMER_DMA_CAPEVENT_B - Enables the capture event uDMA trigger for timer B.
TIMER_DMA_CAPMATCH_B - Enables the capture match uDMA trigger for timer B.
TIMER_DMA_TIMEOUT_B - Enables the timeout uDMA trigger for timer B.
TIMER_DMA_MODEMATCH_A - Enables the mode match uDMA trigger for timer A.
TIMER_DMA_RTC_A - Enables the RTC uDMA trigger for timer A.
TIMER_DMA_CAPEVENT_A - Enables the capture event uDMA trigger for timer A.
TIMER_DMA_CAPMATCH_A - Enables the capture match uDMA trigger for timer A.
TIMER_DMA_TIMEOUT_A - Enables the timeout uDMA trigger for timer A.

Note:
The ability to specify uDMA event triggers varies with the Tiva part in use. Please consult the
data sheet for the part you are using to determine whether this support is available.

Returns:
The timer events that trigger the uDMA.

29.2.2.13 TimerDMAEventSet

Enables the events that can trigger a uDMA request.

Prototype:
void
TimerDMAEventSet(uint32_t ui32Base,

uint32_t ui32DMAEvent)

540 July 25, 2016

Timer

Parameters:
ui32Base is the base address of the timer module.
ui32DMAEvent is a bit mask of the events that can trigger uDMA.

Description:
This function enables the timer events that can trigger the start of a uDMA sequence. The
uDMA trigger events are specified in the ui32DMAEvent parameter by passing in the logical
OR of the following values:

TIMER_DMA_MODEMATCH_B - The mode match uDMA trigger for timer B is enabled.
TIMER_DMA_CAPEVENT_B - The capture event uDMA trigger for timer B is enabled.
TIMER_DMA_CAPMATCH_B - The capture match uDMA trigger for timer B is enabled.
TIMER_DMA_TIMEOUT_B - The timeout uDMA trigger for timer B is enabled.
TIMER_DMA_MODEMATCH_A - The mode match uDMA trigger for timer A is enabled.
TIMER_DMA_RTC_A - The RTC uDMA trigger for timer A is enabled.
TIMER_DMA_CAPEVENT_A - The capture event uDMA trigger for timer A is enabled.
TIMER_DMA_CAPMATCH_A - The capture match uDMA trigger for timer A is enabled.
TIMER_DMA_TIMEOUT_A - The timeout uDMA trigger for timer A is enabled.

Note:
The ability to specify uDMA event triggers varies with the Tiva part in use. Please consult the
data sheet for the part you are using to determine whether this support is available.

Returns:
None.

29.2.2.14 TimerEnable

Enables the timer(s).

Prototype:
void
TimerEnable(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to enable; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

Description:
This function enables operation of the timer module. The timer must be configured before it is
enabled.

Returns:
None.

July 25, 2016 541

Timer

29.2.2.15 TimerIntClear

Clears timer interrupt sources.

Prototype:
void
TimerIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the timer module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified timer interrupt sources are cleared, so that they no longer assert. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to TimerIn-
tEnable().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

29.2.2.16 TimerIntDisable

Disables individual timer interrupt sources.

Prototype:
void
TimerIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the timer module.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated timer interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to TimerIn-
tEnable().

Returns:
None.

542 July 25, 2016

Timer

29.2.2.17 TimerIntEnable

Enables individual timer interrupt sources.

Prototype:
void
TimerIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the timer module.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated timer interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter must be the logical OR of any combination of the following:

TIMER_TIMB_DMA - Timer B uDMA complete
TIMER_TIMA_DMA - Timer A uDMA complete
TIMER_CAPB_EVENT - Capture B event interrupt
TIMER_CAPB_MATCH - Capture B match interrupt
TIMER_TIMB_TIMEOUT - Timer B timeout interrupt
TIMER_RTC_MATCH - RTC interrupt mask
TIMER_CAPA_EVENT - Capture A event interrupt
TIMER_CAPA_MATCH - Capture A match interrupt
TIMER_TIMA_TIMEOUT - Timer A timeout interrupt

Returns:
None.

29.2.2.18 TimerIntRegister

Registers an interrupt handler for the timer interrupt.

Prototype:
void
TimerIntRegister(uint32_t ui32Base,

uint32_t ui32Timer,
void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s); must be one of TIMER_A, TIMER_B, or TIMER_BOTH.
pfnHandler is a pointer to the function to be called when the timer interrupt occurs.

Description:
This function registers the handler to be called when a timer interrupt occurs. In addition, this
function enables the global interrupt in the interrupt controller; specific timer interrupts must be
enabled via TimerIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source via TimerIntClear().

July 25, 2016 543

Timer

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

29.2.2.19 TimerIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
TimerIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the timer module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of values described in TimerIntEnable().

29.2.2.20 TimerIntUnregister

Unregisters an interrupt handler for the timer interrupt.

Prototype:
void
TimerIntUnregister(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s); must be one of TIMER_A, TIMER_B, or TIMER_BOTH.

Description:
This function unregisters the handler to be called when a timer interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler is no longer
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

544 July 25, 2016

Timer

29.2.2.21 TimerLoadGet

Gets the timer load value.

Prototype:
uint32_t
TimerLoadGet(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should

be used when the timer is configured for full-width operation.

Description:
This function gets the currently programmed interval load value for the specified timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers and for half-
width modes of 32/64-bit timers. Use TimerLoadGet64() for full-width modes of 32/64-bit
timers.

Returns:
Returns the load value for the timer.

29.2.2.22 TimerLoadGet64

Gets the timer load value for a 64-bit timer.

Prototype:
uint64_t
TimerLoadGet64(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

Description:
This function gets the currently programmed interval load value for the specified 64-bit timer.

Returns:
Returns the load value for the timer.

29.2.2.23 TimerLoadSet

Sets the timer load value.

Prototype:
void
TimerLoadSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

July 25, 2016 545

Timer

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for full-width
operation.

ui32Value is the load value.

Description:
This function configures the timer load value; if the timer is running then the value is immedi-
ately loaded into the timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers and for half-
width modes of 32/64-bit timers. Use TimerLoadSet64() for full-width modes of 32/64-bit timers.

Returns:
None.

29.2.2.24 TimerLoadSet64

Sets the timer load value for a 64-bit timer.

Prototype:
void
TimerLoadSet64(uint32_t ui32Base,

uint64_t ui64Value)

Parameters:
ui32Base is the base address of the timer module.
ui64Value is the load value.

Description:
This function configures the timer load value for a 64-bit timer; if the timer is running, then the
value is immediately loaded into the timer.

Returns:
None.

29.2.2.25 TimerMatchGet

Gets the timer match value.

Prototype:
uint32_t
TimerMatchGet(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should

be used when the timer is configured for full-width operation.

546 July 25, 2016

Timer

Description:
This function gets the match value for the specified timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers and for half-
width modes of 32/64-bit timers. Use TimerMatchGet64() for full-width modes of 32/64-bit
timers.

Returns:
Returns the match value for the timer.

29.2.2.26 TimerMatchGet64

Gets the timer match value for a 64-bit timer.

Prototype:
uint64_t
TimerMatchGet64(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

Description:
This function gets the match value for the specified timer.

Returns:
Returns the match value for the timer.

29.2.2.27 TimerMatchSet

Sets the timer match value.

Prototype:
void
TimerMatchSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for full-width
operation.

ui32Value is the match value.

Description:
This function configures the match value for a timer. This value is used in capture count mode
to determine when to interrupt the processor and in PWM mode to determine the duty cycle of
the output signal. On some Tiva devices, match interrupts can also be generated in periodic
and one-shot modes.

July 25, 2016 547

Timer

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers and for half-
width modes of 32/64-bit timers. Use TimerMatchSet64() for full-width modes of 32/64-bit
timers.

Returns:
None.

29.2.2.28 TimerMatchSet64

Sets the timer match value for a 64-bit timer.

Prototype:
void
TimerMatchSet64(uint32_t ui32Base,

uint64_t ui64Value)

Parameters:
ui32Base is the base address of the timer module.
ui64Value is the match value.

Description:
This function configures the match value for a timer. This value is used in capture count mode
to determine when to interrupt the processor and in PWM mode to determine the duty cycle of
the output signal.

Returns:
None.

29.2.2.29 TimerPrescaleGet

Gets the timer prescale value.

Prototype:
uint32_t
TimerPrescaleGet(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler. The prescaler is only operational when
in half-width mode and is used to extend the range of the half-width timer modes. The prescaler
provides the least significant bits when counting down in periodic and one-shot modes; in all
other modes, the prescaler provides the most significant bits.

Note:
The availability of the prescaler varies with the Tiva part and timer mode in use. Please consult
the datasheet for the part you are using to determine whether this support is available.

548 July 25, 2016

Timer

Returns:
The value of the timer prescaler.

29.2.2.30 TimerPrescaleMatchGet

Gets the timer prescale match value.

Prototype:
uint32_t
TimerPrescaleMatchGet(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler match value. When in a half-width
mode that uses the counter match and prescaler, the prescale match effectively extends the
range of the match. The prescaler provides the least significant bits when counting down in
periodic and one-shot modes; in all other modes, the prescaler provides the most significant
bits.

Note:
The availability of the prescaler match varies with the Tiva part and timer mode in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
The value of the timer prescale match.

29.2.2.31 TimerPrescaleMatchSet

Sets the timer prescale match value.

Prototype:
void
TimerPrescaleMatchSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ui32Value is the timer prescale match value which must be between 0 and 255 (inclusive) for

16/32-bit timers and between 0 and 65535 (inclusive) for 32/64-bit timers.

Description:
This function configures the value of the input clock prescaler match value. When in a half-width
mode that uses the counter match and the prescaler, the prescale match effectively extends

July 25, 2016 549

Timer

the range of the match. The prescaler provides the least significant bits when counting down
in periodic and one-shot modes; in all other modes, the prescaler provides the most significant
bits.

Note:
The availability of the prescaler match varies with the Tiva part and timer mode in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

29.2.2.32 TimerPrescaleSet

Sets the timer prescale value.

Prototype:
void
TimerPrescaleSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ui32Value is the timer prescale value which must be between 0 and 255 (inclusive) for 16/32-

bit timers and between 0 and 65535 (inclusive) for 32/64-bit timers.

Description:
This function configures the value of the input clock prescaler. The prescaler is only opera-
tional when in half-width mode and is used to extend the range of the half-width timer modes.
The prescaler provides the least significant bits when counting down in periodic and one-shot
modes; in all other modes, the prescaler provides the most significant bits.

Note:
The availability of the prescaler varies with the Tiva part and timer mode in use. Please consult
the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

29.2.2.33 TimerRTCDisable

Disables RTC counting.

Prototype:
void
TimerRTCDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

550 July 25, 2016

Timer

Description:
This function causes the timer to stop counting when in RTC mode.

Returns:
None.

29.2.2.34 TimerRTCEnable

Enables RTC counting.

Prototype:
void
TimerRTCEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the timer module.

Description:
This function causes the timer to start counting when in RTC mode. If not configured for RTC
mode, this function does nothing.

Returns:
None.

29.2.2.35 TimerSynchronize

Synchronizes the counters in a set of timers.

Prototype:
void
TimerSynchronize(uint32_t ui32Base,

uint32_t ui32Timers)

Parameters:
ui32Base is the base address of the timer module. This parameter must be the base address

of Timer0 (in other words, TIMER0_BASE).
ui32Timers is the set of timers to synchronize.

Description:
This function synchronizes the counters in a specified set of timers. When a timer is running
in half-width mode, each half can be included or excluded in the synchronization event. When
a timer is running in full-width mode, only the A timer can be synchronized (specifying the B
timer has no effect).

The ui32Timers parameter is the logical OR of any of the following defines:

TIMER_0A_SYNC
TIMER_0B_SYNC
TIMER_1A_SYNC
TIMER_1B_SYNC
TIMER_2A_SYNC

July 25, 2016 551

Timer

TIMER_2B_SYNC
TIMER_3A_SYNC
TIMER_3B_SYNC
TIMER_4A_SYNC
TIMER_4B_SYNC
TIMER_5A_SYNC
TIMER_5B_SYNC
WTIMER_0A_SYNC
WTIMER_0B_SYNC
WTIMER_1A_SYNC
WTIMER_1B_SYNC
WTIMER_2A_SYNC
WTIMER_2B_SYNC
WTIMER_3A_SYNC
WTIMER_3B_SYNC
WTIMER_4A_SYNC
WTIMER_4B_SYNC
WTIMER_5A_SYNC
WTIMER_5B_SYNC

Note:
This functionality is not available on all parts.

Returns:
None.

29.2.2.36 TimerUpdateMode

This function configures the update of timer load and match settings.

Prototype:
void
TimerUpdateMode(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s); must be one of TIMER_A, TIMER_B, or TIMER_BOTH.
ui32Config is a combination of the updates methods for the timers specified in the ui32Timer

parameter.

Description:
This function configures how the timer updates the timer load and match values for the timers.
The ui32Timer values can be TIMER_A, TIMER_B, or TIMER_BOTH to apply the settings in
ui32Config to either timer or both timers. If the timer is not split then the TIMER_A should be
used. The ui32Config values affects when the TimerLoadSet() and TimerLoadSet64() values
take effect.

552 July 25, 2016

Timer

TIMER_UP_LOAD_IMMEDIATE is the default mode that causes the TimerLoadSet() or
TimerLoadSet64() to update the timer counter immediately.
TIMER_UP_LOAD_TIMEOUT causes the TimerLoadSet() or TimerLoadSet64() to update
the timer when it counts down to zero.

Similarly the ui32Config value affects when the TimerMatchSet() and TimerMatchSet64() val-
ues take effect.

TIMER_UP_MATCH_IMMEDIATE is the default mode that causes the TimerMatchSet() or
TimerMatchSet64() to update the timer match value immediately.
TIMER_UP_MATCH_TIMEOUT causes the TimerMatchSet() or TimerMatchSet64() to up-
date the timer match value when it counts down to zero.

Note:
These settings have no effect if the timer is not in count down mode and are mostly useful
when operating in PWM mode to allow for synchronous update of timer match and load values.

Returns:
None.

29.2.2.37 TimerValueGet

Gets the current timer value.

Prototype:
uint32_t
TimerValueGet(uint32_t ui32Base,

uint32_t ui32Timer)

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should

be used when the timer is configured for full-width operation.

Description:
This function reads the current value of the specified timer.

Note:
This function can be used for both full- and half-width modes of 16/32-bit timers and for half-
width modes of 32/64-bit timers. Use TimerValueGet64() for full-width modes of 32/64-bit
timers.

Returns:
Returns the current value of the timer.

29.2.2.38 TimerValueGet64

Gets the current 64-bit timer value.

Prototype:
uint64_t
TimerValueGet64(uint32_t ui32Base)

July 25, 2016 553

Timer

Parameters:
ui32Base is the base address of the timer module.

Description:
This function reads the current value of the specified timer.

Returns:
Returns the current value of the timer.

29.3 Programming Example

The following example shows how to use the timer API to configure the timer as a half-width one
shot timer and a half-width edge capture counter.

//
// Enable the Timer0 peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

//
// Wait for the Timer0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_TIMER0))
{
}

//
// Configure TimerA as a half-width one-shot timer, and TimerB as a
// half-width edge capture counter.
//
TimerConfigure(TIMER0_BASE, (TIMER_CFG_SPLIT_PAIR | TIMER_CFG_A_ONE_SHOT |

TIMER_CFG_B_CAP_COUNT));

//
// Set the count time for the the one-shot timer (TimerA).
//
TimerLoadSet(TIMER0_BASE, TIMER_A, 3000);

//
// Configure the counter (TimerB) to count both edges.
//
TimerControlEvent(TIMER0_BASE, TIMER_B, TIMER_EVENT_BOTH_EDGES);

//
// Enable the timers.
//
TimerEnable(TIMER0_BASE, TIMER_BOTH);

554 July 25, 2016

UART

30 UART
Introduction .555
API Functions . 555
Programming Example .579

30.1 Introduction

The Universal Asynchronous Receiver/Transmitter (UART) API provides a set of functions for using
the Tiva UART modules. Functions are provided to configure and control the UART modules, to
send and receive data, and to manage interrupts for the UART modules.

The Tiva UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is
very similar in functionality to a 16C550 UART, but is not register-compatible.

Some of the features of the Tiva UART are:

A 16x12 bit receive FIFO and a 16x8 bit transmit FIFO.

Programmable baud rate generator.

Automatic generation and stripping of start, stop, and parity bits.

Line break generation and detection.

Programmable serial interface

• 5, 6, 7, or 8 data bits
• even, odd, stick, or no parity bit generation and detection
• 1 or 2 stop bit generation
• baud rate generation, from DC to processor clock/16

Modem control/flow control

IrDA serial-IR (SIR) encoder/decoder.

uDMA interface

9-bit operation

This driver is contained in driverlib/uart.c, with driverlib/uart.h containing the API
declarations for use by applications.

30.2 API Functions

Functions
void UART9BitAddrSend (uint32_t ui32Base, uint8_t ui8Addr)
void UART9BitAddrSet (uint32_t ui32Base, uint8_t ui8Addr, uint8_t ui8Mask)
void UART9BitDisable (uint32_t ui32Base)
void UART9BitEnable (uint32_t ui32Base)
void UARTBreakCtl (uint32_t ui32Base, bool bBreakState)
bool UARTBusy (uint32_t ui32Base)

July 25, 2016 555

UART

int32_t UARTCharGet (uint32_t ui32Base)
int32_t UARTCharGetNonBlocking (uint32_t ui32Base)
void UARTCharPut (uint32_t ui32Base, unsigned char ucData)
bool UARTCharPutNonBlocking (uint32_t ui32Base, unsigned char ucData)
bool UARTCharsAvail (uint32_t ui32Base)
uint32_t UARTClockSourceGet (uint32_t ui32Base)
void UARTClockSourceSet (uint32_t ui32Base, uint32_t ui32Source)
void UARTConfigGetExpClk (uint32_t ui32Base, uint32_t ui32UARTClk, uint32_t ∗pui32Baud,
uint32_t ∗pui32Config)
void UARTConfigSetExpClk (uint32_t ui32Base, uint32_t ui32UARTClk, uint32_t ui32Baud,
uint32_t ui32Config)
void UARTDisable (uint32_t ui32Base)
void UARTDisableSIR (uint32_t ui32Base)
void UARTDMADisable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void UARTDMAEnable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void UARTEnable (uint32_t ui32Base)
void UARTEnableSIR (uint32_t ui32Base, bool bLowPower)
void UARTFIFODisable (uint32_t ui32Base)
void UARTFIFOEnable (uint32_t ui32Base)
void UARTFIFOLevelGet (uint32_t ui32Base, uint32_t ∗pui32TxLevel, uint32_t ∗pui32RxLevel)
void UARTFIFOLevelSet (uint32_t ui32Base, uint32_t ui32TxLevel, uint32_t ui32RxLevel)
uint32_t UARTFlowControlGet (uint32_t ui32Base)
void UARTFlowControlSet (uint32_t ui32Base, uint32_t ui32Mode)
void UARTIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void UARTIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void UARTIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void UARTIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t UARTIntStatus (uint32_t ui32Base, bool bMasked)
void UARTIntUnregister (uint32_t ui32Base)
void UARTLoopbackEnable (uint32_t ui32Base)
void UARTModemControlClear (uint32_t ui32Base, uint32_t ui32Control)
uint32_t UARTModemControlGet (uint32_t ui32Base)
void UARTModemControlSet (uint32_t ui32Base, uint32_t ui32Control)
uint32_t UARTModemStatusGet (uint32_t ui32Base)
uint32_t UARTParityModeGet (uint32_t ui32Base)
void UARTParityModeSet (uint32_t ui32Base, uint32_t ui32Parity)
void UARTRxErrorClear (uint32_t ui32Base)
uint32_t UARTRxErrorGet (uint32_t ui32Base)
void UARTSmartCardDisable (uint32_t ui32Base)
void UARTSmartCardEnable (uint32_t ui32Base)
bool UARTSpaceAvail (uint32_t ui32Base)
uint32_t UARTTxIntModeGet (uint32_t ui32Base)
void UARTTxIntModeSet (uint32_t ui32Base, uint32_t ui32Mode)

556 July 25, 2016

UART

30.2.1 Detailed Description

The UART API provides the set of functions required to implement an interrupt-driven UART driver.
These functions may be used to control any of the available UART ports on a Tiva microcontroller
and can be used with one port without causing conflicts with the other port.

The UART API is broken into three groups of functions: those that deal with configuration and con-
trol of the UART modules, those used to send and receive data, and those that deal with interrupt
handling.

The clock source for the baud rate generator is handled by the UARTClockSourceSet() and UART-
ClockSourceGet() functions.

Configuration and control of the UART are handled by the UARTConfigGetExpClk(), UARTCon-
figSetExpClk(), UARTDisable(), UARTEnable(), UARTParityModeGet(), and UARTParityModeSet()
functions. The DMA interface can be enabled or disabled by the UARTDMAEnable() and UARTD-
MADisable() functions.

Sending and receiving data via the UART is handled by the UARTCharGet(), UARTCharGet-
NonBlocking(), UARTCharPut(), UARTCharPutNonBlocking(), UARTBreakCtl(), UARTCharsAvail(),
and UARTSpaceAvail() functions.

Managing the UART interrupts is handled by the UARTIntClear(), UARTIntDisable(), UARTIntEn-
able(), UARTIntRegister(), UARTIntStatus(), and UARTIntUnregister() functions.

The 9-bit operation mode is handled by the UART9BitEnable(), UART9BitDisable(),
UART9BitAddrSet(), and UART9BitAddrSend() functions.

The UARTConfigSet(), UARTConfigGet(), UARTCharNonBlockingGet(), and UARTCharNonBlock-
ingPut() APIs from previous versions of the peripheral driver library have been replaced
by the UARTConfigSetExpClk(), UARTConfigGetExpClk(), UARTCharGetNonBlocking(), and
UARTCharPutNonBlocking() APIs, respectively. Macros have been provided in uart.h to map
the old APIs to the new APIs, allowing existing applications to link and run with the new APIs. It is
recommended that new applications utilize the new APIs in favor of the old ones.

30.2.2 Function Documentation

30.2.2.1 UART9BitAddrSend

Sends an address character from the specified port when operating in 9-bit mode.

Prototype:
void
UART9BitAddrSend(uint32_t ui32Base,

uint8_t ui8Addr)

Parameters:
ui32Base is the base address of the UART port.
ui8Addr is the address to be transmitted.

Description:
This function waits until all data has been sent from the specified port and then sends the given
address as an address byte. It then waits until the address byte has been transmitted before
returning.

July 25, 2016 557

UART

The normal data functions (UARTCharPut(), UARTCharPutNonBlocking(), UARTCharGet(),
and UARTCharGetNonBlocking()) are used to send and receive data characters in 9-bit mode.

Note:
The availability of 9-bit mode varies with the Tiva part in use. Please consult the datasheet for
the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.2 UART9BitAddrSet

Sets the device address(es) for 9-bit mode.

Prototype:
void
UART9BitAddrSet(uint32_t ui32Base,

uint8_t ui8Addr,
uint8_t ui8Mask)

Parameters:
ui32Base is the base address of the UART port.
ui8Addr is the device address.
ui8Mask is the device address mask.

Description:
This function configures the device address or range of device addresses that respond to
requests on the 9-bit UART port. The received address is masked with the mask and then
compared against the given address, allowing either a single address (if ui8Mask is 0xff) or a
set of addresses to be matched.

Note:
The availability of 9-bit mode varies with the Tiva part in use. Please consult the datasheet for
the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.3 UART9BitDisable

Disables 9-bit mode on the specified UART.

Prototype:
void
UART9BitDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables the 9-bit operational mode of the UART.

558 July 25, 2016

UART

Note:
The availability of 9-bit mode varies with the Tiva part in use. Please consult the datasheet for
the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.4 UART9BitEnable

Enables 9-bit mode on the specified UART.

Prototype:
void
UART9BitEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function enables the 9-bit operational mode of the UART.

Note:
The availability of 9-bit mode varies with the Tiva part in use. Please consult the datasheet for
the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.5 UARTBreakCtl

Causes a BREAK to be sent.

Prototype:
void
UARTBreakCtl(uint32_t ui32Base,

bool bBreakState)

Parameters:
ui32Base is the base address of the UART port.
bBreakState controls the output level.

Description:
Calling this function with bBreakState set to true asserts a break condition on the UART. Calling
this function with bBreakState set to false removes the break condition. For proper transmis-
sion of a break command, the break must be asserted for at least two complete frames.

Returns:
None.

July 25, 2016 559

UART

30.2.2.6 UARTBusy

Determines whether the UART transmitter is busy or not.

Prototype:
bool
UARTBusy(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function allows the caller to determine whether all transmitted bytes have cleared the
transmitter hardware. If false is returned, the transmit FIFO is empty and all bits of the last
transmitted character, including all stop bits, have left the hardware shift register.

Returns:
Returns true if the UART is transmitting or false if all transmissions are complete.

30.2.2.7 UARTCharGet

Waits for a character from the specified port.

Prototype:
int32_t
UARTCharGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function gets a character from the receive FIFO for the specified port. If there are no
characters available, this function waits until a character is received before returning.

Returns:
Returns the character read from the specified port, cast as a int32_t .

30.2.2.8 UARTCharGetNonBlocking

Receives a character from the specified port.

Prototype:
int32_t
UARTCharGetNonBlocking(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function gets a character from the receive FIFO for the specified port.

560 July 25, 2016

UART

Returns:
Returns the character read from the specified port, cast as a int32_t . A -1 is returned if there
are no characters present in the receive FIFO. The UARTCharsAvail() function should be called
before attempting to call this function.

30.2.2.9 UARTCharPut

Waits to send a character from the specified port.

Prototype:
void
UARTCharPut(uint32_t ui32Base,

unsigned char ucData)

Parameters:
ui32Base is the base address of the UART port.
ucData is the character to be transmitted.

Description:
This function sends the character ucData to the transmit FIFO for the specified port. If there is
no space available in the transmit FIFO, this function waits until there is space available before
returning.

Returns:
None.

30.2.2.10 UARTCharPutNonBlocking

Sends a character to the specified port.

Prototype:
bool
UARTCharPutNonBlocking(uint32_t ui32Base,

unsigned char ucData)

Parameters:
ui32Base is the base address of the UART port.
ucData is the character to be transmitted.

Description:
This function writes the character ucData to the transmit FIFO for the specified port. This
function does not block, so if there is no space available, then a false is returned and the
application must retry the function later.

Returns:
Returns true if the character was successfully placed in the transmit FIFO or false if there was
no space available in the transmit FIFO.

July 25, 2016 561

UART

30.2.2.11 UARTCharsAvail

Determines if there are any characters in the receive FIFO.

Prototype:
bool
UARTCharsAvail(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is data available in the receive FIFO.

Returns:
Returns true if there is data in the receive FIFO or false if there is no data in the receive FIFO.

30.2.2.12 UARTClockSourceGet

Gets the baud clock source for the specified UART.

Prototype:
uint32_t
UARTClockSourceGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the baud clock source for the specified UART. The possible baud clock
source are the system clock (UART_CLOCK_SYSTEM) or the precision internal oscillator
(UART_CLOCK_PIOSC).

Note:
The ability to specify the UART baud clock source varies with the Tiva part in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.13 UARTClockSourceSet

Sets the baud clock source for the specified UART.

Prototype:
void
UARTClockSourceSet(uint32_t ui32Base,

uint32_t ui32Source)

Parameters:
ui32Base is the base address of the UART port.

562 July 25, 2016

UART

ui32Source is the baud clock source for the UART.

Description:
This function allows the baud clock source for the UART to be selected. The possible clock
source are the system clock (UART_CLOCK_SYSTEM) or the precision internal oscillator
(UART_CLOCK_PIOSC).

Changing the baud clock source changes the baud rate generated by the UART. Therefore, the
baud rate should be reconfigured after any change to the baud clock source.

Note:
The ability to specify the UART baud clock source varies with the Tiva part in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.14 UARTConfigGetExpClk

Gets the current configuration of a UART.

Prototype:
void
UARTConfigGetExpClk(uint32_t ui32Base,

uint32_t ui32UARTClk,
uint32_t *pui32Baud,
uint32_t *pui32Config)

Parameters:
ui32Base is the base address of the UART port.
ui32UARTClk is the rate of the clock supplied to the UART module.
pui32Baud is a pointer to storage for the baud rate.
pui32Config is a pointer to storage for the data format.

Description:
This function determines the baud rate and data format for the UART, given an explicitly pro-
vided peripheral clock (hence the ExpClk suffix). The returned baud rate is the actual baud
rate; it may not be the exact baud rate requested or an “official” baud rate. The data format
returned in pui32Config is enumerated the same as the ui32Config parameter of UARTCon-
figSetExpClk().

The peripheral clock is the same as the processor clock. The frequency of the system clock
is the value returned by SysCtlClockGet() for TM4C123x devices or the value returned by
SysCtlClockFreqSet() for TM4C129x devices, or it can be explicitly hard coded if it is constant
and known (to save the code/execution overhead of a call to SysCtlClockGet() or fetch of the
variable call holding the return value of SysCtlClockFreqSet()).

For Tiva parts that have the ability to specify the UART baud clock source (via UARTClock-
SourceSet()), the peripheral clock can be changed to PIOSC. In this case, the peripheral clock
should be specified as 16, 000, 000 (the nominal rate of PIOSC).

Returns:
None.

July 25, 2016 563

UART

30.2.2.15 UARTConfigSetExpClk

Sets the configuration of a UART.

Prototype:
void
UARTConfigSetExpClk(uint32_t ui32Base,

uint32_t ui32UARTClk,
uint32_t ui32Baud,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the UART port.
ui32UARTClk is the rate of the clock supplied to the UART module.
ui32Baud is the desired baud rate.
ui32Config is the data format for the port (number of data bits, number of stop bits, and parity).

Description:
This function configures the UART for operation in the specified data format. The baud rate is
provided in the ui32Baud parameter and the data format in the ui32Config parameter.

The ui32Config parameter is the logical OR of three values: the number of
data bits, the number of stop bits, and the parity. UART_CONFIG_WLEN_8,
UART_CONFIG_WLEN_7, UART_CONFIG_WLEN_6, and UART_CONFIG_WLEN_5
select from eight to five data bits per byte (respectively). UART_CONFIG_STOP_ONE
and UART_CONFIG_STOP_TWO select one or two stop bits (respectively).
UART_CONFIG_PAR_NONE, UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD,
UART_CONFIG_PAR_ONE, and UART_CONFIG_PAR_ZERO select the parity mode (no
parity bit, even parity bit, odd parity bit, parity bit always one, and parity bit always zero,
respectively).

The peripheral clock is the same as the processor clock. The frequency of the system clock
is the value returned by SysCtlClockGet() for TM4C123x devices or the value returned by
SysCtlClockFreqSet() for TM4C129x devices, or it can be explicitly hard coded if it is constant
and known (to save the code/execution overhead of a call to SysCtlClockGet() or fetch of the
variable call holding the return value of SysCtlClockFreqSet()).

The function disables the UART by calling UARTDisable() before changing the the parameters
and enables the UART by calling UARTEnable().

For Tiva parts that have the ability to specify the UART baud clock source (via UARTClock-
SourceSet()), the peripheral clock can be changed to PIOSC. In this case, the peripheral clock
should be specified as 16, 000, 000 (the nominal rate of PIOSC).

Returns:
None.

30.2.2.16 UARTDisable

Disables transmitting and receiving.

Prototype:
void
UARTDisable(uint32_t ui32Base)

564 July 25, 2016

UART

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables the UART, waits for the end of transmission of the current character, and
flushes the transmit FIFO.

Returns:
None.

30.2.2.17 UARTDisableSIR

Disables SIR (IrDA) mode on the specified UART.

Prototype:
void
UARTDisableSIR(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables SIR(IrDA) mode on the UART. This function only has an effect if the
UART has not been enabled by a call to UARTEnable(). The call UARTEnableSIR() must be
made before a call to UARTConfigSetExpClk() because the UARTConfigSetExpClk() function
calls the UARTEnable() function. Another option is to call UARTDisable() followed by UARTEn-
ableSIR() and then enable the UART by calling UARTEnable().

Note:
The availability of SIR (IrDA) operation varies with the Tiva part in use. Please consult the
datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.18 UARTDMADisable

Disable UART uDMA operation.

Prototype:
void
UARTDMADisable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

Parameters:
ui32Base is the base address of the UART port.
ui32DMAFlags is a bit mask of the uDMA features to disable.

Description:
This function is used to disable UART uDMA features that were enabled by UARTDMAEnable().
The specified UART uDMA features are disabled. The ui32DMAFlags parameter is the logical
OR of any of the following values:

July 25, 2016 565

UART

UART_DMA_RX - disable uDMA for receive
UART_DMA_TX - disable uDMA for transmit
UART_DMA_ERR_RXSTOP - do not disable uDMA receive on UART error

Returns:
None.

30.2.2.19 UARTDMAEnable

Enable UART uDMA operation.

Prototype:
void
UARTDMAEnable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

Parameters:
ui32Base is the base address of the UART port.
ui32DMAFlags is a bit mask of the uDMA features to enable.

Description:
The specified UART uDMA features are enabled. The UART can be configured to use uDMA
for transmit or receive and to disable receive if an error occurs. The ui32DMAFlags parameter
is the logical OR of any of the following values:

UART_DMA_RX - enable uDMA for receive
UART_DMA_TX - enable uDMA for transmit
UART_DMA_ERR_RXSTOP - disable uDMA receive on UART error

Note:
The uDMA controller must also be set up before DMA can be used with the UART.

Returns:
None.

30.2.2.20 UARTEnable

Enables transmitting and receiving.

Prototype:
void
UARTEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function enables the UART and its transmit and receive FIFOs.

Returns:
None.

566 July 25, 2016

UART

30.2.2.21 UARTEnableSIR

Enables SIR (IrDA) mode on the specified UART.

Prototype:
void
UARTEnableSIR(uint32_t ui32Base,

bool bLowPower)

Parameters:
ui32Base is the base address of the UART port.
bLowPower indicates if SIR Low Power Mode is to be used.

Description:
This function enables SIR (IrDA) mode on the UART. If the bLowPower flag is set, then SIR
low power mode will be selected as well. This function only has an effect if the UART has not
been enabled by a call to UARTEnable(). The call UARTEnableSIR() must be made before a
call to UARTConfigSetExpClk() because the UARTConfigSetExpClk() function calls the UAR-
TEnable() function. Another option is to call UARTDisable() followed by UARTEnableSIR() and
then enable the UART by calling UARTEnable().

Note:
The availability of SIR (IrDA) operation varies with the Tiva part in use. Please consult the
datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.22 UARTFIFODisable

Disables the transmit and receive FIFOs.

Prototype:
void
UARTFIFODisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables the transmit and receive FIFOs in the UART.

Returns:
None.

30.2.2.23 UARTFIFOEnable

Enables the transmit and receive FIFOs.

Prototype:
void
UARTFIFOEnable(uint32_t ui32Base)

July 25, 2016 567

UART

Parameters:
ui32Base is the base address of the UART port.

Description:
This functions enables the transmit and receive FIFOs in the UART.

Returns:
None.

30.2.2.24 UARTFIFOLevelGet

Gets the FIFO level at which interrupts are generated.

Prototype:
void
UARTFIFOLevelGet(uint32_t ui32Base,

uint32_t *pui32TxLevel,
uint32_t *pui32RxLevel)

Parameters:
ui32Base is the base address of the UART port.
pui32TxLevel is a pointer to storage for the transmit FIFO level, returned as one of

UART_FIFO_TX1_8, UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or
UART_FIFO_TX7_8.

pui32RxLevel is a pointer to storage for the receive FIFO level, returned as one of
UART_FIFO_RX1_8, UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or
UART_FIFO_RX7_8.

Description:
This function gets the FIFO level at which transmit and receive interrupts are generated.

Returns:
None.

30.2.2.25 UARTFIFOLevelSet

Sets the FIFO level at which interrupts are generated.

Prototype:
void
UARTFIFOLevelSet(uint32_t ui32Base,

uint32_t ui32TxLevel,
uint32_t ui32RxLevel)

Parameters:
ui32Base is the base address of the UART port.
ui32TxLevel is the transmit FIFO interrupt level, specified as one of UART_FIFO_TX1_8,

UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or UART_FIFO_TX7_8.
ui32RxLevel is the receive FIFO interrupt level, specified as one of UART_FIFO_RX1_8,

UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or UART_FIFO_RX7_8.

568 July 25, 2016

UART

Description:
This function configures the FIFO level at which transmit and receive interrupts are generated.

Returns:
None.

30.2.2.26 UARTFlowControlGet

Returns the UART hardware flow control mode currently in use.

Prototype:
uint32_t
UARTFlowControlGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current hardware flow control mode.

Note:
The availability of hardware flow control varies with the Tiva part and UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
Returns the current flow control mode in use. This value is a logical OR combina-
tion of values UART_FLOWCONTROL_TX if transmit (CTS) flow control is enabled and
UART_FLOWCONTROL_RX if receive (RTS) flow control is in use. If hardware flow control is
disabled, UART_FLOWCONTROL_NONE is returned.

30.2.2.27 UARTFlowControlSet

Sets the UART hardware flow control mode to be used.

Prototype:
void
UARTFlowControlSet(uint32_t ui32Base,

uint32_t ui32Mode)

Parameters:
ui32Base is the base address of the UART port.
ui32Mode indicates the flow control modes to be used. This parameter is a logical OR com-

bination of values UART_FLOWCONTROL_TX and UART_FLOWCONTROL_RX
to enable hardware transmit (CTS) and receive (RTS) flow control or
UART_FLOWCONTROL_NONE to disable hardware flow control.

Description:
This function configures the required hardware flow control modes. If ui32Mode contains flag
UART_FLOWCONTROL_TX, data is only transmitted if the incoming CTS signal is asserted.
If ui32Mode contains flag UART_FLOWCONTROL_RX, the RTS output is controlled by the
hardware and is asserted only when there is space available in the receive FIFO. If no hardware
flow control is required, UART_FLOWCONTROL_NONE should be passed.

July 25, 2016 569

UART

Note:
The availability of hardware flow control varies with the Tiva part and UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.28 UARTIntClear

Clears UART interrupt sources.

Prototype:
void
UARTIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the UART port.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified UART interrupt sources are cleared, so that they no longer assert. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to UARTIn-
tEnable().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

30.2.2.29 UARTIntDisable

Disables individual UART interrupt sources.

Prototype:
void
UARTIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the UART port.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

570 July 25, 2016

UART

Description:
This function disables the indicated UART interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to UARTIn-
tEnable().

Returns:
None.

30.2.2.30 UARTIntEnable

Enables individual UART interrupt sources.

Prototype:
void
UARTIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the UART port.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated UART interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

UART_INT_9BIT - 9-bit Address Match interrupt
UART_INT_OE - Overrun Error interrupt
UART_INT_BE - Break Error interrupt
UART_INT_PE - Parity Error interrupt
UART_INT_FE - Framing Error interrupt
UART_INT_RT - Receive Timeout interrupt
UART_INT_TX - Transmit interrupt
UART_INT_RX - Receive interrupt
UART_INT_DSR - DSR interrupt
UART_INT_DCD - DCD interrupt
UART_INT_CTS - CTS interrupt
UART_INT_RI - RI interrupt

Returns:
None.

30.2.2.31 UARTIntRegister

Registers an interrupt handler for a UART interrupt.

July 25, 2016 571

UART

Prototype:
void
UARTIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the UART port.
pfnHandler is a pointer to the function to be called when the UART interrupt occurs.

Description:
This function does the actual registering of the interrupt handler. This function enables the
global interrupt in the interrupt controller; specific UART interrupts must be enabled via UART-
IntEnable(). It is the interrupt handler’s responsibility to clear the interrupt source.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

30.2.2.32 UARTIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
UARTIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the UART port.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the specified UART. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in UARTIn-
tEnable().

30.2.2.33 UARTIntUnregister

Unregisters an interrupt handler for a UART interrupt.

Prototype:
void
UARTIntUnregister(uint32_t ui32Base)

572 July 25, 2016

UART

Parameters:
ui32Base is the base address of the UART port.

Description:
This function does the actual unregistering of the interrupt handler. It clears the handler to be
called when a UART interrupt occurs. This function also masks off the interrupt in the interrupt
controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

30.2.2.34 UARTLoopbackEnable

Enables internal loopback mode for a UART port

Prototype:
void
UARTLoopbackEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function configures a UART port in internal loopback mode to help with diagnostics and
debug. In this mode, the transmit and receive terminals of the same UART port are internally
connected. Hence, the data transmitted on the UnTx output is received on the UxRx input,
without having to go through I/O’s. UARTCharPut(), UARTCharGet() functions can be used
along with this function.

Returns:
None.

30.2.2.35 UARTModemControlClear

Clears the states of the DTR and/or RTS modem control signals.

Prototype:
void
UARTModemControlClear(uint32_t ui32Base,

uint32_t ui32Control)

Parameters:
ui32Base is the base address of the UART port.
ui32Control is a bit-mapped flag indicating which modem control bits should be set.

Description:
This function clears the states of the DTR or RTS modem handshake outputs from the UART.

The ui32Control parameter is the logical OR of any of the following:

July 25, 2016 573

UART

UART_OUTPUT_DTR - The modem control DTR signal
UART_OUTPUT_RTS - The modem control RTS signal

Note:
The availability of hardware modem handshake signals varies with the Tiva part and UART in
use. Please consult the datasheet for the part you are using to determine whether this support
is available.

Returns:
None.

30.2.2.36 UARTModemControlGet

Gets the states of the DTR and RTS modem control signals.

Prototype:
uint32_t
UARTModemControlGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current states of each of the two UART modem control signals, DTR
and RTS.

Note:
The availability of hardware modem handshake signals varies with the Tiva part and UART in
use. Please consult the datasheet for the part you are using to determine whether this support
is available.

Returns:
Returns the states of the handshake output signals. This value is a logical OR combination
of values UART_OUTPUT_RTS and UART_OUTPUT_DTR where the presence of each flag
indicates that the associated signal is asserted.

30.2.2.37 UARTModemControlSet

Sets the states of the DTR and/or RTS modem control signals.

Prototype:
void
UARTModemControlSet(uint32_t ui32Base,

uint32_t ui32Control)

Parameters:
ui32Base is the base address of the UART port.
ui32Control is a bit-mapped flag indicating which modem control bits should be set.

574 July 25, 2016

UART

Description:
This function configures the states of the DTR or RTS modem handshake outputs from the
UART.

The ui32Control parameter is the logical OR of any of the following:

UART_OUTPUT_DTR - The modem control DTR signal
UART_OUTPUT_RTS - The modem control RTS signal

Note:
The availability of hardware modem handshake signals varies with the Tiva part and UART in
use. Please consult the datasheet for the part you are using to determine whether this support
is available.

Returns:
None.

30.2.2.38 UARTModemStatusGet

Gets the states of the RI, DCD, DSR and CTS modem status signals.

Prototype:
uint32_t
UARTModemStatusGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current states of each of the four UART modem status signals, RI,
DCD, DSR and CTS.

Note:
The availability of hardware modem handshake signals varies with the Tiva part and UART in
use. Please consult the datasheet for the part you are using to determine whether this support
is available.

Returns:
Returns the states of the handshake output signals. This value is a logical OR combination of
values UART_INPUT_RI, UART_INPUT_DCD, UART_INPUT_CTS and UART_INPUT_DSR
where the presence of each flag indicates that the associated signal is asserted.

30.2.2.39 UARTParityModeGet

Gets the type of parity currently being used.

Prototype:
uint32_t
UARTParityModeGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

July 25, 2016 575

UART

Description:
This function gets the type of parity used for transmitting data and expected when receiving
data.

Returns:
Returns the current parity settings, specified as one of UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or
UART_CONFIG_PAR_ZERO.

30.2.2.40 UARTParityModeSet

Sets the type of parity.

Prototype:
void
UARTParityModeSet(uint32_t ui32Base,

uint32_t ui32Parity)

Parameters:
ui32Base is the base address of the UART port.
ui32Parity specifies the type of parity to use.

Description:
This function configures the type of parity to use for transmitting and expect when
receiving. The ui32Parity parameter must be one of UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or
UART_CONFIG_PAR_ZERO. The last two parameters allow direct control of the parity bit;
it is always either one or zero based on the mode.

Returns:
None.

30.2.2.41 UARTRxErrorClear

Clears all reported receiver errors.

Prototype:
void
UARTRxErrorClear(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function is used to clear all receiver error conditions reported via UARTRxErrorGet(). If
using the overrun, framing error, parity error or break interrupts, this function must be called
after clearing the interrupt to ensure that later errors of the same type trigger another interrupt.

Returns:
None.

576 July 25, 2016

UART

30.2.2.42 UARTRxErrorGet

Gets current receiver errors.

Prototype:
uint32_t
UARTRxErrorGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current state of each of the 4 receiver error sources. The returned
errors are equivalent to the four error bits returned via the previous call to UARTCharGet() or
UARTCharGetNonBlocking() with the exception that the overrun error is set immediately when
the overrun occurs rather than when a character is next read.

Returns:
Returns a logical OR combination of the receiver error flags, UART_RXERROR_FRAMING,
UART_RXERROR_PARITY, UART_RXERROR_BREAK and UART_RXERROR_OVERRUN.

30.2.2.43 UARTSmartCardDisable

Disables ISO7816 smart card mode on the specified UART.

Prototype:
void
UARTSmartCardDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function clears the SMART (ISO7816 smart card) bit in the UART control register.

Note:
The availability of ISO7816 smart card mode varies with the Tiva part and UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.44 UARTSmartCardEnable

Enables ISO7816 smart card mode on the specified UART.

Prototype:
void
UARTSmartCardEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

July 25, 2016 577

UART

Description:
This function enables the SMART control bit for the ISO7816 smart card mode on the UART.
This call also sets 8-bit word length and even parity as required by ISO7816.

Note:
The availability of ISO7816 smart card mode varies with the Tiva part and UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.2.2.45 UARTSpaceAvail

Determines if there is any space in the transmit FIFO.

Prototype:
bool
UARTSpaceAvail(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is space available in the transmit
FIFO.

Returns:
Returns true if there is space available in the transmit FIFO or false if there is no space
available in the transmit FIFO.

30.2.2.46 UARTTxIntModeGet

Returns the current operating mode for the UART transmit interrupt.

Prototype:
uint32_t
UARTTxIntModeGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current operating mode for the UART transmit interrupt. The return
value is UART_TXINT_MODE_EOT if the transmit interrupt is currently configured to be as-
serted once the transmitter is completely idle - the transmit FIFO is empty and all bits, including
any stop bits, have cleared the transmitter. The return value is UART_TXINT_MODE_FIFO if
the interrupt is configured to be asserted based on the level of the transmit FIFO.

Note:
The availability of end-of-transmission mode varies with the Tiva part in use. Please consult
the datasheet for the part you are using to determine whether this support is available.

578 July 25, 2016

UART

Returns:
Returns UART_TXINT_MODE_FIFO or UART_TXINT_MODE_EOT.

30.2.2.47 UARTTxIntModeSet

Sets the operating mode for the UART transmit interrupt.

Prototype:
void
UARTTxIntModeSet(uint32_t ui32Base,

uint32_t ui32Mode)

Parameters:
ui32Base is the base address of the UART port.
ui32Mode is the operating mode for the transmit interrupt. It may be

UART_TXINT_MODE_EOT to trigger interrupts when the transmitter is idle or
UART_TXINT_MODE_FIFO to trigger based on the current transmit FIFO level.

Description:
This function allows the mode of the UART transmit interrupt to be set. By default,
the transmit interrupt is asserted when the FIFO level falls past a threshold set via a
call to UARTFIFOLevelSet(). Alternatively, if this function is called with ui32Mode set to
UART_TXINT_MODE_EOT, the transmit interrupt is asserted once the transmitter is com-
pletely idle - the transmit FIFO is empty and all bits, including any stop bits, have cleared the
transmitter.

Note:
The availability of end-of-transmission mode varies with the Tiva part in use. Please consult
the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

30.3 Programming Example

The following example shows how to use the UART API to initialize the UART, transmit characters,
and receive characters on a TM4C123x device.

//
// Enable the UART0 module.
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

//
// Wait for the UART0 module to be ready.

//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_UART0))
{
}

// Initialize the UART. Set the baud rate, number of data bits, turn off
// parity, number of stop bits, and stick mode. The UART is enabled by the

July 25, 2016 579

UART

// function call.
//
UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 38400,

(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));

//
// Check for characters. Spin here until a character is placed
// into the receive FIFO.
//
while(!UARTCharsAvail(UART0_BASE))
{
}

//
// Get the character(s) in the receive FIFO.
//
while(UARTCharGetNonBlocking(UART0_BASE))
{
}

//
// Put a character in the output buffer.
//
UARTCharPut(UART0_BASE, ’c’));

//
// Disable the UART.
//
UARTDisable(UART0_BASE);

580 July 25, 2016

uDMA Controller

31 uDMA Controller
Introduction .581
API Functions . 582
Programming Example .602

31.1 Introduction

The Micro Direct Memory Access (uDMA) API provides functions to configure the Tiva uDMA con-
troller. The uDMA controller is designed to work with the ARM Cortex-M processor and provides
an efficient and low-overhead means of transferring blocks of data in the system.

The uDMA controller has the following features:

dedicated channels for supported peripherals

one channel each for receive and transmit for devices with receive and transmit paths

dedicated channel for software initiated data transfers

channels can be independently configured and operated

an arbitration scheme that is configurable per channel

two levels of priority

subordinate to Cortex-M processor bus usage

data sizes of 8, 16, or 32 bits

address increment of byte, half-word, word, or none

maskable device requests

optional software initiated transfers on any channel

interrupt on transfer completion

The uDMA controller supports several different transfer modes, allowing for complex transfer
schemes. The following transfer modes are provided:

Basic mode performs a simple transfer when a request is asserted by a device. This mode is
appropriate to use with peripherals where the peripheral asserts the request signal whenever
data should be transferred. The transfer pauses if the request is de-asserted, even if the
transfer is not complete.

Auto-request mode performs a simple transfer that is started by a request, but always com-
pletes the entire transfer, even if the request is de-asserted. This mode is appropriate to use
with software-initiated transfers.

Ping-Pong mode is used to transfer data to or from two buffers, switching from one buffer to
the other as each buffer fills. This mode is appropriate to use with peripherals as a way to
ensure a continuous flow of data to or from the peripheral. However, it is more complex to set
up and requires code to manage the ping-pong buffers in the interrupt handler.

Memory scatter-gather mode is a complex mode that provides a way to set up a list of
transfer “tasks” for the uDMA controller. Blocks of data can be transferred to and from arbitrary
locations in memory.

July 25, 2016 581

uDMA Controller

Peripheral scatter-gather mode is similar to memory scatter-gather mode except that it is
controlled by a peripheral request.

Detailed explanation of the various transfer modes is beyond the scope of this document. Please
refer to the device data sheet for more information on the operation of the uDMA controller.

The naming convention for the microDMA controller is to use the Greek letter “mu” to represent
“micro”. For the purposes of this document, and in the software library function names, a lower
case “u” will be used in place of “mu” when the controller is referred to as “uDMA”.

Note:
When the GPIO_O_DATA register is the source or destination, the application code must
use the bit banded address space instead of specifying the source or destination address
as GPIO_O_DATA.

This driver is contained in driverlib/udma.c, with driverlib/udma.h containing the API
declarations for use by applications.

31.2 API Functions

Defines
uDMATaskStructEntry(ui32TransferCount, ui32ItemSize, ui32SrcIncrement, pvSrcAddr,
ui32DstIncrement, pvDstAddr, ui32ArbSize, ui32Mode)

Functions
void uDMAChannelAssign (uint32_t ui32Mapping)
void uDMAChannelAttributeDisable (uint32_t ui32ChannelNum, uint32_t ui32Attr)
void uDMAChannelAttributeEnable (uint32_t ui32ChannelNum, uint32_t ui32Attr)
uint32_t uDMAChannelAttributeGet (uint32_t ui32ChannelNum)
void uDMAChannelControlSet (uint32_t ui32ChannelStructIndex, uint32_t ui32Control)
void uDMAChannelDisable (uint32_t ui32ChannelNum)
void uDMAChannelEnable (uint32_t ui32ChannelNum)
bool uDMAChannelIsEnabled (uint32_t ui32ChannelNum)
uint32_t uDMAChannelModeGet (uint32_t ui32ChannelStructIndex)
void uDMAChannelRequest (uint32_t ui32ChannelNum)
void uDMAChannelScatterGatherSet (uint32_t ui32ChannelNum, uint32_t ui32TaskCount,
void ∗pvTaskList, uint32_t ui32IsPeriphSG)
void uDMAChannelSelectDefault (uint32_t ui32DefPeriphs)
void uDMAChannelSelectSecondary (uint32_t ui32SecPeriphs)
uint32_t uDMAChannelSizeGet (uint32_t ui32ChannelStructIndex)
void uDMAChannelTransferSet (uint32_t ui32ChannelStructIndex, uint32_t ui32Mode, void
∗pvSrcAddr, void ∗pvDstAddr, uint32_t ui32TransferSize)
void ∗ uDMAControlAlternateBaseGet (void)
void ∗ uDMAControlBaseGet (void)
void uDMAControlBaseSet (void ∗psControlTable)

582 July 25, 2016

uDMA Controller

void uDMADisable (void)
void uDMAEnable (void)
void uDMAErrorStatusClear (void)
uint32_t uDMAErrorStatusGet (void)
void uDMAIntClear (uint32_t ui32ChanMask)
void uDMAIntRegister (uint32_t ui32IntChannel, void (∗pfnHandler)(void))
uint32_t uDMAIntStatus (void)
void uDMAIntUnregister (uint32_t ui32IntChannel)

31.2.1 Detailed Description

The uDMA API functions provide a means to enable and configure the Tiva uDMA controller to
perform DMA transfers.

The general order of function calls to set up and perform a uDMA transfer is the following:

uDMAEnable() is called once to enable the controller.

uDMAControlBaseSet() is called once to set the channel control table.

uDMAChannelAttributeEnable() is called once or infrequently to configure the behavior of the
channel.

uDMAChannelControlSet() is used to set up characteristics of the data transfer. It is only called
once if the nature of the data transfer does not change.

uDMAChannelTransferSet() is used to set the buffer pointers and size for a transfer. It is called
before each new transfer.

uDMAChannelEnable() enables a channel to perform data transfers.

uDMAChannelRequest() is used to initiate a software based transfer. This is normally not used
for peripheral based transfers.

In order to use the uDMA controller, you must first enable it by calling uDMAEnable(). You can later
disable it, if no longer needed, by calling uDMADisable().

Once the uDMA controller is enabled, you must tell it where to find the channel control structures in
system memory by using the function uDMAControlBaseSet() and passing a pointer to the base of
the channel control structure. The control structure must be allocated by the application. One way
to do allocate the control structure is to declare an array of data type int8_t or uint8_t. In order
to support all channels and transfer modes, the control table array should be 1024 bytes, but it can
be fewer depending on transfer modes used and number of channels actually used.

Note:
The control table must be aligned on a 1024-byte boundary.

The uDMA controller supports multiple channels. Each channel has a set of attribute flags to control
certain uDMA features and channel behavior. The attribute flags are configured with the function
uDMAChannelAttributeEnable() and cleared with uDMAChannelAttributeDisable(). The setting of
the channel attribute flags can be queried using the function uDMAChannelAttributeGet().

Next, the control parameters of the DMA transfer must be configured. These parameters control
the size and address increment of the data items to be transferred. The function uDMAChannel-
ControlSet() is used to set up these control parameters.

July 25, 2016 583

uDMA Controller

All of the functions mentioned so far are used only once or infrequently to set up the uDMA channel
and transfer. In order to configure the transfer addresses, transfer size, and transfer mode, use
the function uDMAChannelTransferSet(). This function must be called for each new transfer. Once
everything is set up, the channel is enabled by calling uDMAChannelEnable(), which must be done
before each new transfer. The uDMA controller automatically disables the channel at the completion
of a transfer. A channel can be manually disabled by using uDMAChannelDisable().

There are additional functions that can be used to query the status of a channel, either from an
interrupt handler or in polling fashion. The function uDMAChannelSizeGet() is used to find the
amount of data remaining to transfer on a channel. This value is zero when a transfer is complete.
The function uDMAChannelModeGet() can be used to find the transfer mode of a uDMA channel.
This function is usually used to see if the mode indicates stopped, meaning that a transfer has
completed on a channel that was previously running. The function uDMAChannelIsEnabled() can
be used to determine if a particular channel is enabled.

If the application is using run-time interrupt registration (see IntRegister()), then the function uD-
MAIntRegister() can be used to install an interrupt handler for the uDMA controller. This function
also enables the interrupt on the system interrupt controller. If compile-time interrupt registration is
used, then call the function IntEnable() to enable uDMA interrupts. When an interrupt handler has
been installed with uDMAIntRegister(), it can be removed by calling uDMAIntUnregister().

This interrupt handler is only for software-initiated transfers or errors. uDMA interrupts for a periph-
eral occur on the peripheral’s dedicated interrupt channel and should be handled by the peripheral
interrupt handler. It is not necessary to acknowledge or clear uDMA interrupt sources. They are
cleared automatically when they are serviced.

The uDMA interrupt handler should use the function uDMAErrorStatusGet() to test if a uDMA error
occurred. If so, the interrupt must be cleared by calling uDMAErrorStatusClear().

Note:
Many of the API functions take a channel parameter that includes the logical OR of one of
the values UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose the primary or alternate
control structure. For Basic and Auto transfer modes, only the primary control structure is
needed. The alternate control structure is only needed for complex transfer modes of Ping-
pong or Scatter-gather. Refer to the device data sheet for detailed information about transfer
modes.

Special considerations for using scatter-gather operations

In order to use the scatter-gather modes of the uDMA controller, you must prepare a “task” list in
memory that describes the scatter-gather operations. There is a helper macro, uDMATaskStructEn-
try provided to help create the initialization values for the task list structure. Please see the docu-
mentation for this macro which includes a code snippet showing how it is used.

Once the task list is prepared, the appropriate uDMA channel must be configured for a scatter-
gather operation. The best way to do this is to use the function uDMAChannelScatterGatherSet().
Alternatively, the functions uDMAChannelControlSet() followed by uDMAChannelTransferSet() can
also be used.

Note:
The scatter-gather task list must be resident in SRAM. The uDMA controller cannot read from
flash memory.

About uDMA Channel Function Parameters

Many of the uDMA API functions require a channel number as a parameter. There are two different
uses of the channel number. In some cases, it is the number of the uDMA channel and is used to

584 July 25, 2016

uDMA Controller

read or write registers within the uDMA controller. In this case, it is simply the channel number with
no additional qualifier.

However, in other cases the channel number that is supplied as a parameter is really an index into
the uDMA channel control structure. Because every uDMA channel has a primary and an alternate
channel control structure, this index must also be specified as part of the channel number. The
index is specified by passing a value for the channel parameter that is the logical OR of the actual
channel number and one of UDMA_PRI_SELECT or UDMA_ALT_SELECT. The default is the
same as UDMA_PRI_SELECT so if you do not specify, the primary channel control structure is
used, which is the right thing in most cases.

Note:
When UDMA_ALT_SELECT is specified, what is really happening is that channel index 32-63
is being used, because the alternate channel control structures for channels 0-31 are located
at index locations 32-63 in the channel control table.

Here is an example of the first case. In this example, a uDMA channel is enabled, and only the
channel number is used because this is programming a register in the uDMA controller.

uDMAChannelEnable(UDMA_CHANNEL_UART0RX);

Here is an example of the second case. In this example, the channel control structure is to be
modified to configure some transfer parameters. Therefore in addition to specifying the channel
index, the primary or alternate control structure must also be selected.

uDMAChannelControlSet(UDMA_CHANNEL_UART0RX | UDMA_PRI_SELECT, ...);

In order to help make it clear when one or the other form is to be used, the parameters are named
differently in the API description. For functions that require just the channel number, the name of
the parameter is ulChannelNum. For functions that require the channel index of the channel control
structure, the name of the parameter is ulChannelStructIdx .

Selecting uDMA Channels

The uDMA controller has 32 channels, and therefore most of the API functions take a channel
number with a value from 0-31 or a channel index with a value from 0-63 (the 32-63 is specified
with the logical OR of the channel number with UDMA_ALT_SELECT). In order to avoid the need
for hardcoded channel numbers in code, macros are provided that map channel names to channel
numbers.

To use the default channel mapping, you may use one of the following choices whenever a channel
number or index is needed. This list is all the possible channels that are defined by the API.
However not all channels are available on all parts, depending on which peripherals are available
on the part and which of those support uDMA. Please consult the data sheet for your specific part
to see which uDMA channels are supported.

UDMA_CHANNEL_USBEP1RX for USB endpoint 1 receive

UDMA_CHANNEL_USBEP1TX for USB endpoint 1 transmit

UDMA_CHANNEL_USBEP2RX for USB endpoint 2 receive

UDMA_CHANNEL_USBEP2TX for USB endpoint 2 transmit

UDMA_CHANNEL_USBEP3RX for USB endpoint 3 receive

UDMA_CHANNEL_USBEP3TX for USB endpoint 3 transmit

July 25, 2016 585

uDMA Controller

UDMA_CHANNEL_ETH0RX for ethernet receive

UDMA_CHANNEL_ETH0TX for ethernet transmit

UDMA_CHANNEL_UART0RX for UART 0 receive channel

UDMA_CHANNEL_UART0TX for UART 0 transmit channel

UDMA_CHANNEL_UART1RX for UART 1 receive channel

UDMA_CHANNEL_UART1TX for UART 1 transmit channel

UDMA_CHANNEL_SSI0RX for SSI 0 receive channel

UDMA_CHANNEL_SSI0TX for SSI 0 transmit channel

UDMA_CHANNEL_SSI1RX for SSI 1 receive channel

UDMA_CHANNEL_SSI1TX for SSI 1 transmit channel

UDMA_CHANNEL_ADC0 for ADC0 sequencer 0

UDMA_CHANNEL_ADC1 for ADC0 sequencer 1

UDMA_CHANNEL_ADC2 for ADC0 sequencer 2

UDMA_CHANNEL_ADC3 for ADC0 sequencer 3

UDMA_CHANNEL_TMR0A for Timer 0A

UDMA_CHANNEL_TMR0B for Timer 0B

UDMA_CHANNEL_TMR1A for Timer 1A

UDMA_CHANNEL_TMR1B for Timer 1B

UDMA_CHANNEL_I2S0RX for I2S receive

UDMA_CHANNEL_I2S0TX for I2S transmit

UDMA_CHANNEL_SW for the software dedicated uDMA channel

Some Tiva parts also provide a secondary channel mapping. For those parts, each channel has
a secondary peripheral mapping, allowing more choices in channel mapping and to allow some
additional peripherals to use uDMA that are not available in the default mapping.

In order to select the default or secondary channel mapping, use the functions uDMAChannelSe-
lectDefault() or uDMAChannelSelectSecondary(). Each channel can be configured individually to
use the default or secondary mapping.

For example, the default for channel 0 is USBEP1RX. However this channel also has a secondary
mapping to UART2RX. If an application requires use of uDMA with UART2 and does not use USB,
then this channel could be remapped to UART2RX with the following function call:

uDMAChannelSelectSecondary(UDMA_DEF_USBEP1RX_SEC_UART2RX);

For channels that have been configured to use the secondary mapping, there is a set of macros to
use for specifying the channel. Here is the list of channels when secondary mapping is used. As
before, this is the full list, the actual channels available depend on which specific Tiva part is used.

UDMA_SEC_CHANNEL_UART2RX_0 for UART2 receive using uDMA channel 0

UDMA_SEC_CHANNEL_UART2TX_1 for UART2 transmit using uDMA channel 1

UDMA_SEC_CHANNEL_TMR3A for Timer 3A

UDMA_SEC_CHANNEL_TMR3B for Timer 3B

UDMA_SEC_CHANNEL_TMR2A_4 for Timer 2A using uDMA channel 4

586 July 25, 2016

uDMA Controller

UDMA_SEC_CHANNEL_TMR2B_5 for Timer 2B using uDMA channel 5

UDMA_SEC_CHANNEL_TMR2A_6 for Timer 2A using uDMA channel 6

UDMA_SEC_CHANNEL_TMR2B_7 for Timer 2B using uDMA channel 7

UDMA_SEC_CHANNEL_UART1RX for UART1 receive

UDMA_SEC_CHANNEL_UART1TX for UART1 transmit

UDMA_SEC_CHANNEL_SSI1RX for SSI1 receive

UDMA_SEC_CHANNEL_SSI1TX for SSI1 transmit

UDMA_SEC_CHANNEL_UART2RX_12 for UART2 receive using uDMA channel 12

UDMA_SEC_CHANNEL_UART2TX_13 for UART2 transmit using uDMA channel 13

UDMA_SEC_CHANNEL_TMR2A_14 for Timer 2A using uDMA channel 14

UDMA_SEC_CHANNEL_TMR2B_15 for Timer 2B using uDMA channel 15

UDMA_SEC_CHANNEL_TMR1A for Timer 1A

UDMA_SEC_CHANNEL_TMR1B for Timer 1B

UDMA_SEC_CHANNEL_EPI0RX for EPI read

UDMA_SEC_CHANNEL_EPI0TX for EPI write

UDMA_SEC_CHANNEL_ADC10 for ADC1 sequencer 0

UDMA_SEC_CHANNEL_ADC11 for ADC1 sequencer 1

UDMA_SEC_CHANNEL_ADC12 for ADC1 sequencer 2

UDMA_SEC_CHANNEL_ADC13 for ADC1 sequencer 3

UDMA_SEC_CHANNEL_SW for the software dedicated uDMA channel

Further, some Tiva parts provide up to five possible channel assignments. For those parts, us the
uDMAChannelAssign() function to configure the channel assignments.

31.2.2 Define Documentation

31.2.2.1 uDMATaskStructEntry

A helper macro for building scatter-gather task table entries.

Definition:
#define uDMATaskStructEntry(ui32TransferCount,

ui32ItemSize,
ui32SrcIncrement,
pvSrcAddr,
ui32DstIncrement,
pvDstAddr,
ui32ArbSize,
ui32Mode)

Parameters:
ui32TransferCount is the count of items to transfer for this task.
ui32ItemSize is the bit size of the items to transfer for this task.
ui32SrcIncrement is the bit size increment for source data.
pvSrcAddr is the starting address of the data to transfer.

July 25, 2016 587

uDMA Controller

ui32DstIncrement is the bit size increment for destination data.
pvDstAddr is the starting address of the destination data.
ui32ArbSize is the arbitration size to use for the transfer task.
ui32Mode is the transfer mode for this task.

Description:
This macro is intended to be used to help populate a table of uDMA tasks for a scatter-gather
transfer. This macro will calculate the values for the fields of a task structure entry based on
the input parameters.

There are specific requirements for the values of each parameter. No checking is done so it is
up to the caller to ensure that correct values are used for the parameters.

The ui32TransferCount parameter is the number of items that will be transferred by this task. It
must be in the range 1-1024.

The ui32ItemSize parameter is the bit size of the transfer data. It must be one of
UDMA_SIZE_8, UDMA_SIZE_16, or UDMA_SIZE_32.

The ui32SrcIncrement parameter is the increment size for the source data. It
must be one of UDMA_SRC_INC_8, UDMA_SRC_INC_16, UDMA_SRC_INC_32, or
UDMA_SRC_INC_NONE.

The pvSrcAddr parameter is a void pointer to the beginning of the source data.

The ui32DstIncrement parameter is the increment size for the destination data. It
must be one of UDMA_DST_INC_8, UDMA_DST_INC_16, UDMA_DST_INC_32, or
UDMA_DST_INC_NONE.

The pvDstAddr parameter is a void pointer to the beginning of the location where the data will
be transferred.

The ui32ArbSize parameter is the arbitration size for the transfer, and must be one of
UDMA_ARB_1, UDMA_ARB_2, UDMA_ARB_4, and so on up to UDMA_ARB_1024. This
is used to select the arbitration size in powers of 2, from 1 to 1024.

The ui32Mode parameter is the mode to use for this transfer task. It must be one of
UDMA_MODE_BASIC, UDMA_MODE_AUTO, UDMA_MODE_MEM_SCATTER_GATHER,
or UDMA_MODE_PER_SCATTER_GATHER. Note that normally all tasks will be one of the
scatter-gather modes while the last task is a task list will be AUTO or BASIC.

This macro is intended to be used to initialize individual entries of a structure of tDMACon-
trolTable type, like this:

tDMAControlTable MyTaskList[] =
{

uDMATaskStructEntry(Task1Count, UDMA_SIZE_8,
UDMA_SRC_INC_8, MySourceBuf,
UDMA_DST_INC_8, MyDestBuf,
UDMA_ARB_8, UDMA_MODE_MEM_SCATTER_GATHER),

uDMATaskStructEntry(Task2Count, ...),
}

Returns:
Nothing; this is not a function.

588 July 25, 2016

uDMA Controller

31.2.3 Function Documentation

31.2.3.1 uDMAChannelAssign

Assigns a peripheral mapping for a uDMA channel.

Prototype:
void
uDMAChannelAssign(uint32_t ui32Mapping)

Parameters:
ui32Mapping is a macro specifying the peripheral assignment for a channel.

Description:
This function assigns a peripheral mapping to a uDMA channel. It is used to select which pe-
ripheral is used for a uDMA channel. The parameter ui32Mapping should be one of the macros
named UDMA_CHn_tttt from the header file udma.h. For example, to assign uDMA channel
0 to the UART2 RX channel, the parameter should be the macro UDMA_CH0_UART2RX.

Please consult the Tiva data sheet for a table showing all the possible peripheral assignments
for the uDMA channels for a particular device.

Note:
This function is only available on devices that have the DMA Channel Map Select registers
(DMACHMAP0-3). Please consult the data sheet for your part.

Returns:
None.

31.2.3.2 uDMAChannelAttributeDisable

Disables attributes of a uDMA channel.

Prototype:
void
uDMAChannelAttributeDisable(uint32_t ui32ChannelNum,

uint32_t ui32Attr)

Parameters:
ui32ChannelNum is the channel to configure.
ui32Attr is a combination of attributes for the channel.

Description:
This function is used to disable attributes of a uDMA channel.

The ui32Attr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

July 25, 2016 589

uDMA Controller

Returns:
None.

31.2.3.3 uDMAChannelAttributeEnable

Enables attributes of a uDMA channel.

Prototype:
void
uDMAChannelAttributeEnable(uint32_t ui32ChannelNum,

uint32_t ui32Attr)

Parameters:
ui32ChannelNum is the channel to configure.
ui32Attr is a combination of attributes for the channel.

Description:
This function is used to enable attributes of a uDMA channel.

The ui32Attr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel (it is very unlikely that this flag should be used).
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

31.2.3.4 uDMAChannelAttributeGet

Gets the enabled attributes of a uDMA channel.

Prototype:
uint32_t
uDMAChannelAttributeGet(uint32_t ui32ChannelNum)

Parameters:
ui32ChannelNum is the channel to configure.

Description:
This function returns a combination of flags representing the attributes of the uDMA channel.

Returns:
Returns the logical OR of the attributes of the uDMA channel, which can be any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.

590 July 25, 2016

uDMA Controller

UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

31.2.3.5 uDMAChannelControlSet

Sets the control parameters for a uDMA channel control structure.

Prototype:
void
uDMAChannelControlSet(uint32_t ui32ChannelStructIndex,

uint32_t ui32Control)

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with

UDMA_PRI_SELECT or UDMA_ALT_SELECT.
ui32Control is logical OR of several control values to set the control parameters for the chan-

nel.

Description:
This function is used to set control parameters for a uDMA transfer. These parameters are
typically not changed often.

The ui32ChannelStructIndex parameter should be the logical OR of the channel number with
one of UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alter-
nate data structure is used.

The ui32Control parameter is the logical OR of five values: the data size, the source address
increment, the destination address increment, the arbitration size, and the use burst flag. The
choices available for each of these values is described below.

Choose the data size from one of UDMA_SIZE_8, UDMA_SIZE_16, or UDMA_SIZE_32 to
select a data size of 8, 16, or 32 bits.

Choose the source address increment from one of UDMA_SRC_INC_8,
UDMA_SRC_INC_16, UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE to select an
address increment of 8-bit bytes, 16-bit half-words, 32-bit words, or to select non-incrementing.

Choose the destination address increment from one of UDMA_DST_INC_8,
UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_DST_INC_NONE to select an address
increment of 8-bit bytes, 16-bit half-words, 32-bit words, or to select non-incrementing.

The arbitration size determines how many items are transferred before the uDMA controller re-
arbitrates for the bus. Choose the arbitration size from one of UDMA_ARB_1, UDMA_ARB_2,
UDMA_ARB_4, UDMA_ARB_8, through UDMA_ARB_1024 to select the arbitration size from
1 to 1024 items, in powers of 2.

The value UDMA_NEXT_USEBURST is used to force the channel to only respond to burst
requests at the tail end of a scatter-gather transfer.

Note:
The address increment cannot be smaller than the data size.

Returns:
None.

July 25, 2016 591

uDMA Controller

31.2.3.6 uDMAChannelDisable

Disables a uDMA channel for operation.

Prototype:
void
uDMAChannelDisable(uint32_t ui32ChannelNum)

Parameters:
ui32ChannelNum is the channel number to disable.

Description:
This function disables a specific uDMA channel. Once disabled, a channel cannot respond to
uDMA transfer requests until re-enabled via uDMAChannelEnable().

Returns:
None.

31.2.3.7 uDMAChannelEnable

Enables a uDMA channel for operation.

Prototype:
void
uDMAChannelEnable(uint32_t ui32ChannelNum)

Parameters:
ui32ChannelNum is the channel number to enable.

Description:
This function enables a specific uDMA channel for use. This function must be used to enable
a channel before it can be used to perform a uDMA transfer.

When a uDMA transfer is completed, the channel is automatically disabled by the uDMA con-
troller. Therefore, this function should be called prior to starting up any new transfer.

Returns:
None.

31.2.3.8 uDMAChannelIsEnabled

Checks if a uDMA channel is enabled for operation.

Prototype:
bool
uDMAChannelIsEnabled(uint32_t ui32ChannelNum)

Parameters:
ui32ChannelNum is the channel number to check.

Description:
This function checks to see if a specific uDMA channel is enabled. This function can be used to
check the status of a transfer, as the channel is automatically disabled at the end of a transfer.

592 July 25, 2016

uDMA Controller

Returns:
Returns true if the channel is enabled, false if disabled.

31.2.3.9 uDMAChannelModeGet

Gets the transfer mode for a uDMA channel control structure.

Prototype:
uint32_t
uDMAChannelModeGet(uint32_t ui32ChannelStructIndex)

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.

Description:
This function is used to get the transfer mode for the uDMA channel and to query the status of
a transfer on a channel. When the transfer is complete the mode is UDMA_MODE_STOP.

Returns:
Returns the transfer mode of the specified channel and control structure, which is one of the
following values: UDMA_MODE_STOP, UDMA_MODE_BASIC, UDMA_MODE_AUTO,
UDMA_MODE_PINGPONG, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER.

31.2.3.10 uDMAChannelRequest

Requests a uDMA channel to start a transfer.

Prototype:
void
uDMAChannelRequest(uint32_t ui32ChannelNum)

Parameters:
ui32ChannelNum is the channel number on which to request a uDMA transfer.

Description:
This function allows software to request a uDMA channel to begin a transfer. This function
could be used for performing a memory-to-memory transfer, or if for some reason a transfer
needs to be initiated by software instead of the peripheral associated with that channel.

Note:
If the channel is UDMA_CHANNEL_SW and interrupts are used, then the completion is sig-
naled on the uDMA dedicated interrupt. If a peripheral channel is used, then the completion is
signaled on the peripheral’s interrupt.

Returns:
None.

July 25, 2016 593

uDMA Controller

31.2.3.11 uDMAChannelScatterGatherSet

Configures a uDMA channel for scatter-gather mode.

Prototype:
void
uDMAChannelScatterGatherSet(uint32_t ui32ChannelNum,

uint32_t ui32TaskCount,
void *pvTaskList,
uint32_t ui32IsPeriphSG)

Parameters:
ui32ChannelNum is the uDMA channel number.
ui32TaskCount is the number of scatter-gather tasks to execute.
pvTaskList is a pointer to the beginning of the scatter-gather task list.
ui32IsPeriphSG is a flag to indicate it is a peripheral scatter-gather transfer (else it is memory

scatter-gather transfer)

Description:
This function is used to configure a channel for scatter-gather mode. The caller must have
already set up a task list and must pass a pointer to the start of the task list as the pvTaskList
parameter. The ui32TaskCount parameter is the count of tasks in the task list, not the size
of the task list. The flag bIsPeriphSG should be used to indicate if scatter-gather should be
configured for peripheral or memory operation.

See also:
uDMATaskStructEntry

Returns:
None.

31.2.3.12 uDMAChannelSelectDefault

Selects the default peripheral for a set of uDMA channels.

Prototype:
void
uDMAChannelSelectDefault(uint32_t ui32DefPeriphs)

Parameters:
ui32DefPeriphs is the logical OR of the uDMA channels for which to use the default peripheral,

instead of the secondary peripheral.

Description:
This function is used to select the default peripheral assignment for a set of uDMA channels.

The parameter ui32DefPeriphs can be the logical OR of any of the following macros. If one of
the macros below is in the list passed to this function, then the default peripheral (marked as
DEF) is selected.

UDMA_DEF_USBEP1RX_SEC_UART2RX
UDMA_DEF_USBEP1TX_SEC_UART2TX

594 July 25, 2016

uDMA Controller

UDMA_DEF_USBEP2RX_SEC_TMR3A
UDMA_DEF_USBEP2TX_SEC_TMR3B
UDMA_DEF_USBEP3RX_SEC_TMR2A
UDMA_DEF_USBEP3TX_SEC_TMR2B
UDMA_DEF_ETH0RX_SEC_TMR2A
UDMA_DEF_ETH0TX_SEC_TMR2B
UDMA_DEF_UART0RX_SEC_UART1RX
UDMA_DEF_UART0TX_SEC_UART1TX
UDMA_DEF_SSI0RX_SEC_SSI1RX
UDMA_DEF_SSI0TX_SEC_SSI1TX
UDMA_DEF_RESERVED_SEC_UART2RX
UDMA_DEF_RESERVED_SEC_UART2TX
UDMA_DEF_ADC00_SEC_TMR2A
UDMA_DEF_ADC01_SEC_TMR2B
UDMA_DEF_ADC02_SEC_RESERVED
UDMA_DEF_ADC03_SEC_RESERVED
UDMA_DEF_TMR0A_SEC_TMR1A
UDMA_DEF_TMR0B_SEC_TMR1B
UDMA_DEF_TMR1A_SEC_EPI0RX
UDMA_DEF_TMR1B_SEC_EPI0TX
UDMA_DEF_UART1RX_SEC_RESERVED
UDMA_DEF_UART1TX_SEC_RESERVED
UDMA_DEF_SSI1RX_SEC_ADC10
UDMA_DEF_SSI1TX_SEC_ADC11
UDMA_DEF_RESERVED_SEC_ADC12
UDMA_DEF_RESERVED_SEC_ADC13
UDMA_DEF_I2S0RX_SEC_RESERVED
UDMA_DEF_I2S0TX_SEC_RESERVED

Returns:
None.

31.2.3.13 uDMAChannelSelectSecondary

Selects the secondary peripheral for a set of uDMA channels.

Prototype:
void
uDMAChannelSelectSecondary(uint32_t ui32SecPeriphs)

Parameters:
ui32SecPeriphs is the logical OR of the uDMA channels for which to use the secondary pe-

ripheral, instead of the default peripheral.

Description:
This function is used to select the secondary peripheral assignment for a set of uDMA chan-
nels. By selecting the secondary peripheral assignment for a channel, the default peripheral
assignment is no longer available for that channel.

July 25, 2016 595

uDMA Controller

The parameter ui32SecPeriphs can be the logical OR of any of the following macros. If one of
the macros below is in the list passed to this function, then the secondary peripheral (marked
as _SEC_) is selected.

UDMA_DEF_USBEP1RX_SEC_UART2RX
UDMA_DEF_USBEP1TX_SEC_UART2TX
UDMA_DEF_USBEP2RX_SEC_TMR3A
UDMA_DEF_USBEP2TX_SEC_TMR3B
UDMA_DEF_USBEP3RX_SEC_TMR2A
UDMA_DEF_USBEP3TX_SEC_TMR2B
UDMA_DEF_ETH0RX_SEC_TMR2A
UDMA_DEF_ETH0TX_SEC_TMR2B
UDMA_DEF_UART0RX_SEC_UART1RX
UDMA_DEF_UART0TX_SEC_UART1TX
UDMA_DEF_SSI0RX_SEC_SSI1RX
UDMA_DEF_SSI0TX_SEC_SSI1TX
UDMA_DEF_RESERVED_SEC_UART2RX
UDMA_DEF_RESERVED_SEC_UART2TX
UDMA_DEF_ADC00_SEC_TMR2A
UDMA_DEF_ADC01_SEC_TMR2B
UDMA_DEF_ADC02_SEC_RESERVED
UDMA_DEF_ADC03_SEC_RESERVED
UDMA_DEF_TMR0A_SEC_TMR1A
UDMA_DEF_TMR0B_SEC_TMR1B
UDMA_DEF_TMR1A_SEC_EPI0RX
UDMA_DEF_TMR1B_SEC_EPI0TX
UDMA_DEF_UART1RX_SEC_RESERVED
UDMA_DEF_UART1TX_SEC_RESERVED
UDMA_DEF_SSI1RX_SEC_ADC10
UDMA_DEF_SSI1TX_SEC_ADC11
UDMA_DEF_RESERVED_SEC_ADC12
UDMA_DEF_RESERVED_SEC_ADC13
UDMA_DEF_I2S0RX_SEC_RESERVED
UDMA_DEF_I2S0TX_SEC_RESERVED

Returns:
None.

31.2.3.14 uDMAChannelSizeGet

Gets the current transfer size for a uDMA channel control structure.

Prototype:
uint32_t
uDMAChannelSizeGet(uint32_t ui32ChannelStructIndex)

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.

596 July 25, 2016

uDMA Controller

Description:
This function is used to get the uDMA transfer size for a channel. The transfer size is the
number of items to transfer, where the size of an item might be 8, 16, or 32 bits. If a partial
transfer has already occurred, then the number of remaining items is returned. If the transfer
is complete, then 0 is returned.

Returns:
Returns the number of items remaining to transfer.

31.2.3.15 uDMAChannelTransferSet

Sets the transfer parameters for a uDMA channel control structure.

Prototype:
void
uDMAChannelTransferSet(uint32_t ui32ChannelStructIndex,

uint32_t ui32Mode,
void *pvSrcAddr,
void *pvDstAddr,
uint32_t ui32TransferSize)

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.
ui32Mode is the type of uDMA transfer.
pvSrcAddr is the source address for the transfer.
pvDstAddr is the destination address for the transfer.
ui32TransferSize is the number of data items to transfer.

Description:
This function is used to configure the parameters for a uDMA transfer. These parameters are
not typically changed often. The function uDMAChannelControlSet() MUST be called at least
once for this channel prior to calling this function.

The ui32ChannelStructIndex parameter should be the logical OR of the channel number with
one of UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alter-
nate data structure is used.

The ui32Mode parameter should be one of the following values:

UDMA_MODE_STOP stops the uDMA transfer. The controller sets the mode to this value
at the end of a transfer.
UDMA_MODE_BASIC to perform a basic transfer based on request.
UDMA_MODE_AUTO to perform a transfer that always completes once started even if the
request is removed.
UDMA_MODE_PINGPONG to set up a transfer that switches between the primary and
alternate control structures for the channel. This mode allows use of ping-pong buffering
for uDMA transfers.
UDMA_MODE_MEM_SCATTER_GATHER to set up a memory scatter-gather transfer.
UDMA_MODE_PER_SCATTER_GATHER to set up a peripheral scatter-gather transfer.

July 25, 2016 597

uDMA Controller

The pvSrcAddr and pvDstAddr parameters are pointers to the first location of the data to be
transferred. These addresses should be aligned according to the item size. The compiler takes
care of this alignment if the pointers are pointing to storage of the appropriate data type.

The ui32TransferSize parameter is the number of data items, not the number of bytes.

The two scatter-gather modes, memory and peripheral, are actually different depending on
whether the primary or alternate control structure is selected. This function looks for the
UDMA_PRI_SELECT and UDMA_ALT_SELECT flag along with the channel number and sets
the scatter-gather mode as appropriate for the primary or alternate control structure.

The channel must also be enabled using uDMAChannelEnable() after calling this function. The
transfer does not begin until the channel has been configured and enabled. Note that the
channel is automatically disabled after the transfer is completed, meaning that uDMAChanne-
lEnable() must be called again after setting up the next transfer.

Note:
Great care must be taken to not modify a channel control structure that is in use or else the
results are unpredictable, including the possibility of undesired data transfers to or from mem-
ory or peripherals. For BASIC and AUTO modes, it is safe to make changes when the channel
is disabled, or the uDMAChannelModeGet() returns UDMA_MODE_STOP. For PINGPONG
or one of the SCATTER_GATHER modes, it is safe to modify the primary or alternate control
structure only when the other is being used. The uDMAChannelModeGet() function returns
UDMA_MODE_STOP when a channel control structure is inactive and safe to modify.

Returns:
None.

31.2.3.16 uDMAControlAlternateBaseGet

Gets the base address for the channel control table alternate structures.

Prototype:
void *
uDMAControlAlternateBaseGet(void)

Description:
This function gets the base address of the second half of the channel control table that holds
the alternate control structures for each channel.

Returns:
Returns a pointer to the base address of the second half of the channel control table.

31.2.3.17 uDMAControlBaseGet

Gets the base address for the channel control table.

Prototype:
void *
uDMAControlBaseGet(void)

598 July 25, 2016

uDMA Controller

Description:
This function gets the base address of the channel control table. This table resides in system
memory and holds control information for each uDMA channel.

Returns:
Returns a pointer to the base address of the channel control table.

31.2.3.18 uDMAControlBaseSet

Sets the base address for the channel control table.

Prototype:
void
uDMAControlBaseSet(void *psControlTable)

Parameters:
psControlTable is a pointer to the 1024-byte-aligned base address of the uDMA channel con-

trol table.

Description:
This function configures the base address of the channel control table. This table resides in
system memory and holds control information for each uDMA channel. The table must be
aligned on a 1024-byte boundary. The base address must be configured before any of the
channel functions can be used.

The size of the channel control table depends on the number of uDMA channels and the
transfer modes that are used. Refer to the introductory text and the microcontroller datasheet
for more information about the channel control table.

Returns:
None.

31.2.3.19 uDMADisable

Disables the uDMA controller for use.

Prototype:
void
uDMADisable(void)

Description:
This function disables the uDMA controller. Once disabled, the uDMA controller cannot operate
until re-enabled with uDMAEnable().

Returns:
None.

31.2.3.20 uDMAEnable

Enables the uDMA controller for use.

July 25, 2016 599

uDMA Controller

Prototype:
void
uDMAEnable(void)

Description:
This function enables the uDMA controller. The uDMA controller must be enabled before it can
be configured and used.

Returns:
None.

31.2.3.21 uDMAErrorStatusClear

Clears the uDMA error interrupt.

Prototype:
void
uDMAErrorStatusClear(void)

Description:
This function clears a pending uDMA error interrupt. This function should be called from within
the uDMA error interrupt handler to clear the interrupt.

Returns:
None.

31.2.3.22 uDMAErrorStatusGet

Gets the uDMA error status.

Prototype:
uint32_t
uDMAErrorStatusGet(void)

Description:
This function returns the uDMA error status. It should be called from within the uDMA error
interrupt handler to determine if a uDMA error occurred.

Returns:
Returns non-zero if a uDMA error is pending.

31.2.3.23 uDMAIntClear

Clears uDMA interrupt status.

Prototype:
void
uDMAIntClear(uint32_t ui32ChanMask)

600 July 25, 2016

uDMA Controller

Parameters:
ui32ChanMask is a 32-bit mask with one bit for each uDMA channel.

Description:
This function clears bits in the uDMA interrupt status register according to which bits are set in
ui32ChanMask . There is one bit for each channel. If a a bit is set in ui32ChanMask , then that
corresponding channel’s interrupt status is cleared (if it was set).

Note:
This function is only available on devices that have the DMA Channel Interrupt Status Regis-
ter (DMACHIS). Please consult the data sheet for your part. Devices without the DMACHIS
register have uDMA done status in the interrupt registers in the peripheral memory maps.

Returns:
None.

31.2.3.24 uDMAIntRegister

Registers an interrupt handler for the uDMA controller.

Prototype:
void
uDMAIntRegister(uint32_t ui32IntChannel,

void (*pfnHandler)(void))

Parameters:
ui32IntChannel identifies which uDMA interrupt is to be registered.
pfnHandler is a pointer to the function to be called when the interrupt is activated.

Description:
This function registers and enables the handler to be called when the uDMA controller gener-
ates an interrupt. The ui32IntChannel parameter should be one of the following:

INT_UDMA to register an interrupt handler to process interrupts from the uDMA software
channel (UDMA_CHANNEL_SW)
INT_UDMAERR to register an interrupt handler to process uDMA error interrupts

See also:
IntRegister() for important information about registering interrupt handlers.

Note:
The interrupt handler for the uDMA is for transfer completion when the channel
UDMA_CHANNEL_SW is used and for error interrupts. The interrupts for each peripheral
channel are handled through the individual peripheral interrupt handlers.

Returns:
None.

31.2.3.25 uDMAIntStatus

Gets the uDMA controller channel interrupt status.

July 25, 2016 601

uDMA Controller

Prototype:
uint32_t
uDMAIntStatus(void)

Description:
This function is used to get the interrupt status of the uDMA controller. The returned value
is a 32-bit bit mask that indicates which channels are requesting an interrupt. This function
can be used from within an interrupt handler to determine or confirm which uDMA channel has
requested an interrupt.

Note:
This function is only available on devices that have the DMA Channel Interrupt Status Register
(DMACHIS). Please consult the data sheet for your part.

Returns:
Returns a 32-bit mask which indicates requesting uDMA channels. There is a bit for each
channel and a 1 indicates that the channel is requesting an interrupt. Multiple bits can be set.

31.2.3.26 uDMAIntUnregister

Unregisters an interrupt handler for the uDMA controller.

Prototype:
void
uDMAIntUnregister(uint32_t ui32IntChannel)

Parameters:
ui32IntChannel identifies which uDMA interrupt to unregister.

Description:
This function disables and unregisters the handler to be called for the specified uDMA in-
terrupt. The ui32IntChannel parameter should be one of INT_UDMA or INT_UDMAERR as
documented for the function uDMAIntRegister().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

31.3 Programming Example

The following example sets up the uDMA controller to perform a software initiated memory-to-
memory transfer:

//
// The application must allocate the channel control table. This one is a
// full table for all modes and channels.
// NOTE: This table must be 1024-byte aligned.
//
uint8_t pui8DMAControlTable[1024];

602 July 25, 2016

uDMA Controller

//
// Source and destination buffers used for the DMA transfer.
//
uint8_t pui8SourceBuffer[256];
uint8_t pui8DestBuffer[256];

//
// Enable the UDMA peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

//
// Wait for the UDMA module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_UDMA))
{
}

//
// Enable the uDMA controller.
//
uDMAEnable();

//
// Set the base for the channel control table.
//
uDMAControlBaseSet(&pui8DMAControlTable[0]);

//
// No attributes must be set for a software-based transfer. The attributes
// are cleared by default, but are explicitly cleared here, in case they
// were set elsewhere.
//
uDMAChannelAttributeDisable(UDMA_CHANNEL_SW, UDMA_CONFIG_ALL);

//
// Now set up the characteristics of the transfer for 8-bit data size, with
// source and destination increments in bytes, and a byte-wise buffer copy.
// A bus arbitration size of 8 is used.
//
uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,

UDMA_SIZE_8 | UDMA_SRC_INC_8 |
UDMA_DST_INC_8 | UDMA_ARB_8);

//
// The transfer buffers and transfer size are now configured. The transfer
// uses AUTO mode, which means that the transfer automatically runs to
// completion after the first request.
//
uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,

UDMA_MODE_AUTO, pui8SourceBuffer, pui8DestBuffer,
sizeof(pui8DestBuffer));

//
// Finally, the channel must be enabled. Because this is a software-
// initiated transfer, a request must also be made. The request starts the
// transfer.
//
uDMAChannelEnable(UDMA_CHANNEL_SW);
uDMAChannelRequest(UDMA_CHANNEL_SW);

July 25, 2016 603

uDMA Controller

604 July 25, 2016

USB Controller

32 USB Controller
Introduction .605
API Functions . 605
Using uDMA with USB . 648
Using integrated USB DMA . 652
USB LPM Features . 667
USB ULPI Features .680
Programming Example .684

32.1 Introduction

The USB APIs provide a set of functions that are used to access the Tiva USB device, host and/or
device, or OTG controllers. The APIs are split into groups according to the functionality provided by
the USB controller present in the microcontroller. The groups are the following: USBDev, USBHost,
USBOTG, USBDMA, USBEndpoint, and USBFIFO. The APIs in the USBDev group are used when
the USB controller is operating as a Device. The APIs in the USBHost group are used when
the USB controller is operating as a Host. The USBOTG APIs are used when configuring a USB
controller that supports OTG mode. With USB OTG controllers, once the mode of the USB controller
is configured, the device or host APIs are used. The remainder of the APIs are used for both USB
host and USB device controllers. The USBEndpoint APIs are used to configure and access the
endpoints, the USBDMA APIs are used to configure and operate the DMA controller within the
USB module, and the USBFIFO APIs are used to configure the size and location of the FIFOs.

32.2 General USB API Functions

Functions
void USBClockDisable (uint32_t ui32Base)
void USBClockEnable (uint32_t ui32Base, uint32_t ui32Div, uint32_t ui32Flags)
uint32_t USBControllerVersion (uint32_t ui32Base)
uint32_t USBDevAddrGet (uint32_t ui32Base)
void USBDevAddrSet (uint32_t ui32Base, uint32_t ui32Address)
void USBDevConnect (uint32_t ui32Base)
void USBDevDisconnect (uint32_t ui32Base)
void USBDevEndpointConfigGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
∗pui32MaxPacketSize, uint32_t ∗pui32Flags)
void USBDevEndpointConfigSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32MaxPacketSize, uint32_t ui32Flags)
void USBDevEndpointDataAck (uint32_t ui32Base, uint32_t ui32Endpoint, bool bIsLast-
Packet)
void USBDevEndpointStall (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
void USBDevEndpointStallClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)

July 25, 2016 605

USB Controller

void USBDevEndpointStatusClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void USBDevMode (uint32_t ui32Base)
uint32_t USBDevSpeedGet (uint32_t ui32Base)
uint32_t USBEndpointDataAvail (uint32_t ui32Base, uint32_t ui32Endpoint)
int32_t USBEndpointDataGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint8_t ∗pui8Data,
uint32_t ∗pui32Size)
int32_t USBEndpointDataPut (uint32_t ui32Base, uint32_t ui32Endpoint, uint8_t ∗pui8Data,
uint32_t ui32Size)
int32_t USBEndpointDataSend (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32TransType)
void USBEndpointDataToggleClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void USBEndpointDMAChannel (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Channel)
void USBEndpointDMAConfigSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Config)
void USBEndpointDMADisable (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
void USBEndpointDMAEnable (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
void USBEndpointPacketCountSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Count)
uint32_t USBEndpointStatus (uint32_t ui32Base, uint32_t ui32Endpoint)
uint32_t USBFIFOAddrGet (uint32_t ui32Base, uint32_t ui32Endpoint)
void USBFIFOConfigGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
∗pui32FIFOAddress, uint32_t ∗pui32FIFOSize, uint32_t ui32Flags)
void USBFIFOConfigSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32FIFOAddress, uint32_t ui32FIFOSize, uint32_t ui32Flags)
void USBFIFOFlush (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
uint32_t USBFrameNumberGet (uint32_t ui32Base)
void USBHighSpeed (uint32_t ui32Base, bool bEnable)
uint32_t USBHostAddrGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
void USBHostAddrSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Addr, uint32_t
ui32Flags)
void USBHostEndpointConfig (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32MaxPayload, uint32_t ui32NAKPollInterval, uint32_t ui32TargetEndpoint, uint32_t
ui32Flags)
void USBHostEndpointDataAck (uint32_t ui32Base, uint32_t ui32Endpoint)
void USBHostEndpointDataToggle (uint32_t ui32Base, uint32_t ui32Endpoint, bool bDataTog-
gle, uint32_t ui32Flags)
void USBHostEndpointPing (uint32_t ui32Base, uint32_t ui32Endpoint, bool bEnable)
void USBHostEndpointSpeed (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
void USBHostEndpointStatusClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
uint32_t USBHostHubAddrGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
void USBHostHubAddrSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Addr,
uint32_t ui32Flags)
void USBHostMode (uint32_t ui32Base)
void USBHostPwrConfig (uint32_t ui32Base, uint32_t ui32Flags)

606 July 25, 2016

USB Controller

void USBHostPwrDisable (uint32_t ui32Base)
void USBHostPwrEnable (uint32_t ui32Base)
void USBHostPwrFaultDisable (uint32_t ui32Base)
void USBHostPwrFaultEnable (uint32_t ui32Base)
void USBHostRequestIN (uint32_t ui32Base, uint32_t ui32Endpoint)
void USBHostRequestINClear (uint32_t ui32Base, uint32_t ui32Endpoint)
void USBHostRequestStatus (uint32_t ui32Base)
void USBHostReset (uint32_t ui32Base, bool bStart)
void USBHostResume (uint32_t ui32Base, bool bStart)
uint32_t USBHostSpeedGet (uint32_t ui32Base)
void USBHostSuspend (uint32_t ui32Base)
void USBIntDisableControl (uint32_t ui32Base, uint32_t ui32Flags)
void USBIntDisableEndpoint (uint32_t ui32Base, uint32_t ui32Flags)
void USBIntEnableControl (uint32_t ui32Base, uint32_t ui32Flags)
void USBIntEnableEndpoint (uint32_t ui32Base, uint32_t ui32Flags)
void USBIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t USBIntStatusControl (uint32_t ui32Base)
uint32_t USBIntStatusEndpoint (uint32_t ui32Base)
void USBIntUnregister (uint32_t ui32Base)
void USBModeConfig (uint32_t ui32Base, uint32_t ui32Mode)
uint32_t USBModeGet (uint32_t ui32Base)
uint32_t USBNumEndpointsGet (uint32_t ui32Base)
void USBOTGMode (uint32_t ui32Base)
void USBOTGSessionRequest (uint32_t ui32Base, bool bStart)
void USBPHYPowerOff (uint32_t ui32Base)
void USBPHYPowerOn (uint32_t ui32Base)

32.2.1 Detailed Description

The USB APIs provide all of the functions needed by an application to implement a USB device
or USB host stack. The APIs abstract the IN/OUT nature of endpoints based on the type of USB
controller that is in use. Any API that uses the IN/OUT terminology complies with the standard USB
interpretation of these terms. For example, an OUT endpoint on a microcontroller that has only
a device interface actually receives data on this endpoint, while a microcontroller that has a host
interface actually transmits data on an OUT endpoint.

Another important fact to understand is that all endpoints in the USB controller, whether host or
device, have two "sides" to them, allowing each endpoint to both transmit and receive data. An
application can use a single endpoint for both and IN and OUT transactions. For example: In
device mode, endpoint 1 can be configured to have BULK IN and BULK OUT handled by endpoint
1. It is important to note that the endpoint number used is the endpoint number reported to the host.
For microcontrollers with host controllers, the application can use an endpoint to communicate with
both IN and OUT endpoints of different types as well. For example: Endpoint 2 can be used to
communicate with one device’s interrupt IN endpoint and another device’s bulk OUT endpoint at
the same time. This configuration effectively gives the application one dedicated control endpoint
for IN or OUT control transactions on endpoint 0 and seven IN endpoints and seven OUT endpoints.

The USB controller has a global FIFO memory space that can be allocated to endpoints. The overall
size of the FIFO RAM is 2048 or 4096 bytes, depending on the Tiva device used. It is important

July 25, 2016 607

USB Controller

to note that the first 64 bytes of this memory are dedicated to endpoint 0 for control transactions.
The remaining 1984 or 4032 bytes are configurable however the application requires. The FIFO
configuration is usually set up at the beginning of the application and not modified once the USB
controller is in use. The FIFO configuration uses the USBFIFOConfig() API to configure the starting
address and the size of the FIFOs that are dedicated to each endpoint.

Example: FIFO Configuration

0-64 - endpoint 0 IN/OUT (64 bytes).

64-576 - endpoint 1 IN (512 bytes).

576-1088 - endpoint 1 OUT (512 bytes).

1088-1600 - endpoint 2 IN (512 bytes).

//
// FIFO for endpoint 1 IN starts at address 64 and is 512 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_512, USB_EP_DEV_IN);

//
// FIFO for endpoint 1 OUT starts at address 576 and is 512 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_1, 576, USB_FIFO_SZ_512, USB_EP_DEV_OUT);

//
// FIFO for endpoint 2 IN starts at address 1088 and is 512 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_2, 1088, USB_FIFO_SZ_512, USB_EP_DEV_IN);

32.2.2 Function Documentation

32.2.2.1 USBClockDisable

Disables the clocking of the USB controller’s PHY.

Prototype:
void
USBClockDisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USB PHY clock. This function should not be called in applications
where the USB controller is used.

Example: Disable the USB PHY clock input.

//
// Disable clocking of the USB controller’s PHY.
//
USBClockDisable(USB0_BASE);

Note:
The ability to configure the USB PHY clock is not available on all Tiva devices. Please consult
the data sheet for the Tiva device that you are using to determine if this feature is available.

608 July 25, 2016

USB Controller

Returns:
None.

32.2.2.2 USBClockEnable

Configures and enables the clocking to the USB controller’s PHY.

Prototype:
void
USBClockEnable(uint32_t ui32Base,

uint32_t ui32Div,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Div specifies the divider for the internal USB PHY clock.
ui32Flags configures the internal USB PHY clock and specifies the clock source for a ULPI-

connected PHY.

Description:
This function configures and enables the USB PHY clock. In addition, for systems that use
a ULPI-connected external PHY, this function configures the source for the PHY clock. The
ui32Flags parameter specifies the clock source with the following values:

USB_CLOCK_INTERNAL uses the internal PLL combined with the ui32Div value to gen-
erate the USB clock that is used by the internal USB PHY. In addition, when using an
external ULPI-connected USB PHY, the specified clock is output on the USB0CLK pin.
USB_CLOCK_EXTERNAL specifies that USB0CLK is an input from the ULPI-connected
external PHY.

The ui32Div parameter is used to specify a divider for the internal clock if the
USB_CLOCK_INTERNAL is specified and is ignored if USB_CLOCK_EXTERNAL is spec-
ified. When the USB_CLOCK_INTERNAL is specified, the ui32Div value must be set so that
the PLL_VCO/ui32Div results in a 60-MHz clock.

Example: Enable the USB clock with a 480-MHz PLL setting.

//
// Enable the USB clock using a 480-MHz PLL.
// (480-MHz/8 = 60-MHz)
//
USBClockEnable(USB0_BASE, 8, USB_CLOCK_INTERNAL);

Note:
The ability to configure the USB PHY clock is not available on all Tiva devices. Please consult
the data sheet for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

32.2.2.3 USBControllerVersion

Returns the version of the USB controller.

July 25, 2016 609

USB Controller

Prototype:
uint32_t
USBControllerVersion(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the version number of the USB controller, which can be be used to ad-
just for slight differences between the USB controllers in the Tiva family. The values that are
returned are USB_CONTROLLER_VER_0 and USB_CONTROLLER_VER_1.

Note:
The most significant difference between USB_CONTROLLER_VER_0 and
USB_CONTROLLER_VER_1 is that USB_CONTROLLER_VER_1 supports the USB
controller’s own bus master DMA controller, while the USB_CONTROLLER_VER_0 only
supports using the uDMA controller with the USB module.

Example: Get the version of the Tiva USB controller.

uint32_t ui32Version;

//
// Retrieve the version of the Tiva USB controller.
//
ui32Version = USBControllerVersion(USB0_BASE);

Returns:
This function returns one of the USB_CONTROLLER_VER_ values.

32.2.2.4 USBDevAddrGet

Returns the current device address in device mode.

Prototype:
uint32_t
USBDevAddrGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current device address. This address was set by a call to USBDevAd-
drSet().

Note:
This function must only be called in device mode.

Returns:
The current device address.

610 July 25, 2016

USB Controller

32.2.2.5 USBDevAddrSet

Sets the address in device mode.

Prototype:
void
USBDevAddrSet(uint32_t ui32Base,

uint32_t ui32Address)

Parameters:
ui32Base specifies the USB module base address.
ui32Address is the address to use for a device.

Description:
This function configures the device address on the USB bus. This address was likely received
via a SET ADDRESS command from the host controller.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.6 USBDevConnect

Connects the USB controller to the bus in device mode.

Prototype:
void
USBDevConnect(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function causes the soft connect feature of the USB controller to be enabled. Call USB-
DevDisconnect() to remove the USB device from the bus.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.7 USBDevDisconnect

Removes the USB controller from the bus in device mode.

Prototype:
void
USBDevDisconnect(uint32_t ui32Base)

July 25, 2016 611

USB Controller

Parameters:
ui32Base specifies the USB module base address.

Description:
This function causes the soft connect feature of the USB controller to remove the device from
the USB bus. A call to USBDevConnect() is needed to reconnect to the bus.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.8 USBDevEndpointConfigGet

Gets the current configuration for an endpoint.

Prototype:
void
USBDevEndpointConfigGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t *pui32MaxPacketSize,
uint32_t *pui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui32MaxPacketSize is a pointer which is written with the maximum packet size for this end-

point.
pui32Flags is a pointer which is written with the current endpoint settings. On entry to the

function, this pointer must contain either USB_EP_DEV_IN or USB_EP_DEV_OUT to in-
dicate whether the IN or OUT endpoint is to be queried.

Description:
This function returns the basic configuration for an endpoint in device mode. The values re-
turned in ∗pui32MaxPacketSize and ∗pui32Flags are equivalent to the ui32MaxPacketSize and
ui32Flags previously passed to USBDevEndpointConfigSet() for this endpoint.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.9 USBDevEndpointConfigSet

Sets the configuration for an endpoint.

Prototype:
void
USBDevEndpointConfigSet(uint32_t ui32Base,

612 July 25, 2016

USB Controller

uint32_t ui32Endpoint,
uint32_t ui32MaxPacketSize,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32MaxPacketSize is the maximum packet size for this endpoint.
ui32Flags are used to configure other endpoint settings.

Description:
This function sets the basic configuration for an endpoint in device mode. Endpoint zero does
not have a dynamic configuration, so this function must not be called for endpoint zero. The
ui32Flags parameter determines some of the configuration while the other parameters provide
the rest.

The USB_EP_MODE_ flags define what the type is for the specified endpoint.

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The USB_EP_DMA_MODE_ flags determine the type of DMA access to the endpoint data
FIFOs. The choice of the DMA mode depends on how the DMA controller is configured and
how it is being used. See the “Using USB with the uDMA Controller” or the ”Using the integrated
USB DMA Controller” section for more information on DMA configuration depending on the type
of DMA that is supported by the USB controller.

When configuring an IN endpoint, the USB_EP_AUTO_SET bit can be specified to cause the
automatic transmission of data on the USB bus as soon as ui32MaxPacketSize bytes of data
are written into the FIFO for this endpoint. This option is commonly used with DMA (both on
devices with integrated USB DMA as well as those that use uDMA) as no interaction is required
to start the transmission of data.

When configuring an OUT endpoint, the USB_EP_AUTO_REQUEST bit is specified to
trigger the request for more data once the FIFO has been drained enough to receive
ui32MaxPacketSize more bytes of data. Also for OUT endpoints, the USB_EP_AUTO_CLEAR
bit can be used to clear the data packet ready flag automatically once the data has been read
from the FIFO. If this option is not used, this flag must be manually cleared via a call to US-
BDevEndpointStatusClear(). Both of these settings can be used to remove the need for extra
calls when using the controller with DMA.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.10 USBDevEndpointDataAck

Acknowledge that data was read from the specified endpoint’s FIFO in device mode.

July 25, 2016 613

USB Controller

Prototype:
void
USBDevEndpointDataAck(uint32_t ui32Base,

uint32_t ui32Endpoint,
bool bIsLastPacket)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
bIsLastPacket indicates if this packet is the last one.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. The bIsLast-
Packet parameter is set to a true value if this is the last in a series of data packets on endpoint
zero. The bIsLastPacket parameter is not used for endpoints other than endpoint zero. This
call can be used if processing is required between reading the data and acknowledging that
the data has been read.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.11 USBDevEndpointStall

Stalls the specified endpoint in device mode.

Prototype:
void
USBDevEndpointStall(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to stall.
ui32Flags specifies whether to stall the IN or OUT endpoint.

Description:
This function causes the endpoint number passed in to go into a stall condition. If the ui32Flags
parameter is USB_EP_DEV_IN, then the stall is issued on the IN portion of this endpoint. If
the ui32Flags parameter is USB_EP_DEV_OUT, then the stall is issued on the OUT portion of
this endpoint.

Note:
This function must only be called in device mode.

Returns:
None.

614 July 25, 2016

USB Controller

32.2.2.12 USBDevEndpointStallClear

Clears the stall condition on the specified endpoint in device mode.

Prototype:
void
USBDevEndpointStallClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies which endpoint to remove the stall condition.
ui32Flags specifies whether to remove the stall condition from the IN or the OUT portion of

this endpoint.

Description:
This function causes the endpoint number passed in to exit the stall condition. If the ui32Flags
parameter is USB_EP_DEV_IN, then the stall is cleared on the IN portion of this endpoint. If
the ui32Flags parameter is USB_EP_DEV_OUT, then the stall is cleared on the OUT portion
of this endpoint.

Note:
This function must only be called in device mode.

Returns:
None.

32.2.2.13 USBDevEndpointStatusClear

Clears the status bits in this endpoint in device mode.

Prototype:
void
USBDevEndpointStatusClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags are the status bits that are cleared.

Description:
This function clears the status of any bits that are passed in the ui32Flags parameter. The
ui32Flags parameter can take the value returned from the USBEndpointStatus() call.

Note:
This function must only be called in device mode.

Returns:
None.

July 25, 2016 615

USB Controller

32.2.2.14 USBDevMode

Change the mode of the USB controller to device.

Prototype:
void
USBDevMode(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function changes the mode of the USB controller to device mode.

Note:
This function must only be called on microcontrollers that support OTG operation.

Returns:
None.

32.2.2.15 USBDevSpeedGet

Returns the current speed of the USB controller in device mode.

Prototype:
uint32_t
USBDevSpeedGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the operating speed of the connection to the USB host controller. This
function returns either USB_HIGH_SPEED or USB_FULL_SPEED to indicate the connection
speed in device mode.

Example: Get the USB connection speed.

//
// Get the connection speed of the USB controller.
//
USBDevSpeedGet(USB0_BASE);

Note:
This function must only be called in device mode.

Returns:
Returns either USB_HIGH_SPEED or USB_FULL_SPEED.

32.2.2.16 USBEndpointDataAvail

Determines the number of bytes of data available in a specified endpoint’s FIFO.

616 July 25, 2016

USB Controller

Prototype:
uint32_t
USBEndpointDataAvail(uint32_t ui32Base,

uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function returns the number of bytes of data currently available in the FIFO for the specified
receive (OUT) endpoint. It may be used prior to calling USBEndpointDataGet() to determine
the size of buffer required to hold the newly-received packet.

Returns:
This call returns the number of bytes available in a specified endpoint FIFO.

32.2.2.17 USBEndpointDataGet

Retrieves data from the specified endpoint’s FIFO.

Prototype:
int32_t
USBEndpointDataGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint8_t *pui8Data,
uint32_t *pui32Size)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui8Data is a pointer to the data area used to return the data from the FIFO.
pui32Size is initially the size of the buffer passed into this call via the pui8Data parameter. It

is set to the amount of data returned in the buffer.

Description:
This function returns the data from the FIFO for the specified endpoint. The pui32Size pa-
rameter indicates the size of the buffer passed in the pui32Data parameter. The data in the
pui32Size parameter is changed to match the amount of data returned in the pui8Data param-
eter. If a zero-byte packet is received, this call does not return an error but instead just returns
a zero in the pui32Size parameter. The only error case occurs when there is no data packet
available.

Returns:
This call returns 0, or -1 if no packet was received.

32.2.2.18 USBEndpointDataPut

Puts data into the specified endpoint’s FIFO.

July 25, 2016 617

USB Controller

Prototype:
int32_t
USBEndpointDataPut(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint8_t *pui8Data,
uint32_t ui32Size)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui8Data is a pointer to the data area used as the source for the data to put into the FIFO.
ui32Size is the amount of data to put into the FIFO.

Description:
This function puts the data from the pui8Data parameter into the FIFO for this endpoint. If a
packet is already pending for transmission, then this call does not put any of the data into the
FIFO and returns -1. Care must be taken to not write more data than can fit into the FIFO
allocated by the call to USBFIFOConfigSet().

Returns:
This call returns 0 on success, or -1 to indicate that the FIFO is in use and cannot be written.

32.2.2.19 USBEndpointDataSend

Starts the transfer of data from an endpoint’s FIFO.

Prototype:
int32_t
USBEndpointDataSend(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32TransType)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32TransType is set to indicate what type of data is being sent.

Description:
This function starts the transfer of data from the FIFO for a specified endpoint. This func-
tion is called if the USB_EP_AUTO_SET bit was not enabled for the endpoint. Setting the
ui32TransType parameter allows the appropriate signaling on the USB bus for the type of trans-
action being requested. The ui32TransType parameter must be one of the following:

USB_TRANS_OUT for OUT transaction on any endpoint in host mode.
USB_TRANS_IN for IN transaction on any endpoint in device mode.
USB_TRANS_IN_LAST for the last IN transaction on endpoint zero in a sequence of IN
transactions.
USB_TRANS_SETUP for setup transactions on endpoint zero.
USB_TRANS_STATUS for status results on endpoint zero.

Returns:
This call returns 0 on success, or -1 if a transmission is already in progress.

618 July 25, 2016

USB Controller

32.2.2.20 USBEndpointDataToggleClear

Sets the data toggle on an endpoint to zero.

Prototype:
void
USBEndpointDataToggleClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to reset the data toggle.
ui32Flags specifies whether to access the IN or OUT endpoint.

Description:
This function causes the USB controller to clear the data toggle for an endpoint. This call is not
valid for endpoint zero and can be made with host or device controllers.

The ui32Flags parameter must be one of USB_EP_HOST_OUT, USB_EP_HOST_IN,
USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

32.2.2.21 USBEndpointDMAChannel

Sets the DMA channel to use for a specified endpoint.

Prototype:
void
USBEndpointDMAChannel(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies which endpoint’s FIFO address to return.
ui32Channel specifies which DMA channel to use for which endpoint.

Description:
This function is used to configure which DMA channel to use with a specified endpoint. Receive
DMA channels can only be used with receive endpoints and transmit DMA channels can only
be used with transmit endpoints. As a result, the 3 receive and 3 transmit DMA channels can
be mapped to any endpoint other than 0. The values that are passed into the ui32Channel
value are the UDMA_CHANNEL_USBEP∗ values defined in udma.h.

Note:
This function only has an effect on microcontrollers that have the ability to change the DMA
channel for an endpoint. Calling this function on other devices has no effect.

Returns:
None.

July 25, 2016 619

USB Controller

32.2.2.22 USBEndpointDMAConfigSet

Configure the DMA settings for an endpoint.

Prototype:
void
USBEndpointDMAConfigSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Config)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Config specifies the configuration options for an endpoint.

Description:
This function configures the DMA settings for a specified endpoint without changing other op-
tions that may already be configured. In order for the DMA transfer to be enabled, the USBEnd-
pointDMAEnable() function must be called before starting the DMA transfer. The configuration
options are passed in the ui32Config parameter and can have the values described below.

One of the following values to specify direction:

USB_EP_HOST_OUT or USB_EP_DEV_IN - This setting is used with DMA transfers from
memory to the USB controller.
USB_EP_HOST_IN or USB_EP_DEV_OUT - This setting is used with DMA transfers from
the USB controller to memory.

One of the following values:

USB_EP_DMA_MODE_0(default) - This setting is typically used for transfers that do not
span multiple packets or when interrupts are required for each packet.
USB_EP_DMA_MODE_1 - This setting is typically used for transfers that span multiple
packets and do not require interrupts between packets.

Values only used with USB_EP_HOST_OUT or USB_EP_DEV_IN:

USB_EP_AUTO_SET - This setting is used to allow transmit DMA transfers to au-
tomatically be sent when a full packet is loaded into a FIFO. This is needed with
USB_EP_DMA_MODE_1 to ensure that packets go out when the FIFO becomes full and
the DMA has more data to send.

Values only used with USB_EP_HOST_IN or USB_EP_DEV_OUT:

USB_EP_AUTO_CLEAR - This setting is used to allow receive DMA transfers to automati-
cally be acknowledged as they are received. This is needed with USB_EP_DMA_MODE_1
to ensure that packets continue to be received and acknowledged when the FIFO is emp-
tied by the DMA transfer.

Values only used with USB_EP_HOST_IN:

USB_EP_AUTO_REQUEST - This setting is used to allow receive DMA transfers to auto-
matically request a new IN transaction when the previous transfer has emptied the FIFO.
This is typically used in conjunction with USB_EP_AUTO_CLEAR so that receive DMA
transfers can continue without interrupting the main processor.

620 July 25, 2016

USB Controller

Example: Set endpoint 1 receive endpoint to automatically acknowledge request and auto-
matically generate a new IN request in host mode.

//
// Configure endpoint 1 for receiving multiple packets using DMA.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_1, USB_EP_HOST_IN |

USB_EP_DMA_MODE_1 |
USB_EP_AUTO_CLEAR |
USB_EP_AUTO_REQUEST);

Example: Set endpoint 2 transmit endpoint to automatically send each packet in host mode
when spanning multiple packets.

//
// Configure endpoint 1 for transmitting multiple packets using DMA.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_2, USB_EP_HOST_OUT |

USB_EP_DMA_MODE_1 |
USB_EP_AUTO_SET);

Returns:
None.

32.2.2.23 USBEndpointDMADisable

Disable DMA on a specified endpoint.

Prototype:
void
USBEndpointDMADisable(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags specifies which direction to disable.

Description:
This function disables DMA on a specified endpoint to allow non-DMA USB transactions
to generate interrupts normally. The ui32Flags parameter must be USB_EP_DEV_IN or
USB_EP_DEV_OUT; all other bits are ignored.

Returns:
None.

32.2.2.24 USBEndpointDMAEnable

Enable DMA on a specified endpoint.

July 25, 2016 621

USB Controller

Prototype:
void
USBEndpointDMAEnable(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags specifies which direction and what mode to use when enabling DMA.

Description:
This function enables DMA on a specified endpoint and configures the mode according to the
values in the ui32Flags parameter. The ui32Flags parameter must have USB_EP_DEV_IN
or USB_EP_DEV_OUT set. Once this function is called the only DMA or error interrupts are
generated by the USB controller.

Note:
If this function is called when an endpoint is configured in DMA mode 0 the USB controller
does not generate an interrupt.

Returns:
None.

32.2.2.25 USBEndpointPacketCountSet

Sets the number of packets to request when transferring multiple bulk packets.

Prototype:
void
USBEndpointPacketCountSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Count)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint index to target for this write.
ui32Count is the number of packets to request.

Description:
This function sets the number of consecutive bulk packets to request when transferring multiple
bulk packets with DMA.

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

622 July 25, 2016

USB Controller

32.2.2.26 USBEndpointStatus

Returns the current status of an endpoint.

Prototype:
uint32_t
USBEndpointStatus(uint32_t ui32Base,

uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function returns the status of a specified endpoint. If any of these status bits must be
cleared, then the USBDevEndpointStatusClear() or the USBHostEndpointStatusClear() func-
tions must be called.

The following are the status flags for host mode:

USB_HOST_IN_PID_ERROR - PID error on the specified endpoint.
USB_HOST_IN_NOT_COMP - The device failed to respond to an IN request.
USB_HOST_IN_STALL - A stall was received on an IN endpoint.
USB_HOST_IN_DATA_ERROR - There was a CRC or bit-stuff error on an IN endpoint in
Isochronous mode.
USB_HOST_IN_NAK_TO - NAKs received on this IN endpoint for more than the specified
timeout period.
USB_HOST_IN_ERROR - Failed to communicate with a device using this IN endpoint.
USB_HOST_IN_FIFO_FULL - This IN endpoint’s FIFO is full.
USB_HOST_IN_PKTRDY - Data packet ready on this IN endpoint.
USB_HOST_OUT_NAK_TO - NAKs received on this OUT endpoint for more than the
specified timeout period.
USB_HOST_OUT_NOT_COMP - The device failed to respond to an OUT request.
USB_HOST_OUT_STALL - A stall was received on this OUT endpoint.
USB_HOST_OUT_ERROR - Failed to communicate with a device using this OUT end-
point.
USB_HOST_OUT_FIFO_NE - This endpoint’s OUT FIFO is not empty.
USB_HOST_OUT_PKTPEND - The data transfer on this OUT endpoint has not com-
pleted.
USB_HOST_EP0_NAK_TO - NAKs received on endpoint zero for more than the specified
timeout period.
USB_HOST_EP0_ERROR - The device failed to respond to a request on endpoint zero.
USB_HOST_EP0_IN_STALL - A stall was received on endpoint zero for an IN transaction.
USB_HOST_EP0_IN_PKTRDY - Data packet ready on endpoint zero for an IN transaction.

The following are the status flags for device mode:

USB_DEV_OUT_SENT_STALL - A stall was sent on this OUT endpoint.
USB_DEV_OUT_DATA_ERROR - There was a CRC or bit-stuff error on an OUT endpoint.
USB_DEV_OUT_OVERRUN - An OUT packet was not loaded due to a full FIFO.
USB_DEV_OUT_FIFO_FULL - The OUT endpoint’s FIFO is full.

July 25, 2016 623

USB Controller

USB_DEV_OUT_PKTRDY - There is a data packet ready in the OUT endpoint’s FIFO.
USB_DEV_IN_NOT_COMP - A larger packet was split up, more data to come.
USB_DEV_IN_SENT_STALL - A stall was sent on this IN endpoint.
USB_DEV_IN_UNDERRUN - Data was requested on the IN endpoint and no data was
ready.
USB_DEV_IN_FIFO_NE - The IN endpoint’s FIFO is not empty.
USB_DEV_IN_PKTPEND - The data transfer on this IN endpoint has not completed.
USB_DEV_EP0_SETUP_END - A control transaction ended before Data End condition
was sent.
USB_DEV_EP0_SENT_STALL - A stall was sent on endpoint zero.
USB_DEV_EP0_IN_PKTPEND - The data transfer on endpoint zero has not completed.
USB_DEV_EP0_OUT_PKTRDY - There is a data packet ready in endpoint zero’s OUT
FIFO.

Returns:
The current status flags for the endpoint depending on mode.

32.2.2.27 USBFIFOAddrGet

Returns the absolute FIFO address for a specified endpoint.

Prototype:
uint32_t
USBFIFOAddrGet(uint32_t ui32Base,

uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies which endpoint’s FIFO address to return.

Description:
This function returns the actual physical address of the FIFO. This address is needed when the
USB is going to be used with the uDMA controller and the source or destination address must
be set to the physical FIFO address for a specified endpoint. This function can also be used to
provide the physical address to manually read data from an endpoints FIFO.

Returns:
None.

32.2.2.28 USBFIFOConfigGet

Returns the FIFO configuration for an endpoint.

Prototype:
void
USBFIFOConfigGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t *pui32FIFOAddress,
uint32_t *pui32FIFOSize,
uint32_t ui32Flags)

624 July 25, 2016

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui32FIFOAddress is the starting address for the FIFO.
pui32FIFOSize is the size of the FIFO as specified by one of the USB_FIFO_SZ_ values.
ui32Flags specifies what information to retrieve from the FIFO configuration.

Description:
This function returns the starting address and size of the FIFO for a specified endpoint. End-
point zero does not have a dynamically configurable FIFO, so this function must not be called
for endpoint zero. The ui32Flags parameter specifies whether the endpoint’s OUT or IN FIFO
must be read. If in host mode, the ui32Flags parameter must be USB_EP_HOST_OUT
or USB_EP_HOST_IN, and if in device mode, the ui32Flags parameter must be either
USB_EP_DEV_OUT or USB_EP_DEV_IN.

Returns:
None.

32.2.2.29 USBFIFOConfigSet

Sets the FIFO configuration for an endpoint.

Prototype:
void
USBFIFOConfigSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32FIFOAddress,
uint32_t ui32FIFOSize,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32FIFOAddress is the starting address for the FIFO.
ui32FIFOSize is the size of the FIFO specified by one of the USB_FIFO_SZ_ values.
ui32Flags specifies what information to set in the FIFO configuration.

Description:
This function configures the starting FIFO RAM address and size of the FIFO for a specified
endpoint. Endpoint zero does not have a dynamically configurable FIFO, so this function must
not be called for endpoint zero. The ui32FIFOSize parameter must be one of the values in the
USB_FIFO_SZ_ values.

The ui32FIFOAddress value must be a multiple of 8 bytes and directly indicates the starting
address in the USB controller’s FIFO RAM. For example, a value of 64 indicates that the FIFO
starts 64 bytes into the USB controller’s FIFO memory. The ui32Flags value specifies whether
the endpoint’s OUT or IN FIFO must be configured. If in host mode, use USB_EP_HOST_OUT
or USB_EP_HOST_IN, and if in device mode, use USB_EP_DEV_OUT or USB_EP_DEV_IN.

Returns:
None.

July 25, 2016 625

USB Controller

32.2.2.30 USBFIFOFlush

Forces a flush of an endpoint’s FIFO.

Prototype:
void
USBFIFOFlush(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags specifies if the IN or OUT endpoint is accessed.

Description:
This function forces the USB controller to flush out the data in the FIFO. The function can be
called with either host or device controllers and requires the ui32Flags parameter be one of
USB_EP_HOST_OUT, USB_EP_HOST_IN, USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

32.2.2.31 USBFrameNumberGet

Gets the current frame number.

Prototype:
uint32_t
USBFrameNumberGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the last frame number received.

Returns:
The last frame number received.

32.2.2.32 USBHighSpeed

Enables or disables USB high-speed negotiation.

Prototype:
void
USBHighSpeed(uint32_t ui32Base,

bool bEnable)

Parameters:
ui32Base specifies the USB module base address.

626 July 25, 2016

USB Controller

bEnable specifies whether to enable or disable high-speed negotiation.

Description:
High-speed negotiations for both host and device mode are enabled when this function is called
with the bEnable parameter set to true. In device mode this causes the device to negotiate for
high speed when the USB controller receives a reset from the host. In host mode, the USB
host enables high-speed negotiations when resetting the connected device. If bEnable is set
to false the controller only operates only in full-speed or low-speed.

Example: Enable USB high-speed mode.

//
// Enable USB high-speed mode.
//
USBHighSpeed(USB0_BASE, true);

Note:
This feature is not available on all Tiva devices and should only be called when the USB is
connected to an external ULPI PHY. Please check the data sheet to determine if the USB
controller can interface with a ULPI PHY.

Returns:
None.

32.2.2.33 USBHostAddrGet

Gets the current functional device address for an endpoint.

Prototype:
uint32_t
USBHostAddrGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function returns the current functional address that an endpoint is using to communicate
with a device. The ui32Flags parameter determines if the IN or OUT endpoint’s device address
is returned.

Note:
This function must only be called in host mode.

Returns:
Returns the current function address being used by an endpoint.

July 25, 2016 627

USB Controller

32.2.2.34 USBHostAddrSet

Sets the functional address for the device that is connected to an endpoint in host mode.

Prototype:
void
USBHostAddrSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Addr,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Addr is the functional address for the controller to use for this endpoint.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function configures the functional address for a device that is using this endpoint for com-
munication. This ui32Addr parameter is the address of the target device that this endpoint is
communicating with. The ui32Flags parameter indicates if the IN or OUT endpoint is set.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.35 USBHostEndpointConfig

Sets the base configuration for a host endpoint.

Prototype:
void
USBHostEndpointConfig(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32MaxPayload,
uint32_t ui32NAKPollInterval,
uint32_t ui32TargetEndpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32MaxPayload is the maximum payload for this endpoint.
ui32NAKPollInterval is the either the NAK timeout limit or the polling interval, depending on

the type of endpoint.
ui32TargetEndpoint is the endpoint that the host endpoint is targeting.
ui32Flags are used to configure other endpoint settings.

628 July 25, 2016

USB Controller

Description:
This function sets the basic configuration for the transmit or receive portion of an endpoint in
host mode. The ui32Flags parameter determines some of the configuration while the other
parameters provide the rest. The ui32Flags parameter determines whether this is an IN end-
point (USB_EP_HOST_IN or USB_EP_DEV_IN) or an OUT endpoint (USB_EP_HOST_OUT
or USB_EP_DEV_OUT), whether this is a Full speed endpoint (USB_EP_SPEED_FULL) or a
Low speed endpoint (USB_EP_SPEED_LOW).

The USB_EP_MODE_ flags control the type of the endpoint.

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The ui32NAKPollInterval parameter has different meanings based on the USB_EP_MODE
value and whether or not this call is being made for endpoint zero or another endpoint. For
endpoint zero or any Bulk endpoints, this value always indicates the number of frames to allow
a device to NAK before considering it a timeout. If this endpoint is an isochronous or interrupt
endpoint, this value is the polling interval for this endpoint.

For interrupt endpoints, the polling interval is the number of frames between interrupt IN re-
quests to an endpoint and has a range of 1 to 255. For isochronous endpoints this value
represents a polling interval of 2 ∧ (ui32NAKPollInterval - 1) frames. When used as a NAK
timeout, the ui32NAKPollInterval value specifies 2 ∧ (ui32NAKPollInterval - 1) frames before
issuing a time out.

There are two special time out values that can be specified when setting the
ui32NAKPollInterval value. The first is MAX_NAK_LIMIT, which is the maximum value that
can be passed in this variable. The other is DISABLE_NAK_LIMIT, which indicates that there
is no limit on the number of NAKs.

The USB_EP_DMA_MODE_ flags determine the type of DMA access to the endpoint data
FIFOs. The choice of the DMA mode depends on how the DMA controller is configured and
how it is being used. See the “Using USB with the uDMA Controller” or the ”Using the integrated
USB DMA Controller” section for more information on DMA configuration depending on the type
of DMA that is supported by the USB controller.

When configuring the OUT portion of an endpoint, the USB_EP_AUTO_SET bit is specified
to cause the transmission of data on the USB bus to start as soon as the number of bytes
specified by ui32MaxPayload has been written into the OUT FIFO for this endpoint.

When configuring the IN portion of an endpoint, the USB_EP_AUTO_REQUEST bit can be
specified to trigger the request for more data once the FIFO has been drained enough to
fit ui32MaxPayload bytes. The USB_EP_AUTO_CLEAR bit can be used to clear the data
packet ready flag automatically once the data has been read from the FIFO. If this option is
not used, this flag must be manually cleared via a call to USBDevEndpointStatusClear() or
USBHostEndpointStatusClear().

For interrupt endpoints in low or full speed mode, the polling interval (ui32NAKPollInterval) is
the number of frames between interrupt IN requests to an endpoint and has a range of 1 to
255. For interrupt endpoints in high speed mode the polling interval is 2 ∧ (ui32NAKPollInterval
- 1) microframes between interrupt IN requests to an endpoint and has a range of 1 to 16.

Note:
This function must only be called in host mode.

July 25, 2016 629

USB Controller

Returns:
None.

32.2.2.36 USBHostEndpointDataAck

Acknowledge that data was read from the specified endpoint’s FIFO in host mode.

Prototype:
void
USBHostEndpointDataAck(uint32_t ui32Base,

uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. This call is used
if processing is required between reading the data and acknowledging that the data has been
read.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.37 USBHostEndpointDataToggle

Sets the value data toggle on an endpoint in host mode.

Prototype:
void
USBHostEndpointDataToggle(uint32_t ui32Base,

uint32_t ui32Endpoint,
bool bDataToggle,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to reset the data toggle.
bDataToggle specifies whether to set the state to DATA0 or DATA1.
ui32Flags specifies whether to set the IN or OUT endpoint.

Description:
This function is used to force the state of the data toggle in host mode. If the value passed
in the bDataToggle parameter is false, then the data toggle is set to the DATA0 state, and if
it is true it is set to the DATA1 state. The ui32Flags parameter can be USB_EP_HOST_IN or
USB_EP_HOST_OUT to access the desired portion of this endpoint. The ui32Flags parameter
is ignored for endpoint zero.

630 July 25, 2016

USB Controller

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.38 USBHostEndpointPing

Enables or disables ping tokens for an endpoint using high-speed control transfers in host mode.

Prototype:
void
USBHostEndpointPing(uint32_t ui32Base,

uint32_t ui32Endpoint,
bool bEnable)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to enable/disable ping tokens.
bEnable specifies whether enable or disable ping tokens.

Description:
This function configures the USB controller to either send or not send ping tokens during
the data and status phase of high speed control transfers. The only supported value for
ui32Endpoint is USB_EP_0 because all control transfers are handled using this endpoint. If
the bEnable is true then ping tokens are enabled, if false then ping tokens are disabled. This
must be used if the controller must support communications with devices that do not support
ping tokens in high speed mode.

Example: Disable ping transactions in host mode on endpoint 0.

//
// Disable ping transaction on endpoint 0.
//
USBHostEndpointPing(USB0_BASE, USB_EP_0, false);

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.39 USBHostEndpointSpeed

Changes the speed of the connection for a host endpoint.

Prototype:
void
USBHostEndpointSpeed(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

July 25, 2016 631

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags are used to configure other endpoint settings.

Description:
This function sets the USB speed for an IN or OUT endpoint in host mode. The ui32Flags
parameter specifies the speed using one of the following values: USB_EP_SPEED_LOW,
USB_EP_SPEED_FULL, or USB_EP_SPEED_HIGH. The ui32Flags parameter also spec-
ifies which direction is set by adding the logical OR in either USB_EP_HOST_IN or
USB_EP_HOST_OUT. All other flags are ignored. This function is typically only used for end-
point 0, but could be used with other endpoints as well.

Example: Set host transactions on endpoint 0 to full speed..

//
// Set host endpoint 0 transactions to full speed.
//
USBHostEndpointSpeed(USB0_BASE, USB_EP_0, USB_EP_SPEED_FULL);

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.40 USBHostEndpointStatusClear

Clears the status bits in this endpoint in host mode.

Prototype:
void
USBHostEndpointStatusClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags are the status bits that are cleared.

Description:
This function clears the status of any bits that are passed in the ui32Flags parameter. The
ui32Flags parameter can take the value returned from the USBEndpointStatus() call.

Note:
This function must only be called in host mode.

Returns:
None.

632 July 25, 2016

USB Controller

32.2.2.41 USBHostHubAddrGet

Gets the current device hub address for this endpoint.

Prototype:
uint32_t
USBHostHubAddrGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function returns the current hub address that an endpoint is using to communicate with a
device. The ui32Flags parameter determines if the device address for the IN or OUT endpoint
is returned.

Note:
This function must only be called in host mode.

Returns:
This function returns the current hub address being used by an endpoint.

32.2.2.42 USBHostHubAddrSet

Sets the hub address for the device that is connected to an endpoint.

Prototype:
void
USBHostHubAddrSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Addr,
uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Addr is the hub address and port for the device using this endpoint. The hub address

must be defined in bits 0 through 6 with the port number in bits 8 through 14.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function configures the hub address for a device that is using this endpoint for communica-
tion. The ui32Flags parameter determines if the device address for the IN or the OUT endpoint
is configured by this call and sets the speed of the downstream device. Valid values are one of
USB_EP_HOST_OUT or USB_EP_HOST_IN optionally ORed with USB_EP_SPEED_LOW.

Note:
This function must only be called in host mode.

July 25, 2016 633

USB Controller

Returns:
None.

32.2.2.43 USBHostMode

Change the mode of the USB controller to host.

Prototype:
void
USBHostMode(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function changes the mode of the USB controller to host mode.

Note:
This function must only be called on microcontrollers that support OTG operation.

Returns:
None.

32.2.2.44 USBHostPwrConfig

Sets the configuration for USB power fault.

Prototype:
void
USBHostPwrConfig(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies the configuration of the power fault.

Description:
This function controls how the USB controller uses its external power control pins (USBnPFLT
and USBnEPEN). The flags specify the power fault level sensitivity, the power fault action, and
the power enable level and source.

One of the following can be selected as the power fault level sensitivity:

USB_HOST_PWRFLT_LOW - An external power fault is indicated by the pin being driven
low.
USB_HOST_PWRFLT_HIGH - An external power fault is indicated by the pin being driven
high.

One of the following can be selected as the power fault action:

USB_HOST_PWRFLT_EP_NONE - No automatic action when power fault detected.

634 July 25, 2016

USB Controller

USB_HOST_PWRFLT_EP_TRI - Automatically tri-state the USBnEPEN pin on a power
fault.
USB_HOST_PWRFLT_EP_LOW - Automatically drive USBnEPEN pin low on a power
fault.
USB_HOST_PWRFLT_EP_HIGH - Automatically drive USBnEPEN pin high on a power
fault.

One of the following can be selected as the power enable level and source:

USB_HOST_PWREN_MAN_LOW - USBnEPEN is driven low by the USB controller when
USBHostPwrEnable() is called.
USB_HOST_PWREN_MAN_HIGH - USBnEPEN is driven high by the USB controller
when USBHostPwrEnable() is called.
USB_HOST_PWREN_AUTOLOW - USBnEPEN is driven low by the USB controller auto-
matically if USBOTGSessionRequest() has enabled a session.
USB_HOST_PWREN_AUTOHIGH - USBnEPEN is driven high by the USB controller au-
tomatically if USBOTGSessionRequest() has enabled a session.

When using the VBUS glitch filter, the USB_HOST_PWREN_FILTER can be addded to ignore
small, short drops in VBUS level caused by high power consumption. This feature is mainly
used to avoid causing VBUS errors caused by devices with high in-rush current.

Note:
This function must only be called on microcontrollers that support host mode or OTG opera-
tion. The USB_HOST_PWREN_AUTOLOW and USB_HOST_PWREN_AUTOHIGH parame-
ters can only be specified on devices that support OTG operation.

Returns:
None.

32.2.2.45 USBHostPwrDisable

Disables the external power pin.

Prototype:
void
USBHostPwrDisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USBnEPEN signal, which disables an external power supply in host
mode operation.

Note:
This function must only be called in host mode.

Returns:
None.

July 25, 2016 635

USB Controller

32.2.2.46 USBHostPwrEnable

Enables the external power pin.

Prototype:
void
USBHostPwrEnable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function enables the USBnEPEN signal, which enables an external power supply in host
mode operation.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.47 USBHostPwrFaultDisable

Disables power fault detection.

Prototype:
void
USBHostPwrFaultDisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables power fault detection in the USB controller.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.48 USBHostPwrFaultEnable

Enables power fault detection.

Prototype:
void
USBHostPwrFaultEnable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

636 July 25, 2016

USB Controller

Description:
This function enables power fault detection in the USB controller. If the USBnPFLT pin is not in
use, this function must not be used.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.49 USBHostRequestIN

Schedules a request for an IN transaction on an endpoint in host mode.

Prototype:
void
USBHostRequestIN(uint32_t ui32Base,

uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function schedules a request for an IN transaction. When the USB device being communi-
cated with responds with the data, the data can be retrieved by calling USBEndpointDataGet()
or via a DMA transfer.

Note:
This function must only be called in host mode and only for IN endpoints.

Returns:
None.

32.2.2.50 USBHostRequestINClear

Clears a scheduled IN transaction for an endpoint in host mode.

Prototype:
void
USBHostRequestINClear(uint32_t ui32Base,

uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function clears a previously scheduled IN transaction if it is still pending. This function is
used to safely disable any scheduled IN transactions if the endpoint specified by ui32Endpoint
is reconfigured for communications with other devices.

July 25, 2016 637

USB Controller

Note:
This function must only be called in host mode and only for IN endpoints.

Returns:
None.

32.2.2.51 USBHostRequestStatus

Issues a request for a status IN transaction on endpoint zero.

Prototype:
void
USBHostRequestStatus(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function is used to cause a request for a status IN transaction from a device on endpoint
zero. This function can only be used with endpoint zero as that is the only control endpoint that
supports this ability. This function is used to complete the last phase of a control transaction to
a device and an interrupt is signaled when the status packet has been received.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.52 USBHostReset

Handles the USB bus reset condition.

Prototype:
void
USBHostReset(uint32_t ui32Base,

bool bStart)

Parameters:
ui32Base specifies the USB module base address.
bStart specifies whether to start or stop signaling reset on the USB bus.

Description:
When this function is called with the bStart parameter set to true, this function causes the start
of a reset condition on the USB bus. The caller must then delay at least 20ms before calling
this function again with the bStart parameter set to false.

Note:
This function must only be called in host mode.

Returns:
None.

638 July 25, 2016

USB Controller

32.2.2.53 USBHostResume

Handles the USB bus resume condition.

Prototype:
void
USBHostResume(uint32_t ui32Base,

bool bStart)

Parameters:
ui32Base specifies the USB module base address.
bStart specifies if the USB controller is entering or leaving the resume signaling state.

Description:
When in device mode, this function brings the USB controller out of the suspend state. This
call must first be made with the bStart parameter set to true to start resume signaling. The
device application must then delay at least 10ms but not more than 15ms before calling this
function with the bStart parameter set to false.

When in host mode, this function signals devices to leave the suspend state. This call must first
be made with the bStart parameter set to true to start resume signaling. The host application
must then delay at least 20ms before calling this function with the bStart parameter set to false.
This action causes the controller to complete the resume signaling on the USB bus.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.54 USBHostSpeedGet

Returns the current speed of the USB device connected.

Prototype:
uint32_t
USBHostSpeedGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current speed of the USB bus in host mode.

Example: Get the USB connection speed.

//
// Get the connection speed of the device connected to the USB controller.
//
USBHostSpeedGet(USB0_BASE);

Note:
This function must only be called in host mode.

July 25, 2016 639

USB Controller

Returns:
Returns one of the following: USB_LOW_SPEED, USB_FULL_SPEED, USB_HIGH_SPEED,
or USB_UNDEF_SPEED.

32.2.2.55 USBHostSuspend

Puts the USB bus in a suspended state.

Prototype:
void
USBHostSuspend(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
When used in host mode, this function puts the USB bus in the suspended state.

Note:
This function must only be called in host mode.

Returns:
None.

32.2.2.56 USBIntDisableControl

Disables control interrupts on a specified USB controller.

Prototype:
void
USBIntDisableControl(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which control interrupts to disable.

Description:
This function disables the control interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which control interrupts to disable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTCTRL_∗
and not any other USB_INT flags.

Returns:
None.

640 July 25, 2016

USB Controller

32.2.2.57 USBIntDisableEndpoint

Disables endpoint interrupts on a specified USB controller.

Prototype:
void
USBIntDisableEndpoint(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which endpoint interrupts to disable.

Description:
This function disables endpoint interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which endpoint interrupts to disable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTEP_∗ and
not any other USB_INT flags.

Returns:
None.

32.2.2.58 USBIntEnableControl

Enables control interrupts on a specified USB controller.

Prototype:
void
USBIntEnableControl(uint32_t ui32Base,

uint32_t ui32Flags)

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which control interrupts to enable.

Description:
This function enables the control interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which control interrupts to enable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTCTRL_∗
and not any other USB_INT flags.

Returns:
None.

32.2.2.59 USBIntEnableEndpoint

Enables endpoint interrupts on a specified USB controller.

Prototype:
void
USBIntEnableEndpoint(uint32_t ui32Base,

uint32_t ui32Flags)

July 25, 2016 641

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which endpoint interrupts to enable.

Description:
This function enables endpoint interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which endpoint interrupts to enable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTEP_∗ and
not any other USB_INT flags.

Returns:
None.

32.2.2.60 USBIntRegister

Registers an interrupt handler for the USB controller.

Prototype:
void
USBIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base specifies the USB module base address.
pfnHandler is a pointer to the function to be called when a USB interrupt occurs.

Description:
This function registers the handler to be called when a USB interrupt occurs and enables the
global USB interrupt in the interrupt controller. The specific desired USB interrupts must be
enabled via a separate call to USBIntEnable(). It is the interrupt handler’s responsibility to
clear the interrupt sources via calls to USBIntStatusControl() and USBIntStatusEndpoint().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

32.2.2.61 USBIntStatusControl

Returns the control interrupt status on a specified USB controller.

Prototype:
uint32_t
USBIntStatusControl(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

642 July 25, 2016

USB Controller

Description:
This function reads control interrupt status for a USB controller. This call returns the current
status for control interrupts only, the endpoint interrupt status is retrieved by calling USBIntSta-
tusEndpoint(). The bit values returned are compared against the USB_INTCTRL_∗ values.

The following are the meanings of all USB_INCTRL_ flags and the modes for which they are
valid. These values apply to any calls to USBIntStatusControl(), USBIntEnableControl(), and
USBIntDisableControl(). Some of these flags are only valid in the following modes as indicated
in the parentheses: Host, Device, and OTG.

USB_INTCTRL_ALL - A full mask of all control interrupt sources.
USB_INTCTRL_VBUS_ERR - A VBUS error has occurred (Host Only).
USB_INTCTRL_SESSION - Session Start Detected on A-side of cable (OTG Only).
USB_INTCTRL_SESSION_END - Session End Detected (Device Only)
USB_INTCTRL_DISCONNECT - Device Disconnect Detected (Host Only)
USB_INTCTRL_CONNECT - Device Connect Detected (Host Only)
USB_INTCTRL_SOF - Start of Frame Detected.
USB_INTCTRL_BABBLE - USB controller detected a device signaling past the end of a
frame (Host Only)
USB_INTCTRL_RESET - Reset signaling detected by device (Device Only)
USB_INTCTRL_RESUME - Resume signaling detected.
USB_INTCTRL_SUSPEND - Suspend signaling detected by device (Device Only)
USB_INTCTRL_MODE_DETECT - OTG cable mode detection has completed (OTG Only)
USB_INTCTRL_POWER_FAULT - Power Fault detected (Host Only)

Note:
This call clears the source of all of the control status interrupts.

Returns:
Returns the status of the control interrupts for a USB controller.

32.2.2.62 USBIntStatusEndpoint

Returns the endpoint interrupt status on a specified USB controller.

Prototype:
uint32_t
USBIntStatusEndpoint(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function reads endpoint interrupt status for a USB controller. This call returns the current
status for endpoint interrupts only, the control interrupt status is retrieved by calling USBIntSta-
tusControl(). The bit values returned are compared against the USB_INTEP_∗ values. These
values are grouped into classes for USB_INTEP_HOST_∗ and USB_INTEP_DEV_∗ values to
handle both host and device modes with all endpoints.

Note:
This call clears the source of all of the endpoint interrupts.

July 25, 2016 643

USB Controller

Returns:
Returns the status of the endpoint interrupts for a USB controller.

32.2.2.63 USBIntUnregister

Unregisters an interrupt handler for the USB controller.

Prototype:
void
USBIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function unregisters the interrupt handler. This function also disables the USB interrupt in
the interrupt controller.

See also:
IntRegister() for important information about registering or unregistering interrupt handlers.

Returns:
None.

32.2.2.64 USBModeConfig

Change the operating mode of the USB controller.

Prototype:
void
USBModeConfig(uint32_t ui32Base,

uint32_t ui32Mode)

Parameters:
ui32Base specifies the USB module base address.
ui32Mode specifies the operating mode of the USB OTG pins.

Description:
This function changes the operating modes of the USB controller. When operating in full OTG
mode, the USB controller uses the VBUS and ID pins to detect mode and voltage changes.
While these pins are primarily used in OTG mode, they can also affect the operation of host
and device modes. In device mode, the USB controller can be configured to monitor or ignore
VBUS. Monitoring VBUS allows the controller to determine if it has been disconnected from
the host. In host mode, the USB controller uses the VBUS pin to detect loss of VBUS caused
by excessive power draw due to a drop in the VBUS voltage. This call takes the place of
USBHostMode(), USBDevMode(), and USBOTGMode(). The ui32Mode value should be one
of the following values:

USB_MODE_OTG enables operating in full OTG mode, VBUS and ID are used by the
controller.

644 July 25, 2016

USB Controller

USB_MODE_HOST enables operating only as a host with no monitoring of VBUS or ID
pins.
USB_MODE_HOST_VBUS enables operating only as a host with monitoring of VBUS pin.
This configuration enables detection of VBUS droop while still forcing host mode.
USB_MODE_DEVICE enables operating only as a device with no monitoring of VBUS or
ID pins.
USB_MODE_DEVICE_VBUS enables operating only as a device with monitoring of VBUS
pin. This configuration enables disconnect detection while still forcing device mode.

Note:
Some of the options above are not available on some Tiva devices. Please check the data
sheet to determine if the USB controller supports a particular mode.

Example: Force device mode but allow monitoring of the USB VBUS pin.

//
// Force device mode but allow monitoring of VBUS for disconnect.
//
USBModeConfig(USB_MODE_DEVICE_VBUS);

Returns:
None.

32.2.2.65 USBModeGet

Returns the current operating mode of the controller.

Prototype:
uint32_t
USBModeGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current operating mode on USB controllers with OTG or Dual mode
functionality.

For OTG controllers:

The function returns one of the following values on OTG controllers:

USB_OTG_MODE_ASIDE_HOST indicates that the controller is in host mode on the A-side
of the cable.

USB_OTG_MODE_ASIDE_DEV indicates that the controller is in device mode on the A-side
of the cable.

USB_OTG_MODE_BSIDE_HOST indicates that the controller is in host mode on the B-side
of the cable.

USB_OTG_MODE_BSIDE_DEV indicates that the controller is in device mode on the B-side
of the cable. If an OTG session request is started with no cable in place, this mode is the
default.

July 25, 2016 645

USB Controller

USB_OTG_MODE_NONE indicates that the controller is not attempting to determine its role
in the system.

For Dual Mode controllers:

The function returns one of the following values:

USB_DUAL_MODE_HOST indicates that the controller is acting as a host.

USB_DUAL_MODE_DEVICE indicates that the controller acting as a device.

USB_DUAL_MODE_NONE indicates that the controller is not active as either a host or device.

Returns:
Returns USB_OTG_MODE_ASIDE_HOST, USB_OTG_MODE_ASIDE_DEV,
USB_OTG_MODE_BSIDE_HOST, USB_OTG_MODE_BSIDE_DEV,
USB_OTG_MODE_NONE, USB_DUAL_MODE_HOST, USB_DUAL_MODE_DEVICE,
or USB_DUAL_MODE_NONE.

32.2.2.66 USBNumEndpointsGet

Returns the number of USB endpoint pairs on the device.

Prototype:
uint32_t
USBNumEndpointsGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the number of endpoint pairs supported by the USB controller corre-
sponding to the passed base address. The value returned is the number of IN or OUT end-
points available and does not include endpoint 0 (the control endpoint). For example, if 15 is
returned, there are 15 IN and 15 OUT endpoints available in addition to endpoint 0.

Returns:
Returns the number of IN or OUT endpoints available.

32.2.2.67 USBOTGMode

Changes the mode of the USB controller to OTG.

Prototype:
void
USBOTGMode(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function changes the mode of the USB controller to OTG mode. This function is only valid
on microcontrollers that have the OTG capabilities.

646 July 25, 2016

USB Controller

Returns:
None.

32.2.2.68 USBOTGSessionRequest

Starts or ends a session.

Prototype:
void
USBOTGSessionRequest(uint32_t ui32Base,

bool bStart)

Parameters:
ui32Base specifies the USB module base address.
bStart specifies if this call starts or ends a session.

Description:
This function is used in OTG mode to start a session request or end a session. If the bStart
parameter is set to true, then this function starts a session and if it is false it ends a session.

Returns:
None.

32.2.2.69 USBPHYPowerOff

Powers off the internal USB PHY.

Prototype:
void
USBPHYPowerOff(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function powers off the internal USB PHY, reducing the current consumption of the device.
While in the powered-off state, the USB controller is unable to operate.

Returns:
None.

32.2.2.70 USBPHYPowerOn

Powers on the internal USB PHY.

Prototype:
void
USBPHYPowerOn(uint32_t ui32Base)

July 25, 2016 647

USB Controller

Parameters:
ui32Base specifies the USB module base address.

Description:
This function powers on the internal USB PHY, enabling it return to normal operation. By
default, the PHY is powered on, so this function must only be called if USBPHYPowerOff() has
previously been called.

Returns:
None.

32.3 Using USB with the uDMA Controller

On devices that do not have an integrated DMA in the USB controller, the uDMA can be used with
the USB controller for either sending or receiving data with both host and device controllers. The
uDMA controller cannot be used to access endpoint 0, however all other endpoints are capable
of using the uDMA controller. The uDMA channel numbers for USB are defined by the following
values:

DMA_CHANNEL_USBEP1RX

DMA_CHANNEL_USBEP1TX

DMA_CHANNEL_USBEP2RX

DMA_CHANNEL_USBEP2TX

DMA_CHANNEL_USBEP3RX

DMA_CHANNEL_USBEP3TX

For devices with more than 8 endpoints, the required endpoints must be assigned to one of the 3
DMA receive channels and 3 DMA transmit channels using the USBEndpointDMAChannel() func-
tion.

Because the uDMA controller views transfers as either transmit or receive and the USB controller
operates on IN/OUT transactions, some care must be taken to use the correct uDMA channel
with the correct endpoint. USB host IN and USB device OUT endpoints both use receive uDMA
channels while USB host OUT and USB device IN endpoints use transmit uDMA channels.

When configuring the endpoint, there are additional DMA settings required. When calling USBDe-
vEndpointConfigSet() for an endpoint that uses uDMA, extra flags must be added to the ulFlags
parameter. These flags are one of USB_EP_DMA_MODE_0 or USB_EP_DMA_MODE_1 to con-
trol the mode of the DMA transaction, and likely USB_EP_AUTO_SET to allow the data to be
transmitted automatically once a packet is ready. When using USB_EP_DMA_MODE_0, the USB
controller only generates an interrupt when the full transfer is complete. As a result, the application
must know the full transfer size before configuring the DMA transfer. In USB_EP_DMA_MODE_1,
the USB controller generates DMA requests only when a full packet is transferred and interrupts the
processor on any short packet. The short packet data remains in the USB FIFO, and the application
must trigger the last transfer of data from the FIFO. The USB_EP_AUTO_SET is specified when
using uDMA to prevent the need for application code to start the actual transfer of data on every full
packet of data.

Example: Endpoint configuration for a device IN endpoint:

648 July 25, 2016

USB Controller

//
// Endpoint 1 is a device mode BULK IN endpoint using DMA.
//
USBDevEndpointConfigSet(USB0_BASE, USB_EP_1, 64,

(USB_EP_MODE_BULK | USB_EP_DEV_IN |
USB_EP_DMA_MODE_0 | USB_EP_AUTO_SET));

Next, the application must configure the uDMA controller for the desired DMA transfer to the FIFO.
To clear out any previous settings, the application calls DMAChannelAttributeClear(). Then the
application calls DMAChannelAttributeSet() for the uDMA channel that corresponds to the endpoint
and specify the DMA_CONFIG_USEBURST flag.

Note:
All uDMA transfers used by the USB controller must enable burst mode.

The application also provides the size of each DMA transaction, combined with the source and
destination increments and the arbitration level for the uDMA controller.

Example: Configure endpoint 1 transmit channel.

//
// Set up the DMA for USB transmit.
//
DMAChannelAttributeClear(DMA_CHANNEL_USBEP1TX, DMA_CONFIG_ALL);

//
// Enable uDMA burst mode.
//
DMAChannelAttributeSet(DMA_CHANNEL_USBEP1TX, DMA_CONFIG_USEBURST);

//
// Data size is 8 bits and the source has a one byte increment.
// Destination has no increment as it is a FIFO.
//
DMAChannelControlSet(DMA_CHANNEL_USBEP1TX, DMA_DATA_SIZE_8, DMA_ADDR_INC_8,

DMA_ADDR_INC_NONE, DMA_ARB_64, 0);

The next step is to actually start the uDMA transfer once the data is ready to be sent. There are
only two calls that the application must make to start a new transfer. For most cases, the previous
uDMA configuration remains the same. The call to DMAChannelTransferSet() resets the source
and destination addresses for the DMA transfer and specifies how much data to send. The call to
DMAChannelEnable() actually allows the DMA controller to begin requesting data to fill the FIFO.

Example: Start the transfer of data on endpoint 1.

//
// Configure the address and size of the data to transfer.
//
DMAChannelTransferSet(DMA_CHANNEL_USBEP1TX, DMA_MODE_BASIC, pData,

USBFIFOAddr(USB0_BASE, USB_EP_1), 64);
//
// Start the transfer.
//
DMAChannelEnable(DMA_CHANNEL_USBEP1TX);

Because the uDMA interrupt occurs on the same interrupt vector as any other USB interrupt, the
application must perform an extra check to determine the actual source of the interrupt. It is impor-
tant to note that the DMA interrupt does not mean that the USB transfer is complete, but only that
the data has been transferred to the USB controller’s FIFO. There is also an interrupt indicating that

July 25, 2016 649

USB Controller

the USB transfer is complete. However, both events must be handled in the same interrupt routine
because if other code in the system holds off the USB interrupt routine, both the uDMA complete
and transfer complete can occur before the USB interrupt handler is called. The USB has no status
bit indicating that the interrupt was due to a DMA complete, which means that the application must
remember if a DMA transaction was in progress. The example below shows the g_ulFlags global
variable being used to remember that a DMA transfer was pending.

Example: Interrupt handling with uDMA.

if((g_ulFlags & EP1_DMA_IN_PEND) &&
(DMAChannelModeGet(DMA_CHANNEL_USBEP1TX) == DMA_MODE_STOP))

{
//
// Handle the DMA complete case.
//
...

}

//
// Get the interrupt status.
//
ulStatus = USBIntStatusEndpoint(USB0_BASE);

if(ulStatus & USB_INTEP_DEV_IN_1)
{

//
// Handler the transfer complete case.
//
...

}

To use the USB device controller with an OUT endpoint, the application must use
a receive uDMA channel. When calling USBDevEndpointConfigSet() for an endpoint
that uses uDMA, the application must set extra flags in the ulFlags parameter. The
USB_EP_DMA_MODE_0 and USB_EP_DMA_MODE_1 parameters control the mode of the
transaction, USB_EP_AUTO_CLEAR allows the data to be received automatically without
manually acknowledging that the data has been read. If the transfer size is not known,
USB_EP_DMA_MODE_1 is used as it does not generate an interrupt when each packet is sent
over USB and interrupts if a short packet is received. In USB_EP_DMA_MODE_1, the last short
packet remains in the FIFO and must be read by software when the interrupt is received. If the
full transfer size is known, USB_EP_DMA_MODE_0 can be used because it does not interrupt
the processor after each packet and completes even if the last packet is a short packet. The
USB_EP_AUTO_CLEAR flag is normally specified when using uDMA to allow the USB controller
to transfer multiple packets without interruption of the microcontroller. The example below config-
ures endpoint 1 as a Device mode Bulk OUT endpoint using DMA mode 1 with a max packet size
of 64 bytes.

Example: Configure endpoint 1 receive channel:

//
// Endpoint 1 is a device mode BULK OUT endpoint using DMA.
//
USBDevEndpointConfigSet(USB0_BASE, USB_EP_1, 64,

(USB_EP_DEV_OUT | USB_EP_MODE_BULK |
USB_EP_DMA_MODE_1 | USB_EP_AUTO_CLEAR));

Next the application is required to configure the uDMA controller to match the desired trans-
fer. Like the transmit case, the first call to DMAChannelAttributeClear() is made to clear any

650 July 25, 2016

USB Controller

previous settings. This function is followed by a call to DMAChannelAttributeSet() with the
DMA_CONFIG_USEBURST value.

Note:
All uDMA transfers used by the USB controller must use burst mode.

The final call configures the read access size to 8 bits wide, the source address increment to 0, the
destination address increment to 8 bits and the uDMA arbitration size to 64 bytes.

Example: Configure endpoint 1 transmit channel.

//
// Clear out any uDMA settings.
//
DMAChannelAttributeClear(DMA_CHANNEL_USBEP1RX, DMA_CONFIG_ALL);

DMAChannelAttributeSet(DMA_CHANNEL_USBEP1RX, DMA_CONFIG_USEBURST);

DMAChannelControlSet(DMA_CHANNEL_USBEP1RX, DMA_DATA_SIZE_8,
DMA_ADDR_INC_NONE, DMA_ADDR_INC_8, DMA_ARB_64, 0);

The next step is to actually start the uDMA transfer. Unlike the transfer side, if the application is
ready, the receive side can be set up right away to wait for incoming data. Like the transmit case,
these calls are the only ones required to start a new transfer, because normally, the previous uDMA
configuration can remain the same.

Example: Start requesting data on endpoint 1.

//
// Configure the address and size of the data to transfer. The transfer
// is from the USB FIFO for endpoint 0 to g_DataBufferIn.
//
DMAChannelTransferSet(DMA_CHANNEL_USBEP1RX, DMA_MODE_BASIC,

USBFIFOAddr(USB0_BASE, USB_EP_1), g_DataBufferIn,
64);

//
// Enable the uDMA channel and wait for data.
//
DMAChannelEnable(DMA_CHANNEL_USBEP1RX);

The uDMA interrupt occurs on the same interrupt vector as any other USB interrupt, which means
that the application must determine what the actual source of the interrupt was. It is possible that
the USB interrupt does not indicate that the USB transfer was complete. The interrupt can also be
generated by a short packet, error, or even a transmit complete. As a result, the application must
check both receive cases to determine if the interrupt is related to receiving data on the endpoint.
Because the USB has no status bit indicating that the interrupt was due to a DMA complete, the
application must remember if a DMA transaction was in progress.

Example: Interrupt handling with uDMA.

//
// Get the current interrupt status.
//
ulStatus = USBIntStatusEndpoint(USB0_BASE);

if(ulStatus & USB_INTEP_DEV_OUT_1)
{

//

July 25, 2016 651

USB Controller

// Handle a short packet.
//
...

}
else if((g_ulFlags & EP1_DMA_OUT_PEND) &&

(DMAChannelModeGet(DMA_CHANNEL_USBEP1RX) == DMA_MODE_STOP)
{

//
// Handle the DMA complete case.
//
...

//
// Restart receive DMA if desired.
//
...

}

32.4 Using the integrated USB DMA Controller

Functions
void ∗ USBDMAChannelAddressGet (uint32_t ui32Base, uint32_t ui32Channel)
void USBDMAChannelAddressSet (uint32_t ui32Base, uint32_t ui32Channel, void
∗pvAddress)
void USBDMAChannelConfigSet (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Endpoint, uint32_t ui32Config)
uint32_t USBDMAChannelCountGet (uint32_t ui32Base, uint32_t ui32Channel)
void USBDMAChannelCountSet (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Count)
void USBDMAChannelDisable (uint32_t ui32Base, uint32_t ui32Channel)
void USBDMAChannelEnable (uint32_t ui32Base, uint32_t ui32Channel)
void USBDMAChannelIntDisable (uint32_t ui32Base, uint32_t ui32Channel)
void USBDMAChannelIntEnable (uint32_t ui32Base, uint32_t ui32Channel)
uint32_t USBDMAChannelIntStatus (uint32_t ui32Base)
uint32_t USBDMAChannelStatus (uint32_t ui32Base, uint32_t ui32Channel)
void USBDMAChannelStatusClear (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Status)
uint32_t USBDMANumChannels (uint32_t ui32Base)

32.4.1 Detailed Description

Some USB controllers include an integrated USB DMA controller for DMA access to the USB FIFOs
that is used instead of the uDMA controller. The programming method for using the integrated USB
DMA controller differs from that used with the uDMA controller to move USB FIFO data to and from
system memory.

The integrated USB DMA controller has a basic set of functions that allows an application to de-
termine whether this feature is available and if so, provide additional details about the USB DMA
controller. An application can use the USBDMANumChannels() function to determine if the USB

652 July 25, 2016

USB Controller

controller supports the integrated USB DMA controller by checking that the returned value is non-
zero. Like most DMA controllers, the USB DMA controller is used to transfer data between the USB
controller and system memory using a simple address and count value. While the transfer size
can be specified as any number of bytes, the USB DMA controller can only perform accesses on
32-bit-aligned boundaries, so care must be taken to only specify transfer addresses in modulo-4
increments. The USB DMA controller also has a fixed number of DMA channels that can be dynam-
ically assigned to any endpoint and can be used to either transmit or receive data. The total number
of DMA channels available is determined using the USBDMANumChannels() function. The channel
numbers themselves are numbered from 0 to the maximum number of channels minus one. The
UDMA_CHANNEL_USBEPnRX and UDMA_CHANNEL_USBEPnTX defines for the uDMA must
not be used as the channel numbers when using the integrated USB DMA controller.

Each DMA channel can be configured with various settings that assign a channel to an endpoint
and configure how it is used during a DMA transfer. The DMA channel is configured using the
ulConfig parameter of the USBDMAChannelConfigSet() function. To set the proper direction for the
transfer, the USB_DMA_CFG_DIR_TX or USB_DMA_CFG_DIR_RX option must be added to the
ulConfig parameter. The DMA burst lengths are specified in 32-bit word increments using one of
the following values added to the ulConfig parameter: USB_DMA_CFG_BURST_NONE (default),
USB_DMA_CFG_BURST_4, USB_DMA_CFG_BURST_8, or USB_DMA_CFG_BURST_16. The
DMA mode is also used to control how the DMA controller handles interrupting the processor.
USB_DMA_CFG_MODE_0 is typically used when only a single packet is being sent or received us-
ing DMA as it triggers an interrupt per packet transfered. USB_DMA_CFG_MODE_1 is used when
multiple packets are being sent using DMA and triggers one completion interrupt per transfer when
spanning multiple packets rather than triggering an interrupt per packet. In addition, when call-
ing USBDevEndpointConfigSet() for an endpoint that uses DMA, extra flags must be added to the
ulFlags parameter. These flags are one of USB_EP_DMA_MODE_0 or USB_EP_DMA_MODE_1
to control the mode of the DMA transaction, and likely USB_EP_AUTO_SET to allow the data to be
transmitted automatically once a packet is ready. When using USB_EP_DMA_MODE_0, the USB
controller only generates an interrupt when the full transfer is complete. As a result, the application
must know the full transfer size before configuring the DMA transfer. In USB_EP_DMA_MODE_1,
the USB controller generates DMA requests only when a full packet is transferred and interrupts the
processor on any short packet. The short packet data remains in the USB FIFO, and the application
must trigger the last transfer of data from the FIFO. The USB_EP_AUTO_SET is specified when
using uDMA to prevent the need for application code to start the actual transfer of data on every full
packet of data.

The method for configuring the USB DMA controller to perform a DMA transfer varies based on the
USB mode (Host or Device), the size of the transfer, and the direction of the transfer. It is important
to understand the interrupt mechanisms when dealing with the USB DMA controller. There are two
types of interrupts that occur. The first is the normal endpoint interrupt that indicates a USB packet
transfer has completed, and the other is a USB DMA interrupt that indicates a USB DMA transfer
has completed. A USB DMA transfer complete does not indicate that the packet transmission
has completed, but rather that the transfer to or from the FIFO has completed. Depending on the
situation, the application may have to wait for more than one interrupt to signal the completion of
the USB transaction. The next sections describe how to use the integrated USB DMA controller to
complete USB transactions in the most common scenarios.

32.4.2 Sending a Single Packet

The first type of transfer is a single packet transfer that is less than or equal to the maximum packet
size for the endpoint. In this mode, the DMA controller copies data from memory into the USB FIFO
for the endpoint. In most cases, it is the responsibility of the application to then manually trigger a

July 25, 2016 653

USB Controller

USB transfer when the DMA is complete using the USBEndpointDataSend() function. However, if
the USB_EP_AUTO_SET value is included as an option to the USBDevEndpointConfigSet() or the
USBHostEndpointConfig() function and the transfer is of exactly the maximum packet size, then it
is not necessary to manually trigger a USB transfer and doing so may cause an extra null packet to
be sent.

If endpoints are not dynamically allocated by the application, some of the DMA and endpoint con-
figuration can be treated as static and executed only once during initial configuration.

Example: Endpoint configuration for USB DMA transmit

//
// Endpoint 1 uses Mode 0 and transmit.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_1, USB_EP_HOST_OUT |

USB_EP_DMA_MODE_0);

//
// Assign endpoint 1 to DMA channel 0 using Mode 0, no bursting, for
// transmit, and enable DMA interrupts.
//
USBDMAChannelConfigSet(USB0_BASE, 0, USB_EP_1, USB_DMA_CFG_MODE_0 |

USB_DMA_CFG_BURST_NONE |
USB_DMA_CFG_DIR_TX |
USB_DMA_CFG_INT_EN);

The following actions must be performed every time a DMA transfer is ready to be scheduled.

Example: Sending a packet using DMA on channel 0.

//
// Set the source address for the transfer to pvBuffer.
//
USBDMAChannelAddressSet(USB0_BASE, 0, pvBuffer);

//
// Set the transfer size to 44 bytes and the packet count to 0.
//
USBDMAChannelCountSet(USB0_BASE, 0, 44);
USBEndpointPacketCountSet(USB0_BASE, 0, 0)

//
// Enable the DMA transfer.
//
USBDMAChannelEnable();

Once the DMA transfer is started, the application must wait for a DMA completion interrupt. DMA
completion triggers a normal USB controller interrupt, and the actual status for the DMA interrupt
is returned by calling the USBDMAChannelIntStatus() function. The interrupt handler must handle
all pending DMA channels because the call to USBDMAChannelIntStatus() automatically clears all
pending DMA interrupts. Once the DMA status indicates complete, the last step is to schedule the
USB transfer by calling the USBEndpointDataSend() function as shown below and then wait for a
second endpoint interrupt that signals the completion of the USB transfer. The second interrupt
must check if the transfer has completed by calling the USBIntStatusEndpoint() function to see if
the interrupt was for the given endpoint.

Example: Starting a transfer on channel 0 after DMA completes.

//
// Start the USB transfer.
//
USBEndpointDataSend(USB0_BASE, USB_EP_1, USB_TRANS_OUT);

654 July 25, 2016

USB Controller

32.4.3 Sending Multiple Packets

The next type of transfer is a multiple packet transfer when the transfer size is greater than the
maximum packet size for the endpoint. In this mode, the DMA controller copies data from memory
into the USB FIFO for the endpoint in blocks that are the size of the maximum packet. If the last
packet is a short packet, it is the responsibility of the application to manually start the USB transfer
when the DMA transfer is complete. Because the USB_EP_AUTO_SET is used when multiple
packets are being sent, it is not necessary to manually trigger the final transfer if the transfer is of
exactly the maximum packet size.

If endpoints are not dynamically allocated by the application, some of the DMA and endpoint con-
figuration can be treated as static and executed only once during initial configuration.

Example: Static endpoint configuration for DMA multiple packet transmit.

//
// Endpoint 1 uses Mode 1 and transmit and enables automatic sending
// when a full packet is sent to the FIFO.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_1, USB_EP_HOST_OUT |

USB_EP_DMA_MODE_1 |
USB_EP_AUTO_SET);

//
// Assign endpoint 1 to DMA channel 1 using Mode 1, no bursting, transmit,
// and enable DMA interrupts.
//
USBDMAChannelConfigSet(USB0_BASE, 1, USB_EP_1, USB_DMA_CFG_MODE_1 |

USB_DMA_CFG_BURST_NONE |
USB_DMA_CFG_DIR_TX |
USB_DMA_CFG_INT_EN)

The following actions must be performed every time a DMA transfer is scheduled. If the transfer
size is not an even multiple of the maximum packet size, then the USBEndpointPacketCountSet()
is passed in (transfer_size/max_packet_size) + 1 otherwise the number of packets is (trans-
fer_size/max_packet_size).

Example: Starting a DMA send multi-packet transfer on channel 1.

//
// Set the source address for the transfer to pvBuffer.
//
USBDMAChannelAddressSet(USB0_BASE, 1, pvBuffer);

//
// Set the transfer size to 1024 bytes and the packet count to 16.
// The packet count does not require a + 1 because 1024/64 leaves no
// remaining bytes to send in a final packet.
//
USBDMAChannelCountSet(USB0_BASE, 0, 1024);
USBEndpointPacketCountSet(USB0_BASE, 0, 1024/64);

//
// Enable the DMA transfer.
//
USBDMAChannelEnable();

Once the DMA transfer is started, the application must wait for a DMA completion interrupt. The
DMA completion triggers a normal USB controller interrupt, and the status for the DMA interrupt is
returned by calling the USBDMAChannelIntStatus(). The interrupt handler must handle all pending

July 25, 2016 655

USB Controller

DMA channels because the call to USBDMAChannelIntStatus() automatically clears all pending
DMA interrupts. At this point, if the transfer size is a multiple of the maximum packet size, the trans-
fer is complete and no other action is required. If there is a short packet at the end of the transfer,
then the last step is to schedule the final USB transfer by calling the USBEndpointDataSend()
and then wait for a final endpoint interrupt to signal completion of the USB transfer. The trans-
fer is complete when the application receives a final endpoint interrupt, which is returned by the
USBIntStatusEndpoint() function.

32.4.4 Receiving a Single Packet

Receiving packets is a little more complicated than sending because in some cases you do not
know when the receive request occurs or how much data is being sent when you configure the
endpoint. This section handles receiving a single packet transfer that is less than or equal to the
maximum packet size for an endpoint. In this mode, the DMA controller copies data from the USB
endpoint FIFO to system memory. The DMA transfer of a single packet must be started when the
packet is received. If the USB_EP_AUTO_CLEAR option is included in the call to USBEndpointD-
MAConfigSet(), then the receive is acknowledged when the DMA transfer pulls the last data from
the FIFO. The DMA transfer is started when the endpoint receive interrupt indicates that data is
available in the FIFO. The examples below demonstrate the steps necessary to complete a DMA
transfer of a single packet.

If endpoints are not dynamically allocated by the application, some of the DMA and endpoint con-
figuration can be treated as static and executed only once during initial configuration.

Example: Static endpoint configuration for single packet DMA receive

//
// Endpoint 2 uses Mode 0, receive, and enables automatic acknowledge
// when a full packet is read from the FIFO.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_2, USB_EP_HOST_IN |

USB_EP_DMA_MODE_0 |
USB_EP_AUTO_CLEAR);

//
// Assign endpoint 2 to DMA channel 3 using Mode 0, no bursting, receive,
// and enable DMA interrupts.
//
USBDMAChannelConfigSet(USB0_BASE, 3, USB_EP_2, USB_DMA_CFG_MODE_0 |

USB_DMA_CFG_BURST_NONE |
USB_DMA_CFG_DIR_RX |
USB_DMA_CFG_INT_EN);

//
// Make sure that DMA is not enabled on the endpoint. If DMA is left
// enabled, the endpoint interrupt does not occur.
//
USBEndpointDMADisable(USB0_BASE, 3, USB_EP_HOST_IN);

Once the endpoint interrupt indicates that a packet is ready for transfer, then the application takes
the following steps to start the DMA transfer to receive the data from the FIFO.

Example: Starting a DMA receive transfer on channel 3.

//
// Set the destination address for the transfer to pvBuffer.
//
USBDMAChannelAddressSet(USB0_BASE, 3, pvBuffer);

656 July 25, 2016

USB Controller

//
// Set the transfer size to 48 bytes and the packet count to 0.
//
USBDMAChannelCountSet(USB0_BASE, 3, 48);
USBEndpointPacketCountSet(USB0_BASE, 3, 0)

//
// Enable the DMA transfer.
//
USBDMAChannelEnable();

Now the application must wait for a final interrupt to indicate that the DMA has completed by check-
ing the return value from the USBDMAChannelIntStatus() function. If the endpoint was not config-
ured with the USB_EP_AUTO_CLEAR function, then a final call to USBDevEndpointDataAck() or
USBHostEndpointDataAck() is required to acknowledge the packet. The USB_EP_AUTO_CLEAR
feature must not be used if the packet may need to be stalled.

32.4.5 Receiving a Multiple Packets

This section handles receiving multiple packets with a single DMA transfer. This method is used
when the total size of the transfer is greater than the maximum packet size for the endpoint. If
there is a trailing null packet or short packet, the final transfer must be manually acknowledged
with a call to USBDevEndpointDataAck() or USBHostEndpointDataAck(). Unlike the single packet,
this transfer can be configured before the packet is received if the size of the transfer is known
beforehand. Because this type of USB DMA uses mode 1, the transfer only starts if a full packet
has been received. If a short packet is unexpectedly received, the transfer does not start, but
the USB endpoint interrupt is still signaled so that the transfer can be started manually if needed.
This mechanism is also needed anytime the final packet is a short packet. The examples below
demonstrate the steps necessary to complete a DMA transfer of multiple packets.

If endpoints are not dynamically allocated by the application, some of the DMA and endpoint con-
figuration can be treated as static and executed only once during initial configuration.

Example: Static endpoint configuration for DMA multiple packet receive

//
// If in USB device mode.
//
if(bUSBDeviceMode)
{

USBEndpointDMAConfigSet(USB0_BASE, USB_EP_2, USB_EP_HOST_IN |
USB_EP_DMA_MODE_1 |
USB_EP_AUTO_CLEAR);

}
else
{

//
// In host mode, USB_EP_AUTO_REQUEST is needed to trigger new requests.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_2, USB_EP_HOST_IN |

USB_EP_AUTO_REQUEST |
USB_EP_DMA_MODE_1 |
USB_EP_AUTO_CLEAR);

}

//
// Assign endpoint 2 to DMA channel 3 using Mode 1, no bursting, receive,

July 25, 2016 657

USB Controller

// and enable DMA interrupts.
//
USBDMAChannelConfigSet(USB0_BASE, 3, USB_EP_2, USB_DMA_CFG_MODE_1 |

USB_DMA_CFG_BURST_NONE |
USB_DMA_CFG_DIR_RX |
USB_DMA_CFG_INT_EN)

//
// Make sure that DMA is not enabled on the endpoint. If DMA is left
// enabled, the endpoint interrupt does not occur.
//
USBEndpointDMADisable(USB0_BASE, 3, USB_EP_HOST_IN);

When the application is ready to start the multiple packet transfer, the application starts the transfer
by taking the following steps.

Example: Starting a multiple packet DMA receive transfer on channel 3.

//
// Set the destination address for the transfer to pvBuffer.
//
USBDMAChannelAddressSet(USB0_BASE, 3, pvBuffer);

//
// Set the transfer size to 512 bytes and the packet count to 8.
//
USBDMAChannelCountSet(USB0_BASE, 3, 512);
USBEndpointPacketCountSet(USB0_BASE, 3, 512/64);

//
// Enable the DMA transfer.
//
USBEndpointDMAEnable(USB0_BASE, USB_EP_2, USB_EP_HOST_IN);
USBDMAChannelEnable(USB0_BASE, 3);

Now the application waits for the interrupt to indicate that either the DMA has completed or that
a short packet has been received. If USBDMAChannelIntStatus() indicates that the transfer is
complete, then there are no more steps to take. If there is no pending DMA interrupt, then a short
packet was received, and the application can either manually read the data from the FIFO or switch
to the steps above to trigger a single packet transfer to complete the USB transfer.

The remainder of the USB functions are not directly needed for USB DMA transfers but may be
needed for other application-specific reasons. The first two of these remaining functions are USB-
DMAChannelIntEnable() and USBDMAChannelIntDisable(), which are a pair of functions to enable
and disable a specific DMA channel from generating interrupts. The USBDMAChannelEnable()
function is explained previously. The USBDMAChannelDisable() function disables a specific DMA
channel if necessary. In some cases, there is global DMA status that is reported to the application
via the USBDMAChannelStatus() function, which can be handled and cleared by calling the USBD-
MAChannelStatusClear() function. See the documentation for the USBDMAChannelStatusClear()
function for more details on the possible status values.

32.4.6 Function Documentation

32.4.6.1 USBDMAChannelAddressGet

Returns the source or destination address for the specified integrated USB DMA channel.

658 July 25, 2016

USB Controller

Prototype:
void *
USBDMAChannelAddressGet(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies the USB DMA channel.

Description:
This function returns the DMA address for the channel number specified in the ui32Channel
parameter. The ui32Channel value is a zero-based index of the DMA channel to query. This
function must not be used on devices that return USB_CONTROLLER_VER_0 from the USB-
ControllerVersion() function.

Example: Get the transfer address for USB DMA channel 1.

void *pvBuffer;

//
// Retrieve the current DMA address for channel 1.
//
pvBuffer = USBDMAChannelAddressGet(USB0_BASE, 1);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
The current DMA address for a USB DMA channel.

32.4.6.2 USBDMAChannelAddressSet

Sets the source or destination address for an integrated USB DMA transfer on a specified channel.

Prototype:
void
USBDMAChannelAddressSet(uint32_t ui32Base,

uint32_t ui32Channel,
void *pvAddress)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to configure.
pvAddress specifies the source or destination address for the USB DMA transfer.

Description:
This function sets the source or destination address for the USB DMA channel number speci-
fied in the ui32Channel parameter. The ui32Channel value is a zero-based index of the USB
DMA channel. The pvAddress parameter is a source address if the transfer type for the DMA
channel is transmit and a destination address if the transfer type is receive.

Example: Set the transfer address for USB DMA channel 1.

July 25, 2016 659

USB Controller

void *pvBuffer;

//
// Set the address for USB DMA channel 1.
//
USBDMAChannelAddressSet(USB0_BASE, 1, pvBuffer);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.3 USBDMAChannelConfigSet

Assigns and configures an endpoint to a specified integrated USB DMA channel.

Prototype:
void
USBDMAChannelConfigSet(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Endpoint,
uint32_t ui32Config)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to access.
ui32Endpoint is the endpoint to assign to the USB DMA channel.
ui32Config is used to specify the configuration of the USB DMA channel.

Description:
This function assigns an endpoint and configures the settings for a USB DMA channel. The
ui32Endpoint parameter is one of the USB_EP_∗ values and the ui32Channel value is a zero-
based index of the DMA channel to configure. The ui32Config parameter is a combination of
the USB_DMA_CFG_∗ values using the following guidelines.

Use one of the following to set the DMA burst mode:

USB_DMA_CFG_BURST_NONE disables bursting.
USB_DMA_CFG_BURST_4 sets the DMA burst size to 4 words.
USB_DMA_CFG_BURST_8 sets the DMA burst size to 8 words.
USB_DMA_CFG_BURST_16 sets the DMA burst size to 16 words.

Use one of the following to set the DMA mode:

USB_DMA_CFG_MODE_0 is typically used when only a single packet is being sent via
DMA and triggers one completion interrupt per packet.
USB_DMA_CFG_MODE_1 is typically used when multiple packets are being sent via
DMA and triggers one completion interrupt per transfer.

Use one of the following to set the direction of the transfer:

USB_DMA_CFG_DIR_RX selects a DMA transfer from the endpoint to a memory location.

660 July 25, 2016

USB Controller

USB_DMA_CFG_DIR_TX selects a DMA transfer to the endpoint from a memory location.

The following two optional settings allow an application to immediately enable the DMA transfer
and/or DMA interrupts when configuring the DMA channel:

USB_DMA_CFG_INT_EN enables interrupts for this channel immediately so that an
added call to USBDMAChannelIntEnable() is not necessary.
USB_DMA_CFG_EN enables the DMA channel immediately so that an added call to US-
BDMAChannelEnable() is not necessary.

Example: Assign channel 0 to endpoint 1 in DMA mode 0, 4 word burst, enable interrupts and
immediately enable the transfer.

//
// Assign channel 0 to endpoint 1 in DMA mode 0, 4 word bursts,
// enable interrupts and immediately enable the transfer.
//
USBDMAChannelConfigSet(USB0_BASE, 0, USB_EP_1,

(USB_DMA_CFG_BURST_4 | USB_DMA_CFG_MODE0 |
USB_DMA_CFG_DIR_RX | USB_DMA_CFG_INT_EN |
USB_DMA_CFG_EN));

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.4 USBDMAChannelCountGet

Returns the transfer count for an integrated USB DMA channel.

Prototype:
uint32_t
USBDMAChannelCountGet(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to access.

Description:
This function returns the USB DMA transfer count in bytes for the channel number specified in
the ui32Channel parameter. The ui32Channel value is a zero-based index of the DMA channel
to query.

Example: Get the transfer count for USB DMA channel 1.

uint32_t ui32Count;

//
// Get the transfer count for USB DMA channel 1.
//
ui32Count = USBDMAChannelCountGet(USB0_BASE, 1);

July 25, 2016 661

USB Controller

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
The current count for a USB DMA channel.

32.4.6.5 USBDMAChannelCountSet

Sets the transfer count for an integrated USB DMA channel.

Prototype:
void
USBDMAChannelCountSet(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Count)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to access.
ui32Count specifies the number of bytes to transfer.

Description:
This function sets the USB DMA transfer count in bytes for the channel number specified in the
ui32Channel parameter. The ui32Channel value is a zero-based index of the DMA channel.

Example: Set the transfer count to 512 bytes for USB DMA channel 1.

//
// Set the transfer count to 512 bytes for USB DMA channel 1.
//
USBDMAChannelCountSet(USB0_BASE, 1, 512);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.6 USBDMAChannelDisable

Disables integrated USB DMA for a specified channel.

Prototype:
void
USBDMAChannelDisable(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies the USB DMA channel to disable.

662 July 25, 2016

USB Controller

Description:
This function disables the USB DMA channel passed in the ui32Channel parameter. The
ui32Channel parameter is a zero-based index of the DMA channel.

Example: Disable USB DMA channel 2.

//
// Disable USB DMA channel 2.
//
USBDMAChannelDisable(2);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.7 USBDMAChannelEnable

Enables integrated USB DMA for a specified channel.

Prototype:
void
USBDMAChannelEnable(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies the USB DMA channel to enable.

Description:
This function enables the USB DMA channel passed in the ui32Channel parameter. The
ui32Channel value is a zero-based index of the USB DMA channel.

Example: Enable USB DMA channel 2.

//
// Enable USB DMA channel 2.
//
USBDMAChannelEnable(2);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.8 USBDMAChannelIntDisable

Disable interrupts for a specified integrated USB DMA channel.

July 25, 2016 663

USB Controller

Prototype:
void
USBDMAChannelIntDisable(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which USB DMA channel interrupt to disable.

Description:
This function disables the USB DMA channel interrupt based on the ui32Channel parameter.
The ui32Channel value is a zero-based index of the USB DMA channel.

Example: Disable the USB DMA channel 3 interrupt.

//
// Disable the USB DMA channel 3 interrupt
//
USBDMAChannelIntDisable(USB0_BASE, 3);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.9 USBDMAChannelIntEnable

Enable interrupts for a specified integrated USB DMA channel.

Prototype:
void
USBDMAChannelIntEnable(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel interrupt to enable.

Description:
This function enables the USB DMA channel interrupt based on the ui32Channel parameter.
The ui32Channel value is a zero-based index of the USB DMA channel. Once enabled, the
USBDMAChannelIntStatus() function returns if a DMA channel has generated an interrupt.

Example: Enable the USB DMA channel 3 interrupt.

//
// Enable the USB DMA channel 3 interrupt
//
USBDMAChannelIntEnable(USB0_BASE, 3);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

664 July 25, 2016

USB Controller

Returns:
None.

32.4.6.10 USBDMAChannelIntStatus

Return the current status of the integrated USB DMA interrupts.

Prototype:
uint32_t
USBDMAChannelIntStatus(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current bit-mapped interrupt status for all USB DMA channel interrupt
sources. Calling this function automatically clears all currently pending USB DMA interrupts.

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Example: Get the pending USB DMA interrupts.

uint32_t ui32Ints;

//
// Get the pending USB DMA interrupts.
//
ui32Ints = USBDMAChannelIntStatus(USB0_BASE);

Returns:
The bit-mapped interrupts for the DMA channels.

32.4.6.11 USBDMAChannelStatus

Returns the current status for an integrated USB DMA channel.

Prototype:
uint32_t
USBDMAChannelStatus(uint32_t ui32Base,

uint32_t ui32Channel)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to query.

Description:
This function returns the current status for the USB DMA channel specified by the ui32Channel
parameter. The ui32Channel value is a zero-based index of the USB DMA channel to query.

Example: Get the current USB DMA status for channel 2.

July 25, 2016 665

USB Controller

uint32_t ui32Status;

//
// Get the current USB DMA status for channel 2.
//
ui32Status = USBDMAChannelStatus(USB0_BASE, 2);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
Returns zero or USB_DMACTL0_ERR if there is a pending error condition on a DMA channel.

32.4.6.12 USBDMAChannelStatusClear

Clears the integrated USB DMA status for a specified channel.

Prototype:
void
USBDMAChannelStatusClear(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Status)

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to clear.
ui32Status holds the status bits to clear.

Description:
This function clears the USB DMA channel status for the channel specified by the ui32Channel
parameter. The ui32Channel value is a zero-based index of the USB DMA channel to query.
The ui32Status parameter specifies the status bits to clear and must be the valid values that
are returned from a call to the USBDMAChannelStatus() function.

Example: Clear the current USB DMA status for channel 2.

//
// Clear the any pending USB DMA status for channel 2.
//
USBDMAChannelStatusClear(USB0_BASE, 2, USBDMAChannelStatus(USB0_BASE, 2));

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

32.4.6.13 USBDMANumChannels

Returns the available number of integrated USB DMA channels.

666 July 25, 2016

USB Controller

Prototype:
uint32_t
USBDMANumChannels(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the total number of DMA channels available when using the integrated
USB DMA controller. This function returns 0 if the integrated controller is not present.

Example: Get the number of integrated DMA channels.

uint32_t ui32Count;

//
// Get the number of integrated DMA channels.
//
ui32Count = USBDMANumChannels(USB0_BASE);

Returns:
The number of integrated USB DMA channels or zero if the integrated USB DMA controller is
not present.

32.5 USB Link Power Management Functions

Functions
void USBDevLPMConfig (uint32_t ui32Base, uint32_t ui32Config)
void USBDevLPMDisable (uint32_t ui32Base)
void USBDevLPMEnable (uint32_t ui32Base)
void USBDevLPMRemoteWake (uint32_t ui32Base)
void USBHostLPMConfig (uint32_t ui32Base, uint32_t ui32ResumeTime, uint32_t ui32Config)
void USBHostLPMResume (uint32_t ui32Base)
void USBHostLPMSend (uint32_t ui32Base, uint32_t ui32Address, uint32_t ui32Endpoint)
uint32_t USBLPMEndpointGet (uint32_t ui32Base)
void USBLPMIntDisable (uint32_t ui32Base, uint32_t ui32Ints)
void USBLPMIntEnable (uint32_t ui32Base, uint32_t ui32Ints)
uint32_t USBLPMIntStatus (uint32_t ui32Base)
uint32_t USBLPMLinkStateGet (uint32_t ui32Base)
bool USBLPMRemoteWakeEnabled (uint32_t ui32Base)

32.5.1 Detailed Description

Some Tiva microcontrollers controllers include support for the USB Link Power Management (LPM)
feature. This feature allows a USB host to put a device into sleep mode much faster than normally
possible with the default USB suspend, which takes about 3ms. The Tiva USB controller only
supports entering the L1 state, which is a sleep state and not the full suspend state (L2). The L1
state has no specific power requirements and, with LPM, can be entered and exited much faster

July 25, 2016 667

USB Controller

than the suspend state. Even with the L1 state implemented, the suspend state is still supported
when the USB bus is idle for 3ms. The L1 sleep state is supported in both host and device modes
including support for LPM remote wake. This section covers the support available in DriverLib for
both USB host and device modes and all of the configuration options.

32.5.2 Host Mode LPM Support

The USB host mode support for LPM includes the ability to send a request for a device to enter
LPM mode and to resume from the LPM-initiated sleep mode. The application can make a request
at any time by calling the USBHostLPMSend() function, which requests the device to enter LPM
mode as soon as the command is sent on the USB bus. When the host wants to wake the device,
it can call the USBHostLPMResume() function, or if the device supports remote wake from LPM,
the device can also initiate resume signaling.

The USB controller must to be configured before use by calling the USBHostLPMConfig() func-
tion. Two configuration options are available: the resume time and if the device is allowed to
use the remote wake feature. The resume time is specified in microseconds ranging from 50us
to 1200us and is passed in the ulResumeTime parameter of the USBHostLPMConfig() function.
The remaining option determines if the device is allowed to issue remote wake signaling by using
the USB_HOST_LPM_RMTWAKE option. The USB_HOST_LPM_L1 option is at present the only
mode that is supported when using LPM. The following example demonstrates how to configure
and enable USB LPM support.

Example: Configure LPM in host mode.

//
// Enable LPM with 500us resume signaling and enable remote wake.
//
USBHostLPMConfig(USB0_BASE, 500, USB_HOST_LPM_RMTWAKE | USB_HOST_LPM_L1)

//
// Enable all LPM related interrupts for host mode.
//
USBLPMIntEnable(USB0_BASE, USB_INTLPM_RESUME | USB_INTLPM_INCOMPLETE |

USB_INTLPM_ACK | USB_INTLPM_NYET |
USB_INTLPM_STALL));

After an LPM request to enter the L1 sleep state, the device can respond in one of four ways. The
possible responses all generate a USB interrupt if the interrupts are enabled with a call to US-
BLPMIntEnable(), or the application can poll for a response using the USBLPMIntStatus() function.
It is important to remember that any call to USBLPMIntStatus() clears all currently pending inter-
rupts, so any pending interrupts must be handled after this call. The following are the valid interrupt
responses returned from a call to USBLPMIntStatus():

USB_INTLPM_INCOMPLETE - The device failed to respond to the LPM request.

USB_INTLPM_ACK - The device received the response and accepted the command.

USB_INTLPM_NYET - The device responded with NYET indicating that it is not prepared to
handle the request at this time.

USB_INTLPM_STALL - The device received the command but does not support this LPM
request.

USB_INTLPM_RESUME - The device has resumed from the L1 state due to a host request
or a remote resume request.

668 July 25, 2016

USB Controller

32.5.3 Device Mode LPM Support

The USB device mode support for LPM includes the ability to receive requests to enter and exit the
L1 sleep state. If the host enables remote wake from the L1 state, then the device can issue remote
wake requests by calling the USBDevLPMRemoteWake() function after a device has been placed
into the L1 state by an LPM request from the host.

The USB device can be configured to handle the incoming LPM request in multiple ways depend-
ing on the application requirements. Before the USB controller can properly respond to LPM com-
mands, it must first be configured by calling the USBDevLPMConfig() function with the required
configuration options. The three valid configurations that control how the USB controller responds
to LPM requests from the host are:

USB_DEV_LPM_NONE - Do not respond to any LPM requests, causing a timeout on the host
side.

USB_DEV_LPM_EN - Enable full LPM responses from the device.

USB_DEV_LPM_EXTONLY - Receive extended packets, but do not handle LPM requests.

Example: Configure LPM in device mode.

//
// Enable full LPM support in device mode.
//
USBDevLPMConfig(USB0_BASE, USB_DEV_LPM_EN)

//
// Enable all LPM related interrupts for host mode.
//
USBLPMIntEnable(USB0_BASE, USB_INTLPM_ERROR | USB_INTLPM_RESUME |

USB_INTLPM_INCOMPLETE | USB_INTLPM_ACK |
USB_INTLPM_NYET | USB_INTLPM_STALL));

When a USB device receives an LPM command from the host, the results are stored and an in-
terrupt is triggered. The results of the last successful LPM request are returned by calling the
USBLPMLinkStateGet() function, and the targeted endpoint is returned by calling USBLPMEnd-
pointGet(). These functions should be called to properly handle the incoming LPM request. The
only valid link state change that is supported is a change to the remote wake feature, which is
enabled if the USBLPMLinkStateGet() return value has the USB_DEV_LPM_LS_RMTWAKE bit
set.

Example: Handling an incoming LPM request.

unsigned long ulStatus;
unsigned long ulEndpoint;

//
// Get the current link state and the targeted endpoint.
//
ulStatus = USBLPMLinkStateGet(USB0_BASE);
ulEndpoint = USBLPMEndpointGet(USB0_BASE);

//
// Check if remote wake is enabled.
//
if(ulStatus & USB_DEV_LPM_LS_RMTWAKE)
{

// Handle enable of remote wake.
}

July 25, 2016 669

USB Controller

else
{

// Handle disable of remote wake.
}

If the USB host controller enables remote wake on the device by sending an LPM request with the
remote wake feature enabled, then the device is allowed to send remote wake requests to the host.
A remote wake is sent by the device calling the USBDevLPMRemoteWake() function.

Example: Sending a remote wake from a USB device.

//
// Send a remote wake signal.
//
USBDevLPMRemoteWake(USB0_BASE);

32.5.4 Function Documentation

32.5.4.1 USBDevLPMConfig

Configures the USB device mode response to LPM requests.

Prototype:
void
USBDevLPMConfig(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base specifies the USB module base address.
ui32Config is the combination of configuration options for LPM transactions in device mode.

Description:
This function sets the global configuration options for LPM transactions in device mode and
must be called before ever calling USBDevLPMEnable() to set the configuration for LPM trans-
actions. The configuration options in device mode are specified in the ui32Config parameter
and include one of the following:

USB_DEV_LPM_NONE disables the USB controller from responding to LPM transactions.
USB_DEV_LPM_EN enables the USB controller to respond to LPM and extended trans-
actions.
USB_DEV_LPM_EXTONLY enables the USB controller to respond to extended transac-
tions, but not LPM transactions.

The ui32Config option can also optionally include the USB_DEV_LPM_NAK value to cause
the USB controller to NAK all transactions other than an LPM transaction once the USB con-
troller is in LPM suspend mode. If this value is not included in the ui32Config parameter, the
USB controller does not respond in suspend mode.

The USB controller does not enter LPM suspend mode until the application calls the USBDe-
vLPMEnable() function.

Example: Enable LPM transactions and NAK while in LPM suspend mode.

670 July 25, 2016

USB Controller

//
// Enable LPM transactions and NAK while in LPM suspend mode.
//
USBDevLPMConfig(USB0_BASE, USB_DEV_LPM_NAK | USB_DEV_LPM_EN);

Note:
This function must only be called in device mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

Returns:
None.

32.5.4.2 USBDevLPMDisable

Disables the USB controller from responding to LPM suspend requests.

Prototype:
void
USBDevLPMDisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USB controller from responding to LPM transactions. When the
device enters LPM L1 mode, the USB controller automatically disables responding to further
LPM transactions.

Note:
If LPM transactions were enabled before calling this function, then an LPM request can still
occur before this function returns. As a result, the application must continue to handle LPM
requests until this function returns.

Example: Disable LPM suspend mode.

//
// Disable LPM suspend mode.
//
USBDevLPMDisable(USB0_BASE);

Note:
This function must only be called in device mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

Returns:
None.

32.5.4.3 USBDevLPMEnable

Enables the USB controller to respond to LPM suspend requests.

July 25, 2016 671

USB Controller

Prototype:
void
USBDevLPMEnable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function is used to automatically respond to an LPM sleep request from the USB host con-
troller. If there is no data pending in any transmit FIFOs, then the USB controller acknowledges
the packet and enters the LPM L1 state and generates the USB_INTLPM_ACK interrupt. If
the USB controller has pending transmit data in at least one FIFO, then the USB controller
responds with NYET and signals the USB_INTLPM_INCOMPLETE or USB_INTLPM_NYET
depending on if data is pending in receive or transmit FIFOs. A call to USBDevLPMEnable() is
required after every LPM resume event to re-enable LPM mode.

Example: Enable LPM suspend mode.

//
// Enable LPM suspend mode.
//
USBDevLPMEnable(USB0_BASE);

Note:
This function must only be called in device mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

Returns:
None.

32.5.4.4 USBDevLPMRemoteWake

Initiates remote wake signaling to request the device to leave LPM suspend mode.

Prototype:
void
USBDevLPMRemoteWake(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function initiates remote wake signaling to request that the host wake a device that has
entered an LPM-triggered low power mode.

Example: Initiate remote wake signaling.

//
// Initiate remote wake signaling.
//
USBDevLPMRemoteWake(USB0_BASE);

Note:
This function must only be called in device mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

672 July 25, 2016

USB Controller

Returns:
None.

32.5.4.5 USBHostLPMConfig

Sets the global configuration for all LPM requests.

Prototype:
void
USBHostLPMConfig(uint32_t ui32Base,

uint32_t ui32ResumeTime,
uint32_t ui32Config)

Parameters:
ui32Base specifies the USB module base address.
ui32ResumeTime specifies the resume signaling duration in 75us increments.
ui32Config specifies the combination of configuration options for LPM transactions.

Description:
This function sets the global configuration options for LPM transactions and must be called at
least once before ever calling USBHostLPMSend(). The ui32ResumeTime specifies the length
of time that the host drives resume signaling on the bus in microseconds. The valid values for
ui32ResumeTime are from 50us to 1175us in 75us increments. The remaining configuration is
specified by the ui32Config parameter and includes the following options:

USB_HOST_LPM_RMTWAKE allows the device to signal a remote wake from the LPM
state.
USB_HOST_LPM_L1 is the LPM mode to enter and must always be included in the con-
figuration.

Example: Set the LPM configuration to allow remote wake with a resume duration of 500us.

//
// Set the LPM configuration to allow remote wake with a resume
// duration of 500us.
//
USBHostLPMConfig(USB0_BASE, 500, USB_HOST_LPM_RMTWAKE | USB_HOST_LPM_L1);

Note:
This function must only be called in host mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

Returns:
None.

32.5.4.6 USBHostLPMResume

Initiates resume signaling to wake a device from LPM suspend mode.

Prototype:
void
USBHostLPMResume(uint32_t ui32Base)

July 25, 2016 673

USB Controller

Parameters:
ui32Base specifies the USB module base address.

Description:
In host mode, this function initiates resume signaling to wake a device that has entered an
LPM-triggered low power mode. This LPM-triggered low power mode is entered when the
USBHostLPMSend() is called to put a specific device into a low power state.

Example: Initiate resume signaling.

//
// Initiate resume signaling.
//
USBHostLPMResume(USB0_BASE);

Note:
This function must only be called in host mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

Returns:
None.

32.5.4.7 USBHostLPMSend

Sends an LPM request to a device at a specified address and endpoint number.

Prototype:
void
USBHostLPMSend(uint32_t ui32Base,

uint32_t ui32Address,
uint32_t ui32Endpoint)

Parameters:
ui32Base specifies the USB module base address.
ui32Address is the target device address for the LPM request.
ui32Endpoint is the target endpoint for the LPM request.

Description:
This function sends an LPM request to a connected device in host mode. The ui32Address
parameter specifies the device address and has a range of values from 1 to 127. The
ui32Endpoint parameter specifies the endpoint on the device to which to send the LPM re-
quest and must be one of the USB_EP_∗ values. The function returns before the LPM request
is sent, requiring the caller to poll the USBLPMIntStatus() function or wait for an interrupt to
signal completion of the LPM transaction. This function must only be called after the USB-
HostLPMConfig() has configured the LPM transaction settings.

Example: Send an LPM request to the device at address 1 on endpoint 0.

//
// Send an LPM request to the device at address 1 on endpoint 0.
//
USBHostLPMSend(USB0_BASE, 1, USB_EP_0);

674 July 25, 2016

USB Controller

Note:
This function must only be called in host mode. The USB LPM feature is not available on all
Tiva devices. Please consult the data sheet for the Tiva device that you are using to determine
if this feature is available.

Returns:
None.

32.5.4.8 USBLPMEndpointGet

Returns the current LPM endpoint value.

Prototype:
uint32_t
USBLPMEndpointGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current LPM endpoint value. The meaning of the value depends on
the mode of operation of the USB controller. When in device mode, the value returned is the
endpoint that received the last LPM transaction. When in host mode this is the endpoint that
was last sent an LPM transaction, or the endpoint that is configured to be sent when the LPM
transaction is triggered. The value returned is in the USB_EP_[0-7] value and a direct endpoint
index.

Example: Get the endpoint for the last LPM transaction.

uint32_t ui32Endpoint;

//
// Get the endpoint number that received the LPM request.
//
ui32LinkState = USBLPMEndpointGet(USB0_BASE);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
The last endpoint to receive an LPM request in device mode or the endpoint that the host sends
an LPM request as one of the USB_EP_[0-7] values.

32.5.4.9 USBLPMIntDisable

Disables LPM interrupts.

Prototype:
void
USBLPMIntDisable(uint32_t ui32Base,

uint32_t ui32Ints)

July 25, 2016 675

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Ints specifies which LPM interrupts to disable.

Description:
This function disables the LPM interrupts specified in the ui32Ints parameter, preventing them
from triggering a USB interrupt.

The valid interrupt status bits when the USB controller is acting as a host are the following:

USB_INTLPM_ERROR a bus error occurred in the transmission of an LPM transaction.
USB_INTLPM_RESUME the USB controller has resumed from LPM low power state.
USB_INTLPM_INCOMPLETE the LPM transaction failed because a timeout occurred or
there were bit errors in the response for three attempts.
USB_INTLPM_ACK the device has acknowledged an LPM transaction.
USB_INTLPM_NYET the device has responded with a NYET to an LPM transaction.
USB_INTLPM_STALL the device has stalled an LPM transaction.

The valid interrupt status bits when the USB controller is acting as a device are the following:

USB_INTLPM_ERROR an LPM transaction was received that has an unsupported link
state field. The transaction was stalled, but the requested link state can still be read using
the USBLPMLinkStateGet() function.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the USB controller responded to an LPM transaction with a
NYET because data was still in the transmit FIFOs.
USB_INTLPM_ACK the USB controller acknowledged an LPM transaction and is now in
the LPM suspend mode.
USB_INTLPM_NYET the USB controller responded to an LPM transaction with a NYET
because LPM transactions are not yet enabled by a call to USBDevLPMEnable().
USB_INTLPM_STALL the USB controller has stalled an incoming LPM transaction.

Example: Disable all LPM interrupt sources.

//
// Disable all LPM interrupt sources.
//
USBLPMIntDisable(USB0_BASE, USB_INTLPM_ERROR | USB_INTLPM_RESUME |

USB_INTLPM_INCOMPLETE | USB_INTLPM_ACK |
USB_INTLPM_NYET | USB_INTLPM_STALL);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

32.5.4.10 USBLPMIntEnable

Enables LPM interrupts.

676 July 25, 2016

USB Controller

Prototype:
void
USBLPMIntEnable(uint32_t ui32Base,

uint32_t ui32Ints)

Parameters:
ui32Base specifies the USB module base address.
ui32Ints specifies which LPM interrupts to enable.

Description:
This function enables a set of LPM interrupts so that they can trigger a USB interrupt. The
ui32Ints parameter specifies which of the USB_INTLPM_∗ to enable.

The valid interrupt status bits when the USB controller is acting as a host are the following:

USB_INTLPM_ERROR a bus error occurred in the transmission of an LPM transaction.
USB_INTLPM_RESUME the USB controller has resumed from LPM low power state.
USB_INTLPM_INCOMPLETE the LPM transaction failed because a timeout occurred or
there were bit errors in the response for three attempts.
USB_INTLPM_ACK the device has acknowledged an LPM transaction.
USB_INTLPM_NYET the device has responded with a NYET to an LPM transaction.
USB_INTLPM_STALL the device has stalled an LPM transaction.

The valid interrupt status bits when the USB controller is acting as a device are the following:

USB_INTLPM_ERROR an LPM transaction was received that has an unsupported link
state field. The transaction was stalled, but the requested link state can still be read using
the USBLPMLinkStateGet() function.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the USB controller responded to an LPM transaction with a
NYET because data was still in the transmit FIFOs.
USB_INTLPM_ACK the USB controller acknowledged an LPM transaction and is now in
the LPM suspend mode.
USB_INTLPM_NYET the USB controller responded to an LPM transaction with a NYET
because LPM transactions are not yet enabled by a call to USBDevLPMEnable().
USB_INTLPM_STALL the USB controller has stalled an incoming LPM transaction.

Example: Enable all LPM interrupt sources.

//
// Enable all LPM interrupt sources.
//
USBLPMIntEnable(USB0_BASE, USB_INTLPM_ERROR | USB_INTLPM_RESUME |

USB_INTLPM_INCOMPLETE | USB_INTLPM_ACK |
USB_INTLPM_NYET | USB_INTLPM_STALL);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

July 25, 2016 677

USB Controller

32.5.4.11 USBLPMIntStatus

Returns the current LPM interrupt status.

Prototype:
uint32_t
USBLPMIntStatus(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current LPM interrupt status for the USB controller.

The valid interrupt status bits when the USB controller is acting as a host are the following:

USB_INTLPM_ERROR a bus error occurred in the transmission of an LPM transaction.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the LPM transaction failed because a timeout occurred or
there were bit errors in the response for three attempts.
USB_INTLPM_ACK the device has acknowledged an LPM transaction.
USB_INTLPM_NYET the device has responded with a NYET to an LPM transaction.
USB_INTLPM_STALL the device has stalled an LPM transaction.

The valid interrupt status bits when the USB controller is acting as a device are the following:

USB_INTLPM_ERROR an LPM transaction was received that has an unsupported link
state field. The transaction was stalled, but the requested link state can still be read using
the USBLPMLinkStateGet() function.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the USB controller responded to an LPM transaction with a
NYET because data was still in the transmit FIFOs.
USB_INTLPM_ACK the USB controller acknowledged an LPM transaction and is now in
the LPM suspend mode.
USB_INTLPM_NYET the USB controller responded to an LPM transaction with a NYET
because LPM transactions are not yet enabled by a call to USBDevLPMEnable().
USB_INTLPM_STALL the USB controller has stalled an incoming LPM transaction.

Note:
This call clears the source of all LPM status interrupts, so the caller must take care to save the
value returned because a subsequent call to USBLPMIntStatus() does not return the previous
value.

Example: Get the current LPM interrupt status.

uint32_t ui32LPMIntStatus;

//
// Get the current LPM interrupt status.
//
ui32LPMIntStatus = USBLPMIntStatus(USB0_BASE);

//
// Check if an LPM transaction was acknowledged.
//

678 July 25, 2016

USB Controller

if(ui32LPMIntStatus & USB_INTLPM_ACK)
{

//
// Handle entering LPM suspend mode.
//
...

}

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
The current LPM interrupt status.

32.5.4.12 USBLPMLinkStateGet

Returns the current link state setting.

Prototype:
uint32_t
USBLPMLinkStateGet(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current link state setting for the USB controller. When the controller is
operating as a host, this link state is sent with an LPM request. When the controller is acting as
a device, this link state was received by the last LPM transaction whether it was acknowledged
or stalled because the requested LPM mode is not supported.

Example: Get the link state for the last LPM transaction.

uint32_t ui32LinkState;

//
// Get the endpoint number that received the LPM request.
//
ui32LinkState = USBLPMLinkStateGet(USB0_BASE);

//
// Check if this was a supported link state.
//
if(ui32LinkState == USB_HOST_LPM_L1)
{

//
// Handle the supported L1 link state.
//

}
else
{

//
// Handle the unsupported link state.
//

}

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

July 25, 2016 679

USB Controller

Returns:
The current LPM link state.

32.5.4.13 USBLPMRemoteWakeEnabled

Returns if remote wake is currently enabled.

Prototype:
bool
USBLPMRemoteWakeEnabled(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current state of the remote wake setting for host or device mode
operation. If the controller is acting as a host this returns the current setting that is sent to
devices when LPM requests are sent to a device. If the controller is in device mode, this
function returns the state of the last LPM request sent from the host and indicates if the host
enabled remote wakeup.

Example: Issue remote wake if remote wake is enabled.

if(USBLPMRemoteWakeEnabled(USB0_BASE))
{

USBDevLPMRemoteWake(USB0_BASE);
}

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
The true if remote wake is enabled or false if it is not.

32.6 USB UTMI Low Pin Interface (ULPI)

Functions
void USBULPIConfig (uint32_t ui32Base, uint32_t ui32Config)
void USBULPIDisable (uint32_t ui32Base)
void USBULPIEnable (uint32_t ui32Base)
uint8_t USBULPIRegRead (uint32_t ui32Base, uint8_t ui8Reg)
void USBULPIRegWrite (uint32_t ui32Base, uint8_t ui8Reg, uint8_t ui8Data)

32.6.1 Detailed Description

Some Tiva USB controllers include support for connecting an external USB physical (PHY) inter-
face that adds support for USB high speed operation when the internal PHY’s full speed operation

680 July 25, 2016

USB Controller

does not provide the bandwidth needed by an application. The USB controller supports the USB
2.0 Transceiver Macrocell Interface (UTMI) Low Pin Interface (ULPI) contained in the USB 2.0 spec-
ification. The configuration options for the ULPI interface are set by calling the USBULPIConfig()
function. The options for configuring the ULPI interface include using the external PHY for VBUS
detection by specifying USB_ULPI_EXTVBUS and enabling external VBUS over-current detection
by specifying USB_ULPI_EXTVBUS_IND. The ULPI interface is not enabled by default so the ap-
plication must call the USBULPIEnable() function and can call the USBULPIDisable() function if it
must disable the ULPI interface. Normal operation does not require direct access to the external
PHY, but if necessary the USBULPIRegRead() and USBULPIRegWrite() functions provide direct
access to ULPI PHY registers.

Example: Configuring and Enabling a ULPI connected USB PHY.

//
// Enable external VBUS and over-current detection and enable the
// ULPI interface.
//
USBULPIConfig(USB0_BASE, USB_ULPI_EXTVBUS | USB_ULPI_EXTVBUS_IND);
USBULPIEnable(USB0_BASE);

32.6.2 Function Documentation

32.6.2.1 USBULPIConfig

Configures the USB controller’s ULPI function.

Prototype:
void
USBULPIConfig(uint32_t ui32Base,

uint32_t ui32Config)

Parameters:
ui32Base specifies the USB module base address.
ui32Config contains the configuration options.

Description:
This function is used to configure the USB controller’s ULPI function. The configuration options
are set in the ui32Config parameter and are a logical OR of the following values:

USB_ULPI_EXTVBUS enables the external ULPI PHY as the source for VBUS signaling.
USB_ULPI_EXTVBUS_IND enables the external ULPI PHY to detect external VBUS over-
current condition.

Example: Enable ULPI PHY with full VBUS control.

//
// Enable ULPI PHY with full VBUS control.
//
USBULPIConfig(USB0_BASE, USB_ULPI_EXTVBUS | USB_ULPI_EXTVBUS_IND);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

July 25, 2016 681

USB Controller

Returns:
None.

32.6.2.2 USBULPIDisable

Disables the USB controller’s ULPI function.

Prototype:
void
USBULPIDisable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USB controller’s ULPI function. Accesses to the external ULPI-
connected PHY cannot succeed after this function has been called.

Example: Disable ULPI function.

//
// Disable ULPI function.
//
USBULPIDisable(USB0_BASE);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

32.6.2.3 USBULPIEnable

Enables the USB controller’s ULPI function.

Prototype:
void
USBULPIEnable(uint32_t ui32Base)

Parameters:
ui32Base specifies the USB module base address.

Description:
This function enables the USB controller’s ULPI function and must be called before attempting
to access an external ULPI-connected USB PHY.

Example: Enable ULPI function.

//
// Enable ULPI function.
//
USBULPIEnable(USB0_BASE);

682 July 25, 2016

USB Controller

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

32.6.2.4 USBULPIRegRead

Reads a register from an external ULPI-connected USB PHY.

Prototype:
uint8_t
USBULPIRegRead(uint32_t ui32Base,

uint8_t ui8Reg)

Parameters:
ui32Base specifies the USB module base address.
ui8Reg specifies the register address to read.

Description:
This function reads the register address specified in the ui8Reg parameter using the ULPI
function. This function is blocking and only returns when the read access completes. The
function does not return if there is not a ULPI-connected USB PHY present.

Example: Read a register from the ULPI PHY.

uint8_t ui8Value;

//
// Read a register from the ULPI PHY register at 0x10.
//
ui8Value = USBULPIRegRead(USB0_BASE, 0x10);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
The value of the requested ULPI register.

32.6.2.5 USBULPIRegWrite

Writes a value to a register on an external ULPI-connected USB PHY.

Prototype:
void
USBULPIRegWrite(uint32_t ui32Base,

uint8_t ui8Reg,
uint8_t ui8Data)

Parameters:
ui32Base specifies the USB module base address.

July 25, 2016 683

USB Controller

ui8Reg specifies the register address to write.
ui8Data specifies the data to write.

Description:
This function writes the register address specified in the ui8Reg parameter with the value
specified in the ui8Data parameter using the ULPI function. This function is blocking and only
returns when the write access completes. The function does not return if there is not a ULPI-
connected USB PHY present.

Example: Write a register from the external ULPI PHY.

//
// Write the ULPI PHY register at 0x10 with 0x20.
//
USBULPIRegWrite(USB0_BASE, 0x10, 0x20);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

32.7 Programming Example

This example code makes the calls necessary to configure endpoint 1, in device mode, as a bulk IN
endpoint. The first call configures endpoint 1 to have a maximum packet size of 64 bytes and makes
it a bulk IN endpoint. The call to USBFIFOConfig() configures the starting address to 64 bytes in
and 64 bytes long. It also specifies USB_EP_DEV_IN to indicate a device mode IN endpoint. The
next two calls demonstrate how to fill the data FIFO for this endpoint and then have it scheduled for
transmission on the USB bus. The USBEndpointDataPut() call puts data into the FIFO but does not
actually start the data transmission. The USBEndpointDataSend() call schedules the transmission
to go out the next time the host controller requests data on this endpoint.

//
// Configure Endpoint 1.
//
USBDevEndpointConfigSet(USB0_BASE, USB_EP_1, 64, DISABLE_NAK_LIMIT,

USB_EP_MODE_BULK | USB_EP_DEV_IN);

//
// Configure FIFO as a device IN endpoint FIFO starting at address 64
// and is 64 bytes in size.
//
USBFIFOConfig(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_64, USB_EP_DEV_IN);

...

//
// Put the data in the FIFO.
//
USBEndpointDataPut(USB0_BASE, USB_EP_1, pucData, 64);

//
// Start the transmission of data.
//
USBEndpointDataSend(USB0_BASE, USB_EP_1, USB_TRANS_IN);

684 July 25, 2016

Watchdog Timer

33 Watchdog Timer
Introduction .685
API Functions . 685
Programming Example .694

33.1 Introduction

The Watchdog Timer API provides a set of functions for using the Tiva watchdog timer modules.
Functions are provided to deal with the watchdog timer interrupts, and to handle status and config-
uration of the watchdog timer.

A watchdog timer module’s function is to prevent system hangs. The watchdog timer module con-
sists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a
locking register. Once the watchdog timer has been configured, the lock register can be written to
prevent the timer configuration from being inadvertently altered.

The watchdog timer can be configured to generate an interrupt to the processor after its first timeout,
and to generate a reset signal after its second timeout. The watchdog timer module generates the
first timeout signal when the 32-bit counter reaches the zero state after being enabled; enabling the
counter also enables the watchdog timer interrupt. After the first timeout event, the 32-bit counter is
reloaded with the value of the watchdog timer load register, and the timer resumes counting down
from that value. If the timer counts down to its zero state again before the first timeout interrupt is
cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the
system. If the interrupt is cleared before the 32-bit counter reaches its second timeout, the 32-bit
counter is loaded with the value in the load register, and counting resumes from that value. If the
load register is written with a new value while the watchdog timer counter is counting, then the
counter is loaded with the new value and continues counting.

On some parts, there are two watchdog timers: one that is clocked by the system clock and a
second that is clocked by PIOSC.

On some parts, the watchdog timer can be configured to generate an NMI instead of a standard
interrupt. If the watchdog timer has been configured to generate an NMI, the interrupt is still treated
the same as if it were a standard interrupt; it must be enabled in order to be triggered, and it must
be cleared inside the NMI handler.

This driver is contained in driverlib/watchdog.c, with driverlib/watchdog.h containing
the API declarations for use by applications.

33.2 API Functions

Functions
void WatchdogEnable (uint32_t ui32Base)
void WatchdogIntClear (uint32_t ui32Base)
void WatchdogIntEnable (uint32_t ui32Base)
void WatchdogIntRegister (uint32_t ui32Base, void (∗pfnHandler)(void))
uint32_t WatchdogIntStatus (uint32_t ui32Base, bool bMasked)

July 25, 2016 685

Watchdog Timer

void WatchdogIntTypeSet (uint32_t ui32Base, uint32_t ui32Type)
void WatchdogIntUnregister (uint32_t ui32Base)
void WatchdogLock (uint32_t ui32Base)
bool WatchdogLockState (uint32_t ui32Base)
uint32_t WatchdogReloadGet (uint32_t ui32Base)
void WatchdogReloadSet (uint32_t ui32Base, uint32_t ui32LoadVal)
void WatchdogResetDisable (uint32_t ui32Base)
void WatchdogResetEnable (uint32_t ui32Base)
bool WatchdogRunning (uint32_t ui32Base)
void WatchdogStallDisable (uint32_t ui32Base)
void WatchdogStallEnable (uint32_t ui32Base)
void WatchdogUnlock (uint32_t ui32Base)
uint32_t WatchdogValueGet (uint32_t ui32Base)

33.2.1 Detailed Description

The Watchdog Timer API is broken into two groups of functions: those that deal with interrupts, and
those that handle status and configuration.

The Watchdog Timer interrupts are handled by the WatchdogIntRegister(), WatchdogIntUnregis-
ter(), WatchdogIntEnable(), WatchdogIntClear(), and WatchdogIntStatus() functions.

Status and configuration functions for the Watchdog Timer module are WatchdogEnable(), Watch-
dogRunning(), WatchdogLock(), WatchdogUnlock(), WatchdogLockState(), WatchdogReloadSet(),
WatchdogReloadGet(), WatchdogValueGet(), WatchdogResetEnable(), WatchdogResetDisable(),
WatchdogStallEnable(), and WatchdogStallDisable().

33.2.2 Function Documentation

33.2.2.1 WatchdogEnable

Enables the watchdog timer.

Prototype:
void
WatchdogEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables the watchdog timer counter and interrupt.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

686 July 25, 2016

Watchdog Timer

33.2.2.2 WatchdogIntClear

Clears the watchdog timer interrupt.

Prototype:
void
WatchdogIntClear(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
The watchdog timer interrupt source is cleared, so that it no longer asserts.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted). This function has no effect if the watchdog
timer has been locked.

Returns:
None.

33.2.2.3 WatchdogIntEnable

Enables the watchdog timer interrupt.

Prototype:
void
WatchdogIntEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables the watchdog timer interrupt.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

33.2.2.4 WatchdogIntRegister

Registers an interrupt handler for the watchdog timer interrupt.

July 25, 2016 687

Watchdog Timer

Prototype:
void
WatchdogIntRegister(uint32_t ui32Base,

void (*pfnHandler)(void))

Parameters:
ui32Base is the base address of the watchdog timer module.
pfnHandler is a pointer to the function to be called when the watchdog timer interrupt occurs.

Description:
This function does the actual registering of the interrupt handler. This function also enables
the global interrupt in the interrupt controller; the watchdog timer interrupt must be enabled via
WatchdogEnable(). It is the interrupt handler’s responsibility to clear the interrupt source via
WatchdogIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Note:
For parts with a watchdog timer module that has the ability to generate an NMI instead of a
standard interrupt, this function registers the standard watchdog interrupt handler. To regis-
ter the NMI watchdog handler, use IntRegister() to register the handler for the FAULT_NMI
interrupt.

Returns:
None.

33.2.2.5 WatchdogIntStatus

Gets the current watchdog timer interrupt status.

Prototype:
uint32_t
WatchdogIntStatus(uint32_t ui32Base,

bool bMasked)

Parameters:
ui32Base is the base address of the watchdog timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the watchdog timer module. Either the raw interrupt
status or the status of interrupt that is allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, where a 1 indicates that the watchdog interrupt is active,
and a 0 indicates that it is not active.

688 July 25, 2016

Watchdog Timer

33.2.2.6 WatchdogIntTypeSet

Sets the type of interrupt generated by the watchdog.

Prototype:
void
WatchdogIntTypeSet(uint32_t ui32Base,

uint32_t ui32Type)

Parameters:
ui32Base is the base address of the watchdog timer module.
ui32Type is the type of interrupt to generate.

Description:
This function sets the type of interrupt that is generated if the watchdog timer expires. ui32Type
can be either WATCHDOG_INT_TYPE_INT to generate a standard interrupt (the default) or
WATCHDOG_INT_TYPE_NMI to generate a non-maskable interrupt (NMI).

When configured to generate an NMI, the watchdog interrupt must still be enabled with Watch-
dogIntEnable(), and it must still be cleared inside the NMI handler with WatchdogIntClear().

Note:
The ability to select an NMI interrupt varies with the Tiva part in use. Please consult the
datasheet for the part you are using to determine whether this support is available. This func-
tion has no effect if the watchdog timer has been locked.

Returns:
None.

33.2.2.7 WatchdogIntUnregister

Unregisters an interrupt handler for the watchdog timer interrupt.

Prototype:
void
WatchdogIntUnregister(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function does the actual unregistering of the interrupt handler. This function clears the
handler to be called when a watchdog timer interrupt occurs. This function also masks off the
interrupt in the interrupt controller so that the interrupt handler no longer is called.

See also:
IntRegister() for important information about registering interrupt handlers.

Note:
For parts with a watchdog timer module that has the ability to generate an NMI instead of
a standard interrupt, this function unregisters the standard watchdog interrupt handler. To
unregister the NMI watchdog handler, use IntUnregister() to unregister the handler for the
FAULT_NMI interrupt.

July 25, 2016 689

Watchdog Timer

Returns:
None.

33.2.2.8 WatchdogLock

Enables the watchdog timer lock mechanism.

Prototype:
void
WatchdogLock(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function locks out write access to the watchdog timer registers.

Returns:
None.

33.2.2.9 WatchdogLockState

Gets the state of the watchdog timer lock mechanism.

Prototype:
bool
WatchdogLockState(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function returns the lock state of the watchdog timer registers.

Returns:
Returns true if the watchdog timer registers are locked, and false if they are not locked.

33.2.2.10 WatchdogReloadGet

Gets the watchdog timer reload value.

Prototype:
uint32_t
WatchdogReloadGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

690 July 25, 2016

Watchdog Timer

Description:
This function gets the value that is loaded into the watchdog timer when the count reaches
zero for the first time.

Returns:
None.

33.2.2.11 WatchdogReloadSet

Sets the watchdog timer reload value.

Prototype:
void
WatchdogReloadSet(uint32_t ui32Base,

uint32_t ui32LoadVal)

Parameters:
ui32Base is the base address of the watchdog timer module.
ui32LoadVal is the load value for the watchdog timer.

Description:
This function configures the value to load into the watchdog timer when the count reaches zero
for the first time; if the watchdog timer is running when this function is called, then the value is
immediately loaded into the watchdog timer counter. If the ui32LoadVal parameter is 0, then
an interrupt is immediately generated.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

33.2.2.12 WatchdogResetDisable

Disables the watchdog timer reset.

Prototype:
void
WatchdogResetDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function disables the capability of the watchdog timer to issue a reset to the processor
after a second timeout condition.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

July 25, 2016 691

Watchdog Timer

33.2.2.13 WatchdogResetEnable

Enables the watchdog timer reset.

Prototype:
void
WatchdogResetEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables the capability of the watchdog timer to issue a reset to the processor
after a second timeout condition.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

33.2.2.14 WatchdogRunning

Determines if the watchdog timer is enabled.

Prototype:
bool
WatchdogRunning(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function checks to see if the watchdog timer is enabled.

Returns:
Returns true if the watchdog timer is enabled and false if it is not.

33.2.2.15 WatchdogStallDisable

Disables stalling of the watchdog timer during debug events.

Prototype:
void
WatchdogStallDisable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function disables the debug mode stall of the watchdog timer. By doing so, the watchdog
timer continues to count regardless of the processor debug state.

692 July 25, 2016

Watchdog Timer

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

33.2.2.16 WatchdogStallEnable

Enables stalling of the watchdog timer during debug events.

Prototype:
void
WatchdogStallEnable(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function allows the watchdog timer to stop counting when the processor is stopped by the
debugger. By doing so, the watchdog is prevented from expiring (typically almost immediately
from a human time perspective) and resetting the system (if reset is enabled). The watchdog
instead expires after the appropriate number of processor cycles have been executed while
debugging (or at the appropriate time after the processor has been restarted).

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

33.2.2.17 WatchdogUnlock

Disables the watchdog timer lock mechanism.

Prototype:
void
WatchdogUnlock(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables write access to the watchdog timer registers.

Returns:
None.

July 25, 2016 693

Watchdog Timer

33.2.2.18 WatchdogValueGet

Gets the current watchdog timer value.

Prototype:
uint32_t
WatchdogValueGet(uint32_t ui32Base)

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function reads the current value of the watchdog timer.

Returns:
Returns the current value of the watchdog timer.

33.3 Programming Example

The following example shows how to set up the watchdog timer API to reset the processor after two
timeouts.

//
// Enable the Watchdog 0 peripheral
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOG0);

//
// Wait for the Watchdog 0 module to be ready.
//
while(!SysCtlPeripheralReady(SYSCTL_PERIPH_WDOG0))
{
}

//
// Check to see if the registers are locked, and if so, unlock them.
//
if(WatchdogLockState(WATCHDOG0_BASE) == true)
{

WatchdogUnlock(WATCHDOG0_BASE);
}

//
// Initialize the watchdog timer.
//
WatchdogReloadSet(WATCHDOG0_BASE, 0xFEEFEE);

//
// Enable the reset.
//
WatchdogResetEnable(WATCHDOG0_BASE);

//
// Enable the watchdog timer.
//
WatchdogEnable(WATCHDOG0_BASE);

//

694 July 25, 2016

Watchdog Timer

// Wait for the reset to occur.
//
while(1)
{
}

July 25, 2016 695

Watchdog Timer

696 July 25, 2016

Using the ROM

34 Using the ROM
Introduction .697
Direct ROM Calls . 697
Mapped ROM Calls . 698
Firmware Update . 699

34.1 Introduction

Many Tiva devices have portions of the peripheral driver library stored in an on-chip ROM. By using
the code in the on-chip ROM, more flash is available for use by the application. The boot loader is
also contained within the ROM, which can be called by an application in order to start a firmware
update.

34.2 Direct ROM Calls

In order to call the ROM, the following steps must be performed:

The device on which the application is run must be defined using a preprocessor symbol,
which can be done either within the source code or in the project that builds the application.
The latter is more flexible if code is shared between projects.

driverlib/rom.h is included by the source code desiring to call the ROM.

The ROM version of a peripheral driver library function is called. For example, if GPIODirMod-
eSet() is to be called in the ROM, ROM_GPIODirModeSet() is used instead.

A define is used to to select the device being used because the set of functions available in the
ROM must be a compile-time decision; checking at run-time does not provide any flash savings
because both the ROM call and the flash version of the API would be in the application flash image.

The following defines are recognized by driverlib/rom.h:

TARGET_IS_TM4C123_RA1 The application is being built to run on a TM4C123 devices,
silicon revision A1.

TARGET_IS_TM4C123_RA3 The application is being built to run on a TM4C123 devices,
silicon revision A3.

TARGET_IS_TM4C123_RB1 The application is being built to run on a TM4C123 devices,
silicon revision B1.

TARGET_IS_TM4C123_RB2 The application is being built to run on a TM4C123 devices,
silicon revision B2.

TARGET_IS_TM4C129_RA0 The application is being built to run on a TM4C129 devices,
silicon revision A0.

July 25, 2016 697

Using the ROM

TARGET_IS_TM4C129_RA1 The application is being built to run on a TM4C129 devices,
silicon revision A1.

TARGET_IS_TM4C129_RA2 The application is being built to run on a TM4C129 devices,
silicon revision A2.

Note:
The TARGET_IS_∗ macros can also control the mapping of interrupt names to interrupt num-
bers. See the Interrupt Mapping section of this document for more details on how these defines
are used to determine interrupt mapping.

By using ROM_Function(), the ROM is explicitly called. If the function in question is not available in
the ROM, a compiler error is produced.

See the TivaWare ROM User’s Guide for the specific device for details of the APIs available in the
ROM.

The following is an example of calling a function in the ROM, defining the device in question using
a #define in the source instead of in the project file:

#define TARGET_IS_TM4C123_RA1
#include "driverlib/rom.h"
#include "driverlib/systick.h"

int
main(void)
{

ROM_SysTickPeriodSet(0x1000);
ROM_SysTickEnable();

// ...
}

34.3 Mapped ROM Calls

When code is intended to be shared between projects, and some of the projects run on devices with
a ROM and some run on devices without a ROM, it is convenient to have the code automatically
call the ROM or the flash version of the API without having #ifdef-s in the code. rom_map.h
provides an automatic mapping feature for accessing the ROM. Similar to the ROM_Function()
APIs provided by rom.h, a set of MAP_Function() APIs are provided. If the function is available in
ROM, MAP_Function() simply calls ROM_Function(); otherwise it calls Function().

In order to use the mapped ROM calls, the following steps must be performed:

Follow the above steps for including and using driverlib/rom.h.

Include driverlib/rom_map.h.

Continuing the above example, call MAP_GPIODirModeSet() in the source code.

As in the direct ROM call method, the choice of calling ROM versus the flash version is made at
compile-time. The only APIs that are provided via the ROM mapping feature are ones that are
available in the ROM, which is not every API available in the peripheral driver library.

The following is an example of calling a function in shared code, where the device in question is
defined in the project file:

698 July 25, 2016

Using the ROM

#include "driverlib/rom.h"
#include "driverlib/rom_map.h"
#include "driverlib/systick.h"

void
SetupSysTick(void)
{

MAP_SysTickPeriodSet(0x1000);
Map_SysTickEnable();

}

When built for a device that does not have a ROM, this example is equivalent to:

#include "driverlib/systick.h"

void
SetupSysTick(void)
{

SysTickPeriodSet(0x1000);
SysTickEnable();

}

When built for a device that has a ROM, however, this example is equivalent to:

#include "driverlib/rom.h"
#include "driverlib/systick.h"

void
SetupSysTick(void)
{

ROM_SysTickPeriodSet(0x1000);
ROM_SysTickEnable();

}

34.4 Firmware Update

Functions
void ROM_UpdateI2C (void)
void ROM_UpdateSSI (void)
void ROM_UpdateUART (void)
void ROM_UpdateUSB (uint8_t ∗pui8USBBootROMInfo)

34.4.1 Detailed Description

There are a set of APIs in the ROM for restarting the boot loader in order to commence a firmware
update. Multiple calls are provided because each selects a particular interface to be used for the
update process, bypassing the interface selection step of the normal boot loader (including the
auto-bauding in the UART interface).

See the TivaWare ROM User’s Guide for the specific device for details of the firmware update APIs
in the ROM.

July 25, 2016 699

Using the ROM

34.4.2 Function Documentation

34.4.2.1 ROM_UpdateI2C

Starts an update over the I2C0 interface.

Prototype:
void
ROM_UpdateI2C(void)

Description:
Calling this function commences an update of the firmware via the I2C0 interface. This function
assumes that the I2C0 interface has already been configured and is currently operational. The
I2C0 slave is used for data transfer, and the I2C0 master is used to monitor bus busy conditions
(therefore, both must be enabled).

Returns:
Never returns.

34.4.2.2 ROM_UpdateSSI

Starts an update over the SSI0 interface.

Prototype:
void
ROM_UpdateSSI(void)

Description:
Calling this function commences an update of the firmware via the SSI0 interface. This function
assumes that the SSI0 interface has already been configured and is currently operational.

Returns:
Never returns.

34.4.2.3 ROM_UpdateUART

Starts an update over the UART0 interface.

Prototype:
void
ROM_UpdateUART(void)

Description:
Calling this function commences an update of the firmware via the UART0 interface. This
function assumes that the UART0 interface has already been configured and is currently oper-
ational.

Returns:
Never returns.

700 July 25, 2016

Using the ROM

34.4.2.4 ROM_UpdateUSB

Starts an update over the USB interface.

Prototype:
void
ROM_UpdateUSB(uint8_t *pui8USBBootROMInfo)

Parameters:
pui8USBBootROMInfo is the optional override for some of the USB device and configuration

descriptor values.

Description:
Calling this function commences an update of the firmware via the USB interface. This function
assumes that the USB interface has already been configured and the device is being clocked
by the PLL. By using specifying a non-zero pui8USBBootROMInfo value, the vendor ID, prod-
uct ID, bus-versus self-powered, maximum power, device version, and USB strings can be
customized.

pui8USBBootROMInfo[0] is the LSB of the Vendor ID.

pui8USBBootROMInfo[1] is the MSB of the Vendor ID.

pui8USBBootROMInfo[2] is the LSB of the Product ID.

pui8USBBootROMInfo[3] is the MSB of the Product ID.

pui8USBBootROMInfo[4] is the LSB of the Device release number(BCD).

pui8USBBootROMInfo[5] is the MSB of the Device release number(BCD).

pui8USBBootROMInfo[6] is the USB power flags for the device, like
USB_CONF_ATTR_SELF_PWR.

pui8USBBootROMInfo[7] is the maximum power for the device in 2mA increments.

pui8USBBootROMInfo[8] is the start of the custom string descriptors.

Example: Custom Descriptor

//
// Default string descriptors.
//
const uint8_t g_pcCustomDescriptor[] =
{

//
// VID (0xbbaa)
//
0xaa, 0xbb,

//
// PID (0xddcc)
//
0xcc, 0xdd,

//
// Device Release(BCD 0x0120)
//
0x20, 0x01,

//
// Power configuration(Bus Powered).
//

July 25, 2016 701

Using the ROM

USB_CONF_ATTR_BUS_PWR,

//
// Power in 2mA increments(250mA).
//
250/2,

//
// Start of string descriptor.
//
2 + (1 * 2),
USB_DTYPE_STRING,
USBShort(USB_LANG_EN_US),

//
// Texas Instruments Incorporated
//
2 + (30 * 2),
USB_DTYPE_STRING,
’T’, 0, ’e’, 0, ’x’, 0, ’a’, 0, ’s’, 0, ’ ’, 0, ’I’, 0, ’n’, 0, ’s’, 0,
’t’, 0, ’r’, 0, ’u’, 0, ’m’, 0, ’e’, 0, ’n’, 0, ’t’, 0, ’s’, 0, ’ ’, 0,
’I’, 0, ’n’, 0, ’c’, 0, ’o’, 0, ’r’, 0, ’p’, 0, ’o’, 0, ’r’, 0, ’a’, 0,
’t’, 0, ’e’, 0, ’d’, 0,

//
// Stellaris Device Firmware Update Serial
//
2 + (27 * 2),
USB_DTYPE_STRING,
’T’, 0, ’i’, 0, ’v’, 0, ’a’, 0, ’ ’, 0, ’D’, 0, ’e’, 0, ’v’, 0, ’i’, 0,
’c’, 0, ’e’, 0, ’ ’, 0, ’F’, 0, ’i’, 0, ’r’, 0, ’m’, 0, ’w’, 0, ’a’, 0,
’r’, 0, ’e’, 0, ’ ’, 0, ’U’, 0, ’p’, 0, ’d’, 0, ’a’, 0, ’t’, 0, ’e’, 0,

//
// 00000000
//
2 + (8 * 2) ,
USB_DTYPE_STRING,
’0’, 0, ’0’, 0, ’0’, 0, ’0’, 0, ’0’, 0, ’0’, 0, ’0’, 0, ’0’, 0

};

Returns:
Never returns.

702 July 25, 2016

Error Handling

35 Error Handling
Invalid arguments and error conditions are handled in a non-traditional manner in the peripheral
driver library. Typically, a function would check its arguments to make sure that they are valid (if
required; some may be unconditionally valid such as a 32-bit value used as the load value for a
32-bit timer). If an invalid argument is provided, an error code would be returned. The caller then
has to check the return code from each invocation of the function to make sure that it succeeded.

This method results in a sizable amount of argument-checking code in each function and return-
code-checking code at each call site. For a self-contained application, this extra code becomes an
unneeded burden once the application is debugged. Having a means of removing it allows the final
code to be smaller and therefore run faster.

In the peripheral driver library, most functions do not return errors (FlashProgram(), FlashErase(),
FlashProtectSet(), and FlashProtectSave() are the notable exceptions). Argument checking is done
via a call to the ASSERT macro (provided in driverlib/debug.h). This macro has the usual
definition of an assert macro; it takes an expression that “must” be true. By making this macro be
empty, the argument checking is removed from the code.

There are two definitions of the ASSERT macro provided in driverlib/debug.h; one that is
empty (used for normal situations) and one that evaluates the expression (used when the library is
built with debugging). The debug version calls the __error__ function whenever the expression is
not true, passing the file name and line number of the ASSERT macro invocation. The __error__
function is prototyped in driverlib/debug.h and must be provided by the application because
it is the application’s responsibility to deal with error conditions.

By setting a breakpoint on the __error__ function, the debugger immediately stops whenever
an error occurs anywhere in the application (something that would be very difficult to do with other
error checking methods). When the debugger stops, the arguments to the __error__ function and
the backtrace of the stack pinpoint the function that found an error, what it found to be a problem,
and where it was called from. As an example:

void
UARTParityModeSet(uint32_t ui32Base, uint32_t ui32Parity)
{

//
// Check the arguments.
//
ASSERT((ui32Base == UART0_BASE) || (ui32Base == UART1_BASE) ||

(ui32Base == UART2_BASE));
ASSERT((ui32Parity == UART_CONFIG_PAR_NONE) ||

(ui32Parity == UART_CONFIG_PAR_EVEN) ||
(ui32Parity == UART_CONFIG_PAR_ODD) ||
(ui32Parity == UART_CONFIG_PAR_ONE) ||
(ui32Parity == UART_CONFIG_PAR_ZERO));

Each argument is individually checked, so the line number of the failing ASSERT indicates the
argument that is invalid. The debugger is able to display the values of the arguments (from the
stack backtrace) as well as the caller of the function that had the argument error. This method
allows the problem to be quickly identified at the cost of a small amount of code.

July 25, 2016 703

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48,
latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current
and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and appli-
cations using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of
the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the
use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal
is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use
in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use
of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006-2016, Texas Instruments Incorporated

704 July 25, 2016

www.ti.com/audio
www.ti.com/automotive
amplifier.ti.com
www.ti.com/communications
dataconverter.ti.com
www.ti.com/computers
www.dlp.com
www.ti.com/consumer-apps
dsp.ti.com
www.ti.com/energy
www.ti.com/clocks
www.ti.com/industrial
interface.ti.com
www.ti.com/medical
logic.ti.com
www.ti.com/security
power.ti.com
www.ti.com/space-avionics-defense
microcontroller.ti.com
www.ti.com/video
www.ti-rfid.com
www.ti.com/omap
e2e.ti.com
www.ti.com/wirelessconnectivity

	Copyright
	Revision Information
	1 Introduction
	2 Programming Model
	2.1 Introduction
	2.2 Direct Register Access Model
	2.3 Software Driver Model
	2.4 Combining The Models

	3 Analog Comparator
	3.1 Introduction
	3.2 API Functions
	3.3 Programming Example

	4 Analog to Digital Converter (ADC)
	4.1 Introduction
	4.2 API Functions
	4.3 Programming Example

	5 AES
	5.1 Introduction
	5.2 API Functions
	5.3 Programming Example

	6 Controller Area Network (CAN)
	6.1 Introduction
	6.2 API Functions
	6.3 CAN Message Objects
	6.4 Programming Examples

	7 CRC
	7.1 Introduction
	7.2 API Functions
	7.3 Programming Example

	8 DES
	8.1 Introduction
	8.2 API Functions
	8.3 DES Programming Example
	8.4 TDES Programming Example

	9 EEPROM
	9.1 Introduction
	9.2 API Functions
	9.3 Programming Example

	10 Ethernet Controller
	10.1 Introduction
	10.2 API Functions
	10.3 Programming Example

	11 External Peripheral Interface (EPI)
	11.1 Introduction
	11.2 API Functions
	11.3 Programming Example

	12 Flash
	12.1 Introduction
	12.2 API Functions
	12.3 Programming Example

	13 Floating-Point Unit (FPU)
	13.1 Introduction
	13.2 API Functions
	13.3 Programming Example

	14 GPIO
	14.1 Introduction
	14.2 API Functions
	14.3 Programming Example

	15 Hibernation Module
	15.1 Introduction
	15.2 API Functions
	15.3 Programming Example

	16 Inter-Integrated Circuit (I2C)
	16.1 Introduction
	16.2 API Functions
	16.3 Programming Example

	17 Interrupt Controller (NVIC)
	17.1 Introduction
	17.2 API Functions
	17.3 Programming Example

	18 LCD Controller (LCD)
	18.1 Introduction
	18.2 API Functions
	18.3 Programming Example

	19 Memory Protection Unit (MPU)
	19.1 Introduction
	19.2 API Functions
	19.3 Programming Example

	20 1-Wire Master Module
	20.1 Introduction
	20.2 API Functions
	20.3 Programming Example

	21 Pulse Width Modulator (PWM)
	21.1 Introduction
	21.2 API Functions
	21.3 Programming Example

	22 Quadrature Encoder (QEI)
	22.1 Introduction
	22.2 API Functions
	22.3 Programming Example

	23 SHA/MD5
	23.1 Introduction
	23.2 API Functions
	23.3 Hashing Programming Example
	23.4 HMAC Programming Example

	24 Synchronous Serial Interface (SSI)
	24.1 Introduction
	24.2 API Functions
	24.3 Programming Example

	25 Software CRC Module
	25.1 Introduction
	25.2 API Functions
	25.3 Programming Example

	26 System Control
	26.1 Introduction
	26.2 API Functions
	26.3 Programming Example

	27 System Exception Module
	27.1 Introduction
	27.2 API Functions
	27.3 Programming Example

	28 System Tick (SysTick)
	28.1 Introduction
	28.2 API Functions
	28.3 Programming Example

	29 Timer
	29.1 Introduction
	29.2 API Functions
	29.3 Programming Example

	30 UART
	30.1 Introduction
	30.2 API Functions
	30.3 Programming Example

	31 uDMA Controller
	31.1 Introduction
	31.2 API Functions
	31.3 Programming Example

	32 USB Controller
	32.1 Introduction
	32.2 General USB API Functions
	32.3 Using USB with the uDMA Controller
	32.4 Using the integrated USB DMA Controller
	32.5 USB Link Power Management Functions
	32.6 USB UTMI Low Pin Interface (ULPI)
	32.7 Programming Example

	33 Watchdog Timer
	33.1 Introduction
	33.2 API Functions
	33.3 Programming Example

	34 Using the ROM
	34.1 Introduction
	34.2 Direct ROM Calls
	34.3 Mapped ROM Calls
	34.4 Firmware Update

	35 Error Handling
	IMPORTANT NOTICE

