//***
//
// master_slave_loopback.c - Example demonstrating a simple I2C message
// transmission and reception.
//
// Copyright (c) 2010-2016 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 2.1.3.156 of the Tiva Firmware Development Package.
//
//***

#include <stdbool.h>
#include <stdint.h>
#include "inc/hw_i2c.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/i2c.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
#include "ADS7142registermap.h"

//***
//
//! \addtogroup i2c_examples_list
//! <h1>I2C Master Loopback (i2c_master_slave_loopback)</h1>
//!
//! This example shows how to configure the I2C0 module for loopback mode.
//! This includes setting up the master and slave module. Loopback mode
//! internally connects the master and slave data and clock lines together.
//! The address of the slave module is set in order to read data from the
//! master. Then the data is checked to make sure the received data matches
//! the data that was transmitted. This example uses a polling method for
//! sending and receiving data.
//!
//! This example uses the following peripherals and I/O signals. You must
//! review these and change as needed for your own board:
//! - I2C0 peripheral
//! - GPIO Port B peripheral (for I2C0 pins)
//! - I2C0SCL - PB2
//! - I2C0SDA - PB3
//!
//! The following UART signals are configured only for displaying console
//! messages for this example. These are not required for operation of I2C.
//! - UART0 peripheral
//! - GPIO Port A peripheral (for UART0 pins)
//! - UART0RX - PA0
//! - UART0TX - PA1
//!
//! This example uses the following interrupt handlers. To use this example
//! in your own application you must add these interrupt handlers to your
//! vector table.
//! - None.
//
//***

//***
//
// Number of I2C data packets to send.
//
//***
#define NUM_I2C_DATA 2

//***
//
// Set the address for slave module. This is a 7-bit address sent in the
// following format:
// [A6:A5:A4:A3:A2:A1:A0:RS]
//
// A zero in the "RS" position of the first byte means that the master
// transmits (sends) data to the selected slave, and a one in this position
// means that the master receives data from the slave.
//
//***
#define SLAVE_ADDRESS 0x18

//***
//
// This function sets up UART0 to be used for a console to display information
// as the example is running.
//
//***
void
InitConsole(void)
{
 //
 // Enable GPIO port A which is used for UART0 pins.
 // TODO: change this to whichever GPIO port you are using.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 //
 // Configure the pin muxing for UART0 functions on port A0 and A1.
 // This step is not necessary if your part does not support pin muxing.
 // TODO: change this to select the port/pin you are using.
 //
 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 //
 // Enable UART0 so that we can configure the clock.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 // Use the internal 16MHz oscillator as the UART clock source.
 //
 UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);
 //
 // Select the alternate (UART) function for these pins.
 // TODO: change this to select the port/pin you are using.
 //
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
 //
 // Initialize the UART for console I/O.
 //
 UARTStdioConfig(0, 115200, 16000000);
}

void ADS7142SingleRegisterWrite(uint8_t RegisterAddress, uint8_t RegisterData)
{
 I2CMasterDataPut(I2C8_BASE, SINGLE_WRITE);
 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_START);
 while(I2CMasterBusy(I2C8_BASE))
 {
 }
 I2CMasterDataPut(I2C8_BASE, RegisterAddress);

 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_CONT);

 while(I2CMasterBusy(I2C8_BASE))
 {
 }

 I2CMasterDataPut(I2C8_BASE, RegisterData);

 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH);

 while(I2CMasterBusy(I2C8_BASE))
 {
 }
 }

 void TM4C1294SingleByteRx(void)
 {
 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_SINGLE_RECEIVE);
 I2CSlaveDataGet(I2C8_BASE);
 }

//***
//
// Configure the I2C0 master and slave and connect them using loopback mode.
//
//***
int
main(void)
{
#if defined(TARGET_IS_TM4C129_RA0) || \
 defined(TARGET_IS_TM4C129_RA1) || \
 defined(TARGET_IS_TM4C129_RA2)
 uint32_t ui32SysClock;
#endif
 uint32_t pui32DataTx[NUM_I2C_DATA];
 uint32_t pui32DataRx[NUM_I2C_DATA];
 uint32_t ui32Index;

 //
 // Set the clocking to run directly from the external crystal/oscillator.
 // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
 // crystal on your board.
 //
#if defined(TARGET_IS_TM4C129_RA0) || \
 defined(TARGET_IS_TM4C129_RA1) || \
 defined(TARGET_IS_TM4C129_RA2)
 ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
 SYSCTL_OSC_MAIN |
 SYSCTL_USE_OSC), 25000000);
#else
 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);
#endif

 //
 // The I2C0 peripheral must be enabled before use.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C8);

 //
 // For this example I2C0 is used with PortB[3:2]. The actual port and
 // pins used may be different on your part, consult the data sheet for
 // more information. GPIO port B needs to be enabled so these pins can
 // be used.
 // TODO: change this to whichever GPIO port you are using.
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 //
 // Configure the pin muxing for I2C0 functions on port B2 and B3.
 // This step is not necessary if your part does not support pin muxing.
 // TODO: change this to select the port/pin you are using.
 //
 GPIOPinConfigure(GPIO_PA2_I2C8SCL);
 GPIOPinConfigure(GPIO_PA3_I2C8SDA);

 //
 // Select the I2C function for these pins. This function will also
 // configure the GPIO pins pins for I2C operation, setting them to
 // open-drain operation with weak pull-ups. Consult the data sheet
 // to see which functions are allocated per pin.
 // TODO: change this to select the port/pin you are using.
 //
 GPIOPinTypeI2CSCL(GPIO_PORTA_BASE, GPIO_PIN_2);
 GPIOPinTypeI2C(GPIO_PORTA_BASE, GPIO_PIN_3);

 //
 // Enable loopback mode. Loopback mode is a built in feature that is
 // useful for debugging I2C operations. It internally connects the I2C
 // master and slave terminals, which effectively let's you send data as
 // a master and receive data as a slave.
 // NOTE: For external I2C operation you will need to use external pullups
 // that are stronger than the internal pullups. Refer to the datasheet for
 // more information.
 //

 //I2CLoopbackEnable(I2C8_BASE);

 //
 // Enable and initialize the I2C0 master module. Use the system clock for
 // the I2C0 module. The last parameter sets the I2C data transfer rate.
 // If false the data rate is set to 100kbps and if true the data rate will
 // be set to 400kbps. For this example we will use a data rate of 100kbps.
 //

#if defined(TARGET_IS_TM4C129_RA0) || \
 defined(TARGET_IS_TM4C129_RA1) || \
 defined(TARGET_IS_TM4C129_RA2)
 I2CMasterInitExpClk(I2C8_BASE, ui32SysClock, false);
#else
 I2CMasterInitExpClk(I2C8_BASE, SysCtlClockGet(), false);
#endif

 //
 // Enable the I2C0 slave module. This module is enabled only for testing
 // purposes. It does not need to be enabled for proper operation of the
 // I2Cx master module.
 //

 //I2CSlaveEnable(I2C8_BASE);

 // Set the slave address to SLAVE_ADDRESS. In loopback mode, it's an
 // arbitrary 7-bit number (set in a macro above) that is sent to the
 // I2CMasterSlaveAddrSet function.

 //I2CSlaveInit(I2C8_BASE, SLAVE_ADDRESS);

 //
 // Tell the master module what address it will place on the bus when
 // communicating with the slave. Set the address to SLAVE_ADDRESS
 // (as set in the slave module). The receive parameter is set to false
 // which indicates the I2C Master is initiating a writes to the slave. If
 // true, that would indicate that the I2C Master is initiating reads from
 // the slave.
 //

 I2CMasterSlaveAddrSet(I2C8_BASE, SLAVE_ADDRESS, false);

 //
 // Set up the serial console to use for displaying messages. This is
 // just for this example program and is not needed for I2C operation.
 //

 InitConsole();

 //
 // Display the example setup on the console.
 //

 UARTprintf("I2C Transmit Multiple Data Bytes ->");
 UARTprintf("\n Module = I2C8");
 UARTprintf("\n Mode = Multi-byte Send/Single Register Read");
 UARTprintf("\n Rate = 100kbps\n\n");

 //
 // Initialize the data to send.
 //
 pui32DataTx[0] = SINGLE_READ;
 pui32DataTx[1] = ADS7142_REG_AUTO_SEQ_CHEN;
 pui32DataTx[2] = 0;

 //
 // Initialize the receive buffer.
 //

// for(ui32Index = 0; ui32Index < NUM_I2C_DATA; ui32Index++)
// {
// pui32DataRx[ui32Index] = 0;
// }

 //
 // Indicate the direction of the data.
 //

 UARTprintf("Transferring from: Master -> Slave\n");
// I2CMasterSlaveAddrSet(I2C8_BASE, SLAVE_ADDRESS, false);
// TM4C1294MultiByteTx3(SINGLE_WRITE, ADS7142_REG_DATA_BUFFER_OPMODE, ADS7142_DATA_BUFFER_STARTSTOP_CNTRL_BURST);
// TM4C1294MultiByteTx3(SINGLE_READ, ADS7142_REG_AUTO_SEQ_CHEN, 0);
// I2CMasterSlaveAddrSet(I2C8_BASE, SLAVE_ADDRESS, true);
// TM4C1294SingleByteRx();

 //
 // Send 3 pieces of I2C data from the master to the slave.
 //

 //for(ui32Index = 0; ui32Index < NUM_I2C_DATA; ui32Index++){
 //
 // Display the data that the I2C0 master is transferring.
 //

 UARTprintf("Sending: '%d' . . . ", pui32DataTx[0]);

 //
 //Place the data to be sent in the data register
 //

 I2CMasterDataPut(I2C8_BASE, pui32DataTx[0]);

 //
 // Initiate send of data from the master. Since the loopback
 // mode is enabled, the master and slave units are connected
 // allowing us to receive the same data that we sent out.
 //

 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_START);

[bookmark: _GoBack] //
 // Wait until master module is done transferring.
 //
 while(I2CMasterBusy(I2C8_BASE))
 {
 }

 //Display the data that the master is sending
 UARTprintf("\n Sending: '%d' . . . ", pui32DataTx[1]);

 //Write data to I2C Master Data Register
 I2CMasterDataPut(I2C8_BASE, pui32DataTx[1]);

 //I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_CONT);

 //UARTprintf("\n Sending: '%d' . . . ", pui32DataTx[2]);

 //Write data to I2C Master Data Register
 //I2CMasterDataPut(I2C8_BASE, pui32DataTx[2]);

 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH);

 while(I2CMasterBusy(I2C8_BASE))
 {
 }

 //
 // Tell the user that the test is done.
 //
// pui32DataTx[0] = SINGLE_READ;
// pui32DataTx[1] = ADS7142_REG_AUTO_SEQ_CHEN;
// pui32DataTx[2] = 0;
//
// UARTprintf("Transferring from: Slave -> Master\n");
// //Initiate read from the ADS7142
// UARTprintf("\nSending: '%d' . . . ", pui32DataTx[0]);
// I2CMasterDataPut(I2C8_BASE, SINGLE_READ);
// I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_START);
// while(I2CMasterBusy(I2C8_BASE))
// {
// }
// UARTprintf("\nSending: '%d' . . . ", pui32DataTx[1]);
// I2CMasterDataPut(I2C8_BASE, ADS7142_REG_AUTO_SEQ_CHEN);
// I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_CONT);
// while(I2CMasterBusy(I2C8_BASE))
// {
// }
// UARTprintf("\nSending: '%d' . . . ", pui32DataTx[2]);
// I2CMasterDataPut(I2C8_BASE, 0);
// I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH);
// while(I2CMasterBusy(I2C8_BASE))
// {
// }
 I2CMasterSlaveAddrSet(I2C8_BASE, SLAVE_ADDRESS, true);
 I2CMasterControl(I2C8_BASE, I2C_MASTER_CMD_SINGLE_RECEIVE);
 I2CSlaveDataGet(I2C8_BASE);
 UARTprintf("\nDone.\n\n");

 //
 // Return no errors
 //
 return(0);
}

