usb_dev_serial.c

1//***

2//

3// usb_dev_serial.c - Main routines for the USB CDC serial example.
4//***
5

6 #include <stdbool.h>

7 #include <stdint.h>

8 #tinclude "inc/hw_ints.h"

9 #include "inc/hw_memmap.h"

10 #include "inc/hw_types.h"

11 #include "inc/hw_gpio.h"

12 #include "inc/hw_uart.h"

13 #include "inc/hw_sysctl.h"

14 #include "driverlib/debug.h"

15 #include "driverlib/fpu.h"

16 #include "driverlib/gpio.h"

17 #include "driverlib/pin_map.h"

18 #include "driverlib/interrupt.h”

19 #include "driverlib/sysctl.h"

20 #include "driverlib/systick.h"

21 #include "driverlib/timer.h"

22 #include "driverlib/uart.h"

23 #include "driverlib/usb.h"

24 #include "driverlib/rom.h"

25 #include "usblib/usblib.h"

26 #include "usblib/usbcdc.h"

27 #include "usblib/usb-ids.h"

28 #include "usblib/device/usbdevice.h"

29 #include "usblib/device/usbdcdc.h"

30 #include "utils/ustdlib.h"

31 #include "usb_serial_structs.h"

32 #include "utils/uartstdio.h”
;2//***
35//

36 //! \addtogroup example_list

37 //! <h1>USB Serial Device (usb_dev_serial)</h1>

38//!

39 //! This example application turns the evaluation kit into a virtual serial
40 //! port when connected to the USB host system. The application supports the
41 //! USB Communication Device Class, Abstract Control Model to redirect UARTO
42 //! traffic to and from the USB host system.
43 //!
44 //! Assuming you installed TivaWare C Series in the default directory, a
45 //! driver information (INF) file for use with Windows XP, Windows Vista and
46 //! Windows7 can be found in C:/ti/TivaWare-for-C-Series/windows_drivers. For
47 //! Windows 2000, the required INF file is in
48 //! C:/ti/TivaWare-for-C-Series/windows_drivers/win2K.
49 //

50//***

51

52//***

53//
54 // Configuration and tuning parameters.

55//

56//***

57

Page 1

usb_dev_serial.c

58//***

59//

60 // The system tick rate expressed both as ticks per second and a millisecond

61 // period.

62//

63/ /FFrdkokdok sk kskokok sk ok kokskoskok ok kst skskok sk ok kb skl s ok sk skosk kol sk kst ksl sk sk stk ok kkskok sk ok okokoskok ok
64 #idefine SYSTICKS_PER_SECOND 100

65 #define SYSTICK_PERIOD_MS (1000 / SYSTICKS_PER_SECOND)

66

67 /[Frrdkokdokkkskokok sk ok otk ok ok skokskok s ko okokskok s ko skskok kol sk kst okt sk sk stk ok sokskoskok sk ok ok sokoskokok ok
68 //

69 // Variables tracking transmit and receive counts.

70//

71 /7 Frrsokokskok otk ok otk sk skt ko sokok kol s ko skokok kol sk kst skskoskok sk sk skokskook ok sokoskoskok sk ok ok okokoskok ok
72 unsigned char* puc_initialUSBRxAdd = ©;

73 unsigned char* puc_initialUSBTxAdd = ©;

74 volatile unsigned char* puc_lastUSBRxAdd
75volatile unsigned char* puc_lastUSBTxAdd
76 volatile uint32_t g ui32USBTxCount = 0;
77 volatile uint32_t g ui32USBRxCount = 0;
78 volatile uint32_t g ui32USBTxByteCount = 0;
79volatile uint32_t g ui32USBRxByteCount = 0;
80 volatile uint32_t g_ui32USBRxSilenceTime =
81volatile uint8 t g ui8MBUSBSlavelD = 1;

82 #ifdef DEBUG

83 uint32_t g ui32UARTRxErrors = 0;

84 #endif

85
86//***
87//

88 // The base address, peripheral ID and interrupt ID of the UART that is to

89 // be redirected.

% //

Q1 / /Frrsokokskokkokokokok ko otk ok skt ok okok kol s ko sk skokskok sk kst ksl sk sk sk skl ok okskskok sk ok ok okskokok ok
92//

93 // Default line coding settings for the redirected UART.

94 //

Q5 [/ /Ko ok ok ok ko koK o K S RS R SRRSO KK K K K SROK SR SR SR SR SRR SRR SRR KR K K K K SR SR SR SRRk Rk o

96 #define DEFAULT_BIT_RATE 115200

0;
9;

0;

97 #define DEFAULT_UART_CONFIG (UART_CONFIG_WLEN_8 | UART_CONFIG_PAR_NONE | \
98 UART_CONFIG_STOP_ONE)
99

16@//***

1e1//

102 // Global system tick counter

1e3//
1@4//***
105 volatile uint32_t g ui32SysTickCount = 0;

106

107 [/ /FFkskkrokokokodkokok otk sk ok stk sk sokokoskokok ok sk okokoskokok ok stokoskskok sk stokskokok sk stk ok okl skl ok ok
108 //

109 // Flags used to pass commands from interrupt context to the main loop.

110 //

1170/ /oo ok otk sk ok stk sk okokoskokok ok sk kokoskook ok stokskoskok sk ok stokskoskok sk kst skl ok sokok kol o ok
112 #define COMMAND_PACKET_RECEIVED ©x00000001

113 #define COMMAND_STATUS_UPDATE ©x00000002

114

Page 2

usb_dev_serial.c

115volatile uint32_t g ui32Flags = ©;

116 char *g_pcStatus;

117

119//

120 // Global flag indicating that a USB configuration has been set.

121//

123 static volatile bool g bUSBConfigured = false;

124

126 //

127 // Internal function prototypes.

128//

130 static void CheckForSerialStateChange(const tUSBDCDCDevice *psDevice,

131 int32_t i32Errors);

132 static void SetControlLineState(uintl6_t uil6State);

133 static bool SetLineCoding(tLineCoding *psLineCoding);

134 static void GetLineCoding(tLineCoding *psLineCoding);

135 extern unsigned int MB_RTUFrameProcessing(uint8_t *uc_BufferRec, uint8_t *uc_BufferSend,
uint8 t slavelD);

136

137 / /3K skkrokokokodokok otk sk ok stk sk kol ok skttt stokskskok sk stokoskoskok sk stk sk ok okl ok ok

138//

139 // The error routine that is called if the driver library encounters an error.

140 //

147 / /3 kskokokok ook otk sk ok skokoskokok ok otk ok skttt stokskskok sk sokoskoskok sk stk sk ok ok okskokok ok ok

142 #ifdef DEBUG

144 __error__(char *pcFilename, uint32_t ui32Line)

150 #endif

151

153//

154 // This function is called whenever serial data is received from the UART.

155 // It is passed the accumulated error flags from each character received in

156 // this interrupt and determines from them whether or not an interrupt

157 // notification to the host is required.

158 //

159 // If a notification is required and the control interrupt endpoint is idle,

160 // we send the notification immediately. If the endpoint is not idle, we

161 // accumulate the errors in a global variable which will be checked on

162 // completion of the previous notification and used to send a second one

163 // if necessary.

164 //

165 / /% Fk sk kokokokok sk otk s ok skt ok okokoskook ok sk stk ok stokoskskok sk stokskoskok sk sk stk sk ok sokokskokok o ok

166 static void

167 CheckForSerialStateChange(const tUSBDCDCDevice *psDevice, int32 t i32Errors)

168 {

169 uintl6_t uil6SerialState;

170

171 //

172 // Clear our USB serial state. Since we are faking the handshakes, always
173 // set the TXCARRIER (DSR) and RXCARRIER (DCD) bits.

174 //

175 uiléSerialState = USB_CDC_SERIAL_STATE_TXCARRIER |

176 USB_CDC_SERIAL_STATE_RXCARRIER;

Page 3

usb_dev_serial.c

177

178 //

179 // Are any error bits set?

180 //

181 if(i32Errors)

182 {

183 //

184 // At least one error is being notified so translate from our hardware
185 // error bits into the correct state markers for the USB notification.
186 //

187 if(i32Errors & UART_DR_OE)

188 {

189 uiléSerialState |= USB_CDC_SERIAL STATE OVERRUN;
190 }

191

192 if(i32Errors & UART_DR_PE)

193 {

194 uiléSerialState |= USB_CDC_SERIAL_STATE_PARITY;
195 }

196

197 if(i32Errors & UART_DR_FE)

198 {

199 uiléSerialState |= USB_CDC_SERIAL STATE_ FRAMING;
200 }

201

202 if(i32Errors & UART_DR_BE)

203 {

204 uiléSerialState |= USB_CDC_SERIAL_STATE_BREAK;
205 }

206

207 // Call the CDC driver to notify the state change.
208 USBDCDCSerialStateChange((void *)psDevice, uil6SerialState);
209 }

210}

211

202 [/ [FFF A AR AR AR AR AR K KK KRR KR KK SO S SO SO SRS SRR SRR KR KR K K K oK oK ok K
213 //

214 // Interrupt handler for the system tick counter.
215 //

206 [[FFF A AR AR AR A A A KKK AR AR R KKK S K SO SRS RSSO K K oK ok K ok K

217 unsigned int responselength;

218 void

219 SysTickIntHandler(void)

220 {

221 //

222 // Update our system time.
223 //

224 g ui32SysTickCount++;

225 ++g _ui32USBRxSilenceTime;

226}

227

228 / /¥ Fk A kkskokokoskokok okokskok sk ok skokskosk sk sk kb kool ok sk stk ok stttk sk ok skokskoskok sk sk skt sk ok ok ok kol o ok
229//

230 // Set the state of the RS232 RTS and DTR signals.

231//

232/ /FFk sk kkokok ok kokokskok sk ok skokskosk sk ok kokskokok ok sk stk ok stttk sk stokskoskok sk ok stk ko kb kol o ok
233 static void

Page 4

usb_dev_serial.c

234 SetControlLineState(uintl6_t uil6State)

235 {
236
237
238
239
240

241}

242

//

// TODO: If configured with GPIOs controlling the handshake lines,

// set them appropriately depending upon the flags passed in the wValue
// field of the request structure passed.

//

243 [[FFFAF A AR AR A A A A A KA AR AR AR AR AR KK K SO SR SR SRS KK K Kok K ok K ok K

244 //

245 // Set the communication parameters to use on the UART.

246 //

24T [[FFFAF AR AR AR A KA A A A KA AR SO SO SO SR SRS SRR KR KR K Ko K kK ok K

248 static bool
249 SetLineCoding(tLineCoding *psLineCoding)

250 {
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

uint32_t ui32Config;
bool bRetcode;

//
// Assume everything is OK until we detect any problem.

//
bRetcode = true;

//
// Word length. For invalid values, the default is to set 8 bits per
// character and return an error.

//
switch(psLineCoding->ui8Databits)
{
case 5:
{
ui32Config = UART_CONFIG_WLEN 5;
break;
}
case 6:
{
ui32Config = UART_CONFIG_WLEN 6;
break;
}
case 7:
{
ui32Config = UART_CONFIG_WLEN_ 7;
break;
}
case 8:
{
ui32Config = UART_CONFIG_WLEN_8;
break;
}
default:
{

Page 5

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

}

!/
//
//

usb_dev_serial.

ui32Config = UART_CONFIG_WLEN_8;
bRetcode = false;
break;

Parity. For any invalid values, we set no parity and return an error.

switch(psLineCoding->ui8Parity)

{

case USB_CDC_PARITY_NONE:
{

ui32Config |= UART_CONFIG_PAR_NONE;

break;

}

case USB_CDC_PARITY_ODD:
{

ui32Config |= UART_CONFIG_PAR_ODD;

break;

}

case USB_CDC_PARITY_EVEN:
{

ui32Config |= UART_CONFIG_PAR_EVEN;

break;

}

case USB_CDC_PARITY_MARK:
{

ui32Config |= UART_CONFIG_PAR_ONE;

break;

}

case USB_CDC_PARITY_SPACE:
{

ui32Config |= UART_CONFIG_PAR_ZERO;

break;
}
default:
{
ui32Config |= UART_CONFIG_PAR_NONE;
bRetcode = false;
break;
}

Stop bits. Our hardware only supports 1 or 2 stop bits whereas CDC

allows the host to select 1.5 stop bits.
invalid or unsupported value of ui8Stop,
return an error in case the caller needs

this back to the host.

switch(psLineCoding->ui8Stop)

Page 6

If passed 1.5 (or any other
we set up for 1 stop bit but
to Stall or otherwise report

usb_dev_serial.c

348 {

349 //

350 // One stop bit requested.

351 //

352 case USB_CDC_STOP_BITS 1:

353 {

354 ui32Config |= UART_CONFIG_STOP_ONE;
355 break;

356 }

357

358 //

359 // Two stop bits requested.

360 //

361 case USB_CDC_STOP_BITS 2:

362 {

363 ui32Config |= UART_CONFIG_STOP_TWO;
364 break;

365 }

366

367 //

368 // Other cases are either invalid values of ui8Stop or values that we
369 // cannot support so set 1 stop bit but return an error.
370 //

371 default:

372 {

373 ui32Config |= UART_CONFIG_STOP_ONE;
374 bRetcode = false;

375 break;

376 }

377 }

378

379 //

380 // Let the caller know if we had a problem or not.
381 //

382 return(bRetcode);

383}

384

385 [/ /KA A A AR A A A KA AR AR AR R KK K SO S SRS KR K KR K Ko K ok K ok K

386 //

387 // Get the communication parameters in use on the UART.

388//

38Q / /3 dk Ak kkskook sk ok kskok ook sk kst koo sk ok kskok koo sk sk stk ok stk kol sk skkskoskok sk ok stk sk ok sk ok kol ok ok
390 static void

391 GetLineCoding(tLineCoding *psLineCoding)

392 {

393 uint32_t ui32Config;

394 uint32_t ui32Rate;

395

396 //

397 // Get the current line coding set in the UART.

398 //

399 psLineCoding->ui32Rate = ui32Rate;

400

401 //

402 // Translate the configuration word length field into the format expected
403 // by the host.

404 //

Page 7

usb_dev_serial.c

405 switch(ui32Config & UART_CONFIG_WLEN_MASK)

406 {

407 case UART_CONFIG_WLEN_8:

408 {

409 psLineCoding->ui8Databits = 8;
410 break;

411 }

412

413 case UART_CONFIG _WLEN_7:

414 {

415 psLineCoding->ui8Databits = 7;
416 break;

417 }

418

419 case UART_CONFIG_WLEN_6:

420 {

421 psLineCoding->ui8Databits = 6;
422 break;

423 }

424

425 case UART_CONFIG WLEN_5:

426 {

427 psLineCoding->ui8Databits = 5;
428 break;

429 }

430 }

431

432 //

433 // Translate the configuration parity field into the format expected
434 // by the host.

435 //

436 switch(ui32Config & UART_CONFIG_PAR_MASK)
437 {

438 case UART_CONFIG_PAR_NONE:

439 {

440 psLineCoding->ui8Parity = USB_CDC_PARITY_NONE;
441 break;

442 }

443

444 case UART_CONFIG_PAR_ODD:

445 {

446 psLineCoding->ui8Parity = USB_CDC_PARITY_ODD;
447 break;

448 }

449

450 case UART_CONFIG_PAR_EVEN:

451 {

452 psLineCoding->ui8Parity = USB_CDC_PARITY_EVEN;
453 break;

454 }

455

456 case UART_CONFIG_PAR_ONE:

457 {

458 psLineCoding->ui8Parity = USB_CDC_PARITY_MARK;
459 break;

460 }

461

Page 8

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487 }
488

usb_dev_serial.c

case UART_CONFIG_PAR_ZERO:

{
psLineCoding->ui8Parity = USB_CDC_PARITY_SPACE;

break;

}
/7

// Translate the configuration stop bits field into the format expected
// by the host.

//
switch(ui32Config & UART_CONFIG_STOP_MASK)
{
case UART_CONFIG_STOP_ONE:
{
psLineCoding->ui8Stop = USB_CDC_STOP_BITS_ 1;
break;
}
case UART_CONFIG_STOP_TWO:
{
psLineCoding->ui8Stop = USB_CDC_STOP_BITS_2;
break;
}
}

Q8O [/ [/ HFHFAFAAAAAAA A KA KA A A A A A A A AR AR AR A KA KK K SO S ok ok K o

490 //
491 //
492 //
493 //
494 //
495 //
496 //
497 //
498 //
499 //
500 //
501 //
502 //
503 //
504 //

Handles CDC driver notifications related to control and setup of the device.

\param pvCBData is the client-supplied callback pointer for this channel.
\param ui32Event identifies the event we are being notified about.

\param ui32MsgValue is an event-specific value.

\param pvMsgData is an event-specific pointer.

This function is called by the CDC driver to perform control-related
operations on behalf of the USB host. These functions include setting
and querying the serial communication parameters, setting handshake line
states and sending break conditions.

\return The return value is event-specific.

GO [/ /% %k sk sk ok ook ko ko ok ok ok oK s ok S SRR SRS KR K K KK K S K SR SRR S SRR SRR SRR KR K K K o K ok K ok K

506 uint32_t
507 ControlHandler(void *pvCBData, uint32_t ui32Event,

508
509 {
510
511
512
513
514
515
516
517
518

uint32_t ui32MsgValue, void *pvMsgData)
uint32_t ui32IntsOff;

//

// Which event are we being asked to process?
//

switch(ui32Event)

{
/7

// We are connected to a host and communication is now possible.

Page 9

usb_dev_serial.c

519 //

520 case USB_EVENT_CONNECTED:

521 g_bUSBConfigured = true;

522

523 //

524 // Flush our buffers.

525 //

526 USBBufferFlush(&g_sTxBuffer);

527 USBBufferFlush(&g_sRxBuffer);

528

529 //

530 // Tell the main loop to update the display.
531 //

532 ui32IntsOff = ROM_IntMasterDisable();
533 g_pcStatus = "Connected";

534 g ui32Flags |= COMMAND_STATUS_UPDATE;
535 if(1ui32Intsoff)

536 {

537 ROM_IntMasterEnable();

538 }

539 break;

540

541 //

542 // The host has disconnected.

543 //

544 case USB_EVENT_DISCONNECTED:

545 g_bUSBConfigured = false;

546 ui32IntsOff = ROM_IntMasterDisable();
547 g_pcStatus = "Disconnected";

548 g ui32Flags |= COMMAND_STATUS_UPDATE;
549 if(1ui32IntsOff)

550 {

551 ROM_IntMasterEnable();

552 }

553 break;

554

555 //

556 // Return the current serial communication parameters.
557 //

558 case USBD_CDC_EVENT_GET_LINE_CODING:

559 GetLineCoding(pvMsgData);

560 break;

561

562 //

563 // Set the current serial communication parameters.
564 //

565 case USBD_CDC_EVENT_SET_LINE_CODING:

566 SetLineCoding(pvMsgData);

567 break;

568

569 //

570 // Set the current serial communication parameters.
571 //

572 case USBD_CDC_EVENT_SET_CONTROL_LINE_STATE:
573 SetControlLineState((uintl6_t)ui32MsgValue);
574 break;

575

Page 10

usb_dev_serial.c

576 //

577 // Send a break condition on the serial line.
578 //

579 case USBD_CDC_EVENT_SEND BREAK:

580 //SendBreak(true);

581 break;

582

583 //

584 // Clear the break condition on the serial line.
585 //

586 case USBD_CDC_EVENT_CLEAR_BREAK:

587 //SendBreak(false);

588 break;

589

590 //

591 // Ignore SUSPEND and RESUME for now.

592 //

593 case USB_EVENT_SUSPEND:

594 case USB_EVENT_RESUME:

595 break;

596

597 //

598 // We don't expect to receive any other events. Ignore any that show
599 // up in a release build or hang in a debug build.
600 //

601 default:

602 #tifdef DEBUG

603 while(1);

604 #telse

605 break;

606 #endif

607

608 }

609

610 return(0);

611}

612

613//***

614 //

615 // Handles CDC driver notifications related to the transmit channel (data to

616 // the USB host).
617 //

618 // \param ui32CBData is the client-supplied callback pointer for this channel.

619 // \param ui32Event identifies the event we are being notified about.
620 // \param ui32MsgValue is an event-specific value.

621 // \param pvMsgData is an event-specific pointer.

622 //

623 // This function is called by the CDC driver to notify us of any events
624 // related to operation of the transmit data channel (the IN channel carrying

625 // data to the USB host).

626 //

627 // \return The return value is event-specific.
628 //

629//***

630 uint32_t
631 TxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
632 void *pvMsgData)

Page 11

633 {

634 //

635 // Which event have we been sent?

636 //

637 switch(ui32Event)

638 {

639 case USB_EVENT_TX_COMPLETE:

640 //

641 // Since we are using the USBBuffer, we don't need to do anything
642 // here.

643 //

644 break;

645

646 //

647 // We don't expect to receive any other events. Ignore any that show
648 // up in a release build or hang in a debug build.

649 //

650 default:

651 #ifdef DEBUG

652 while(1);

653 #else

654 break;

655 #endif

656

657 }

658 return(@);

659 }

660

662 //

663 // Handles CDC driver notifications related to the receive channel (data from
664 // the USB host).

665 //

666 // \param ui32CBData is the client-supplied callback data value for this channel.
667 // \param ui32Event identifies the event we are being notified about.

668 // \param ui32MsgValue is an event-specific value.

669 // \param pvMsgData is an event-specific pointer.

670 //

671//
672//
673 //
674 //
675 //
676 //

usb_dev_serial.c

This function is called by the CDC driver to notify us of any events
related to operation of the receive data channel (the OUT channel carrying
data from the USB host).

\return The return value is event-specific.

678 uint32_t
679 RxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,

680
681 {
682
683
684
685
686
687
688
689

void *pvMsgData)

uint32_t ui32Read;
uint8_t ui8Char;

//

// Which event are we being sent?
//
switch (ui32Event)

{

Page 12

usb_dev_serial.c

690 //

691 // A new packet has been received.

692 //

693 case USB_EVENT_RX_AVAILABLE:

694 {

695 //

696 // Feed some characters into the UART TX FIFO and enable the

697 // interrupt so we are told when there is more space.

698 //

699 ui32Read = USBBufferRead((tUSBBuffer *) &g sRxBuffer, &ui8Char, 1);
700 *puc_lastUSBRxAdd = ui8Char;

701 g_Ui32USBRxSilenceTime = 0;

702 ++g_ui32USBRxByteCount;

703 break;

704 }

705

706 //

707 // We are being asked how much unprocessed data we have still to
708 // process. We return © if the UART is currently idle or 1 if it is
709 // in the process of transmitting something. The actual number of
710 // bytes in the UART FIFO is not important here, merely whether or
711 // not everything previously sent to us has been transmitted.

712 //

713 case USB_EVENT_DATA_REMAINING:

714 {

715

716 return (0);

717 }

718

719 //

720 // We are being asked to provide a buffer into which the next packet
721 // can be read. We do not support this mode of receiving data so let
722 // the driver know by returning ©. The CDC driver should not be sending
723 // this message but this is included just for illustration and

724 // completeness.

725 //

726 case USB_EVENT_REQUEST_BUFFER:

727 {

728 return (0);

729 }

730

731 //

732 // We don't expect to receive any other events. Ignore any that show
733 // up in a release build or hang in a debug build.

734 //

735 default:

736 #ifdef DEBUG

737 while(1);

738 #else

739 break;

740 #tendif

741 }

742

743 return (0);

744 }

745

Page 13

usb_dev_serial.c

747 //

748 // This is the main application entry function.

749 //

750 / /¥ koo otk ok kokokoskokok ok kbt sk ok skokoskoskok sk stk s sk sokoskskokok ok sk skokskokok ok skokskokok sk okl ok
751 int

752 main(void)

753 {

754 uint32_t ui32TxCount;

755 uint32_t ui32RxCount;

756

757 //

758 // Enable lazy stacking for interrupt handlers. This allows floating-point
759 // instructions to be used within interrupt handlers, but at the expense of
760 // extra stack usage.

761 //

762 ROM_FPULazyStackingEnable();

763

764 //

765 // Set the clocking to run from the PLL at 50MHz

766 //

767 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |

768 SYSCTL_XTAL_16MHZ);

769

770 //

771 // Configure the required pins for USB operation.

772 //

773 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

774 ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO _PIN_5 | GPIO_PIN_4);
775

776 //

777 // Enable the GPIO port that is used for the on-board LED.

778 //

779 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

780

781 //

782 // Enable the GPIO pins for the LED (PF2 & PF3).
783 //

784 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);
785

786 //

787 // Not configured initially.
788 //

789 g_bUSBConfigured = false;
790 //

791 // Enable the system tick.
792 //

793 ROM SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
794 ROM_SysTickIntEnable();
795 ROM_SysTickEnable();

796

797 //

798 // Initialize the transmit and receive buffers.
799 //

800 USBBufferInit(&g_sTxBuffer);

801 USBBufferInit(&g_sRxBuffer);

802

803 puc_initialUSBRxAdd = g_sRxBuffer.pui8Buffer;

Page 14

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

usb_dev_serial.c
puc_initialUSBTxAdd = g_sTxBuffer.pui8Buffer;

//
// Set the USB stack mode to Device mode with VBUS monitoring.

//
USBStackModeSet (0, eUSBModeForceDevice, 9);

//

// Pass our device information to the USB library and place the device
// on the bus.

//

USBDCDCInit(@, &g _sCDCDevice);

/7
// Clear our local byte counters.
/7

ui32RxCount
ui32TxCount

9;
9;

//
// Main application loop.
//
while(1)
{
//
// Have we been asked to update the status display?
//
if(g_ui32Flags & COMMAND STATUS_UPDATE)

{
//
// Clear the command flag
//
ROM_IntMasterDisable();
g ui32Flags &= ~COMMAND_STATUS_UPDATE;
ROM_IntMasterEnable();
}
//

// Has there been any transmit traffic since we last checked?

//
if(ui32TxCount != g ui32USBTxByteCount)

{
//
// Turn on the Green LED.
//
GPIOPinWrite(GPIO_PORTF_BASE, GPIO PIN_3, GPIO PIN_3);
//
// Delay for a bit.
//
SysCtlDelay(ROM_SysCtlClockGet() / 3 / 20);
//
// Turn off the Green LED.
//

GPIOPinWrite(GPIO_PORTF_BASE, GPIO _PIN_3, 0);

Page 15

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

usb_dev_serial.c

//
// Take a snapshot of the latest transmit count.
//
ui32TxCount = g _ui32USBTxByteCount;
}
//
// Has there been any receive traffic since we last checked?
//
if(ui32RxCount != g ui32USBRxByteCount)
{
//
// Turn on the Blue LED.
//
GPIOPinWrite(GPIO PORTF_BASE, GPIO PIN_2, GPIO PIN 2);
//
// Delay for a bit.
//
SysCtlDelay(ROM_SysCtlClockGet() / 3 / 20);
//
// Turn off the Blue LED.
//
GPIOPinWrite(GPIO PORTF_BASE, GPIO PIN_ 2, ©);
//
// Take a snapshot of the latest receive count.
//
ui32RxCount = g ui32USBRxByteCount;
}
if(g_ui32USBRxSilenceTime >= 100){
g _ui32USBRxSilenceTime = 0;

responselLength = 0;
responseLength = MB_RTUFrameProcessing(puc_initialUSBRxAdd, puc_initialUSBTxAdd,

g_ui8MBUSBSlavelD);

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916 }

if(responselLength <= 256){
//uint8_t ui8Char;
uint8 t i;
for(i = @; i < responseLength; i++){
USBBufferWrite((tUSBBuffer *)&g sTxBuffer, (puc_initialUSBTxAdd + i), 1)
}

USBBufferFlush(&g_sTxBuffer);
}

USBBufferInit(&g_sTxBuffer);
USBBufferInit(&g_sRxBuffer);

puc_initialUSBRxAdd
puc_initialUSBTxAdd

g_sRxBuffer.pui8Buffer;
g_sTxBuffer.pui8Buffer;

Page 16

.

)

usb_dev_serial.c

917

Page 17

