DMD etendue

Source Etendue $\propto \mathrm{A}_{\text {source }} \Omega_{\text {source }}$
Area of the source: $\mathrm{A}_{\text {source }}$

Light emission cone angle: $\Omega_{\text {source }}$ 60-90 degree for LED

DMD Etendue $\propto \mathrm{A}_{\mathrm{DMD}} \Omega_{\mathrm{DMD}}$
Area of DMD: $A_{D M D}$

ht acceptance cone angle: $\Omega_{\text {DMD }}$ 17 Degree for TRP Pixel

For efficient light collection : DMD Etendue \geq Source Etendue

DMD etendue

Pupil diagram

- Pupil size is determined based on the mirror tilt angle and the trade-off between efficiency and contrast
- Etendue along $\mathrm{X} \propto$ DMD width $\mathbf{x} \operatorname{SIN}($ tilt angle) $\mathbf{x} \operatorname{COS}($ angle of incidence)
- Etendue along $\mathrm{Y} \propto$ DMD height $\mathbf{x} S I N($ tilt angle)

F/\# Limited by DMD Tilt Angle

Matching source etendue with DMD

Source etendue<DMD

- Small etendue sources (eg laser)
- Larger etendue source would increase brightness
- Capable of high contrast

Source etendue>DMD

- Large etendue lamps or LEDs
- Have to increase illumination angle to prevent interference with proj.
- High-brightness, but contrast suffer

Source etendue=DMD

- Matched source and DMD etendue
- Some separation between illum. and projection
- Best tradeoff between brightness and contrast (usually)

Cone angle $=2 \mathrm{x}$ tilt angle

