
usb_dev_serial.c

1 //***
2 //
3 // usb_dev_serial.c - Main routines for the USB CDC serial example.
4 //***
5
6 #include <stdbool.h>
7 #include <stdint.h>
8 #include "inc/hw_ints.h"
9 #include "inc/hw_memmap.h"

10 #include "inc/hw_types.h"
11 #include "inc/hw_gpio.h"
12 #include "inc/hw_uart.h"
13 #include "inc/hw_sysctl.h"
14 #include "driverlib/debug.h"
15 #include "driverlib/fpu.h"
16 #include "driverlib/gpio.h"
17 #include "driverlib/pin_map.h"
18 #include "driverlib/interrupt.h"
19 #include "driverlib/sysctl.h"
20 #include "driverlib/systick.h"
21 #include "driverlib/timer.h"
22 #include "driverlib/uart.h"
23 #include "driverlib/usb.h"
24 #include "driverlib/rom.h"
25 #include "usblib/usblib.h"
26 #include "usblib/usbcdc.h"
27 #include "usblib/usb-ids.h"
28 #include "usblib/device/usbdevice.h"
29 #include "usblib/device/usbdcdc.h"
30 #include "utils/ustdlib.h"
31 #include "usb_serial_structs.h"
32 #include "utils/uartstdio.h"
33
34 //***
35 //
36 //! \addtogroup example_list
37 //! <h1>USB Serial Device (usb_dev_serial)</h1>
38 //!
39 //! This example application turns the evaluation kit into a virtual serial
40 //! port when connected to the USB host system. The application supports the
41 //! USB Communication Device Class, Abstract Control Model to redirect UART0
42 //! traffic to and from the USB host system.
43 //!
44 //! Assuming you installed TivaWare C Series in the default directory, a
45 //! driver information (INF) file for use with Windows XP, Windows Vista and
46 //! Windows7 can be found in C:/ti/TivaWare-for-C-Series/windows_drivers. For
47 //! Windows 2000, the required INF file is in
48 //! C:/ti/TivaWare-for-C-Series/windows_drivers/win2K.
49 //
50 //***
51
52 //***
53 //
54 // Configuration and tuning parameters.
55 //
56 //***
57

Page 1

usb_dev_serial.c

58 //***
59 //
60 // The system tick rate expressed both as ticks per second and a millisecond
61 // period.
62 //
63 //***
64 #define SYSTICKS_PER_SECOND 100
65 #define SYSTICK_PERIOD_MS (1000 / SYSTICKS_PER_SECOND)
66
67 //***
68 //
69 // Variables tracking transmit and receive counts.
70 //
71 //***
72 unsigned char* puc_initialUSBRxAdd = 0;
73 unsigned char* puc_initialUSBTxAdd = 0;
74 volatile unsigned char* puc_lastUSBRxAdd = 0;
75 volatile unsigned char* puc_lastUSBTxAdd = 0;
76 volatile uint32_t g_ui32USBTxCount = 0;
77 volatile uint32_t g_ui32USBRxCount = 0;
78 volatile uint32_t g_ui32USBTxByteCount = 0;
79 volatile uint32_t g_ui32USBRxByteCount = 0;
80 volatile uint32_t g_ui32USBRxSilenceTime = 0;
81 volatile uint8_t g_ui8MBUSBSlaveID = 1;
82 #ifdef DEBUG
83 uint32_t g_ui32UARTRxErrors = 0;
84 #endif
85
86 //***
87 //
88 // The base address, peripheral ID and interrupt ID of the UART that is to
89 // be redirected.
90 //
91 //***
92 //
93 // Default line coding settings for the redirected UART.
94 //
95 //***
96 #define DEFAULT_BIT_RATE 115200
97 #define DEFAULT_UART_CONFIG (UART_CONFIG_WLEN_8 | UART_CONFIG_PAR_NONE | \
98 UART_CONFIG_STOP_ONE)
99

100 //***
101 //
102 // Global system tick counter
103 //
104 //***
105 volatile uint32_t g_ui32SysTickCount = 0;
106
107 //***
108 //
109 // Flags used to pass commands from interrupt context to the main loop.
110 //
111 //***
112 #define COMMAND_PACKET_RECEIVED 0x00000001
113 #define COMMAND_STATUS_UPDATE 0x00000002
114

Page 2

usb_dev_serial.c

115 volatile uint32_t g_ui32Flags = 0;
116 char *g_pcStatus;
117
118 //***
119 //
120 // Global flag indicating that a USB configuration has been set.
121 //
122 //***
123 static volatile bool g_bUSBConfigured = false;
124
125 //***
126 //
127 // Internal function prototypes.
128 //
129 //***
130 static void CheckForSerialStateChange(const tUSBDCDCDevice *psDevice,
131 int32_t i32Errors);
132 static void SetControlLineState(uint16_t ui16State);
133 static bool SetLineCoding(tLineCoding *psLineCoding);
134 static void GetLineCoding(tLineCoding *psLineCoding);
135 extern unsigned int MB_RTUFrameProcessing(uint8_t *uc_BufferRec, uint8_t *uc_BufferSend,

uint8_t slaveID);
136
137 //***
138 //
139 // The error routine that is called if the driver library encounters an error.
140 //
141 //***
142 #ifdef DEBUG
144 __error__(char *pcFilename, uint32_t ui32Line)
150 #endif
151
152 //***
153 //
154 // This function is called whenever serial data is received from the UART.
155 // It is passed the accumulated error flags from each character received in
156 // this interrupt and determines from them whether or not an interrupt
157 // notification to the host is required.
158 //
159 // If a notification is required and the control interrupt endpoint is idle,
160 // we send the notification immediately. If the endpoint is not idle, we
161 // accumulate the errors in a global variable which will be checked on
162 // completion of the previous notification and used to send a second one
163 // if necessary.
164 //
165 //***
166 static void
167 CheckForSerialStateChange(const tUSBDCDCDevice *psDevice, int32_t i32Errors)
168 {
169 uint16_t ui16SerialState;
170
171 //
172 // Clear our USB serial state. Since we are faking the handshakes, always
173 // set the TXCARRIER (DSR) and RXCARRIER (DCD) bits.
174 //
175 ui16SerialState = USB_CDC_SERIAL_STATE_TXCARRIER |
176 USB_CDC_SERIAL_STATE_RXCARRIER;

Page 3

usb_dev_serial.c

177
178 //
179 // Are any error bits set?
180 //
181 if(i32Errors)
182 {
183 //
184 // At least one error is being notified so translate from our hardware
185 // error bits into the correct state markers for the USB notification.
186 //
187 if(i32Errors & UART_DR_OE)
188 {
189 ui16SerialState |= USB_CDC_SERIAL_STATE_OVERRUN;
190 }
191
192 if(i32Errors & UART_DR_PE)
193 {
194 ui16SerialState |= USB_CDC_SERIAL_STATE_PARITY;
195 }
196
197 if(i32Errors & UART_DR_FE)
198 {
199 ui16SerialState |= USB_CDC_SERIAL_STATE_FRAMING;
200 }
201
202 if(i32Errors & UART_DR_BE)
203 {
204 ui16SerialState |= USB_CDC_SERIAL_STATE_BREAK;
205 }
206
207 // Call the CDC driver to notify the state change.
208 USBDCDCSerialStateChange((void *)psDevice, ui16SerialState);
209 }
210 }
211
212 //***
213 //
214 // Interrupt handler for the system tick counter.
215 //
216 //***
217 unsigned int responseLength;
218 void
219 SysTickIntHandler(void)
220 {
221 //
222 // Update our system time.
223 //
224 g_ui32SysTickCount++;
225 ++g_ui32USBRxSilenceTime;
226 }
227
228 //***
229 //
230 // Set the state of the RS232 RTS and DTR signals.
231 //
232 //***
233 static void

Page 4

usb_dev_serial.c

234 SetControlLineState(uint16_t ui16State)
235 {
236 //
237 // TODO: If configured with GPIOs controlling the handshake lines,
238 // set them appropriately depending upon the flags passed in the wValue
239 // field of the request structure passed.
240 //
241 }
242
243 //***
244 //
245 // Set the communication parameters to use on the UART.
246 //
247 //***
248 static bool
249 SetLineCoding(tLineCoding *psLineCoding)
250 {
251 uint32_t ui32Config;
252 bool bRetcode;
253
254 //
255 // Assume everything is OK until we detect any problem.
256 //
257 bRetcode = true;
258
259 //
260 // Word length. For invalid values, the default is to set 8 bits per
261 // character and return an error.
262 //
263 switch(psLineCoding->ui8Databits)
264 {
265 case 5:
266 {
267 ui32Config = UART_CONFIG_WLEN_5;
268 break;
269 }
270
271 case 6:
272 {
273 ui32Config = UART_CONFIG_WLEN_6;
274 break;
275 }
276
277 case 7:
278 {
279 ui32Config = UART_CONFIG_WLEN_7;
280 break;
281 }
282
283 case 8:
284 {
285 ui32Config = UART_CONFIG_WLEN_8;
286 break;
287 }
288
289 default:
290 {

Page 5

usb_dev_serial.c

291 ui32Config = UART_CONFIG_WLEN_8;
292 bRetcode = false;
293 break;
294 }
295 }
296
297 //
298 // Parity. For any invalid values, we set no parity and return an error.
299 //
300 switch(psLineCoding->ui8Parity)
301 {
302 case USB_CDC_PARITY_NONE:
303 {
304 ui32Config |= UART_CONFIG_PAR_NONE;
305 break;
306 }
307
308 case USB_CDC_PARITY_ODD:
309 {
310 ui32Config |= UART_CONFIG_PAR_ODD;
311 break;
312 }
313
314 case USB_CDC_PARITY_EVEN:
315 {
316 ui32Config |= UART_CONFIG_PAR_EVEN;
317 break;
318 }
319
320 case USB_CDC_PARITY_MARK:
321 {
322 ui32Config |= UART_CONFIG_PAR_ONE;
323 break;
324 }
325
326 case USB_CDC_PARITY_SPACE:
327 {
328 ui32Config |= UART_CONFIG_PAR_ZERO;
329 break;
330 }
331
332 default:
333 {
334 ui32Config |= UART_CONFIG_PAR_NONE;
335 bRetcode = false;
336 break;
337 }
338 }
339
340 //
341 // Stop bits. Our hardware only supports 1 or 2 stop bits whereas CDC
342 // allows the host to select 1.5 stop bits. If passed 1.5 (or any other
343 // invalid or unsupported value of ui8Stop, we set up for 1 stop bit but
344 // return an error in case the caller needs to Stall or otherwise report
345 // this back to the host.
346 //
347 switch(psLineCoding->ui8Stop)

Page 6

usb_dev_serial.c

348 {
349 //
350 // One stop bit requested.
351 //
352 case USB_CDC_STOP_BITS_1:
353 {
354 ui32Config |= UART_CONFIG_STOP_ONE;
355 break;
356 }
357
358 //
359 // Two stop bits requested.
360 //
361 case USB_CDC_STOP_BITS_2:
362 {
363 ui32Config |= UART_CONFIG_STOP_TWO;
364 break;
365 }
366
367 //
368 // Other cases are either invalid values of ui8Stop or values that we
369 // cannot support so set 1 stop bit but return an error.
370 //
371 default:
372 {
373 ui32Config |= UART_CONFIG_STOP_ONE;
374 bRetcode = false;
375 break;
376 }
377 }
378
379 //
380 // Let the caller know if we had a problem or not.
381 //
382 return(bRetcode);
383 }
384
385 //***
386 //
387 // Get the communication parameters in use on the UART.
388 //
389 //***
390 static void
391 GetLineCoding(tLineCoding *psLineCoding)
392 {
393 uint32_t ui32Config;
394 uint32_t ui32Rate;
395
396 //
397 // Get the current line coding set in the UART.
398 //
399 psLineCoding->ui32Rate = ui32Rate;
400
401 //
402 // Translate the configuration word length field into the format expected
403 // by the host.
404 //

Page 7

usb_dev_serial.c

405 switch(ui32Config & UART_CONFIG_WLEN_MASK)
406 {
407 case UART_CONFIG_WLEN_8:
408 {
409 psLineCoding->ui8Databits = 8;
410 break;
411 }
412
413 case UART_CONFIG_WLEN_7:
414 {
415 psLineCoding->ui8Databits = 7;
416 break;
417 }
418
419 case UART_CONFIG_WLEN_6:
420 {
421 psLineCoding->ui8Databits = 6;
422 break;
423 }
424
425 case UART_CONFIG_WLEN_5:
426 {
427 psLineCoding->ui8Databits = 5;
428 break;
429 }
430 }
431
432 //
433 // Translate the configuration parity field into the format expected
434 // by the host.
435 //
436 switch(ui32Config & UART_CONFIG_PAR_MASK)
437 {
438 case UART_CONFIG_PAR_NONE:
439 {
440 psLineCoding->ui8Parity = USB_CDC_PARITY_NONE;
441 break;
442 }
443
444 case UART_CONFIG_PAR_ODD:
445 {
446 psLineCoding->ui8Parity = USB_CDC_PARITY_ODD;
447 break;
448 }
449
450 case UART_CONFIG_PAR_EVEN:
451 {
452 psLineCoding->ui8Parity = USB_CDC_PARITY_EVEN;
453 break;
454 }
455
456 case UART_CONFIG_PAR_ONE:
457 {
458 psLineCoding->ui8Parity = USB_CDC_PARITY_MARK;
459 break;
460 }
461

Page 8

usb_dev_serial.c

462 case UART_CONFIG_PAR_ZERO:
463 {
464 psLineCoding->ui8Parity = USB_CDC_PARITY_SPACE;
465 break;
466 }
467 }
468
469 //
470 // Translate the configuration stop bits field into the format expected
471 // by the host.
472 //
473 switch(ui32Config & UART_CONFIG_STOP_MASK)
474 {
475 case UART_CONFIG_STOP_ONE:
476 {
477 psLineCoding->ui8Stop = USB_CDC_STOP_BITS_1;
478 break;
479 }
480
481 case UART_CONFIG_STOP_TWO:
482 {
483 psLineCoding->ui8Stop = USB_CDC_STOP_BITS_2;
484 break;
485 }
486 }
487 }
488
489 //***
490 //
491 // Handles CDC driver notifications related to control and setup of the device.
492 //
493 // \param pvCBData is the client-supplied callback pointer for this channel.
494 // \param ui32Event identifies the event we are being notified about.
495 // \param ui32MsgValue is an event-specific value.
496 // \param pvMsgData is an event-specific pointer.
497 //
498 // This function is called by the CDC driver to perform control-related
499 // operations on behalf of the USB host. These functions include setting
500 // and querying the serial communication parameters, setting handshake line
501 // states and sending break conditions.
502 //
503 // \return The return value is event-specific.
504 //
505 //***
506 uint32_t
507 ControlHandler(void *pvCBData, uint32_t ui32Event,
508 uint32_t ui32MsgValue, void *pvMsgData)
509 {
510 uint32_t ui32IntsOff;
511
512 //
513 // Which event are we being asked to process?
514 //
515 switch(ui32Event)
516 {
517 //
518 // We are connected to a host and communication is now possible.

Page 9

usb_dev_serial.c

519 //
520 case USB_EVENT_CONNECTED:
521 g_bUSBConfigured = true;
522
523 //
524 // Flush our buffers.
525 //
526 USBBufferFlush(&g_sTxBuffer);
527 USBBufferFlush(&g_sRxBuffer);
528
529 //
530 // Tell the main loop to update the display.
531 //
532 ui32IntsOff = ROM_IntMasterDisable();
533 g_pcStatus = "Connected";
534 g_ui32Flags |= COMMAND_STATUS_UPDATE;
535 if(!ui32IntsOff)
536 {
537 ROM_IntMasterEnable();
538 }
539 break;
540
541 //
542 // The host has disconnected.
543 //
544 case USB_EVENT_DISCONNECTED:
545 g_bUSBConfigured = false;
546 ui32IntsOff = ROM_IntMasterDisable();
547 g_pcStatus = "Disconnected";
548 g_ui32Flags |= COMMAND_STATUS_UPDATE;
549 if(!ui32IntsOff)
550 {
551 ROM_IntMasterEnable();
552 }
553 break;
554
555 //
556 // Return the current serial communication parameters.
557 //
558 case USBD_CDC_EVENT_GET_LINE_CODING:
559 GetLineCoding(pvMsgData);
560 break;
561
562 //
563 // Set the current serial communication parameters.
564 //
565 case USBD_CDC_EVENT_SET_LINE_CODING:
566 SetLineCoding(pvMsgData);
567 break;
568
569 //
570 // Set the current serial communication parameters.
571 //
572 case USBD_CDC_EVENT_SET_CONTROL_LINE_STATE:
573 SetControlLineState((uint16_t)ui32MsgValue);
574 break;
575

Page 10

usb_dev_serial.c

576 //
577 // Send a break condition on the serial line.
578 //
579 case USBD_CDC_EVENT_SEND_BREAK:
580 //SendBreak(true);
581 break;
582
583 //
584 // Clear the break condition on the serial line.
585 //
586 case USBD_CDC_EVENT_CLEAR_BREAK:
587 //SendBreak(false);
588 break;
589
590 //
591 // Ignore SUSPEND and RESUME for now.
592 //
593 case USB_EVENT_SUSPEND:
594 case USB_EVENT_RESUME:
595 break;
596
597 //
598 // We don't expect to receive any other events. Ignore any that show
599 // up in a release build or hang in a debug build.
600 //
601 default:
602 #ifdef DEBUG
603 while(1);
604 #else
605 break;
606 #endif
607
608 }
609
610 return(0);
611 }
612
613 //***
614 //
615 // Handles CDC driver notifications related to the transmit channel (data to
616 // the USB host).
617 //
618 // \param ui32CBData is the client-supplied callback pointer for this channel.
619 // \param ui32Event identifies the event we are being notified about.
620 // \param ui32MsgValue is an event-specific value.
621 // \param pvMsgData is an event-specific pointer.
622 //
623 // This function is called by the CDC driver to notify us of any events
624 // related to operation of the transmit data channel (the IN channel carrying
625 // data to the USB host).
626 //
627 // \return The return value is event-specific.
628 //
629 //***
630 uint32_t
631 TxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
632 void *pvMsgData)

Page 11

usb_dev_serial.c

633 {
634 //
635 // Which event have we been sent?
636 //
637 switch(ui32Event)
638 {
639 case USB_EVENT_TX_COMPLETE:
640 //
641 // Since we are using the USBBuffer, we don't need to do anything
642 // here.
643 //
644 break;
645
646 //
647 // We don't expect to receive any other events. Ignore any that show
648 // up in a release build or hang in a debug build.
649 //
650 default:
651 #ifdef DEBUG
652 while(1);
653 #else
654 break;
655 #endif
656
657 }
658 return(0);
659 }
660
661 //***
662 //
663 // Handles CDC driver notifications related to the receive channel (data from
664 // the USB host).
665 //
666 // \param ui32CBData is the client-supplied callback data value for this channel.
667 // \param ui32Event identifies the event we are being notified about.
668 // \param ui32MsgValue is an event-specific value.
669 // \param pvMsgData is an event-specific pointer.
670 //
671 // This function is called by the CDC driver to notify us of any events
672 // related to operation of the receive data channel (the OUT channel carrying
673 // data from the USB host).
674 //
675 // \return The return value is event-specific.
676 //
677 //***
678 uint32_t
679 RxHandler(void *pvCBData, uint32_t ui32Event, uint32_t ui32MsgValue,
680 void *pvMsgData)
681 {
682 uint32_t ui32Read;
683 uint8_t ui8Char;
684
685 //
686 // Which event are we being sent?
687 //
688 switch (ui32Event)
689 {

Page 12

usb_dev_serial.c

690 //
691 // A new packet has been received.
692 //
693 case USB_EVENT_RX_AVAILABLE:
694 {
695 //
696 // Feed some characters into the UART TX FIFO and enable the
697 // interrupt so we are told when there is more space.
698 //
699 ui32Read = USBBufferRead((tUSBBuffer *) &g_sRxBuffer, &ui8Char, 1);
700 *puc_lastUSBRxAdd = ui8Char;
701 g_ui32USBRxSilenceTime = 0;
702 ++g_ui32USBRxByteCount;
703 break;
704 }
705
706 //
707 // We are being asked how much unprocessed data we have still to
708 // process. We return 0 if the UART is currently idle or 1 if it is
709 // in the process of transmitting something. The actual number of
710 // bytes in the UART FIFO is not important here, merely whether or
711 // not everything previously sent to us has been transmitted.
712 //
713 case USB_EVENT_DATA_REMAINING:
714 {
715
716 return (0);
717 }
718
719 //
720 // We are being asked to provide a buffer into which the next packet
721 // can be read. We do not support this mode of receiving data so let
722 // the driver know by returning 0. The CDC driver should not be sending
723 // this message but this is included just for illustration and
724 // completeness.
725 //
726 case USB_EVENT_REQUEST_BUFFER:
727 {
728 return (0);
729 }
730
731 //
732 // We don't expect to receive any other events. Ignore any that show
733 // up in a release build or hang in a debug build.
734 //
735 default:
736 #ifdef DEBUG
737 while(1);
738 #else
739 break;
740 #endif
741 }
742
743 return (0);
744 }
745
746 //***

Page 13

usb_dev_serial.c

747 //
748 // This is the main application entry function.
749 //
750 //***
751 int
752 main(void)
753 {
754 uint32_t ui32TxCount;
755 uint32_t ui32RxCount;
756
757 //
758 // Enable lazy stacking for interrupt handlers. This allows floating-point
759 // instructions to be used within interrupt handlers, but at the expense of
760 // extra stack usage.
761 //
762 ROM_FPULazyStackingEnable();
763
764 //
765 // Set the clocking to run from the PLL at 50MHz
766 //
767 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
768 SYSCTL_XTAL_16MHZ);
769
770 //
771 // Configure the required pins for USB operation.
772 //
773 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
774 ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_5 | GPIO_PIN_4);
775
776 //
777 // Enable the GPIO port that is used for the on-board LED.
778 //
779 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
780
781 //
782 // Enable the GPIO pins for the LED (PF2 & PF3).
783 //
784 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);
785
786 //
787 // Not configured initially.
788 //
789 g_bUSBConfigured = false;
790 //
791 // Enable the system tick.
792 //
793 ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
794 ROM_SysTickIntEnable();
795 ROM_SysTickEnable();
796
797 //
798 // Initialize the transmit and receive buffers.
799 //
800 USBBufferInit(&g_sTxBuffer);
801 USBBufferInit(&g_sRxBuffer);
802
803 puc_initialUSBRxAdd = g_sRxBuffer.pui8Buffer;

Page 14

usb_dev_serial.c

804 puc_initialUSBTxAdd = g_sTxBuffer.pui8Buffer;
805
806 //
807 // Set the USB stack mode to Device mode with VBUS monitoring.
808 //
809 USBStackModeSet(0, eUSBModeForceDevice, 0);
810
811 //
812 // Pass our device information to the USB library and place the device
813 // on the bus.
814 //
815 USBDCDCInit(0, &g_sCDCDevice);
816
817 //
818 // Clear our local byte counters.
819 //
820 ui32RxCount = 0;
821 ui32TxCount = 0;
822
823 //
824 // Main application loop.
825 //
826 while(1)
827 {
828 //
829 // Have we been asked to update the status display?
830 //
831 if(g_ui32Flags & COMMAND_STATUS_UPDATE)
832 {
833 //
834 // Clear the command flag
835 //
836 ROM_IntMasterDisable();
837 g_ui32Flags &= ~COMMAND_STATUS_UPDATE;
838 ROM_IntMasterEnable();
839 }
840
841 //
842 // Has there been any transmit traffic since we last checked?
843 //
844 if(ui32TxCount != g_ui32USBTxByteCount)
845 {
846 //
847 // Turn on the Green LED.
848 //
849 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, GPIO_PIN_3);
850
851 //
852 // Delay for a bit.
853 //
854 SysCtlDelay(ROM_SysCtlClockGet() / 3 / 20);
855
856 //
857 // Turn off the Green LED.
858 //
859 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);
860

Page 15

usb_dev_serial.c

861 //
862 // Take a snapshot of the latest transmit count.
863 //
864 ui32TxCount = g_ui32USBTxByteCount;
865 }
866
867 //
868 // Has there been any receive traffic since we last checked?
869 //
870 if(ui32RxCount != g_ui32USBRxByteCount)
871 {
872 //
873 // Turn on the Blue LED.
874 //
875 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
876
877 //
878 // Delay for a bit.
879 //
880 SysCtlDelay(ROM_SysCtlClockGet() / 3 / 20);
881
882 //
883 // Turn off the Blue LED.
884 //
885 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
886
887 //
888 // Take a snapshot of the latest receive count.
889 //
890 ui32RxCount = g_ui32USBRxByteCount;
891
892 }
893
894
895 if(g_ui32USBRxSilenceTime >= 100){
896 g_ui32USBRxSilenceTime = 0;
897 responseLength = 0;
898 responseLength = MB_RTUFrameProcessing(puc_initialUSBRxAdd, puc_initialUSBTxAdd,

g_ui8MBUSBSlaveID);
899
900 if(responseLength <= 256){
901 //uint8_t ui8Char;
902 uint8_t i;
903 for(i = 0; i < responseLength; i++){
904 USBBufferWrite((tUSBBuffer *)&g_sTxBuffer, (puc_initialUSBTxAdd + i), 1);
905 }
906 USBBufferFlush(&g_sTxBuffer);
907 }
908
909 USBBufferInit(&g_sTxBuffer);
910 USBBufferInit(&g_sRxBuffer);
911
912 puc_initialUSBRxAdd = g_sRxBuffer.pui8Buffer;
913 puc_initialUSBTxAdd = g_sTxBuffer.pui8Buffer;
914 }
915 }
916 }

Page 16

usb_dev_serial.c

917

Page 17

