
Designing with
Texas Instruments

Field-Programmable Logic
Robert K. Breuninger and Loren E. Schiele

Contributors
Bob Gruebel, Renee Tanaka, Jim Ptasinski

TEXAS
INSTRUMENTS

6-3

en
c:
o

'.j:j
co
,~
C.
c.
<t

6-4

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

TI warrants performance of its semiconductor products, including SNJ
and SMJ devices, to current specifications in accordance with TI's
standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems such testing necessary to' support this
warranty. Unless mandated by government requirements, specific
testing of all parameters of each device is not necessarily performed.

In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

Copyright © 1984, Texas Instruments Incorporated

Contents

Title Page

FIELD-PROGRAMMABLE LOGIC ADVANTAGES.. 1
PAL® and FPLA Symbology ... : 1
Family Architectures. 2
PAL Options, . 3

Polarity Fuse .. 3
Input Registers ... 3
Input Latches ... 3

Programming. '" ' ... '" ... ' " 6
Design Example .. '..... 6
Example Requirements ... 7
PAL hnplenlentation .. 7
PAL Selection .. '............................. g
Clock Selector Details '.. g
4-Bit Binary Counter Details .. 10
Binary/Decade Count,Details 10
Fuse Map Details .. 11
Advanced Software. 15
Performance .. 15

ADDRESS FOR PROGRAMMING AND SOFTWARE MANUFACTURERS 18
Hardware Manufacturers .. 18
Software Manufacturers 18

,
® PAL is a registered trademark of Monolithic Memories Inc,

6-5

U)

c:
o

'';:
CO
,~
C.
c. «

Figure
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Table
1
2
3
4

6-6

List of Illustrations

Title
Basic Symbology .. .
Basic Symbology Example .. .
PROM Architecture
PAL Architecture .. .
FPLA Architecture .. .
TIBPAL16L8 Logic Diagram ,
TIBPAL16R8 Logic Diagram
Polarity Selection .. .
Input Register Selection .. .
Input Latch Selection .. .

Page
1
2
2
2
3
4
5
6
6
7

PAL Process Flow Diagram .. 7
Counter Implementation With Standard Logic . 8
TIBPAL16R4 Logic Diagram .. 9
Karnaugh Map for CLKOUT .. 10
Karnaugh Map for CLKOUT • .. 10
Karnaugh Maps .. 11
TIBPAL16R4 Logic Diagram .. 12
Pin ID and Logic Equations. .. 13
Fuse Map.. 14
Source File for ABEL. .. 16
ABEL Output Documentation .. .

List of Tables

Title
Clock Selection
Function Table
Truth Table .. .
Truth Table .. .

17

Page
7
8

10
11

INTRODUCTION

The purpose of this application report is to provide the
first time user of field-programmable logic with a basic
understanding of this new and powerful technology. The
term "Field-Programmable Logic" refers to any device
supplied with an uncommitted logic array, which the user
programs to his own specific function. The most common,
and widely known field-programmable logic family is the
PROM, or Programmable Read-Only Memory. Relatively
new entries into this expanding family of devices are the
PAL® and FPLA. This report will primarily concentrate
on the PAL family of programmable logic.

FIELD-PROGRAMMABLE LOGIC ADVANTAGES

Field-programmable logic offers many advantages to
the system designer who presently is using several
standard catalog SSI and MSI functions. Listed below are
just a few of the benefits which are achievable when using
programmable logic.

1. Package Count Reduction: typically, 3 to 6
MSl/SSI functions can be replaced with one
PAL or FPLA.

2. PC Board Area Reduced: Fewer devices
consume less PC board space. This results in
lower PC board cost.

3. Circuit Flexibility: Programmability allows for
minor circuit changes without changing PC
boards.

4. Improved Reliability: With fewer PC
interconnects, overall system reliability
increases.

5. Shorter Design Cycle: When compared with
standard-cell or gate-array approaches,
custom functions can be implemcnted much
more quickly.

The PAL and FPLA, will fill the gap bctween
standard logic and large scale integration. The versatility
of these devices provide a very powerful tool for the .
system designer.

PAL AND FPLA SYMBOLOGY

In order to keep PAL and FPLA logic easy to
understand and use, a special convention has been
adopted. Figure 1 is the representation for a 3-input AND
gate. Note that only one line is shown as the input to the
AND gate. This line is commonly refered to as the
product line. The inputs are shown as vertical lines, and at
the intersection of these lines are the programmable fuses.

®pAL is a Registered Trademark of Monolithic Memories Inc.

An X represents an intact fuse. This makes that input,
part of the product term. No X represents a blown fuse.
This means that input will not be part of the product term
(in Figure 1, input B is not part of the product term). A
dot at the intersection of any line represents a hard wire
connection.

INPUT TERMS
ABC

PRODUCT ~ OUTPUT

LINE TIT L...I F = A;C

Figure 1. Basic Symbology

In Figure 2, we will extend the symbology to develop
a simple 2-input programmable AND array feeding an OR
gate. Notice that buffers have been added to the inputs,
which provide both true and complement outputs to the
product lines. The intersection of the input terms form a
4 x 3 programmable AND array. From the above
symbology, we can see that the output of the OR gate is
programmed to the following equation, AB + AB. Note
that the bottom AND gate has an X marked inside the
gate symbol. This means that all fuses are left intact, which
results in that product line not having any effect on the
sum term. In other words, the output of the AND gate will
be a logic O. When all the fuses are blown on a product line,
the output of the AND gate will always be a logic 1. This has
the effect of locking up the output of the OR gate to a logic
level 1.

INPUT TERMS

~

Figure 2. Basic Symbology Example

6-7

en
c
o

'';:;
CO
,~
C.
c. «

FAMILY ARCHITECTURES

As stated before, the PROM was the first widely
used programmable logic family. Its basic architecture is
an input decoder configured from AND gates, combined
with a programmable OR matrix on the outputs. As
shown in Figure 3, this allows every output to be
programmed individually from every possible input
combination. In this example, a PROM with 4 inputs has
24, or 16 possible input combinations. With the output
word width being 4 bits, each of the 16 x 4 bit words can be

D

'r'

\

6-8

c B

16 WORDS X 4 BITS

A "OR"ARRAY
(PROGRAMMABLE)

,---/'-..

1\

K
F<
L.....I'

r-'\.

F=<
~

,

~
L-I

I ?yyy V
"AND" ARRAY

(FIXED) 03 02 01 00

Figure 3. PROM Architecture

programmed individually. Applications such as data
storage tables, character generators, and code converters,
are just a few design examples which are ideally suited for
the PROM. In general, any application which requires
every input combination to be programmable, is a good
candidate for a PROM. However, PROMs have difficulty
accommodating large numbers of input variables.
Eventually, the size of the fuse matrix will become
prohibitive because for each input variable added, the size
of the fuse matrix doubles. Currently, manufacturers are
not producing PROMs with over 13 inputs.

D c B A "OR" ARRAY
FIXED

,---/'-.. ...
~

~
r=<
L::<
=<
=<
r<

/ P<
F=<
P=<
~
~
P<
P<

t, P=<
P=<
L.....I'

\
V

I

"AND" ARRAY
(PROGRAMMABLE) 03 02 01 00

Figure 4. PAL Architecture

To overcome the limitation of a restricted number of
inputs, the PAL utilizes a slightly different architecture as
shown in Figure 4. The same AND-OR implementation is
used as with PROMs, but now the input AND array is
programmable instead of the output OR array. This has
the effect of restricting the output OR array to a fixed
number of input AND terms. The trade-off is that now,
every output is not programmable from every input
combination, but more inputs can be added without
doubling the size of the fuse matrix. For example, If we
were to expand the inputs on the PAL shown in Figure 4,
to 10, and on the PROM in Figure 3, to 10. We would see
that the fuse matrix required for the PAL would be 20 x 16
(320 fuses) vs 4 x 1024 (4096 fuses for the PROM). It is
important to realize that not every application requires
every output be programmable from every input
combination. This is what makes the PAL a viable product
family.

The FPLA goes one step further in offering both a
programmable AND array, and a programmable OR
array (Figure 5). This feature makes the FPLA the most

o c B A "OR" ARRAY
(PROGRAMMABLE)

~

r-"\

P<
J=< I"

'=<
==<
=<
=< =< =<
=<
~
F=<
?<
~
~ 1/

~
I-..J

\ I 9YY9 V
"AND" ARRAY

(PROGRAMMABLE)

Figure 5. FPLA Architecture

versatile device of the three, but usually impractical in
most low complexity applications.

All three field-programmable logic approaches
discussed have their own unique advantages and
limitations. The best choice depends on the complexity of
the function being implemented and the current cost of
the devices themselves. It is important to realize, that a
circuit solution may exist from more than one of these
logic families.

PAL OPTIONS

Figure 6 shows the logic diagram of the popular
TIBPAL16L8. Its basic architecture is the same as
discussed in the previous section, but with the addition of
some special circuit features. First notice that the PAL has
10 simple inputs. In addition, 6 of the outputs operate as
I/O ports. This allows feedback into the AND array. One
AND gate in each product term controls each 3-state
output. The architecture used in this PAL makes it very
useful in generating all sorts of combinational logic.

Another important feature about the logic diagram,
and all other block diagrams supplied from individual
datasheets, are that there are no X's marked at every fuse
location. From the previous convention; we stated that
everywhere there was a intact fuse, there was an X .
However, in order to make the logic diagram useful when
generating specific functions, it is supplied with no X's.
This allows the user to insert the X's wherever an intact
fuse is desired:

The basic concept of the TIBPALl6L8 can be
expanded further to include D-type flip-flops on the
outputs. An example of this is shown in Figure 7 with the
TIBPAL16R8. This added feature allows the device to be
configured as a counter, simple storage register, or similar
clocked function.

Circuit variations which are available on other
members of the TI PAL and FPLA family are explained
below.

Polarity Fuse
The polarity of the output can be selected via the

fuse shown in Figure 8.

Input Registers
On PALs equipped with this special feature, the

option of having D-type input registers is fuse
programmable. Figure 9 shows an example of this type of
input. If the fuse is left intact, data enters on a low-high
transition of the clock. If the fuse is blown, the register
becomes permanently transparent and is equivalent to a
normal input buffer.

Input Latches
On PALs equipped with this special feature, the

option of having input latches is fuse programmable.

6-9

en
t:
o

.,t:;
CO
.2
C.
c. «

INPUT LINES
RODUCT, .
LINES 0 4 8 12 16 20 24 28 31

0
,.......

H~b--J · · 1-<1--· f-<I----' (19) · Hr----. · f-<I--· f-<I----'
7 CI--

~ ~ . 8
-I-- 1 · · -I--· -I--r----- (18) · -I--f--" v · -I--· -I--

(3) 15 =1--
..... .?l .}I;.

o

110

16 r H'-b--J · · I-r-.-· I-/-----, (17) · 1-)----, · 1-)--· 1-1-----'

(4) 23
1-)----,
..... .A

1/0

Jc:
~

24
,.......

~ 1 · · ~ · I-<r-" (16) · ~f-/ v · ~ · ~
(5) 31 b-)l. -"...

1/0

32
,..
HI-- J · · f-<I--

(15) · ~1--0-· · f-<I--· f-<I--

39
HI--

(6) r----.
.A

X J<

1/0

~

40
-.
-<>---c 1 · -<f.-· · f.-r--..... (14) · >---cf-/ v ·)--· f.-

47 =f.-
(7) .:>t..

.....

1/0

48
~

-~W · · f--

· -f.- (13) · -f--

1
· -f--· I-f.-

55 ~f---,
(8)"x

v ~

1/0

,..
56 I-<r- 1 · ~ · (12) · ~" · ~:.-.-' v · f-<)----· ~

9) 63 t:)-. (11)
(.?l .}I;.

o

Figure 6. TIBPAL16L8 Logic Diagram

6-10

CLK~~--~
INPUT LINES

P RODUCT • ,
LINES 0 4 8 12 16 20 24 28 31

0 r-~

· ~)---, · f-)--

tbl;~ · ~r-p-· ~)--· ;-)--· ~)---J

~
C1 'l----,

I- A

'8 r-!--

· t:~ · f-~t> ~) · · ~!--

~ · ;-~

· ~!--

(3)~5
f-~ C1 I-!--

... J<..
16 F~

• t:~ · f-~t> R · (17 · f-!--

~ · f-~ v

• ~~

(4)h23
~).- C1 !--

..x .Jc'"

24
r- .",.
I-}--· 1-)--· ~) · I-~t> · I-!-- tbl; · 1-)--

0 1-)--

(5)~1
1-).- C1
I- "'
r-I--32 · ~)--· I-)--t> I,:l (15) · · I-~

~ · 1-)-- ~

• 1-)--

(6)}9
1-).- C1
1..-1--

.)'l J<..
40 '}--

· ~ · ~~
~) · f-~

~ • f-~
• ~~

v

· f-~
47 t::)-- C1

(7)"'::.1
'"

48 r-}--

• ~)---,

• f-)--
IrJ. · f-~t>

~
(13) · f-)-- v · ~)---, · ~~

55 1-)-- C1
(8» '- A

....
56 '}--

· ~
• 8=t>-~1J · (12) · · I-r-- v

· ~

(9)~63
1-)---, C1
I..-}-

VI. N L<J>!!!)
Figure 7. TIBPAL16R8 Logic Diagram

a

a

a

a

a

a

a

6-11

en
c:
o

.';;
ca
.2
C.
Co

<

ENABLE

.10

INPUTS
o

In

PO
o
o
o
o

D--+--+--I-.... 0
o
o

Pn

Figure 8. Polarity Selection

Figure 10 shows an exa~ple of this type of input. If the
fuse is left intact, data enters while the control input is
high. When the control input is low, the data that was
present when the control input went low will be saved. If
the fuse is blown, the 'Iatch becomes permanently
transparent, and is equivalent to a normal input buffer.

PROGRAMMING

Notice in Figure 7, that the product and input lines
are numbered. This allows any specific fuse to be located
anywhere in the fuse matrix. When the device is in the
programming mode (as defined in the device data sheet),
the individual product and input lines can be selected. The
fuse at the intersection of these lines, can then be blown
(programmed) with the defined programming pulse.
Fortunately, the user seldom has to get involved with these
actual details of programming, because there exist several
commercially available programmers which handle this

function. Listed below are some of the manufacturers of
this programming equipment. *

Citel Storey Systems
DATA 110· Structured Design
Digelec Sunrise Electronics
Kontron Valley Data Science
Wavetec Varix
Stag Micro Systems

At Texas Instruments, we have coordinated with
DATA 110 using their Model 19 for device
characterization. Currently, DATA 110, Sunrise, and
Structured Design have been certified by Texas
Instruments. Other programmers are now in the
certification process. For a current list of certified
programmers, please contact your local TI sales
representative.

It should now be obvious to the reader, that the
actual blowing of the fuses is not a problem. Instead, the
real question is what fuses need to be blown to generate a
particular function. Fort~nately, this problem has also
been greatly simplified by recent advances in computer
software.

DATA 110 has developed a software package called
ABEL Til. Also available is CUPL T'I, from Assisted
Technology. Both have been designed to be compatible
with several different types of programmers. Both of these
software packages greatly extend the capabilities of the
original PALASMT'I program, and both can be run on
most professional computers.

Before proceeding to a design example, it would be
instructive to look at the simplified process flow of a PAL
(Figure 11). This should help give the reader a better
understanding of the basic steps necessary to generate a
working device.

DESIGN EXAMPLE

The easiest way to demonstrate the unique
capabilities of the PAL is through a design example. It is

REGISTER FUSE INTACT

Figure 9. Input Register Selection

ABEL" is a trademark of DATA I/o.
CUPL '" is a trademark of Assisted Technology, Inc.
PALASM'" is a trademark of Monolithic Memories Inc.

6-12

O·TYPE REGISTER
FUNCTION TABLE

CLOCK 0 Q

t H H

t L L

Q

L

H

L X Qo Qo

QO" THE STATE OF Q BEFORE CLOCK t

LATCH FUSE INTACT

OC2
1C2

20
MO (INTACT)
M1 (BLOWNI

TRANSPARENT LATCH
FUNCTION TABLE

ENABLE 0 0 a
H L L H

H H H L

L X 00 00

OO=THE LEVEL OF 0 BEFORE ENABLE ,

Figure 10. Input Latch Selection

Figure 11. PAL Process Flow Diagram

hoped that through this example the'reader will gain the
basic understanding needed when applying the PAL in his
own application. In some cases, this goal may only be to
reduce existing logic, but the overall approach will be the
same.

EXAMPLE REQUIREMENTS

It is desired to generate a 4-bit binary counter which
is fed by one of four clocks. There are two lines available
for selecting the clocks, SELl and SELO. Table 1 shows the
required input for the selection of the clocks. In addition,
it is desired that the counter be able to switch from binary
to decade count. This feature is controlled by an input
called BD. When BD is high, the counter should count in
binary. When low, the counter should count in decade.

Figure 12 shows how this example could be
implemented if standard data book, functions were used.

Table 1. Clock Selection

SEL1 SELO OUTPUT
0 0 ClKA
0 1 ClKB

ClKC
1 ClKD

As can be seen, three MSI functions are required. The
'LS162 is used to generate the 4-bit counter while the clock
selection is handled by the 'LS253. The 'LS688 is an 8-bit
comparator which is used for selecting either the binary or
decade count. In this example,. only five of the eight
comparator inputs are used. Four are used for comparing
the counter outputs, while the other is used for the BD
input. The comparator is hard-wired to go low whenever
the BD input is low and the counter output is "9". The
P = Q output is then fed back to the synchronous clear
input on the 'LS162. This will reset the counter to zero
whenever this condition occurs.

PAL IMPLEMENTATION

As stated before, the problem in programming a
PAL is not in blowing the fuses, but rather what fuses need
to be blown to generate a particular function. Fortunately,
this problem has been greatly simplified by computer
software, but before we examine these techniques, it is
beneficial to explore the methods used in generating the
logic equations. This will help develop an understanding,
and appreciation for these advanced software packages.

From digital logic theory, we know that most any
type of logic can be implemented in either AND-OR
INVERT or AND-NOR form. This iS,the basic concept
used in the PAL and FPLA. This allows classical
techniques, such as Karnaugh Maps! to be used in
generating specific logic functions. As with the separate
component example above, it is easier to break it into
separate functions. The first one that we will look at is the
clock selector, but remember that the overall goal will be
to reduce this design example into one PAL.

6-13

til
I:
o
.~

CtI
.~
C.
Co «

SELO
SEL 1

CLKA

CLKB

CLKC
CLKD

'LS253

BD-----------;--r-~~

'LS162

Figure 12. Counter Implementation With Standard Logic

PAL SELECTION

Before proceeding with the design for the clock
selector, the first question which needs to be addressed is
which PAL to use. As discussed earlier, there are several
different types of output architectures. Looking at our
example, we can see that four flip-flops with feedback will
be required in the 4-bit counter, plus input clock and clear
lines. In addition, seven inputs plus two simple outputs
will be required in the clock selector and comparator. With
this information in hand, we can see that the TIBPALl6R4
(Figure 13) will handle our application.

CLOCK SELECTOR DETAILS

The first step in dctcrmining the logic equation for
the clock selector is to generate a function table with all
the possible input combinations. This is shown in Table 2.
From this table, the Karnaugh map can be generated and
is shown in Figure 14. The minimized equation for
CLKOUT comes directly from this.

Table 2. Function Table

SEL1 SELO CLKA CLKB CLKC CLKD CLKOUT

6-14

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o

o
o
o
o

o
o

o

o
o
o
o
o
o
o
o

1

o
o
o
o
o
o
o
o

o
o
o
o

o
o
o
o

1

o
o
o
o

o
o
o
o

o
o
1

1

o

o
o

o

o

o

o
o

1

o

o

o
1

o
1

o
1

o
1

o
1

o
1

o
1

o

o

1

o

1

o
1

o

o
o
o
o
o
o
o
o
1

1

o
o
o
o

1

o

o
o
1

SEL 1 SELO CLKA CLKB CLKC CLKD CLKOUT

o
o
o
o
o
o
o
o
o
o
o

o
o
o
o

o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o

o
o

o
o

o
o
1

o
o

o
o

o
o

o
o

o

o
-1

o

o

1

o

o
1

o

o
1

o
1

o
1

o
1

o
1

o
1

o
1

o

o
o

o

o
o

1

o
o

1

o

1

o
1

o

o
1

o
1

o
1

o

ClK~----------___ ~

INPUT LINES
PRODUCT~----------------------~----------------------~

LINES 0 4 8 12 16 20 24 28 31
0 r-

1--<1-- 1 · · I--<t--· r-r-- "" (19) · I--<t--!-"

J · r-r--· 1--<1--
7 ~I--Elbt- -1'. ~ 0---

1/0

r-8
~I--] • · I-!=r-.. (18) · · I-r--I--/

1
· 1-1--· I-r--

(3) ... 15 ~
-'--'1/t .x

1/0

16 ~t--

-f-----1 · · -r--

~~171 · -I--P-· -t--· -I--· -r--
(4)~23 ~I-- C1

~ -'"

Q

24 r""f----1 · 1--<t----1
iii 1-1--- I;:] (16) · I-~

~ · 1-t---1 ~ · I-r--· 1-)---'
(5) 31 r-r---o C1

L... A
"')l .J'io,

Q

32 r-t--
~I--•

r.:J · I-t--t>- (15) · 1-1--

~ · I-t-- · · 1-)--

(6) 39
I-r-- C1)--

-:::.L

Q

(I)

40 ~
r}--, · f-).--

AJ14) · ~p-~ · · · ~ · r-r- C1
(7) 47 ...J----'

X" .?L

c:
0

" ..
Q CO

.2
C.
c. «

~ 48
-)----, 1 · -)----, · · ~~ (13) · -)-----,~

1
· >--· ~

55 :::>---
(8) ~.

J.

1/0

56 r-
1-1--- 1 · I--<r--· (12) · I-I---~ · I-)-_!-"

1
· I--<r--· r-I---

(9) ... 63 ~r--
.A

.;It .JC
~ ~

1/0

Figure 13. TIBPAL16R4 Logic Diagram

6-15

It is important to notice that the equation derived
from the Karnaugh map is stated in AND-OR notation.
The PAL that we have selected is implemented in AND
NOR logic. This means we either have to do DeMorgan's
theorem on the equation, or solve the inverse of the
Karnaugh map. Figure 15 shows the inverse of the
Karnaugh map and the resulting equation. This equation
can be easily implemented in the TIBPAL16R4.

so
SO,A,B

A
S1,C,O r-I

c[
..- t--

1 1

1 1

1 1

1 1
L- I--

L-.J
B

L----J
B

CLKOUT = SiSOAM«1 + SisolB~1 + s1sonci + s1solM«o

CLKOUT = SiSOA + SlSOB + S1SOC + S1S00

Figure 14. Karnaugh Map for CLKOUT

so
SO,A,B

A
S1,C,O r---"1

1 1

1 1

1 1

1 1 c[
~ I--

~} m
lEI [e111

E111 1 1 1 1] S1 0

c[1 1 1 1

Ct:i<c5iJi' = s;soAKn + S1S0XB~~ + S1SOnC~ + S1S0Xni5

Ct:i<c5iJi' = S1SOA + S'iSOB + S1SOC + S1S0D

Figure 15. Karnaugh Map for CLKOUT

6-16

4-BIT BINARY COUNTER DETAILS

.The same basic procedure used in determining the
equations for the clock selector, is used in determining the
equations for the 4-bit counter. The only difference is that
now we are dealing with a present state, next state
situation. This means a D-type flip-flop will be required in
actual circuit implementation. As before, the truth table is
generated first, and is shown in Table 3.

Table 3. Truth Table

PRESENT STATE NEXT STATE

CLR 03 02 0' 00 03 02 0' 00

0 X X X X 0 0 0 0 , 0 0 0 0 0 0 0 , , 0 0 0 , 0 0 , 0 , 0 0 , 0 0 0 , , , 0 0 , , 0 , 0 0 , 0 , 0 0 0 , 0 , , 0 , 0 , 0 , , 0 , 0 , , 0 0 , , , , 0 , , , , 0 0 0 , , 0 0 0 , 0 0 , , , 0 0 , , 0 , 0 , , 0 , 0 , 0 , ,
, , 0 , , , , 0 0 , , , 0 0 , , 0 ,
, , , 0 , , , , 0 , , , , 0 , , , , , , , , , 0 0 0 0

From the truth table, the equations for each output
can be derived from the Karnaugh map. This is shown in
Figure 16. Note that the inverse of the truth table is being
solved so that the equation will come out in AND-NOR
logic form.

BINARY/DECADE COUNT DETAILS

Recalling from the example requirements that the
counter should count in decade whenever the BD input is
low, we can again generate a truth table for this function
(Table 4). Since the counter is already designed to count in
binary, we can use this feature to simplify our design.
What we desire is a circuit whose output goes low,
whenever the BD input is equal to a logic level "0", and
the counter output is equal to "9". This output can then be
fed back to the CLR input of the counter so that it will
reset whenever the BD input is low. Whenever the BD
input is high, the output of the circuit should be a high
since the counter will automatically count in binary. Notice
that Q shown in the truth table is the function we desire.

CLR,03,02

01,00 ~

1 1

1 1

1 1

1 1

03
r---1

1 1 ,.,--.....

1 1

1 1

1 1

L---J
02

1

1

00 = CLRMCHCHCH + ~CHMCiHOO

OO=CLR +00

CLR

1 1 1

1 1 1

(a) KARNAUGH MAP FOR Qii

CLR,03,02

01,00 ""

1 1

1 1

1 1

1 1

03
,-----,

1 1

1 1

1 1

1 1

L-.J
02

111

1

CLR

03 ,--,

1 1

1 1

L--..J
02

1

1

01 = CI"RMMCiHCH + ~CHCNffioo + Ct:oAMCN0100

at = CI"R + O1ao + 0100

(b) KARNAUGH MAP FOR Qi

~LR,03,02 03

01,00" ,--,

L--...J
02

CLR

03 .---,

L--...J
02

Q2 = CLRCHCH&1fH + ~CHQ201CH + Ct:oAfHQ20100
+ Gl-RMQ2&100

Q2 = CI'R + Q2ffi + 020100 + Q2QO

(c) KARNAUGH MAP FOR Q2

CLR

03 03

CLR,03,02

01,00 ~ r::::::::J.. ,--,

~

01 ,

.-
1 1J 1 1

1 1 I 1 1

1 1~ "1
1 11 1 1

~
l..--..J

02

~ 1 1

(1 1 - --'

\ 1 1

'\ 1 1

~

OJ = CLRMIHCMCH + ~03Q2&1CH + QoboR03M01CH
+ C4:oIIQ3CHCHOO + Ct:oA03020100

03 = CLR + 0302 + Q3ffi + Q3Qo + 03020100

. (d) KARNAUGH MAp FOR Q3

Figure 16, Karnaugh Maps

In this particular example, a Karnaugh map is not
required because the equation cannot be further
simplified. The resulting equation is given below.

BD OUT = BD03020100

Table 4. Truth Table

BD 03 Q2 01 00 0 0 BO 030201 00 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0 1

0 0 1 0 0 0 1 0

0 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 o. 1 0

0 0 1 1 0 1 0 1 1 0

0 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 1 0

0 1 0 1 0 0 1 0 1 0 0

0 1 0 1 1 0 1 0 1 1

0 1 0 0 ·0 1 0 0 0

0 1 0 1 0 1 0 1 0

0 0 0 1 0

0 0 1 0

FUSE MAP DETAILS

Now that the logic equations have been defined, the
next step will be to specify which fuses need to be blown.
Before we do this however, we first need to label the input
and output pins on the TIBPALl6R4. By using Figure 12
as a guide, we can make the following pin assignments in
Figure 17.

PIN

1 CLK 20 VCC
2 SELO 19 CLKOUT
3 SELl 18 NC
4 CLKA 17 00
5 CLKB 16 01
6 CLKC 15 02
7 CLKD 14 03
8 CLR 13 NC
9 BD 12 BD OUT

10 GND 11 OE

With this information defined, we now need to insert
the logic equations into the logic diagram as shown in
Figure 17.

6-17

CI)
t:
o

'';:;
CO
.~
Q.
c.

<C

•

ClK (1) ~
INPUT LINES

P RDDUCT i
,

LINES 0 4 8 12 16 20 24 28 31
0 ~

• -.-- 1 · -I---· -I--- "" (19) · -I---f-" v

1
· ~I---•
7 eo

~
~ ...

.JC;.

ClK OUT

SElO
8 '" .. ~1----1 1 • r-:=;,""", · (18) · f-1----1 '-'" v

1

• ~t----·--.....
(3) ... 15 =1----1 ...

/l

NC

SEl1
16 '"I---'

• r-/----i · tJ;~ · · >-· · (4) 23
C1

00x 00
""

ClK~

24 '""/----< · ~ · ~ Ir:L (16) · ~iJ-· tJ; V-'" · ~ · ~

(5)~ ~ C1

Q1 Ie:
~

01

ClKS

ClKC

rl---' 32 · ~/----i · f-t----i)- Ir:L (15) · ~...--..... tJ; · v · A ,.-· A

(6) 39
r<>: C1
LA. 02 ...

..x 02
~

02

»
'C
"2-
ri'
Q) O·

ClK D
~
en

III
ClR

40 ~I---'

· -1----1

· -t----
~) · ~~D-~ · v · · 47 ~ C1

(7)-X ..,. 03

d~
r

...
48 r-t----

J] · ~f--· · ~t----t>- (13)
• · _f--

· _t----

(8) ~
f-f--
...... f--

... ...

03

NC

'" 56
r-f-- 1 · · (12) · · :-- v

1

• · (9)~ ~)

BDOUT

SD

Figure 17. Programmed TIBPAL16R4

6-18

It is now probably obvious to the reader, that
inserting the logic equations into the logic diagram is a
tedious operation. Fortunately, a computer program
called PALASM will perform this task automatically. All
that is required is telling the program which device has
been selected, and defining the input and output pins with

DEVICE TYPE 16R4

PIN LIST NAt1ES =
PIN NUMBER 1 PIN NAME
PIN NUMBER -, PIN NAME
PIN NU~1BER 3 PIN NAME
PIN NUMBER 4 PIN NAME
PIN NUMBER 5 PIN NAME
PIN NUMBER 6 PIN NAt1E
PIN NUMBER 7 PIN NAME
PIN NUt1BER ::;: PIN NAt1E
PIN NU~lBER 9 PIN NA~lE
PIN NUMBER 10 PIN NAME
PIN NU~lBER 11 PIN NAME
PIN NUMBER 12 PIN NAt1E
PIN NUMBER 13 PIN NAME
PIN NUMBER 14 PIN NAME
PIN NU~lBER 15 PIN NAME
PIN NUt1BER 16 PIN NAME
PIN NUMBER 17 PIN NAME
PIN NUt1BER 18 PIN NAt1E
PIN NU~lBER 1'" PIN NAME
PIN NUMBER :20 PIN NAME

EXPRESSIONS AND DESCRIPTION =
EXPRESSION(1] =

CLK
SELO
SEL1
Cl.KA
CLKB
CLKC
CU:D
CLR
BD
GND
JOE
BDOUT
NC
03
02
01
00
Ne
CU~OUT
vec

their appropriate logic equations (Figure 18). The program
will then generate a fuse map (Figure 19) for the device
selected. Notice that the fuse map looks very similar to the
block diagram (Figure 17) which we have just completed
by hand. In addition, this information can now be down
loaded into the selected device programmer.

/CLKOUT=/SEL1*/SELO*/CLKA +/SEL1*SELO*/CLKB +SEL1*/SELO*/C~KC +8EL1*SELO*/CLKD

EXPRESSION(2]
/QO=/CLR +00

EXPRESSION[3] =
/Ol=/CLR +/Ql*/QO +Ql*QO

EXPRESSION[4] =
/02=/CLR +/02*/01 +02*Ql*QO +/02*/00

EXPRESSION(3] =
/Q3=/CLR +/Q3*/02 +/Q3*/01 +/03*/QO +Q3*02*Ql*QO

EXPRESSION(6] =
/BDOUT~/BD*Q3*/Q2*/Ql*QO

Figure 18. Pin ID and Logic Equations

6-19

tJ)

s::::
o

'';:;
CO
.2
C.
c. «

0000 0000 0011 1111 1111 2222 2222 2233
0123 4367 8901 2343 6789 01.23 4!:.i67 8901.
ICl.I<OUT

0 -
-X-- -X-- -X-- I - ISEl.l*/SEl.O*/CLKA+
x--- -x-- -X-- 2 - ISEL1*SELO*/CLkB+
-X-- X--- -X-- 3 - SELl*/SELO*/CLKC+
x--- X--- -X-- 4 - SEL1*SEL.O*/CU<D
xxxx XXXX XXXX xxx x XXXX XXXX XXXX XXXX ._' -
XXXX XXXX xxx x xxx x XXXX xxx x XXXX XXXX 6 -
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX ·7 -

XXXX XXXX XXXX xxxx xxxx XXXX xxxx xxx x :.3 -
XXXX XXXX XXXX XXXX XXXX XXXX XXXX xxxx 9 -
XXXX XXXX XXXX XXXX xxx x XXXX XXXX XXXX 10 -
XXXX xxxx XXXX xxx x XXXX XXXX XXXX XXXX 11 -
xxx x XXXX XXXX XXXX XXXX XXXX XXXX XXXX 12 -
XXXX XXXX xxxx XXXX XXXX XXXX XXXX xxxx 13 -
XXXX xxxx XXXX xxxx xxxx XXXX xxxx XXXX 14 -
XXXX XXXX XXXX XXXX XXXX XXXX xxxx XXXX 15 -
100

-X-- 16 - ICLR+
--x- 17 - 00

XXXX XXXX XXXX XXXX XXXX xxx x XXXX xxxx 18 -
XXXX XXXX XXXX XXXX XXXX xxxx XXXX XXXX 1.9 -
XXXX XXXX xxx x XXXX XXXX xxxx XXXX XXXX 20 -
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 21 -
xxx x XXXX XXXX XXXX xxxx XXXX xxxx XXXX --: .. -:. -
XXXX XXXX XXXX xxxx XXXX xxxx XXXX xxx x 2:3 -
101

-x-- 24 - ICLR+
---X ---x 23 - 1(J.1*/OO+
--X- --X- 2(,. - 01*00

XXXX XXXX XXXX XXXX xxx x xxxx XXXX xxxx 27 -
XXXX xxxx XXXX xxxx XXXX XXXX xxxx XXXX 28 -
xxxx xxxx XXXX XXXX XXXX XXXX xxxx xxx x 29 -
XXXX XXXX XXXX XXXX XXXX XXXX XXXX xxx x ;30 -
XXXX xxxx xxxx xxx x XXXX XXXX xxxx XXXX 31 -
102

-x-- ..,..., - ICLR+
---x ---x 33 - 102*/01+

--x- --x- --X- 34 - 02*01*00+
---X ---X :33 - 102*/00

XXXX XXXX XXXX xxx x XXXX XXXX XXXX XXXX 36 -
XXXX xxx x XXXX xxx x XXXX xxx x XXXX XXXX 37 -» xxxx xxxx XXXX XXXX XXXX XXXX xxx X XXXX 38 -

"C xxxx xxxx XXXX XXXX XXXX xxx x XXXX .XXXX 39 -
'E. 103

(;' -x-- 40 - ICl.R+
Q) ---X ---X 41 - 103*10.2+
r+ ---x ---x 42 - 1[!3*/Q1+
0' ---x ---X 43 - 10.3*1[!0+
::s --X- --X- --X- --X- 44 - 0:3*02*01*00
t/) XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 45 -

II
xxxx xxxx XXXX xxxx XXXX XXXX XXXX xxx X 46 -
XXXX xXXX XxXX XXXX XXXX XXXX xxxx XXXX 47 -

XXXX XXXX xxxx XXXX XXXX XXXX XXXX XXXX 48 -
XXXX xxx x XXXX xxx x xxx x XXXX XXXX xxx x 49 -
XXXX XXXX XXXX xXXX xxx x XXXX XXXX XXXX 50 -
XXXX XXXX xxxx XXXX xxx x XXXX xxxx XXXX 51 -
XXXX XXXX xxxx xxxx xxxx xxx x xxxx xxxx 52 -
XXXX xxx X xxxx xxxx xxx X xxxx xxxx XXXX 53 -
XXXX XXXX XXXX xxx x XXXX xxxx xxxx XXXX 54 -:-
xxx X XXXX xxxx XXXX XXXX xxx X XXXX XXXX 55 -
IBDOUT

56 -
--X- ---X ---X --X- -X-- 57 - IBD*Q3*/02*/Ql*00

XXXX XXXX xxx X XXXX XXXX XXXX XXXX XXXX 58 -
XXXX XXXX XXXX XXXX XXXX XXx X XXXX XXXX 59 -
XXXX XXX X XXX X XXXX XXXX XXXX XXXX XXXX 60 -
XXXX XXXX XXXX xxx X XXXX XXXX XXXX XXXX 61 -
XXXX XXXX XXXX XXXX XXXX xxx X XXXX XXXX 62 -
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 63 -

Figure 19 . Fuse Map

. 6-20

ADVANCED SOFTWARE

PALASM, while extremely useful in generating the
fuse map, does little to help formulate the logic equations.
This is what the new software packages such as ABEL and
CUPL address. They not only generate the fuse map, but
they also help in deyeloping the logic equations. In most
cases, they can generate the logic equations from simply
providing the program with either a truth table or state
diagram. In addition, they can test the logic equations
against a set of test vectors. This helps ensure the designer
gets the desired function.

These are only a few of the features available on
these new advanced software packages. We recommend
that the reader contact the specific manufacturers
themselves to obtain the latest information available. For
your convenience, at the end of this application note we
have included the addresses and phone numbers for many
of these programming and software companies.

As an example, we will approach our previous
design utilizing DATA 1I0's ABEL package. The purpose
here is not to teach the reader how to use ABEL, but
rather to give them a basic overview of this powerful
software package. Figure 20 shows the source file required
by ABEL. Note that the 4-bit counter has been described
with a state diagram table. When the ABEL program is
complied, the logic equations will be generated from this.
The equations for CLK OUT and BD OUT have been

given in their final form to demonstrate how ABEL would
handle these. Also notice that test vectors are included for
checking the logic equations. This is especially important
when only the logic equations has been given.

Figure 21 shows some of the output documentation
generated by the program. Notice that the equations
generated for the counter, match the the ones generated
by the Karnaugh maps. A pinout for the device has also
been generated and displayed. The fuse map for the
device has not been shown, but looks very similar to the
one in Figure 19. As with the PALASM program, this
information can be down loaded into the device
programmer.

PERFORMANCE

Up to this point, nothing has been said about the
performance of these devices. The Standard High Speed
PAL (indicated by an "A" after the device number) offered
by TI has a maximum propagation of 25 ns from input to
output, and 35 MHz fmax. Also available is a new, higher
speed family of devices called TIBPALs. These· devices are
functionally equivalent with the current family and offer a
maximum propagation delay of 15 ns from input to output.
They are also rated at 50 MHz fmax. The higher speeds on
these devices make them compatible with most high-speed
logic families. This allows them to be designed into more
critical speed path applications.

•

6-21 .

II

6-22

modulQ BO_80UNT flao /-r2/
titl~ '4-bit binary/dpcade counter

reI dpvi~e 'P16R4',

pin ~s~iQnm~nt5 and constant d~~larations
CLK_IN,SELO,SELl,CLKA
GLKB, Gl.KC , CU(O
CLR.BD __ IN,OE

pin 1.,'2.,3.4:
pin 5 .. 1:°17;
pi n 8.9,11;
pin 12,19; Bt.1..I1UT, CLK_OUT

03,02,01,00 pi n 14. 15.16. 17~
CK. L, H, X, Z .C •• 0. 1 , .X ••• Z.,
OUTPUT

I-:ountl~r Sto1te-S
SO=AbOOOO;
S!=AhOOOl :
S2=AbOOIO,
S3=AbOOll :

[03. 0 2.01.00J;

S4=AbOIOO: S8=Ab1000,
S5=AbOl01, S9=Abl001;
S6=-bOtIO, StO=Abl0l0;
S7=-bOlll, SI1=-bl0l1,

S12=-bll00
S13=AbllOl
S14=-bll10
S15=Abll11

<,quations
.: lock se' ector

GLK_OU1' = CLI(A ~. '8ELO ~ 'SELt 1t CLKB ~ 'SELl t. SELO
1t CLKC " SEL 1 ~< ~ SELO 1t CLKD & SEL 1 t. SELO;

COIJot nin~ indicator for decade counting
BD_mIT = ~('Bn_IN ~(03 l!. ~02 t, '01 lI< (0),

5 ta t (~_.rl i;:l.I'lr-am un, 02.01., no]
Stat.,. SO: IF CLR 0 THEN SO ELSE 51;
State 31: IF GLR 0 THEN SO ELSE S2;
State 82: IF CLR 0 THEN SO ELSE 53;
State 83: IF CLR 0 THEN SO ELSE S4,
State S4: IF CLR 0 THEN SO ELSE S5;
State 85: IF CLR 0 THEN SO ELSE S6;
State 56: IF CLR 0 THEN SO ELSE S7;
State 87: IF CLR 0 THEN SO ELSE S8;
State S8: IF CLR 0 THEN SO ELSE S9;
State;- S9: IF CLR 0 THEN SO ELSE S10;
State SIO: IF CLR 0 THEN SO ELSE Sl1;
State S11 : IF CLR 0 THEN SO ELSE S12;
Stat.' S12: IF CLR 0 THEN SO ELSE S13;
State S13: IF CLR 0 THEN SO ELSE S14;
Statt? S14: IF CLR 0 THEN SO ELSE SIS;
StatE' Sl'S: IF CLR 0 THEN SO ELSE 'SO;

tE-5t_Vt:·ctOr-S /clock sel~ctor/
«(CLKA. CLI'B. CLKC, CLKD, SELl. SELO] -:> CLK_OUn

(L X X X L. L] -:> L;
(H X X X L. L] -:> H;
(X L X L. H J -:> L;
(X H L. H J -:> H;
(X L H. L J -:> L;
(X H H. L] -:> H:
[X L H. H] -:> L;
[X H H, H] -:> H;

test_vectors /counter-"
([el.K_IN. OE, CLR. BD_INJ -:> (OUTPUT. BD_OUT])

(CK. l. L, X J -'\. (SO. H J
(CK, L H, X] -:> 51. H]

CK, L H, X J -,- 52. H J
CK. L H, J -> [53. H J
CK, L H, -"' 54. H)

CK, L H, -:> 5'S. H J
CK. L H, X -)- St., H]
CK-, L H, X -'\. 57, H J
Cf~, L H, X -:> S8. H J
GK, L H, L -> S9, L
CK. L H. X -> 510. H
CK, L H, 1 -> (Sll. H J
CK. L H. -:> [S12 7 H]

CK, L H, -:> (513. H
CK, L H. -:> (514. H
CK, L H, H -:> S15. H]

CK. L H. X -:> SO. H]

X, H X. J -> [Z H J
.·nd BD_CClUNT

Figure 20. Source File for ABEL

ASEL(tm) Version 1.00 - Document Generator
4-bit binary/dec~de counter

Equ~tions for Module SO_COUNT

D<'vice ICI

Reduced Equatio~s:

CLK_OUT = '«SELl ~ SELO ~ 'CLKD
~ (SELl & 'SELO • 'CLKC
(~SELl ~ SELO • 'CLKS
~ 'SELl. 'SELO ~ 'CLKA»»~

03 := '«03 ~ Q2 • 01 • 00
It ('03 • '02
1* ('03 t, '01
1* ('03 ~ '00
1* 'CLR»»);

Page 1

02 .- '«Q2 & 01.00 It ('02. '01 It (~02 & ~QO It ~CLR»»;

01 .- '«01 • 00 1* ('01 • ~OO # 'CLR»);

00 . -- '(COO 1* ~ CLR)) ;

ABEL(tm) Version 1.00 - Document Generator
4-bit binary/decade counter

Chip diagram for Module SO_COUNT

Device ICt

P16R4

ClK IN VCC
SElO ClK
SEl1
ClKA 00
ClKS 01
ClKC 02
ClKO 03

ClR

OUT

SO - IN SO OUT
GNO OE

end of module BD_COUNT

Figure 21. ABEL Output Documentation

Page 2

6-23

en
c
o

.';:;
ctI
.2
C.
c. «

II

ADDRESS FOR PROGRAMMING AND SOFTWARE MANUFACTURERS*

HARDWARE MANUFACTURERS

Citel
3060 Raymond St.
Santa Clara, CA 95050
(408) 727-6562

DATA I/O
10525 Willows Rd.
Redmond, WA 98052
(206) 881-6444

DIGITAL MEDIA
3178 Gibralter Ave.
Costa Mesa, CA 92626
(714) 751-1373

Kontron Electronics
630 Price Avenue
Redwood City, CA 94063
(415) 361-1012

Stag Micro Systems
528-5 Weddell Drive
Sunnyvale, CA 94086
(408) 745-1991

Storey Systems
3201 N. Hwy 67, Suite H
Mesquite, Tx 75150
(214) 270-4135

SOFTWARE MANUFACTURERS

Assisted Technologies (CUPL)
2381 Zanker Road, Suite 150
Santa Clara, CA 95050
(408) 942-8787

DATA 1/0 (ABEL)
10525 Willows Rd.
Redmond, WA 98052
(206) 881-6444

'Texas Instruments does not endorse or warrant the suppliers
referenced.

Reference

1. H. Troy Nagle, Jr., B.D. Carroll, and David Irwin, An Introduction
to Computer Logic. New Jersey: Prentice-Hall, Inc., 1975.

6-24

Structured Design
1700 Wyatt Dr., Suite 7
Santa Clara, CA 95054
(408) 988-0725

Sunrise Electronics
524 S. Vermont Avenue
Glendora, CA 91740
(213) 914-1926

Valley Data Sciences
2426 Charleston Rd.
Mountain View, CA 94043
(415) 968-2900

Varix
1210 Campbell Rd.
Richardson, TX 75081
(214) 437-0777

WaveteclDigelec
586 Wed del Dr., Suite 1
Sunnyvale, CA 94089
(408) 745-0722

