

AN10859
LPC1700 Ethernet MII Management (MDIO) via software

Rev. 01 — 6 August 2009 Application note

Document information

Info Content

Keywords LPC1700, Ethernet, MII, RMII, MIIM, MDIO

Abstract This code example demonstrates how to emulate an Ethernet MII
Management (MDIO) via software on the LPC1700.

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 2 of 14

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

01 20090806 Initial version.

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

1. Introduction
The LPC1700 Ethernet block contains a full featured 10 Mbps or 100 Mbps Ethernet
MAC (Media Access Controller) designed to provide optimized performance through the
use of DMA hardware acceleration. Features include a generous suite of control
registers, half or full duplex operation, flow control, control frames, hardware acceleration
for transmit retry, receive packet filtering and wake-up on LAN activity. Automatic frame
transmission and reception with Scatter-Gather DMA off-loads many operations from the
CPU.

The Ethernet block interfaces between an off-chip Ethernet PHY using the RMII
(Reduced Media Independent Interface) protocol and the on-chip MIIM (Media
Independent Interface Management) serial bus, also referred to as MDIO (Management
Data Input/Output).

MDIO is a simple two-wired serial interface used to access a set of control and status
registers inside the PHY chip. It consist of two pins; Management Data Clock (MDC)
which has a maximum clock rate of 2.5 MHz (according to the standard, although some
devices support higher rates) and no minimum rate, and the Management Data
Input/Output (MDIO) which is bidirectional and may be shared by up to 32 devices.

Fig 1 shows the MDIO frame format.

Fig 1. MDIO frame format

In the read operation, the station management entity (EMAC) sends a sequence of 32
contiguous logic ones on MDIO to provide the PHY chip the required synchronization.
After this, the EMAC sends the Start bits, Operation Code bits, Device Address bits
(address of the destination PHY chip), and the Register Address bits (address of the
PHY’s internal register). With this information, the managed entity (PHY chip) should
provide the requested Data, but previously, an idle bit time (turnaround) is inserted in
order to avoid contention on the MDIO line.

For the write operation, as all data is sent by the EMAC, there is no need for MDIO line
contention, so the idle bit time is replaced by a high bit, in order to fill the turnaround
time.

Note: some PHYs may not require the sync sequence for every frame, but it’s included
for the PHYs that do require it.

The MDIO line requires a pull-up resistor, pulling MDIO high during IDLE and turnaround.

Fig 2 shows the timing relationship for a typical read operation.

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 3 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Fig 2. Typical MDIO read operation

Fig 3 shows the timing relationship for a typical write operation.

Fig 3. Typical MDIO write operation

2. MDIO software implementation
The Management Data Input/Output protocol is implemented by software and the code is
included in mdio.c and mdio.h files. See the associated software zip file.

The output_MDIO() function is used to drive the MDIO line with the desired value (bit 0
or bit 1) and generate the MDC clock for that particular bit. Fig 4 shows this function
implementation.

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 4 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Fig 4. Implementation of the output_MDIO() function

Please note that in this particular implementation, we are using P2.8 for MDC and P2.9
for MDIO, but these lines can be changed to any other GPIO pins.

The delay() function would need adjustments according to the particular frequency at
which the core is running. In this example, the CPU speed is 72 MHz, and the MDC clock
frequency is about 2.5 MHz. Remember that this should be the maximum frequency used
as the standard states, unless the particular PHY used supports higher clocks.

In order to read the data from the PHY chip in a read operation, the input_MDIO()
function is used. It generates 16 pulses for the MDC clock and reads the MDC line driven
by the PHY. Fig 5 shows its implementation.

Fig 5. Implementation of the input_MDIO() function

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 5 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

The turnaround_MDIO() function is used to generate the idle bit, where the MDIO line
is tri-stated. Fig 6 shows the code.

Fig 6. Implementation of the turnaround_MDIO() function

Utilizing the above support functions, we can reproduce the MDIO read transaction
following the frame format as shown in Fig 1. Fig 7 shows code implementation.

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 6 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Fig 7. Implementing the MDIO read transaction

In the same manner, we can implement the MDIO write transaction, as shown in Fig 8.

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 7 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Fig 8. Implementing the MDIO write transaction

The last two functions, mdio_read() and mdio_write(), can be used in order to access
the PHY registers from code. The following section shows an example using these
functions.

3. Example using MDIO software implementation
We will use the EasyWeb example as a reference, and show the required steps to
implement the MDIO interface via software in that code. The code is available as a Keil
project, and was tested using a Keil MCB1750 evaluation board. Ensure that the E/C and
E/U jumpers are set appropriately, as those jumpers connect P2.8 and P2.9 pins to the
PHY chip.

The first step is to detect if the code is running on an LPC175x device. In such a case,
we need to activate the MDIO implementation via software. For this, we are using an IAP
(In Application Programming) API call, which requires the following declarations:

typedef void (*IAP)(U32 *cmd, U32 *res);

IAP iap_entry = (IAP)0x1FFF1FF1;

static char dev_175x;

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 8 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

The above code declares the IAP entry and the dev_175x variable which serves as a
flag. Then, we need to make the IAP call and check if the device is an LPC175x. All this
code is implemented in the Init_EMAC() function in the emac.c file. See Fig 9.

Fig 9. Detecting the LPC175x device

The next step is to configure the pin connect block accordingly, i.e., for the LPC175x, the
P2.8 and P2.9 pins should be configured as GPIO. Initially, both pins are configured as
an output. Fig 10 shows the code.

Fig 10. Configuring the pin connect block

The last step consists of modifying the write_PHY() and read_PHY() functions, in order
to call the mdio_write() and mdio_read() functions respectively, if the device is an
LPC175x. Fig 11 and Fig 12 show these implementations.

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 9 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Fig 11. Calling the mdio_write() function

Fig 12. Calling the mdio_read() function

4. Testing the EasyWeb example
In order to test the example, connect an Ethernet cable between the MCB1750 board
and the PC. By default, the board is assigned with a static IP 192.168.0.100, so the PC
should be configured with any IP within the same subnet (e.g., 192.168.0.99). If a
different IP address is required for the board, the new value can be configured in the
tcpip.h file.

Build and download the example code to the board. Test the connectivity using the ping
192.168.0.100 command from the command prompt. If everything is working, open the
browser and use http://192.168.0.100 to connect to the webserver.

In Fig 13 the screenshot shows MDC clock with a frequency of 2.5 MHz.

In Fig 14 the screenshot shows an MDIO write transaction, from the following instruction;

/* Put the DP83848C in reset mode */

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 10 of 14

http://192.168.0.100/

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

 write_PHY (PHY_REG_BMCR, 0x8000);

The Op.Code is 01 (write), the PHY address is 00001, the Register address is 0 (BMCR
register), and the data written is 0x8000, which means this transaction is writing 1 in bit
15 (Reset bit).

Fig 13. MDC clock of 2.5 MHz

Finally, Fig 15 shows a screenshot of an MDIO read transaction. In this case, the
Op.Code is 10 (read), and the addressed register is the PHY Identifier Register #2
(address 0x03), which has a value 0x5C90.

5. Conclusion
Software MDIO provides flexibility as it allows the use of any available GPIO pins for this
purpose. Its implementation is straightforward and using it in conjunction with the
provided device detection mechanism, both hardware and software MDIO can work
transparently for the user.

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 11 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Fig 14. An MDIO write transaction

Fig 15. An MDIO read transaction

AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 12 of 14

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

 AN10859_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 6 August 2009 13 of 14

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

6.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10859
 LPC1700 Ethernet MII Management (MDIO) via software

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

 © NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

Date of release: 6 August 2009
Document identifier: AN10859_1

7. Contents

1. Introduction ...3
2. MDIO software implementation..........................4
3. Example using MDIO software implementation

..8
4. Testing the EasyWeb example10
5. Conclusion...11
6. Legal information ..13
6.1 Definitions ..13
6.2 Disclaimers...13
6.3 Trademarks ..13
7. Contents...14

	1. Introduction
	2. MDIO software implementation
	3. Example using MDIO software implementation
	4. Testing the EasyWeb example
	5. Conclusion
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. Contents

