DLPC3437 Software Programmer's Guide

Programmer's Guide

Literature Number: DLPU062 March 2018

Contents

1	DLP	C3437 Software Programmer's Guide	
	1.1	Introduction	
		1.1.1 Software Programmer's Guide Overview	9
		1.1.2 Reference Documents	10
2	Inter	face Specification 1	
	2.1	Electrical Interface	
		2.1.1 System Power-up Associated Signals 1	
	2.2	System Initialization	12
		2.2.1 Boot ROM Concept	12
		2.2.2 Internal vs. External Boot Software	12
		2.2.3 Flash and Flashless Product Configurations	12
		2.2.4 Resident Boot Software (EXT-BOOT-EN = 0)	12
	2.3	Software Interface	
		2.3.1 Software Command Philosophy	
		2.3.2 I ² C Considerations	14
3	List	of System Write/Read Software Commands 1	5
	3.1	System Write/Read Commands	18
		3.1.1 Write Input Source Select (Offset = 05h) [Reset = 01h] 1	18
		3.1.2 Read Input Source Select (Offset = 06h)	21
		3.1.3 Write External Video Chroma Processing Select (Offset = 09h) [Reset = 0h]	22
		3.1.4 Read External Video Chroma Processing Select (Offset = 0Ah)	22
		3.1.5 Write Splash Screen Select (Offset = 0Dh) [Reset = User specified]	
		3.1.6 Read Splash Screen Select (Offset = 0Eh)	
		3.1.7 Read Splash Screen Header (0Fh) 2	
		3.1.8 Write Display Image Orientation (Offset = 14h) [Reset = User specified] 2	
		3.1.9 Read Display Image Orientation (Offset = 15h)	
		3.1.10 Write Display Image Curtain (Offset = 16h) [Reset = 01h]	
		3.1.11 Read Display Image Curtain (Offset = 17h)	
		3.1.12 Write Image Freeze (Offset = 1Ah) [Reset = 0h]	
		3.1.13 Read Image Freeze (Offset = 1Bh)	
		3.1.14 Write 3-D Control (Offset = 20h) [Offset = 0h].	
		3.1.15 Read 3-D Control (Offset = 21h)	
		3.1.16 Write LOOK Select (Offset = 22h) [Reset = User specified]	
		3.1.17 Read LOOK Select (Offset = 23h)	
		3.1.18 Read Sequence Header Attributes (Offset = 26h)	
		3.1.19 Write Gamma/CMT Select (Offset = 27h) [Reset = User specified]	
		3.1.20 Read Gamma/CMT Select (Offset = 28h)	
		3.1.21 Write CCA Select (Offset = 29h) [Reset = User specified]	
		3.1.22 Read CCA Select (Offset = 2Ah)	
		3.1.23 Write Execute Flash Batch File (Offset = 2Dh)	
		3.1.24 Write 3-D Reference (Offset = 30h) [Reset = 0h]	
		3.1.25 Write GPIO[19:00] Control (Offset = 31h) [Reset = User specified]	
		3.1.26 Read GPIO[19:00] Control (Offset = 32h)	
		3.1.27 Write GPIO[19:00] Outputs (Offset = 33h) [Reset = User specified]	
		3.1.28 Read GPIO[19:00] Outputs (Offset = 34h)	סנ

2

www.ti.com			
	3.1.29	Write Splash Screen Execute (Offset = 35h)	58
	3.1.30	Read GPIO[19:00] Inputs (Offset = 36h)	59
	3.1.31	Write FPD Link Data Mode (Offset = 4Bh)	61
	3.1.32	Read FPD Pixel Map Mode (Offset = 4Ch)	63
	3.1.33	Write FPD Input Video Chroma Processing Select (Offset = 4Dh)	64
	3.1.34	Read FPGA Input Video Chroma Processing Select (Offset = 4Eh)	64
	3.1.35	Write LED Output Control Method (Offset = 50h) [Reset = User specified]	65
	3.1.36	Read LED Output Control Method (Offset = 51h)	66
	3.1.37	Write RGB LED Enable (Offset = 52h) [Reset = 07h]	67
	3.1.38	Read RGB LED Enable (Offset = 53h)	67
	3.1.39	Write RGB LED Current (Offset = 54h) [Reset = User specified]	68
	3.1.40	Read RGB LED Current (Offset = 55h)	69
	3.1.41	Read CAIC LED Max Available Power (Offset = 57h)	70
	3.1.42	Write RGB LED Max Current (Offset = 5Ch) [Reset = User specified]	71
	3.1.43	Read RGB LED Max Current (Offset = 5Dh)	71
	3.1.44	Read Measured LED Parameters (Offset = 5Eh)	72
	3.1.45	Read CAIC RGB LED Current (Offset = 5Fh)	73
	3.1.46	Write XPR FPGA Input Image Size (Offset = 60h)	74
	3.1.47	Read XPR FPGA Input Image Size (Offset = 61h)	74
	3.1.48	Write XPR FPGA Source Select (Offset = 62h)	75
	3.1.49	Read XPR FPGA Source Select (Offset = 63h)	75
	3.1.50	Read XPR FPGA Version (Offset = 64h)	76
	3.1.51	Write XPR FPGA Test Pattern Select (Offset = 67h)	76
	3.1.52	Read XPR FPGA Test Pattern Select (Offset = 68h)	77
	3.1.53	Write XPR FPGA Parallel Video Control (Offset = 6Bh)	78
	3.1.54	Read XPR FPGA Parallel Video Control (Offset = 6Ch)	78
	3.1.55	Write XPR FPGA Video Format Select (Offset = 6Dh)	
	3.1.56	Read XPR FPGA Video Format Select (Offset = 6Eh)	79
	3.1.57	Read XPR FPGA Status (Offset = 6Fh)	80
	3.1.58	Write Actuator Latency (Offset = 70h)	81
	3.1.59	Read Actuator Latency (Offset = 71h)	81
	3.1.60	Write Actuator Gain (Offset = 72h)	82
	3.1.61	Read Actuator Gain (Offset = 73h)	82
	3.1.62	Write Segment Length (Offset = 74h)	83
	3.1.63	Read Segment Length (Offset = 75h)	83
	3.1.64	Write Manual Actuator Sync Delay (Offset = 76h)	
	3.1.65	Read Manual Actuator Sync Delay (Offset = 77h)	
	3.1.66	Write Manual Actuator Offset (Offset = 78h)	86
	3.1.67	Read Manual Actuator Offset (Offset = 79h)	86
	3.1.68	Write Actuator Fixed Output (Offset = 7Ah)	87
	3.1.69	Read Actuator Fixed Output (Offset = 7Bh)	87
	3.1.70	Write Actuator Direction (Offset = 7Ch)	
	3.1.71	Read Actuator Direction (Offset = 7Dh)	
	3.1.72	Write Actuator Enable (Offset = 7Eh).	
	3.1.73	Read Enable (Offset = 7Fh)	
	3.1.74	Write Local Area Brightness Boost Control (Offset = 80h) [Reset = 1h]	91
	3.1.75	Read Local Area Brightness Boost Control (Offset = 81h)	
	3.1.76	Write CAIC Image Processing Control (Offset = 84h) [Reset = User specified]	
	3.1.77	Read CAIC Image Processing Control (Offset = 85h)	
	3.1.78	Write Color Coordinate Adjustment Control (Offset = 86h) [Reset = 1h]	
	3.1.79	Read Color Coordinate Adjustment Control (Offset = 87h)	
	3.1.80	Write Keystone Correction Control (Offset = 88h) [Reset = 0h]	
	3.1.81	Read Keystone Correction Control (Offset = 89h)	
			5.

3

	co	

	3.1.82	Write Border Color (Offset = B2h) [Reset = 0h]	. 98
	3.1.83	Read Border Color (Offset = B3h)	100
		Write Keystone Projection Pitch Angle (Offset = BBh) [Reset = 0h]	
		Read Keystone Projection Pitch Angle (Offset = BCh)	
		Read Short Status (Offset = D0h)	
	3.1.87	Read System Status (Offset = D1h)	104
	3.1.88	Read System Software Version (Offset = D2h)	108
		Read Communication Status (Offset = D3h)	
		Read Controller Device ID (Offset = D4h).	
	3.1.91	Read DMD Device ID (Offset = D5h)	113
	3.1.92	Read System Temperature (Offset = D6h)	114
	3.1.93	Read Flash Build Version (Offset = D9h)	115
	3.1.94	Write Flash Batch File Delay (Offset = DBh) [Reset = User specified]	116
	3.1.95	Read DMD I/F Training Data (Offset = DCh)	117
	3.1.96	Flash Update PreCheck (Offset = DDh)	119
	3.1.97	Flash Data Type Select (Offset = DEh) [Offset = 0h]	121
	3.1.98	Flash Data Length (Offset = DFh) [Reset = 0h]	124
	3.1.99	Erase Flash Data (Offset = E0h) [Reset = 0h]	125
	3.1.100	Write Flash Start (Offset = E1h)	126
	3.1.101	Write Flash Continue (Offset = E2h)	126
	3.1.102	Read Flash Start (Offset = E3h)	127
	3.1.103	Read Flash Continue (E4h)	127
	3.1.104	Write External PAD Address (Offset = EBh) [Reset = 0h]	128
	3.1.105	Write External DLPA Data (Offset = ECh)	129
	3.1.106	Read External DLPA Data (Offset = EDh)	129
Apper	ndix		130
A.1		otice	

Α

List of Figures

1-1.	DLPC343x Embedded Configuration	. 9
2-1.	Boot Code Flow Chart	13
3-1.	Long-Axis Flip	27
3-2.	Short-Axis Flip	27
3-3.	Bit Weight and Bit Order for Duty Cycle Data	40
3-4.	Return Parameters	92
3-5.	Bit Weight Definition for LABB Gain Value	92
3-6.	Bit Weight Definition for the CAIC Maximum Gain Value	94
3-7.	Bit Weight Definition for the CAIC Clipping Threshold Value	94
3-8.	Bit Weight Definition for the CAIC RGB Intensity Gain Values	94
3-9.	Pillar-Box Border Example	99
3-10.	Bit Weight Definition for the Projection Pitch Angle Data	101
3-11.	Examples of Projection Pitch Angle	101
3-12.	Bit Order and Definition	114

List of Tables

1-1.	Reference Documents	10
2-1.	Summary of Settings for Power-up Associated Signals	11
2-2.	I ² C Write and Read Transactions	14
3-1.	Supported TI Generic Commands	15
3-2.	Write Input Source Select (05h) Register Field Descriptions	18
3-3.	Source Specific Associated Commands	18
3-4.	Common Commands	19
3-5.	Read Input Source Select (06h) Register Field Descriptions	21
3-6.	Write External Video Chroma Processing Select (09h) Register Field Descriptions	22
3-7.	Read External Video Chroma Processing Select (0Ah) Register Field Descriptions	22
3-8.	Return Parameters	24
3-9.	Read Parameters	25
3-10.	Return Parameters	25
3-11.	Splash Screen Header Definitions	26
3-12.	Write Display Image Orientation (14h) Register Field Descriptions	27
3-13.	Read Display Image Orientation (15h) Register Field Descriptions	28
3-14.	Write Display Image Curtain (16h) Register Field Descriptions	29
3-15.	Read Display Image Curtain (17h) Register Field Descriptions	30
3-16.	Write Image Freeze (1Ah) Register Field Descriptions	31
3-17.	Partial List of Commands that May Benefit from the Use of Image Freeze	32
3-18.	Splash Screen Example Using Image Freeze	32
3-19.	Test Pattern Generator Example Using Image Freeze	32
3-20.	Read Image Freeze (1Bh) Register Field Descriptions	33
3-21.	Write 3-D Control (20h) Register Field Descriptions	34
3-22.	3D Control	34
3-23.	Read 3-D Control (21h) Register Field Descriptions	36
3-24.	Write LOOK Select (22h) Register Field Descriptions	37
3-25.	Return Parameters	38
3-26.	Byte 1 Read LOOK Select (23h) Register Field Descriptions	38
3-27.	Byte 2 Read LOOK Select (23h) Register Field Descriptions	38
3-28.	Return Parameters	39

w	w	w	.ti	.С	or	n
		**	. u	.0		•••

3-29.	Read Sequence Header Attributes (26h) Register Field Descriptions	40
3-30.	Write Gamma/CMT Select(27h) Register Field Descriptions	41
3-31.	Read Gamma/CMT Select (28h) Register Field Descriptions	41
3-32.	Write CCA Select (29h) Register Field Descriptions	42
3-33.	Read CCA Select (2Ah) Register Field Descriptions	42
3-34.	Write Parameters	43
3-35.	Flash Batch File Operations	43
3-36.	Write Parameters	44
3-37.	Write Execute Flash Batch File (2Dh) Register Field Descriptions	44
3-38.	Byte 1 Write GPIO[19:00] Control (31h) Register Field Descriptions	45
3-39.	Byte 2 Write GPIO[19:00] Control (31h) Register Field Descriptions	46
3-40.	Byte 3 Write GPIO[19:00] Control (31h) Register Field Descriptions	46
3-41.	Byte 4 Write GPIO[19:00] Control (31h) Register Field Descriptions	47
3-42.	Byte 1 Read GPIO[19:00] Control (32h) Register Field Descriptions	48
3-43.	Byte 2 Read GPIO[19:00] Control (32h) Register Field Descriptions	49
3-44.	Byte 3 Read GPIO[19:00] Control (32h) Register Field Descriptions	49
3-45.	Byte 4 Read GPIO[19:00] Control (32h) Register Field Descriptions	5 0
3-46.	Write Parameters	51
3-47.	Byte 1 Write GPIO[19:00] Outputs (33h) Register Field Descriptions	51
3-48.	Byte 2 Write GPIO[19:00] Outputs (33h) Register Field Descriptions	52
3-49.	Byte 3 Write GPIO[19:00] Outputs (33h) Register Field Descriptions	52
3-50.	Byte 4 Write GPIO[19:00] Outputs (33h) Register Field Descriptions	53
3-51.	Byte 5 Write GPIO[19:00] Outputs (33h) Register Field Descriptions	54
3-52.	Byte 6 Write GPIO[19:00] Outputs (33h) Register Field Descriptions	54
3-53.	Read Parameters	56
3-54.	Byte 1 Read GPIO[19:00] Outputs (34h) Register Field Descriptions	56
3-55.	Byte 2 Read GPIO[19:00] Outputs (34h) Register Field Descriptions	56
3-56.	Byte 3 Read GPIO[19:00] Outputs (34h) Register Field Descriptions	56
3-57.	Byte 1 Read GPIO[19:00] Inputs (36h) Register Field Descriptions	59
3-58.	Byte 2 Read GPIO[19:00] Inputs (36h) Register Field Descriptions	59
3-59.	Byte 3 Read GPIO[19:00] Inputs (36h) Register Field Descriptions	59
3-60.	FPD Link Data Parameters	61
3-61.	Write FPD Link Data Mode (4Bh) Register Field Descriptions	61
3-62.	FPD LVDS Data Bus Encoding	
3-63.	Return Parameters	
3-64.	Read FPD Pixel Map Mode (4Ch) Register Field Descriptions	
3-65.	Write FPD Input Video Chroma Processing Select (4Dh) Register Field Descriptions	
3-66.	Read FPGA Input Video Chroma Processing Select (4Eh) Register Field Descriptions	
3-67.	Write LED Output Control Method (50h) Register Field Descriptions	
3-68.	Available Commands Based on LED Control Method	
3-69.	Read LED Output Control Method (51h) Register Field Descriptions	
3-70.	Write RGB LED Enable (52h) Register Field Descriptions	
3-71.	Read RGB LED Enable (53h) Register Field Descriptions	
3-72.	Write Parameters	68
3-73.	Return Parameters	69
3-74.	Return Parameters	70
3-75.	Write Parameters	71
3-76.		71
3-77.	Return Parameters	72

6

www.ti.com		
3-78.	Return Parameters	73
3-79.	Write XPR FPGA Source Select (62h) Register Field Descriptions	75
3-80.	Read XPR FPGA Source Select (63h) Register Field Descriptions	75
3-81.	Write XPR FPGA Test Pattern Select (67h) Register Field Descriptions	76
3-82.	Read XPR FPGA Test Pattern Select (68h) Register Field Descriptions	77
3-83.	Write XPR FPGA Parallel Video Control (6Bh) Register Field Descriptions	78
3-84.	Read XPR FPGA Parallel Video Control (6Ch) Register Field Descriptions	78
3-85.	Write XPR FPGA Video Format Select (6Dh) Register Field Descriptions	79
3-86.	Read XPR FPGA Video Format Select (6Eh) Register Field Descriptions	79
3-87.	Read XPR FPGA Status (6Fh) Register Field Descriptions	80
3-88.	Write Actuator Latency (70h) Register Field Descriptions	81
3-89.	Read Actuator Latency (71h) Register Field Descriptions	81
3-90.	Write Manual Actuator Sync Delay (76h) Register Field Descriptions	84
3-91.	Read Manual Actuator Sync Delay (77h) Register Field Descriptions	85
3-92.	Write Manual Actuator Offset (78h) Register Field Descriptions	86
3-93.	Read Manual Actuator Offset (79h) Register Field Descriptions	86
3-94.	Write Actuator Fixed Output (7Ah) Register Field Descriptions	87
3-95.	Read Actuator Fixed Output (7Bh) Register Field Descriptions	
3-96.	Write Actuator Direction (7Ch) Register Field Descriptions	88
3-97.	Read Actuator Direction (7Dh) Register Field Descriptions	88
3-98.	Write Actuator Enable (7Eh) Register Field Descriptions	
3-99.	Read Enable (7Fh) Register Field Descriptions	
	Write Parameters	
	Write Local Area Brightness Boost Control (80h) Register Field Descriptions	
	Read Local Area Brightness Boost Control (81h) Register Field Descriptions	
	Write Parameters	
	Write CAIC Image Processing Control (84h) Register Field Descriptions	
	LABB and CAIC Modes	
	Return Parameters	
	Read CAIC Image Processing Control (85h) Register Field Descriptions	
	Write Color Coordinate Adjustment Control (86h) Register Field Descriptions	
	Read Color Coordinate Adjustment Control (87h) Register Field Descriptions	
	Write Parameters	
	Write Keystone Correction Control (88h) Register Field Descriptions	
	Return Parameters Read Keystone Correction Control (89h) Register Field Descriptions	
	Write Border Color (B2h) Register Field Descriptions	
	Read Border Color (B3h) Register Field Descriptions	
	Write Parameters	
	Return Parameters	
	Read Short Status (D0h) Register Field Descriptions	
	Return Parameters	
	Byte 1 Read System Status (D1h) Register Field Descriptions	
	Byte 2 Read System Status (D1h) Register Field Descriptions	
	Byte 3 Read System Status (D1h) Register Field Descriptions	
	Byte 4 Read System Status (D1h) Register Field Descriptions	
	Return Parameters	
	Read Parameters	
	Read Communication Status (D3h) Register Field Descriptions	

7

3-127.	Return Parameters	110
3-128.	Byte 5 Read Communication Status (D3h) Register Field Descriptions	110
3-129.	Read Communication Status (D3h) Register Field Descriptions	111
3-130.	Read Controller Device ID (D4h) Register Field Descriptions	112
3-131.	Controller Device ID Decode	112
3-132.	Read DMD Device ID (D5h) Register Field Descriptions	113
3-133.	DMD Device ID Reference Table	113
3-134.	Return Parameters	115
3-135.	Byte 1 Read DMD I/F Training Data (DCh) Register Field Descriptions	117
3-136.	DMD I/F Training Data Return Parameters	117
3-137.	Byte 1 Read DMD I/F Training Data (DCh) Register Field Descriptions	118
3-138.	Byte 2 Read DMD I/F Training Data (DCh) Register Field Descriptions	118
3-139.	Byte 3 Read DMD I/F Training Data (DCh) Register Field Descriptions	118
3-140.	Byte 4 Read DMD I/F Training Data (DCh) Register Field Descriptions	118
3-141.	Return Parameters	119
3-142.	Flash Update PreCheck (DDh) Register Field Descriptions	119
3-143.	Flash Data Type Select (DEh) Register Field Descriptions	121
3-144.	Command Parameters for Partial Flash Data Set	123
3-145.	Write External PAD Address (EBh) Register Field Descriptions	128
	3-128. 3-129. 3-130. 3-131. 3-132. 3-133. 3-134. 3-135. 3-136. 3-137. 3-138. 3-139. 3-140. 3-141. 3-142. 3-143. 3-144.	 3-128. Byte 5 Read Communication Status (D3h) Register Field Descriptions. 3-129. Read Communication Status (D3h) Register Field Descriptions . 3-130. Read Controller Device ID (D4h) Register Field Descriptions . 3-131. Controller Device ID Decode

DLPC3437 Software Programmer's Guide

1.1 Introduction

1.1.1 Software Programmer's Guide Overview

This guide details the software interface requirements for a DLPC3437 dual controller based system. It defines all applicable communication protocols including I²C, initialization, default settings and timing. The DLPC3437 system can be used in accessory products with Power Management IC DLPA3000 in Figure 1-1.

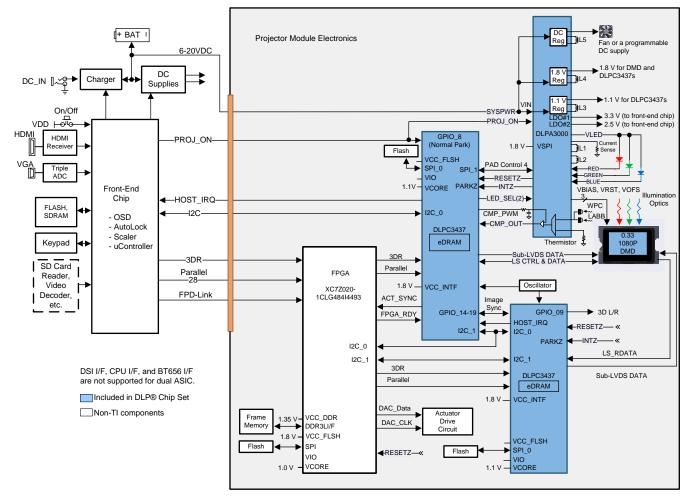


Figure 1-1. DLPC343x Embedded Configuration

LightCrafter is a trademark of Texas Instruments. DLP is a registered trademark of Texas Instruments.

1.1.1.1 I²C-Based Command Data Interface

The legacy interface configurations make use of an I²C interface for commands (conforming to the Philips I²C specification, up to 400 KHz) and a 24-bit parallel interface.

NOTE: Only I²C speeds up to 100 kHz are supported.

1.1.2 Reference Documents

Table 1-1. Reference Documents

Document Number	Document Description	
DLP® LightCrafter™ Display 3310 EVM User's Guide (DLPU063)	Overview of DLP Evaluation Module	
DLPC3437 Display Controller (DLPS084)	Data sheet for DLP Display controller for DLP3310 DMD	
DLPA3000 PMIC and High-Current LED Driver IC (DLPS052)	Data sheet for DLPA3000 PMIC/LED Driver	
DLPA3005 PMIC and High-Current LED Driver IC (DLPS071)	Data sheet for DLPA3005 PMIC/LED Driver	
DLP3310 0.33 1080p DMD (DLPS077)	Data sheet for DLP3310 0.33-inch DMD	

Interface Specification

2.1 Electrical Interface

This section will discuss the requirements for a number of interface signals that are not command or data busses. These signals are used for different boot options.

2.1.1 System Power-up Associated Signals

2.1.1.1 EXT-BOOT-EN

The EXT-BOOT-EN signal is used by the controller hardware at system power-up to determine whether the internal boot application, or an external boot application (located in FLASH), is to be used during the controller initialization process. This is discussed further in Section 2.2.

2.1.1.2 DIS-PGM-LD

The DIS-PGM-LD signal is used by the boot application during system power-up to direct the function of the system boot application during the controller initialization process. This is discussed further in Section 2.2.

2.1.1.3 SPI-FLS-EN

The SPI-FLS-EN signal is used by the boot application during system power-up to direct the function of the system boot application during the controller initialization process. This is discussed further in Section 2.2.

2.1.1.4 High Level Definition

As noted, a more detailed discussion of these signals is provided in Section 2.2; however, a brief summary is in Table 2-1.

EXT-BOOT-EN	DIS-PGM-LD	SPI-FLS-EN	USE/DEFINITION
0	0	0	Normal Flash Operation
0	0	1	SPI Flashless Operation
0	1	0	Bad Flash Flashless Operation
0	1	1	N/A
1	0	0	TI Debug
1	0	1	N/A
1	1	0	TI Debug
1	1	1	N/A

Table 2-1. Summary of Settings for Power-up Associated Signals

NOTE: Only Normal Flash Operation is supported for the DLPC3437.

2.2 System Initialization

This section will discuss the methodologies to be used for system initialization.

2.2.1 Boot ROM Concept

In the DLPC343x, a boot ROM, with associated boot software, will be employed. This "resident" boot code will consist of the minimum code needed to complete the various tasks required based on the state of the DIS-PGM-LD (Disable Program Load) pin and the SPI-FLS-EN (SPI Flashless Enable) pin.

2.2.2 Internal vs. External Boot Software

In the DLPC343x, the state of the EXT-BOOT-EN (External Boot Enable) pin allows the external user to specify whether the hardware points the microprocessor to the internal boot ROM for the boot application (EXT-BOOT-EN = '0'), or points it to an external FLASH for the boot application (EXT-BOOT-EN = '0'). Allowing for the use of an external boot program in FLASH is provide for debug and boot code development purposes only (since uP code execution out of serial flash will be extremely slow).

2.2.3 Flash and Flashless Product Configurations

For most DLPC3430 family product configurations, an external FLASH device will be used to store the main application code, along with all of the other configuration and operational data required by the system for normal operation.

In certain applications it may be desirable to eliminate this external FLASH part (for cost reasons). In these "Flashless" configurations, the expectation is that the main application code will be downloaded (by command) to iRAM by the Boot Application via the SPI port. All other configuration and operational data normally obtained from Flash will be obtained by the Main Application code via the SPI port.

For all discussions in this document, unless stated otherwise, it is assumed that an external FLASH device will be used.

2.2.4 Resident Boot Software (EXT-BOOT-EN = 0)

As noted previously, an internal boot ROM, with associated boot software, will be employed. This resident boot code will consist of the minimum code needed to complete the various tasks required based on the state of the DIS-PGM_LD and SPI-FLS_EN pins (with EXT-BOOT-EN = '0'). An overview of these tasks is shown in Figure 2-1.

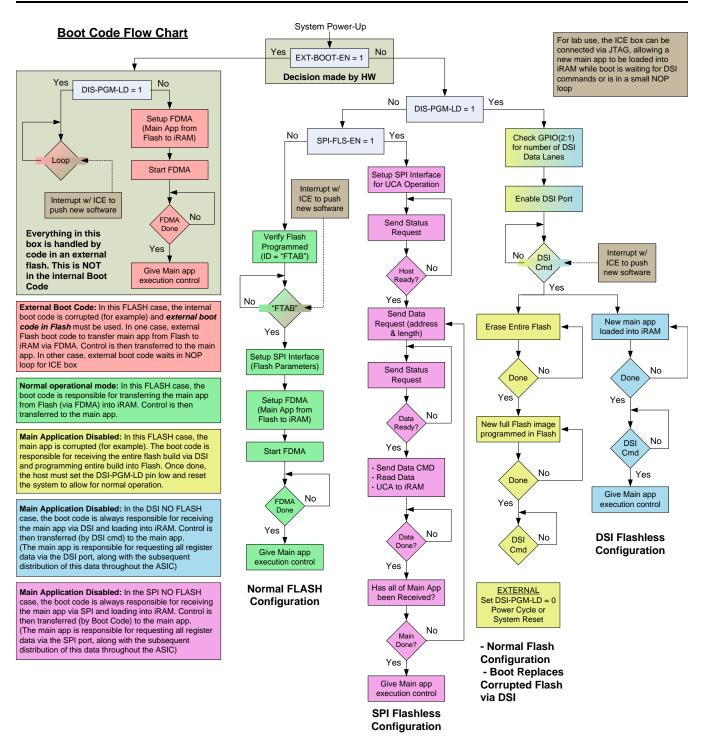


Figure 2-1. Boot Code Flow Chart

2.2.4.1 DIS-PGM-LD = 0 (with EXT-BOOT-EN = 0)

2.2.4.1.1 SPI-FLS-EN = 0

This should be the normal operational mode of the boot application for a Flash based product configuration during normal controller use.

2.2.4.1.2 SPI-FLS-EN = 1

This should be the normal operational mode of the boot application for an SPI Flashless based product configuration during normal controller use. In this case, the boot application will expect to get the main application from the host via the SPI port in response to TI command requests. The only SPI interface instructions that will be supported by the boot code are associated with requesting and read data from the host via this port.

2.3 Software Interface

In general, there will be one set of software commands supported by the DLPC3437 DUAL controller. This custom set of TI specific commands will be applicable for use on I²C command interface.

2.3.1 Software Command Philosophy

With DLPC3437, all commands via I²C will be processed by software. As such, no commands will directly address or access controller registers, controller mailboxes, or any attached flash parts. All commands will be of a high level, more abstract nature, decoupling the OEM from the internal hardware of the Controller.

2.3.2 PC Considerations

2.3.2.1 I²C Transactions

Since all I²C commands will be processed by software, there is just one type of I²C transaction to be supported. This transaction type is shown in Table 2-2 for both writes and reads. It should be noted that the I²C interface is able to support variably sized transactions (for example, a one byte transaction, a nine byte transaction) to match the TI commands discussed later in this document.

Transaction	Address ⁽¹⁾	Sub-Address ⁽²⁾	Remaining Data Bytes ⁽³⁾
Write	8-bits	8-bits	8-bit parameter bytes (0 \rightarrow N)
Write	36h (or 3Ah)	Command value	Parameter values
Read Request	8-bits	8-bits	8-bit parameter bytes (0 \rightarrow N)
Read Request	36h (or 3Ah)	Command value	Parameter values
Dood Doononoo	8-bits		8-bit parameter bytes (0 \rightarrow N)
Read Response	37h (or 3Bh)		Parameter values

Table 2-2. I²C Write and Read Transactions

⁽¹⁾ The address corresponds to the chip address of the controller.

⁽²⁾ The sub-address will correspond to a TI command.

⁽³⁾ The data (if present) will correspond to any required command parameters.

2.3.2.2 Data Flow Control

While the I²C interface inherently supports flow control by holding the clock, this will likely not be sufficient for all transactions (sequence and CMT updates for example). In this case, the host software should make use of the Read Short Status to determine if the system is busy.

List of System Write/Read Software Commands

The commands supported by the I²C interface are discussed in the following sections.

Offset	Command	d Type	Command Description	Reset Value	Default Action	Section
05h	Write		Write Input Source Select	1h	Test pattern	Section 3.1.1
06h		Read	Read Input Source Select			Section 3.1.2
09h	Write		Write External Video Processing Select	0h	Chroma interpolation	Section 3.1.3
0Ah		Read	Read External Video Chroma Processing Select			Section 3.1.4
0Dh	Write		Write Splash Screen Select		User specified	Section 3.1.5
0Eh		Read	Read Splash Screen Select			Section 3.1.6
0Fh		Read	Read Splash Screen Header			Section 3.1.7
14h	Write		Write Display Image Orientation		User specified	Section 3.1.8
15h		Read	Read Display Image Orientation			Section 3.1.9
16h	Write		Write Display Image Curtain	1h	Black	Section 3.1.10
17h		Read	Read Display Image Curtain			Section 3.1.11
1Ah	Write		Write Image Freeze	0h	No freeze	Section 3.1.12
1Bh		Read	Read Image Freeze			Section 3.1.13
20h	Write		Write 3-D Control	0h	Automatic	Section 3.1.14
21h	h Read		Read 3-D Control			Section 3.1.15
22h	Write		Write LOOK Select		User specified	Section 3.1.16
23h		Read	Read LOOK Select			Section 3.1.17
26h Read		Read	Read Sequence Header Attributes			Section 3.1.18
27h	Write		Write Degamma/CMT Select		User specified	Section 3.1.19
28h		Read	Read Degamma/CMT Select			Section 3.1.20
29h	Write		Write CCA Select		User specified	Section 3.1.21
2Ah Read		Read	Read CCA Select			Section 3.1.22
2Dh Write			Write Execute Batch File	0h		Section 3.1.23
30h	Write		Write 3-D Reference	0h	Next frame left	Section 3.1.24
31h	Write		Write GPIO [19:00] Control		User specified	Section 3.1.25
32h		Read	Read GPIO [19:00] Control			Section 3.1.26
33h	Write		Write GPIO [19:00] Outputs		User specified	Section 3.1.27
34h		Read	Read GPIO [19:00] Outputs			Section 3.1.28
35h	Write		Write Splash Screen Execute			Section 3.1.29
36h		Read	Read GPIO [19:00] Inputs			Section 3.1.30
4Bh	Write		Write FPD Pixel Map Mode			Section 3.1.31
4Ch		Read	Read FPD Pixel Map Mode			Section 3.1.32
4Dh	Write		Write FPGA Input Video Chroma Processing Select			Section 3.1.33
4Eh		Read	Read FPGA Input Video Chroma Processing Select			Section 3.1.34

Table 3-1. Supported TI Generic Commands

Offset	Comman	d Type	Command Description	Reset Value	Default Action	Section
50h	Write		Write LED Output Control Method		User specified	Section 3.1.35
51h		Read	Read LED Output Control Method			Section 3.1.36
52h	Write		Write RGB LED Enable	7h	Enabled	Section 3.1.37
53h		Read	Read RGB LED Enable			Section 3.1.38
54h	Write		Write RGB LED Current		User specified	Section 3.1.39
55h		Read	Read RGB LED Current			Section 3.1.40
57h		Read	Read CAIC LED Max Available Power			Section 3.1.41
5Ch	Write		Write RGB LED Max Current		User specified	Section 3.1.42
5Dh		Read	Read RGB LED Max Current			Section 3.1.43
5Eh		Read	Read Measured LED Parameters			Section 3.1.44
5Fh		Read	Read CAIC RGB LED Current			Section 3.1.45
60h	Write		Write XPR FPGA Input Image Size			Section 3.1.46
61h		Read	Read XPR FPGA Input Image Size			Section 3.1.47
62h	Write		Write XPR FPGA Source Select			Section 3.1.48
63h		Read	Read XPR FPGA Source Select			Section 3.1.49
64h		Read	Read XPR FPGA Version			Section 3.1.50
67h	Write		Write XPR FPGA Test Pattern Select			Section 3.1.51
68h		Read	Read XPR FPGA Test Pattern Select			Section 3.1.52
6Bh	Write		Write XPR FPGA Parallel Video Control			Section 3.1.53
6Ch		Read	Read XPR FPGA Parallel Video Control			Section 3.1.54
6Dh	Write		Write XPR FPGA Video Format Select			Section 3.1.55
6Eh		Read	Read XPR FPGA Video Format Select			Section 3.1.56
6Fh		Read	Read XPR FPGA Status			Section 3.1.57
70h	Write		Write Actuator Latency			Section 3.1.58
71h		Read	Read Actuator Latency			Section 3.1.59
72h	Write		Write Actuator Gain			Section 3.1.60
73h		Read	Read Actuator Gain			Section 3.1.61
74h	Write		Write Segment Length			Section 3.1.62
75h		Read	Read Segment Length			Section 3.1.63
76h	Write		Write Manual Actuator Sync Delay			Section 3.1.64
77h		Read	Read Manual Actuator Sync Delay			Section 3.1.65
78h	Write		Write Manual Actuator Offset			Section 3.1.66
79h		Read	Read Manual Actuator Offset			Section 3.1.67
7Ah	Write		Write Actuator Fixed Output			Section 3.1.68
7Bh		Read	Read Actuator Fixed Output			Section 3.1.69
7Ch	Write		Write Actuator Direction			Section 3.1.70
7Dh		Read	Read Actuator Direction			Section 3.1.71
7Eh	Write		Write Actuator Enable			Section 3.1.72

Offset	Command Type	Command Description	Reset Value	Default Action	Section
7Fh	Read	Read Actuator Enable			Section 3.1.73
80h	Write	Write Local Area Brightness Boost Control	1h	Manual strength control	Section 3.1.74
81h	Read	Read Local Area Brightness Boost Control			Section 3.1.75
84h	Write	Write CAIC Image Processing Control		User specified	Section 3.1.76
85h	Read	Read CAIC Image Processing Control			Section 3.1.77
86h	Write	Write CCA Control	1h	Enabled	Section 3.1.78
87h	Read	Read CCA Control			Section 3.1.79
88h	Write	Write Keystone Correction Control			Section 3.1.80
89h	Read	Read Keystone Correction Control			Section 3.1.81
B2h	Write	Write Border Color	0h	Black	Section 3.1.82
B3h	Read	Read Border Color			Section 3.1.83
BBh	Write	Write Keystone Projection Pitch Angle			Section 3.1.84
BCh	Read	Read Keystone Projection Pitch Angle			Section 3.1.85
D0h	Read	Read Short Status			Section 3.1.86
D1h	Read	Read System Status			Section 3.1.87
D2h	Read	Read System Software Version			Section 3.1.88
D3h	Read	Read Communication Status			Section 3.1.89
D4h	Read	Read Controller Device ID			Section 3.1.90
D5h	Read	Read DMD Device ID			Section 3.1.91
D6h	Read	Read System Temperature			Section 3.1.92
D9h	Read	Read Flash Build Version			Section 3.1.93
DBh	Write	Write Batch File Delay		User specified	Section 3.1.94
DCh	Read	Read DMD I/F Training Data			Section 3.1.95
DDh	Read	Flash Update PreCheck		Entire flash	Section 3.1.96
DEh	Write	Flash Data Type Select			Section 3.1.97
DFh	Write	Flash Data Length			Section 3.1.98
E0h	Write	Erase Flash Data			Section 3.1.99
E1h	Write	Write Flash Start			Section 3.1.100
E2h	Write	Write Flash Continue			Section 3.1.101
E3h	Read	Read Flash Start			Section 3.1.102
E4h	Read	Read Flash Continue			Section 3.1.103
EBh	Write	Write External PAD Address			Section 3.1.104
ECh	Write	Write External PAD Data			Section 3.1.105
EDh	Read	Read External PAD Data			Section 3.1.106

Table 3-1. Supported TI Generic Commands (continued)

3.1 System Write/Read Commands

3.1.1 Write Input Source Select (Offset = 05h) [Reset = 01h]

This command is used to control the idle mode algorithms for the display module.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-2. Write Input Source Select (05h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	Input Source Oh = Parallel Video Port from XPR FPGA. The XPR FPGA can take LVDS, RGB video as input or generate TPG and convert them to parallel RGB video. 1h = Reserved. DLPC3437 internal test pattern is not supported. 2h = Splash Screen only in non-XPR mode. 3h = Reserved Write Splash Screen Select (0Dh)

NOTE: When selecting the Parallel Video Port, there is a set of associated commands that are only applicable to this source selection. These associated commands are the Write XPR FPGA Source Select (Section 3.1.48) and the Write External Video Chroma Processing Select (Section 3.1.3) command.

When selecting the Test Pattern Generator from FPGA, there is one associated command that is only applicable to this source selection. This associated command is the Write XPR FPGA Test Pattern Select (Section 3.1.51) command

When selecting the Splash Screen, there are two associated commands that are only applicable to this source selection. These associated commands are the Write Splash Screen Select (Section 3.1.5) and Write Splash Screen Execute (Section 3.1.29) commands.

These associations are also shown in Table 3-3.

Source Specific Acception Commande	Input Source Select Options					
Source Specific Associated Commands	External Video Port	Test Pattern Generator	Splash Screen ⁽¹⁾			
Write External Video Source Format Select	Only	N/A	N/A			
Write External Video Chroma Processing Select	Only	N/A	N/A			
Write External Parallel I/F Manual Image Framing	Only	N/A	N/A			
Write Test Pattern Select	N/A	Only	N/A			
Write Splash Screen Select	N/A	N/A	Only			
Write Splash Screen Execute	N/A	N/A	Special			

Table 3-3. Source Specific Associated Commands

⁽¹⁾ The *Write Splash Screen Execute* command is special in that there is no maintained state or history. Thus this command has no settings to be stored and reused by the system.

These commands (other than *Write Splash Screen Execute*) describe the characteristics of their associated source, and once these settings are defined the system stores them. Afterwards, each time an input source selection is made (using the *Write Input Source Select* command), the system remembers the settings described by the commands associated with the selected source, and automatically applies them. The user only needs to send these associated commands when the source is first defined, or when the source characteristics for that port must be changed. The appropriate associated commands must be updated when source characteristics change.

The user can send source-associated commands every time they make an input source selection. The source associated commands should be sent prior to sending the *Write Input Source Select* command. When source-associated commands are sent when that source is not active, the controller software saves the new settings, but does not execute these commands. When that source becomes active (via the *Write Input Source Select* command), the controller applies these new settings, as in the following example:

- 1. The user sends the following commands (active input source = test pattern generator):
 - Write Image Freeze = Freeze
 - Write External Video Source Format Select (settings stored, command not executed)
 - Write External Video Chroma Processing Select (settings stored, command not executed)
 - Write Input Source Select = external port (see step 2 below)
 - Write Image Freeze = unfreeze
- 2. When the *Write Input Source Select* command is received, the software applies the settings from these external video port-associated commands:
 - External Video Source Format Select
 - External Video Chroma Processing Select
 - External Input Image Size
 - External Parallel Manual Image Framing (as appropriate for example, if parallel port selected)
 - External CPU Video Sync Mode (as appropriate for example, if CPU port selected)

If source-associated commands are sent for a source that is already active, the controller software executes these commands when received, as in the following example:

- The user sends the following commands (active input source = external video port):
 - Write Image Freeze = freeze
 - Write External Video Source Format Select (command executed)
 - Write External Video Chroma Processing Select (command executed)
 - Write Image Freeze = unfreeze

The rest of the commands that apply to image setup have settings applicable across all source selections, and typically remain the same across the three input source selections. A few examples are *Write Display Size* and *Write Display Image Orientation*. A representative list of these commands is shown in Table 3-4.

Common Commands	Input Source Select Options					
Common Commands	External Video Port	Test Pattern Generator	Splash Screen			
Write Display Image Orientation	Common	Common	Common			
Write Display Image Curtain	Common	Common	Common			
Write Look Select	Common	Common	Common			
Write Sequence Select	Common	Common	Common			
Write Local Area Brightness Boost Control	Common	Common	Common			
Write CAIC Image Processing Control	Common	Common	Common			

Table 3-4. Common Commands

System Write/Read Commands

www.ti.com

While the values for these commands may be the same across the different input source types, the hardware settings may change (for example: Display image size = 1080p = DMD size – the external port input source size is WXGA, which is scaled up to the display size of 1080p. If the user changes to the TPG Input Source, the size of the test pattern must match the size of the DMD. Therefore, the scaler settings must to be changed). The controller software manages the underlying hardware settings. This also applies to those commands which specify automatic operation (for example, Write Idle Mode Select = Auto Idle Mode Enable). While the automatic setting remains the same, the underlying algorithm might change its settings based on the characteristic of the selected source.

- **NOTE:** The user is required to specify the active data size for all external input sources using the Write Input Image Size command. In addition, for input image data on the Parallel bus that doesn't provide data framing information, the user is required to provide manual framing data using the Parallel I/F Manual Image Framing command.
- **NOTE:** When a test pattern is selected, it will be generated at the resolution of the DMD.
- **NOTE:** The user should see the *Write Image Freeze* command for information on hiding on-screen artifacts when selecting an input source.

3.1.2 Read Input Source Select (Offset = 06h)

This command reads the state of the image input source for the display module.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-5. Read Input Source Select (06h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	R	Input source 0h = Parallel Video Port from FPGA 1h = Reserved 2h = Splash Screen only supported in non-XPR 3h = Reserved

System Write/Read Commands

www.ti.com

3.1.3 Write External Video Chroma Processing Select (Offset = 09h) [Reset = 0h]

This command is used to specify the CSC Coefficient Set parameter.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-6. Write External Video Chroma Processing Select (09h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	CSC Coefficient Set (Color Space)

NOTE: This command is used in conjunction with the Write Input Source Select command (Section 3.1.1). The settings for this command will be retained until changed using this command. These settings will be automatically applied each time the External Video Port is selected.

NOTE: CSC coefficient sets are stored in Flash until needed.

NOTE: CSC coefficient sets are specified in Byte 1 by an enumerated value (for example, 0, 1, 2, or 3). The set stored in '0' is ITU-R BT. Rec. 601 standard. The other three sets are customer definable via User.

3.1.4 Read External Video Chroma Processing Select (Offset = 0Ah)

This command is used to read the CSC Coefficient Set parameter.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-7. Read External Video Chroma Processing Select (0Ah) Register Field Descriptions

В	Bit	Туре	Description
7	'- 2	R	Reserved
1	-0	R	CSC Coefficient Set (Color Space)

3.1.5 Write Splash Screen Select (Offset = 0Dh) [Reset = User specified]

This command is used to select a stored splash screen to be displayed on the display module.

Parameter Bytes	Description
Byte 1	Splash screen reference number (integer)

This command is used in conjunction with the Write Input Source Select (Section 3.1.1) and the Write Splash Screen Execute (Section 3.1.29) commands. It specifies which splash screen is to be displayed when the Input Source Select command selects splash screen as the image source. The settings for this command will be retained until changed using this command.

The steps required to display a splash screen are:

- 1. Select the desired splash screen (this command)
- 2. Change the input source to splash screen (using Write Input Source Select)
- 3. Start the splash screen retrieval process (using Write Splash Screen Execute)
 - **NOTE:** The Splash Screen is a unique source since it is read from Flash and sent down the processing path of the controller one time, to be stored in memory for display at the end of the processing path. As such, all image processing settings (for example image crop, image orientation, display size, splash screen select, splash screen as input source, and so forth) should be set appropriately by the user before executing the Write Splash Screen Execute command.
 - **NOTE:** It is important that the user review the notes for the Write Input Source Select command in Section 3.1.1 to understand the concept of source associated commands. This concept will determine when source associated commands are executed by the system. Note that this command is a source associated command.
 - NOTE: The availability of splash screens is limited by the available space in flash memory.
 - **NOTE:** All splash screens must be landscape oriented.
 - **NOTE:** For single controller applications which support DMD resolutions up to 1280 x 720, the minimum splash image size allowed for flash storage is 427 x 240, with the maximum being the resolution of the product DMD. Typical splash image sizes for flash are 427 x 240 and 640 x 360. The full resolution size is typically used to support an "Optical Test" splash screen.
 - **NOTE:** For dual controller applications which support DMD resolutions up to 1980 x 1080, the minimum splash image size allowed for flash storage is 854 x 480, with the maximum being the resolution of the product DMD. Typical splash image sizes for flash are 854 x 480. The full resolution size is typically used to support an "Optical Test" splash screen.
 - **NOTE:** The user is responsible for specifying how the splash image will be displayed on the screen.

NOTE: When this command is received while Splash Screen is the active source, other than storing the specified splash screen value, the only action that will be taken by the controller software will be to obtain the header information from the selected splash screen and store this in internal memory. Then, when the Write Splash Screen Execute command is received, the controller software will use this stored information to set up the processing path prior to pulling the splash data from flash.

3.1.6 Read Splash Screen Select (Offset = 0Eh)

This command reads the state of the Splash Screen Select command of the display module.

Table 3-8. Return Parameters

Parameter Bytes	Description
Byte 1	Splash screen selected (integer)

3.1.7 Read Splash Screen Header (0Fh)

This command reads the splash screen header information for the selected splash screen of the display module.

3.1.7.1 Read Parameters

The read parameter specifies the splash screen for which the header parameters are returned. If a splash screen value is provided for an unavailable splash screen, this is considered an error (invalid command parameter value – communication status) and the command is executed.

Table 3-9. Read Parameters

Parameter Bytes	Description	
Byte 1	Splash screen reference number (integer)	

3.1.7.2 Return Parameters

Table 3-10 describes the return parameters.

Table 3-10. Return Parameters

Parameter Bytes	Description
Byte 1	Splash image width in pixels (LSByte)
Byte 2	Splash image width in pixels (MSByte)
Byte 3	Splash image height in pixels (LSByte)
Byte 4	Splash image height in pixels (MSByte)
Byte 5	Splash image size in bytes (LSByte)
Byte 6	Splash image size in bytes
Byte 7	Splash image size in bytes
Byte 8	Splash image size in bytes (MSByte)
Byte 9	Pixel format
Byte 10	Compression type
Byte 11	Color order
Byte 12	Chroma order
Byte 13	Byte order

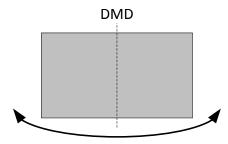
System Write/Read Commands

Parameter definitions are referenced in Table 3-11.

Parameter	Values
Pixel format	0h = 24-bit RGB unpacked (not used) 1h = 24-bit RGB packed (not used) 2h = 16-bit RGB 5-6-5 3h = 16-bit YCbCr 4:2:2
Compression type	0h = Uncompressed 1h = RGB RLE compressed 2h = User-defined (not used) 3h = YUV RLE compressed
Color order	0h = 00RRGGBB 1h = 00GGRRBB
Chroma order	0h = Cr is first pixel 1h = Cb is first pixel
Byte order	0h = Little endian 1h = Big endian

Table 3-11. Splash Screen Header Definitions

3.1.8 Write Display Image Orientation (Offset = 14h) [Reset = User specified]

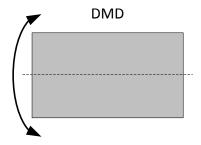

This command specifies the image orientation of the displayed image for the display module.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-12. Write Display Image Orientation (14h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	W	Short axis image flip 0h = Image not flipped. 1h = Image flipped.
1	W	Long axis image flip 0h = Image not flipped. 1h = Image flipped.
0	R	Reserved

Figure 3-1 shows the short-axis flip.



Flip Disabled

Figure 3-1. Long-Axis Flip

Figure 3-2 shows the short-axis flip.

Flip Disabled

Figure 3-2. Short-Axis Flip

Flip Enabled

Flip Enabled

System Write/Read Commands

3.1.9 Read Display Image Orientation (Offset = 15h)

This command reads the state of the displayed image orientation function for the display module.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-13. Read Display Image Orientation (15h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	R	Short axis image flip 0h = Image not flipped. 1h = Image flipped.
1	R	Long axis image flip 0h = Image not flipped. 1h = Image flipped.
0	R	Reserved

System Write/Read Commands

3.1.10 Write Display Image Curtain (Offset = 16h) [Reset = 01h]

This command controls the display image curtain for the display module.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-14. Write Display Image Curtain (16h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-1	W	Select curtain color 0h = Black 1h = Red 2h = Green 3h = Blue 4h = Cyan 5h = Magenta 6h = Yellow 7h = White
0	W	Curtain enable 0h = Curtain disabled 1h = Curtain enabled

- **NOTE:** The image curtain fills the entire display with a user-specified color. The curtain color specified by this command is separate from the border color defined in the *Write Border Color* command, though both are displayed using the curtain capability.
- **NOTE:** The curtain color specified by this command is separate from the border color defined in the Write Border Color command (Section 3.1.82), even though they are both displayed using the curtain capability.

System Write/Read Commands

3.1.11 Read Display Image Curtain (Offset = 17h)

This command reads the state of the image curtain control function for the display module.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-15. Read Display Image Curtain (17h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-1	R	Select curtain color Oh = Black 1h = Red 2h = Green 3h = Blue 4h = Cyan 5h = Magenta 6h = Yellow 7h = White
0	R	Curtain enable 0h = Curtain disabled 1h = Curtain enabled

System Write/Read Commands

3.1.12 Write Image Freeze (Offset = 1Ah) [Reset = 0h]

This command enables or disables the image freeze function for the display module.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-16. Write Image Freeze (1Ah) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	W	Image freeze Oh = Image freeze disabled 1h = Image freeze enabled

Normal use of the Image Freeze capability typically has two main functions. The first function is to allow the end user to freeze the current image on the screen for their own uses. The second function is to allow the user (host system/OEM) to reduce/prevent system changes from showing up on the display as visual artifacts. In this second case, the image would be frozen, system changes would be made, and when complete, the image is unfrozen. In all cases, when the image is unfrozen, the display starts showing the most recent input image. Thus input data between the freeze point and the unfreeze point is lost. Suggestions to the host system for the types of image changes likely to necessitate the use of the image freeze command to hide artifacts are discussed in Section 3.1.12.1.

It should be noted that the controller software will never "automatically" or "under-the-hood" freeze or unfreeze the image. Basically, the controller software will not freeze or unfreeze the image for any reason except when explicitly commanded by the Write Image Freeze command.

- **NOTE:** It is important that the user review the notes for the Write Input Source Select command in Section 3.1.1 to understand the concept of source associated commands. This concept will determine when source associated commands are executed by the system. Note, Freeze command doesn't work on Splash screen on a dual DLPC3437 system.
- **NOTE:** If the OEM chooses not to make use of Image Freeze, it is recommended that they change the source itself before changing image parameters to minimize transition artifacts.

3.1.12.1 Use of Image Freeze to Reduce On-Screen Artifacts

Commands that take a long time to process, require a lot a data to be loaded from flash, or change the frame timing of the system may create on-screen artifacts. The *Write Image Freeze* command can try and minimize, if not eliminate, these artifacts. The process is:

- 1. Send a Write Image Freeze command to enable freeze.
- 2. Send commands with the potential to create image artifacts.
- 3. Send a *Write Image Freeze* command to disable freeze.

Since commands to the controller are processed serially, no special timing or delay is required between these commands. It is suggested that the number of commands placed between the freeze and unfreeze be kept small, as it is likely not desirable for the image to be frozen for a "long" period of time. A list of commands that may produce image artifacts are listed in Table 3-17. However, this is not an all-inclusive list, and the user is ultimately responsible for determining if and when use of the image freeze command will meet their product needs.

Table 3-17. Partial List of Commands that May Benefit from the Use of Image Freeze

Command	Command Offset	Notes
Write Input Source Select	05h	
Write External Video Source Format Select	07h	Reference source not found.
Write Look Select	22h	

Table 3-18 and Table 3-19 show a few examples of how to use the image freeze command.

Command	Notes			
Write Display Image Curtain = enable	May want to apply curtain if already displaying an unwanted image (such as a broken source).			
Write Image Freeze = freeze				
Write Display Image Orientation	Potential data processing commands that may be required for proper display of TPG.			
Write Test Patern Generator Select	Set up TPG.			
Write Image Freeze = unfreeze				

Table 3-18. Splash Screen Example Using Image Freeze

Table 3-19. Test Pattern Generator Example Using Image Freeze

Command	Notes
Write Image Freeze = freeze	
Write Display Image Orientation, Write Test Pattern Select	Potential data processing commands that may be required for proper display of test pattern image. These should be set before the Write Input Source Select command.
Write Input Source Select = test pattern generator	
Write Image Freeze = unfreeze	

3.1.13 Read Image Freeze (Offset = 1Bh)

This command reads the state of the image freeze function for the display module.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-20. Read Image Freeze (1Bh) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	R	Image freeze 0h = Image freeze disabled 1h = Image freeze enabled

System Write/Read Commands

3.1.14 Write 3-D Control (Offset = 20h) [Offset = 0h]

This command is used to control 3-D functionality for the display module.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-21. Write 3-D Control (20h) Register Field Descriptions

Bit	Туре	Description			
7	R	Reserved			
6	W	Polarity of 3-D Reference (External Only) 0h = Correct – No Inversion Required. 1h = Incorrect – Inversion Required.			
5	W	Frame Dominance 0h = Left Dominant. (Data sent left eye first)			
4-2	R	Reserved			
1	W	Source of 3-D Reference 0h = Internal Reference Generator NOT supported 1h = External (SLT_3DR Pin)			
0	R	Reserved			

- **NOTE:** The system will automatically enable 3-D operation when appropriate, basing this decision on the source frame rate, and whether 3-D sequences are available to the system (loaded in flash, for example). The 3-D parameters specified by this command will take effect following the next VSYNC.
- **NOTE:** 3-D image data must always be sent frame sequential (that is, syncs and blanking to be sent between every eye frame), at frame rates greater than approximately 94 Hz (controller does not support frame rate multiplication). Internal Reference Generator is not supported in Dual controller system.
- NOTE: Internal reference generator is not supported on dual controller DLPC3437.

NOTE: The 3-D Reference is used to specify whether a frame of data contains left eye data or right eye data. This 3-D reference can be provided to the display by an external hardware signal. Table 3-22 shows which 3-D Reference source can be used with each image data port. When using the external hardware signal as the reference, it must be provided for every frame of data. If the external 3-D Reference is misaligned with the data, it can be corrected using the Polarity of 3-D Reference (External Only) parameter. As noted, the Polarity of 3-D Reference parameter is only applicable when the External Signal is selected as the 3-D Reference source.

Table	3-22.	3D	Control
-------	-------	----	---------

Display Data Port	3-D Reference Source	Applicable	Notes
Parallel	External Hardware Signal	Yes	Recommended
Parallel	Internal Reference Generator	No	

NOTE: The Write 3-D Reference command should be use with this selection.

NOTE: For frame sequential 3-D, Frame Dominance determines which eye frames in the data stream go together to make up a single 3-D image. Left dominance indicates that the first eye frame of a pair is left, the second eye frame is right. Right dominance indicates that the first eye frame of a pair is right, the second eye frame is left). This is important for proper operation of display histograms (which span both eye frames of a single image), and when the image is frozen, as we want to be sure we display the correct two eye frames together. The frame dominance control must not be used to attempt correction for misalignment of the 3-D reference signal to the image data.

System Write/Read Commands

3.1.15 Read 3-D Control (Offset = 21h)

This command is used to read the state of the 3-D control function for the display module.

MSB	Byte 1				LSB		
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-23. Read 3-D Control (21h) Register Field Descriptions

Bit	Туре	Description		
7	R	Reserved		
6	R	Polarity of 3-D Reference (External Only) 0h = Correct – No Inversion Required. 1h = Incorrect – Inversion Required.		
5	R	Frame Dominance Oh = Left Dominant. (Data sent left eye first) 1h = Right Dominant. (Data sent right eye first)		
4-2	R	Reserved		
1	R	Source of 3-D Reference 0h = Internal Reference Generator NOT supported 1h = External (SLT_3DR Pin)		
0	R	3-D Mode Control 0h = 2-D Operation 1h = 3-D Operation		

NOTE: The system automatically enables and disables 3-D operation. Bit(0) will indicate the state of 2-D/3-D operation.

3.1.16 Write LOOK Select (Offset = 22h) [Reset = User specified]

This command specifies the LOOK for the image on the display module.

MSB		Byte 1							
b7	b6	b5	b4	b3	b2	b1	b0		

Table 3-24. Write LOOK Select (22h) Register Field Descriptions

Bit	Туре	Description
7-0	W	LOOK number

In this product, a LOOK typically specifies a target white point. The number of LOOKs available may be limited by the available space in flash memory.

This command allows the host to select a LOOK (target white point) from a number of LOOKs stored in flash. Based on the LOOK selected and measured data obtained from an appropriate light sensor, the software automatically selects and loads the most appropriate sequence or duty cycle set available in the LOOK, to get as close as possible to the target white point.

LOOKs are specified in this byte by an enumerated value (such as 0, 1, 2, 3). There must always be at least one LOOK, with an enumerated value of 0.

There are two other items that the host should specify in addition to the LOOK. These are:

- A desired degamma curve, achieved by selecting the appropriate degamma/CMT, which has the desired degamma curve and correct bit weights for the sequence selected.
- The desired color points, achieved by selecting the appropriate CCA parameters using the CCA select command.

3.1.17 Read LOOK Select (Offset = 23h)

This command reads the state of the LOOK select command for the display module.

Table 3-25. Return Parameters

Parameter Bytes	Description
Byte 1	Look Number. See the following notes.
Byte 2	Sequence number. See the following notes.
Byte 3	Current Sequence Frame Rate (Isb). See the following notes.
Byte 4	Current Sequence Frame Rate.
Byte 5	Current Sequence Frame Rate.
Byte 6	Current Sequence Frame Rate (msb).

MSB	Byte 1 and 2								
b7	b6	b5	b4	b3	b2	b1	b0		

Table 3-26. Byte 1 Read LOOK Select (23h) Register Field Descriptions

Bit	Туре	Description
7-0	R	LOOK number

Table 3-27. Byte 2 Read LOOK Select (23h) Register Field Descriptions

Bit	Туре	Description
7-0	R	Sequence number

NOTE: LOOKs are specified by an enumerated value (such as 0, 1, 2, 3).

- **NOTE:** Sequences are specified by an enumerated value (that is, 0, 1, 2, 3, and so forth), and the value returned by this command is the sequence currently selected by the LOOK algorithm when this command is received.
- **NOTE:** The current sequence frame rate is returned as a count that is specified in units of 66.67 ns (based on the internal 15-MHz clock used to time between input frame syncs), and is valid regardless of whether controller software made the sequence/duty cycle selection, or the user made the selection. The frame rate is specified in this way to enable fast and simple comparisons to the frame count by the software.

3.1.18 Read Sequence Header Attributes (Offset = 26h)

This command reads sequence header information for the active sequence of the display module.

3.1.18.1 Return Parameters

Table 3-28 describes the return parameters.

Table 3-28. Return Parameters

Parameter Bytes	Description
Byte 1	Red duty cycle (LSByte), LOOK structure
Byte 2	Red duty cycle (MSByte), LOOK structure
Byte 3	Green duty cycle (LSByte), LOOK structure
Byte 4	Green duty cycle (MSByte), LOOK structure
Byte 5	Blue duty cycle (LSByte), LOOK structure
Byte 6	Blue duty cycle (MSByte), LOOK structure
Byte 7	Maximum frame count (LSByte), LOOK structure
Byte 8	Maximum frame count, LOOK structure
Byte 9	Maximum frame count, LOOK structure
Byte 10	Maximum frame count (MSByte), LOOK structure
Byte 11	Minimum frame count (LSByte), LOOK structure
Byte 12	Minimum frame count, LOOK structure
Byte 13	Minimum frame count, LOOK structure
Byte 14	Minimum frame count (MSByte), LOOK structure
Byte 15	Max number of sequence vectors, LOOK structure
Byte 16	Red duty cycle (LSByte), Sequence structure
Byte 17	Red duty cycle (MSByte), Sequence structure
Byte 18	Green duty cycle (LSByte), Sequence structure
Byte 19	Green duty cycle (MSByte), Sequence structure
Byte 20	Blue duty cycle (LSByte), Sequence structure
Byte 21	Blue duty cycle (MSByte), Sequence structure
Byte 22	Maximum frame count (LSByte), Sequence structure
Byte 23	Maximum frame count, Sequence structure
Byte 24	Maximum frame count, Sequence structure
Byte 25	Maximum frame count (MSByte), Sequence structure
Byte 26	Minimum frame count (LSByte), Sequence structure
Byte 27	Minimum frame count, Sequence structure
Byte 28	Minimum frame count, Sequence structure
Byte 29	Minimum frame count, MSByte), Sequence structure
Byte 30	Max number of sequence vectors, Sequence structure

www.ti.com

The sequence header data is stored in two separate flash data structures (the LOOK structure and the sequence structure), and the values from each should match.

The bit weight and bit order for the duty cycle data is shown in Figure 3-3.

		0														
N	ISB	Byte 2						LSB	MSB			Byt	te 1			LSB
	o15 2 ⁷	b14 2 ⁶	b13 2⁵	b12 24	b11 2 ³	b10 2 ²	b9 21	b8 2 ⁰	b7 2 ⁻¹	b6 2 ⁻²	b5 2 ^{–3}	b4 2 ⁻⁴	b3 2⁻⁵	b2 2 ^{−6}	b1 2 ⁻⁷	b0 2 ^{−8}

The duty cycle data is specified as each color's percent of the frame time. The sum of the three duty cycles must add up to 100 (for example, R = 30.5 = 1E80h, G = 50 = 3200h, B = 19.5 = 1380h).

The sequence maximum and minimum frame counts are specified in units of 66.67 ns (based on the internal 15-MHz clock used to time between input frame syncs). These are specified in this way to enable fast and simple comparisons to the frame count by software.

The maximum number of sequence vector bytes is defined in .

MSB	Byte 15 and 30							
b7	b6	b5	b4	b3	b2	b1	b0	

Table 3-29. Read Sequence Header Attributes (26h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-0	R	Maximum number of sequence vectors

3.1.19 Write Gamma/CMT Select (Offset = 27h) [Reset = User specified]

This command is used to select a specific Degamma/CMT LUT for the display module.

MSB		Byte 1							
b7	b6	b5	b4	b3	b2	b1	b0		

Table 3-30. Write Gamma/CMT Select(27h) Register Field Descriptions

Bit	Туре	Description
7-0	W	Degamma/CMT LUT Index Number

- NOTE: Degamma/CMT LUTs are stored in Flash until needed.
- **NOTE:** The Degamma/CMT LUT Number specified by the user determines the degamma applied by the system.
- **NOTE:** For TI software purposes, this Degamma/CMT LUT number is the CMT Index number in the Flash structure. Thus, if there is a degamma of 1.5 (for example) at CMT Index 0, then every sequence will have a CMT Index of 0 that references a degamma of 1.5 that is appropriate for each respective sequence.

3.1.20 Read Gamma/CMT Select (Offset = 28h)

This read is used to select a specific Degamma/CMT LUT for the display module.

MSB		Byte 1						
b7	b6	b5	b4	b3	b2	b1	b0	

Table 3-31. Read Gamma/CMT Select (28h) Register Field Descriptions

Bit	Туре	Description
7-0	R	Degamma/CMT LUT Index Number

System Write/Read Commands

3.1.21 Write CCA Select (Offset = 29h) [Reset = User specified]

This command is used to select a specific set of CCA parameters (to specify the color points) for the display module.

MSB		Byte 1						
b7	b6	b5	b4	b3	b2	b1	b0	

Table 3-32. Write CCA Select (29h) Register Field Descriptions

Bit	Туре	Description
7-0	W	CCA Parameter Set

NOTE: CCA parameter sets are used to set a target color points for the system. The sets are stored in Flash until needed.

3.1.22 Read CCA Select (Offset = 2Ah)

This command is used to read the status of the CCA select command for the display module.

MSB	Byte 1						
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-33. Read CCA Select (2Ah) Register Field Descriptions

Bit	Туре	Description
7-0	R	CCA Parameter Set

NOTE: CCA parameter sets are specified in this byte by an enumerated value (that is, 0, 1, 2, 3, and so forth). This number specifies the actual CCA number reference in the flash structure.

System Write/Read Commands

3.1.23 Write Execute Flash Batch File (Offset = 2Dh)

This command executes a flash batch file for the display module.

Table 3-34. Write Parameters

Parameter Bytes	Description		
Byte 1	Batch file number		

This command is used to command the execution of a batch file stored in the Flash of the display module. Any system write command that can be sent by itself can be grouped together with other system commands or command parameters into a Flash batch file, with the exception of those listed in Table 3-35. Flash batch files are created using the GUI tool, and then stored in the Flash build. One example for a Flash batch file might be the commands and command parameters required for initialization of the system after power-up.

- **NOTE:** The Flash batch file numbers to be specified in this byte are enumerated values (that is, 0, 1, 2, 3, and so forth).
- **NOTE:** Flash batch file 0 is a special Auto-Init batch file that is run automatically by the DLPC3437 software immediately after system initialization has been completed. As such, Flash batch file 0 will not typically be called using the Write Execute Batch File command (although the system will allow it). This special Flash batch file would typically be used to specify the source to be used (for example, splash screen, data port) once the system is initialized.
- **NOTE:** Embedding Flash batch file calls within a Flash batch file is not allowed (for example, calling another batch file from within a batch file is not allowed). If it is desired to have two batch files executed back to back, they should be called by back to back execute batch file commands.
- **NOTE:** The system provides the ability to add an execution delay between commands within a Flash batch file. This is done using the Write Flash Batch File Delay command (Section 3.1.94).
- **NOTE:** The order of command execution for commands within a Flash batch file will be the same as if the commands had been received over the I²C port.

Command	Offset	Applicable
Write Command Synchronization	N/A	Reference source not found.
Write Execute Flash Batch File	2D	No
Flash Data Type Select	DE	
Flash Data Length	DF	
Erase Flash Data	E0	
Write Flash Start	E1	
Write Flash Continue	E2	
Write Internal Mailbox Address	E8	
Write Internal Mailbox	E9	
Write External PAD Address	EB	
Write External PAD Data	EC	
All Read commands	Various	Various

Table 3-35. Flash Batch File Operations

3.1.24 Write 3-D Reference (Offset = 30h) [Reset = 0h]

This command is used to provide a 3-D reference for the display module.

Table 3-36. Write Parameters

	Parameter Bytes				Description			
	Byte 1 Batch file number							
MSB	SB Byte 1							
b7	b6	b5	b4	b3	b2	h1	b0	

Table 3-37. Write Execute Flash Batch File (2Dh) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0		3-D Reference 0h = Next Frame Left 1h = Next Frame Right

The 3-D Reference is used to specify whether a frame of data contains left eye data or right eye data. The 3-D reference can be provide to the display as a hardware signal or by using this command (selection is made using the Write 3-D Control command in Section 3.1.14). When using this command as the reference, it is recommend that the command be sent every frame, or at least at the start of each eye pair (for example, sent before each left eye frame). At a minimum, it must be sent once at the start of 3-D operation. If the 3-D Reference is misaligned with the data, it can be corrected using this command or by using the polarity of 3-D Reference parameter in the Write 3-D Control command.

- **NOTE:** When the Write 3-D Reference command is received, its parameter value will be applied at the next VSYNC (that is, the parameter value will be applied to the image data following the next VSYNC or Start of Frame command).
- **NOTE:** When this command is received, software will set up the internal controller 3-D reference generator. If the command is sent every frame, software can monitor to ensure that the output of the internal controller 3-D reference generator is still correct.

3.1.25 Write GPIO[19:00] Control (Offset = 31h) [Reset = User specified]

This command is used to specify how GPIO(19:09) and GPIO(07:04) of the display module are to be used.

MSB		Byte 1 - 4						
b7	b6	b5	b4	b3	b2	b1	b0	

Table 3-38. Byte 1 Write GPIO[19:00] Control (31h) Register Field Descriptions

Bit	Туре	Description
7-6	W	GPIO (12) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
5-4	W	GPIO (11) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	W	GPIO (10) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	W	GPIO (09) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

www.ti.com

Bit	Туре	Description
7-6	W	GPIO (16) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
5-4	W	GPIO (15) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	W	GPIO (14) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	W	GPIO (13) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

Table 3-39. Byte 2 Write GPIO[19:00] Control (31h) Register Field Descriptions

Table 3-40. Byte 3 Write GPIO[19:00] Control (31h) Register Field Descriptions

Bit	Туре	Description
7-6	R	Reserved
5-4	W	GPIO (19) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	W	GPIO (18) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	W	GPIO (17) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

Bit	Туре	Description
7-6	W	GPIO (07) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
5-4	W	GPIO (06) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	W	GPIO (05) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	W	GPIO (04) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

Table 3-41. Byte 4 Write GPIO[19:00] Control (31h) Register Field Descriptions

NOTE: GPIO(19:09) and GPIO(07:04) can individually function as defined by the OEM in the GUI, or their function can be redefined on-the-fly using this command. When their functions are redefined by this command, the Write GPIO[19:00] Outputs (

Section 3.1.27) and Read GPIO[19:00] Inputs (Section 3.1.30) commands are used to write or read the redefined GPIO. GPIO(08) has a fixed function, and the functions of GPIO(03:00) can only be specified via the GUI.

NOTE: The OEM ensures that signal conflicts do not arise when switching GPIO signal directions (for example, external signal driving a GPIO that is configured as an output).

System Write/Read Commands

3.1.26 Read GPIO[19:00] Control (Offset = 32h)

This command is used to read back the control state for GPIO(19:09) and GPIO(07:04) of the display module.

MSB	Byte 1 - 4					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-42. Byte 1 Read GPIO[19:00] Control (32h) Register Field Descriptions

Bit	Туре	Description
7-6	R	GPIO (12) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
5-4	R	GPIO (11) Oh = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	R	GPIO (10) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	R	GPIO (09) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

Bit	Туре	Description
7-6	R	GPIO (16) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
5-4	R	GPIO (15) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	R	GPIO (14) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	R	GPIO (13) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

Table 3-43. Byte 2 Read GPIO[19:00] Control (32h) Register Field Descriptions

Table 3-44. Byte 3 Read GPIO[19:00] Control (32h) Register Field Descriptions

Bit	Туре	Description
7-6	R	Reserved
5-4	R	GPIO (19) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	R	GPIO (18) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	R	GPIO (17) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

www.ti.com

Bit	Туре	Description
7-6	R	GPIO (07) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
5-4	R	GPIO (06) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
3-2	R	GPIO (05) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)
1-0	R	GPIO (04) 0h = User Defined 1h = Input 2h = Output (Standard) 3h = Output (Open Drain)

Table 3-45. Byte 4 Read GPIO[19:00] Control (32h) Register Field Descriptions

3.1.27 Write GPIO[19:00] Outputs (Offset = 33h) [Reset = User specified]

This command is used to specify how GPIO(19:09) and GPIO(07:00) of the display module are to be used.

Parameter Bytes	Description
Byte 1	GPIO Mask (See Below)
Byte 2	GPIO Mask (See Below)
Byte 3	GPIO Mask (See Below)
Byte 4	GPIO Mask (See Below)
Byte 5	GPIO Mask (See Below)
Byte 6	GPIO Mask (See Below)

Table 3-46. Write Parameters

MSB		Byte 1 - 6					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-47. Byte 1 Write GPIO[19:00] Outputs (33h) Register Field Descriptions

Bit	Туре	Description					
7	W	GPIO (7) 0h = Note Selected 1h = Selected					
6	W	GPIO (6) 0h = Note Selected 1h = Selected					
5	W	GPIO (5) 0h = Note Selected 1h = Selected					
4	W	GPIO (4) Oh = Note Selected 1h = Selected					
3	W	GPIO (3) Oh = Note Selected 1h = Selected					
2	W	GPIO (2) 0h = Note Selected 1h = Selected					
1	W	GPIO (1) 0h = Note Selected 1h = Selected					
0	W	GPIO (0) Oh = Note Selected 1h = Selected					

www.ti.com

Bit	Туре	Description				
7	W	GPIO (16) Oh = Note Selected 1h = Selected				
6	W	GPIO (15) 0h = Note Selected 1h = Selected				
5	W	1h = Selected GPIO (14) 0h = Note Selected 1h = Selected				
4	W	GPIO (13) 0h = Note Selected 1h = Selected				
3	W	GPIO (12) 0h = Note Selected 1h = Selected				
2	W	GPIO (11) 0h = Note Selected 1h = Selected				
1	W	GPIO (10) Oh = Note Selected 1h = Selected				
0	W	GPIO (9) 0h = Note Selected 1h = Selected				

Table 3-48. Byte 2 Write GPIO[19:00] Outputs (33h) Register Field Descriptions

Table 3-49. Byte 3 Write GPIO[19:00] Outputs (33h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	W	GPIO (19) 0h = Note Selected 1h = Selected
1	W	GPIO (18) 0h = Note Selected 1h = Selected
0	W	GPIO (17) 0h = Note Selected 1h = Selected

Table 3-50. Byte 4 Write GPIO[19:00] Outputs (33h) Register Field Descriptions

Bit	Туре	Description			
7	W	GPIO (7) Oh = Note Selected 1h = Selected			
6	W	GPIO (6) 0h = Note Selected 1h = Selected			
5	W	GPIO (5) 0h = Note Selected 1h = Selected			
4	W	GPIO (4) Oh = Note Selected 1h = Selected			
3	W	GPIO (3) 0h = Note Selected 1h = Selected			
2	W	GPIO (2) 0h = Note Selected 1h = Selected			
1	W	GPIO (1) Oh = Note Selected 1h = Selected			
0	W	GPIO (0) Oh = Note Selected 1h = Selected			

www.ti.com

Bit	Tuno	Description
	Туре	Description
7	W	GPIO (16)
		0h = Note Selected
		1h = Selected
6	W	GPIO (15)
		0h = Note Selected
		1h = Selected
5	W	GPIO (14)
		0h = Note Selected
		1h = Selected
4	W	GPIO (13)
		0h = Note Selected
		1h = Selected
3	W	GPIO (12)
		0h = Note Selected
		1h = Selected
2	W	GPIO (11)
		0h = Note Selected
		1h = Selected
1	W	GPIO (10)
		0h = Note Selected
		1h = Selected
0	W	GPIO (9)
		0h = Note Selected
		1h = Selected
	1	

Table 3-51. Byte 5 Write GPIO[19:00] Outputs (33h) Register Field Descriptions

Table 3-52. Byte 6 Write GPIO[19:00] Outputs (33h) Register Field Descriptions

Bit	Туре	Description	
7-3	R	Reserved	
2	W	GPIO (19) 0h = Note Selected 1h = Selected	
1	W	GPIO (18) 0h = Note Selected 1h = Selected	
0	W	GPIO (17) 0h = Note Selected 1h = Selected	

NOTE: GPIO(19:09) and GPIO(07:04) can function as defined by the OEM in the GUI, or their function can be redefined on-the-fly using the Write GPIO[19:00] Control command (Section 3.1.25).

GPIO(08) is not re-definable on-the-fly, and is not available for use as an OEM GPIO.

GPIO(03:00) can only function as defined by the OEM. One of the choices in the GUI is to define one or more of these GPIO to be OEM GPIO Outputs.

NOTE: When one or more of GPIO(19:09) and GPIO(07:04) are defined as output signals (using the Write GPIO[19:00] Control command), or when one or more of GPIO(03:00) are defined as output signals by the OEM in the GUI, this command is used to specify the values of those output signals. All of these values will be retained for later application if required, and for read back using the Read GPIO[19:00] Outputs command (Section 3.1.28).

This command will have no effect on GPIO(19:09) and GPIO(07:04) that are not defined as output signals by the Write GPIO[19:00] Control command, although any values entered for these GPIO will be retained and used when these GPIO are later specified to be outputs.

This command will have no effects on GPIO(03:00) that are not defined as output signals by the GUI. Even so, any values entered for these GPIO will be retained for read back (although they won't be applied to the GPIO).

NOTE: In order to set the value of a GPIO, the GPIO must be selected using bytes 1 to 3 of this command, with the appropriate value specified using bytes 3 to 6.

System Write/Read Commands

3.1.28 Read GPIO[19:00] Outputs (Offset = 34h)

This command is used to read the output values for GPIO(19:09) and GPIO(07:00) of the display module.

Table 3-53. Read Parameters

Parameter Bytes	Description
Byte 1	GPIO Value (See Below)
Byte 2	GPIO Value (See Below)
Byte 3	GPIO Value (See Below)

MSB		Byte 1 - 3					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-54. Byte 1 Read GPIO[19:00] Outputs (34h) Register Field Descriptions

Bit	Туре	Description
7	R	GPIO (7)
6	R	GPIO (6)
5	R	GPIO (5)
4	R	GPIO (4)
3	R	GPIO (3)
2	R	GPIO (2)
1	R	GPIO (1)
0	R	GPIO (0)

Table 3-55. Byte 2 Read GPIO[19:00] Outputs (34h) Register Field Descriptions

Bit	Туре	Description
7	R	GPIO (16)
6	R	GPIO (15)
5	R	GPIO (14)
4	R	GPIO (13)
3	R	GPIO (12)
2	R	GPIO (11)
1	R	GPIO (10)
0	R	GPIO (9)

Table 3-56. Byte 3 Read GPIO[19:00] Outputs (34h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	R	GPIO (19)
1	R	GPIO (18)
0	R	GPIO (17)

- **NOTE:** This command will return the values specified by the Write GPIO[19:00] Outputs command (Section 3.1.27). Any GPIO not having a value specified by the Write GPIO[19:00] Outputs command will return a value of zero. The value returned may or may not be the value at the GPIO. See the Write GPIO[19:00] Control (Section 3.1.25) and Read GPIO[19:00] Inputs (Section 3.1.30) command for further information.
- **NOTE:** When one or more of GPIO(19:09) are defined as input signals (using the Write GPIO[19:00] Control command), or one or more of GPIO(07:00) are defined as input signals by the OEM in the GUI, this command is used to read back the current value of those specific GPIO. Each time a read request is made the ARM software will de-bounce, sample, and return the current value on these GPIO. This command will return zero for any GPIO(19:09) and GPIO(07:00) not defined as an input signal.

3.1.29 Write Splash Screen Execute (Offset = 35h)

This command starts the process of retrieving a splash screen from flash for display on the display module.

This command has no write parameters.

NOTE: This command is used in conjunction with the Write Input Source Select (Section 3.1.1) and the Write Splash Screen Select (Section 3.1.5) commands. It is used to start the process of retrieving a splash screen from Flash for display.

The Splash Screen is a unique source since it is read from Flash and sent down the processing path of the controller one time, to be stored in memory for display at the end of the processing path. As such, all image processing settings (for example, image crop, image orientation, display size, splash screen select, splash screen as input source, and so forth) should be set appropriately by the user before executing this command. Any data path processing changed after the splash screen has been executed will require this command to be re-executed before the result will be seen on the display. Thus, the splash screen retrieval process will be repeated each time this command is received. See also the Write Image Freeze command (Section 3.1.12) for information on hiding on-screen artifacts when selecting and retrieving a splash image.

- **NOTE:** It is important that the user review the notes for the Write Input Source Select command in Section 3.1.1 to understand the concept of source associated commands. This concept will determine when source associated commands are executed by the system. Note that this command is a source associated command; however, this command is special in that there is no maintained state or history. Thus, this command has no "settings" to be stored or reused by the system.
- **NOTE:** When this command is processed, the system will automatically set up the system color processing based on the splash header information prior to sending the splash image down the data path.

3.1.30 Read GPIO[19:00] Inputs (Offset = 36h)

This command is used to read the output values for GPIO(19:09) and GPIO(07:00) of the display module.

MSB		Byte 1 - 3					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-57. Byte 1 Read GPIO[19:00] Inputs (36h) Register Field Descriptions

Bit	Туре	Description
7	R	GPIO (7)
6	R	GPIO (6)
5	R	GPIO (5)
4	R	GPIO (4)
3	R	GPIO (3)
2	R	GPIO (2)
1	R	GPIO (1)
0	R	GPIO (0)

Table 3-58. Byte 2 Read GPIO[19:00] Inputs (36h) Register Field Descriptions

Bit	Туре	Description
7	R	GPIO (16)
6	R	GPIO (15)
5	R	GPIO (14)
4	R	GPIO (13)
3	R	GPIO (12)
2	R	GPIO (11)
1	R	GPIO (10)
0	R	GPIO (9)

Table 3-59. Byte 3 Read GPIO[19:00] Inputs (36h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	R	GPIO (19)
1	R	GPIO (18)
0	R	GPIO (17)

NOTE: GPIO(19:09) can function as defined by the OEM, or their function can be redefined on-thefly using the Write GPIO[19:00] Control command (Section 3.1.25). GPIO(08) is not redefinable on-the-fly, and is not available for use as an OEM GPIO. GPIO(07:00) can only function as defined by the OEM. One of the choices in the GUI is to define one or more of these GPIO to be OEM GPIO Inputs.

NOTE: When one or more of GPIO(19:09) are defined as input signals (using the Write GPIO[19:00] Control command), or one or more of GPIO(07:00) are defined as input signals by the OEM, this command is used to read back the current value of those specific GPIO. Each time a read request is made the ARM software will de-bounce, sample, and return the current value on these GPIO. This command will return zero for any GPIO(19:09) and GPIO(07:00) not defined as an input signal.

www.ti.com

3.1.31 Write FPD Link Data Mode (Offset = 4Bh)

This command is used to configure the FPD link display bit rate and Map mode.

Table 3-60. FPD Link Data Parameters

Parameter Bytes	Description
Byte 0	Bit rate in Mbps (Isb)
Byte 1	Bit rate in Mbps (Isb)
Byte 2	See below

MSB		Byte 2					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-61. Write FPD Link Data Mode (4Bh) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-0	W	Pixel Map Mode 1h = Mode #1 2h = Mode #2 3h = Mode #3 4h = Mode #3 5h = Mode #4 5h = Mode #5 6h = Mode #6 7h = Mode #7 8h = Mode #8

Input video data is encoded into the FPD data buses as indicated in the following tables.

Table 3-62. FPD LVDS Data Bus Encoding

	Mode 1	Mode 2	Mode 3	Mode 4
FPD Bus A - Data_A Char	nnel	L		
FPD_A_DATA_A_6	Green_4	Green_2	Green_0	Green_4
FPD_A_DATA_A_5	Red_9	Red_7	Red_5	Red_9
FPD_A_DATA_A_4	Red_8	Red_6	Red_4	Red_8
FPD_A_DATA_A_3	Red_7	Red_5	Red_3	Red_7
FPD_A_DATA_A_2	Red_6	Red_4	Red_2	Red_6
FPD_A_DATA_A_1	Red_5	Red_3	Red_1	Red_5
FPD_A_DATA_A_0	Red_4	Red_2	Red_0	Red_4
FPD Bus A - Data_B Char	nnel	•	•	
FPD_A_DATA_B_6	Blue_5	Blue_3	Blue_1	Blue_5
FPD_A_DATA_B_5	Blue_4	Blue_2	Blue_0	Blue_4
FPD_A_DATA_B_4	Green_9	Green_7	Green_5	Green_9
FPD_A_DATA_B_3	Green_8	Green_6	Green_4	Green_8
FPD_A_DATA_B_2	Green_7	Green_5	Green_3	Green_7
FPD_A_DATA_B_1	Green_6	Green_4	Green_2	Green_6
FPD_A_DATA_B_0	Green_5	Green_3	Green_1	Green_5

			• •	
	Mode 1	Mode 2	Mode 3	Mode 4
FPD Bus A - Data_C Cha	annel			
FPD_A_DATA_C_6	DEN	DEN	DEN	DEN
FPD_A_DATA_C_5	VSYNC	VSYNC	VSYNC	VSYNC
FPD_A_DATA_C_4	HSYNC	HSYNC	HSYNC	HSYNC
FPD_A_DATA_C_3	Blue_9	Blue_7	Blue_5	Blue_9
FPD_A_DATA_C_2	Blue_8	Blue_6	Blue_4	Blue_8
FPD_A_DATA_C_1	Blue_7	Blue_5	Blue_3	Blue_7
FPD_A_DATA_C_0	Blue_6	Blue_4	Blue_2	Blue_6
FPD Bus A - Data_D Cha	annel		1	
FPD_A_DATA_D_6	Map to Field	Map to Field	Map to Field	Map to Field
FPD_A_DATA_D_5	Blue_3	Blue_9	Blue_7	not used
FPD_A_DATA_D_4	Blue_2	Blue_8	Blue_6	not used
FPD_A_DATA_D_3	Green_3	Green_9	Green_7	not used
FPD_A_DATA_D_2	Green_2	Green_8	Green_6	not used
FPD_A_DATA_D_1	Red_3	Red_9	Red_7	not used
FPD_A_DATA_D_0	Red_2	Red_8	Red_6	not used
FPD Bus A - Data_E Cha	annel	+		
FPD_A_DATA_E_6	Map to Field	Map to Field	Map to Field	Map to Field
FPD_A_DATA_E_5	Blue_1	Blue_1	Blue_9	not used
FPD_A_DATA_E_4	Blue_0	Blue_0	Blue_8	not used
FPD_A_DATA_E_3	Green_1	Green_1	Green_9	not used
FPD_A_DATA_E_2	Green_0	Green_0	Green_8	not used
FPD_A_DATA_E_1	Red_1	Red_1	Red_9	not used
FPD_A_DATA_E_0	Red_0	Red_0	Red_8	not used
FPD Bus B				
FPD Bus B is unused in M	Nodes 1 through 6			

Table 3-62. FPD LVDS Data Bus Encoding (continued)

3.1.32 Read FPD Pixel Map Mode (Offset = 4Ch)

This command is used to read the FPD link display Pixel Map mode.

Table 3-63. Return Parameters

Parameter Bytes	Description
Byte 0	Bit rate in Mbps (Isb)
Byte 1	Bit rate in Mbps (Isb)
Byte 2	See below

MSB	Byte 2						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-64. Read FPD Pixel Map Mode (4Ch) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-0	R	Pixel Map Mode 1h = Mode #1 2h = Mode #2 3h = Mode #3 4h = Mode #4 5h = Mode #5 6h = Mode #6 7h = Mode #7 8h = Mode #8

System Write/Read Commands

System Write/Read Commands

3.1.33 Write FPD Input Video Chroma Processing Select (Offset = 4Dh)

This command is used to specify Chroma processing select for the YUV422 source input to the FPGA.

MSB	Byte 2					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-65. Write FPD Input Video Chroma Processing Select (4Dh) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3	W	Chroma Channel Swap 0h = CbCr 1h = CrCb
2-0	R	Reserved

3.1.34 Read FPGA Input Video Chroma Processing Select (Offset = 4Eh)

This command is used to read the Chroma processing select for the YUV422 source input to the FPGA.

MSB	Byte 2					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-66. Read FPGA Input Video Chroma Processing Select (4Eh) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3		Chroma Channel Swap 0h = CbCr 1h = CrCb
2-0	R	Reserved

3.1.35 Write LED Output Control Method (Offset = 50h) [Reset = User specified]

This command is used to specify the method for controlling the LED outputs for the display module.

M	ISB	Byte 1						LSB
l	b7	b6	b5	b4	b3	b2	b1	b0

Table 3-67. Write LED Output Control Method (50h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	LED control method 0h = Manual RGB LED currents (disables CAIC algorithm) 1h = CAIC (automatic) RGB LED power (enables CAIC algorithm) 2h = Reserved 3h = Reserved

NOTE: This command selects the method to be used to control the output of the red, green, and blue LEDs. Based on the method chosen, a specific set of commands are available for controlling the LED outputs. These are shown in Table 3-68.

LED Control Method	Available Commands
Manual RGB LED current control (CAIC Disabled)	Write RGB LED Enable (52h) Read RGB LED Enable (53h) Write RGB LED Current (54h) Read RGB LED Current (55h) Write RGB LED Max Current (5Ch) Read RGB LED Max Current (5Dh)
CAIC (automatic) RGB LED current control (CAIC Enabled)	Write RGB LED Enable (52h) Read RGB LED Enable (53h) Write RGB LED Current (54h) Read RGB LED Current (55h) Read CAIC LED Max Available Power (57h) Read CAIC LED RGB Current (5Fh)

- **NOTE:** The Manual RGB LED Currents method provides for manual control of the LED currents, and as such, the CAIC algorithm (Section 3.1.76) will be disabled.
- **NOTE:** The CAIC (Automatic) RGB LED Current Control method provides automatic control of the LED currents using the CAIC algorithm.

System Write/Read Commands

3.1.36 Read LED Output Control Method (Offset = 51h)

This command reads the state of the LED output control method for the display module.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-69. Read LED Output Control Method (51h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	w	LED control method 0h = Manual RGB LED currents (disables CAIC algorithm) 1h = CAIC (automatic) RGB LED power (enables CAIC algorithm) 2h = Reserved 3h = Reserved

3.1.37 Write RGB LED Enable (Offset = 52h) [Reset = 07h]

This command enables the LEDs for the display module.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-70. Write RGB LED Enable (52h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	W	Blue LED enable 0h = Blue LED disabled 1h = Blue LED enabled
1	W	Green LED enable 0h = Green LED disabled 1h = Green LED enabled
0	W	Red LED enable 0h = Red LED disabled 1h = Red LED enabled

3.1.38 Read RGB LED Enable (Offset = 53h)

This command reads the state of the LED enables for the display module.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-71. Read RGB LED Enable (53h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	W	Blue LED enable 0h = Blue LED disabled 1h = Blue LED enabled
1	W	Green LED enable 0h = Green LED disabled 1h = Green LED enabled
0	W	Red LED enable 0h = Red LED disabled 1h = Red LED enabled

3.1.39 Write RGB LED Current (Offset = 54h) [Reset = User specified]

This command sets the current for the red, green, and blue LEDs of the display module.

Table 3-72. Write Parameters

Parameter Bytes	Description
Byte 1	Red LED current parameter (LSByte)
Byte 2	Red LED current parameter (MSByte)
Byte 3	Green LED current parameter (LSByte)
Byte 4	Green LED current parameter (MSByte)
Byte 5	Blue LED current parameter (LSByte)
Byte 6	Blue LED current parameter (MSByte)

NOTE: When an all white image is being displayed, this command allows the system white point to be adjusted while also establishing the total LED power. This is true whether the CAIC algorithm is enabled or disabled.

NOTE: The parameters specified by this command will have a resolution of 10 bits, and are to be as defined by the appropriate PAD specification.

When the CAIC algorithm is disabled, this command will directly set the LED currents (that is, the R, G, and B values provided will be sent directly to the PAD device) regardless of the image being displayed.

When CAIC algorithm is enabled:

- This command will directly set the LED currents when an all-white image is displayed. If the image is changed from an all-white image, depending on the image, the CAIC algorithm may alter one or more of the LED currents from those specified by this command and the total LED power may also drop. Command Read CAIC RGB LED Current (5Fh) can be used to read the actual LED currents for the image currently being displayed.
- In the case of an all-white image, the values read by the command Read CAIC RGB LED Current (5Fh) will closely match but may not exactly match those requested using command Write RGB LED Current (54h). For an all-white image command Read CAIC RGB LED Current (5Fh) will give currents within ±4 PAD device current steps for each LED color relative to those requested by command Write RGB LED Current (54h).
- When command Write RGB LED Current (54h) is used to change the LED currents, the LED current for any color should not be changed by more than ±25% from the nominal current used for that color when the CAIC LUTs were created. Furthermore, no LED current should be set to a current value beyond the maximum value supported in the CAIC Intensity-to-Current LUT for the corresponding color.
- The maximum total LED power for any displayed image occurs for an all-white image since in this case the CAIC algorithm will request the CAIC LED maximum available power. The maximum available LED power for CAIC is controlled by the command Write RGB LED Current since this command controls currents for an all-white image. After the currents are adjusted, command Read CAIC LED Maximum Available Power (57h) can be used to see the maximum power in Watts that CAIC derived.

www.ti.com

3.1.40 Read RGB LED Current (Offset = 55h)

This command reads the state of the current for the red, green, and blue LEDs of the display module.

Table 3-73. Return Parameters

Parameter Bytes	Description
Byte 1	Red LED current parameter (LSByte)
Byte 2	Red LED current parameter (MSByte)
Byte 3	Green LED current parameter (LSByte)
Byte 4	Green LED current parameter (MSByte)
Byte 5	Blue LED current parameter (LSByte)
Byte 6	Blue LED current parameter (MSByte)

NOTE: See Section 3.1.39 for a detailed description of the return parameters.

NOTE: Unused most significant bits are set to 0.

3.1.41 Read CAIC LED Max Available Power (Offset = 57h)

This command is used to read the maximum LED power allowed for the display module at the LED current settings set by the Write RGB LED Current (54h) command.

Table 3-74. Return Parameters	
-------------------------------	--

Parameter Bytes	Description
Byte 1	Maximum LED power (LSByte)
Byte 2	Maximum LED power (MSByte)

NOTE: The value will be specified in Watts * 100 (Example: 25.75 W = A0Fh).

NOTE: This command is only applicable when CAIC is enabled.

The CAIC maximum available LED power pertains if an all-white image is displayed where LED currents are set by the *Write RGB LED Current* command. The equation is:

Maximum Available Power = R duty cycle × R LED current × R LED voltage + G duty cycle × G LED current × G LED voltage + B duty cycle × B LED current × B LED voltage (1)

For example: $(0.30 \times 0.49 \text{ A} \times 2.0 \text{ V}) + (0.50 \times 0.39 \text{ A} \times 3.1 \text{ V}) + (0.20 \times 0.39 \text{ A} \times 3.1 \text{ V}) = (0.30 \times 0.980 \text{ W}) + (0.50 \times 1.209 \text{ W}) + (0.20 \times 1.209 \text{ W}) = 1.140 \text{ W}$

3.1.42 Write RGB LED Max Current (Offset = 5Ch) [Reset = User specified]

This command is used to specify the maximum LED current allowed for each LED in the display module when CAIC is disabled.

Parameter Bytes	Description
Byte 1	Maximum red LED current (LSByte)
Byte 2	Maximum red LED current (MSByte)
Byte 3	Maximum green LED current (LSByte)
Byte 4	Maximum green LED current (MSByte)
Byte 5	Maximum blue LED current (LSByte)
Byte 6	Maximum blue LED current (MSByte)

Table 3-75. Write Parameters

- **NOTE:** The parameters specified by this command will have a resolution of 10 bits, and are to be as defined by the appropriate PAD specification.
- **NOTE:** This command sets the maximum LED currents that can be used when the CAIC algorithm is disabled. When the CAIC algorithm is enabled, the maximum LED currents are determined by the CAIC algorithm LUTs stored in Flash.
- **NOTE:** For further information about LED current and the CAIC algorithm, see the notes for the Write RGB LED Current (54h) command.
- NOTE: Unused most significant bits should be set to '0'.

3.1.43 Read RGB LED Max Current (Offset = 5Dh)

This command reads the specified maximum LED current allowed for each LED in the display module.

Parameter Bytes	Description
Byte 1	Maximum red LED current (LSByte)
Byte 2	Maximum red LED current (MSByte)
Byte 3	Maximum green LED current (LSByte)
Byte 4	Maximum green LED current (MSByte)
Byte 5	Maximum blue LED current (LSByte)
Byte 6	Maximum blue LED current (MSByte)

Table 3-76. Return Parameters

NOTE: See the Write RGB LED Current Control command for a detailed description of the return parameters.

NOTE: Unused most significant bits will be set to '0'.

3.1.44 Read Measured LED Parameters (Offset = 5Eh)

This command is used to read the measured values for a number of LED based parameters in the display module.

Parameter Bytes	Description
Byte 1	Measured Red LED Current (LSByte)
Byte 2	Measured Red LED Current (MSByte)
Byte 3	Measured Green LED current (LSByte)
Byte 4	Measured Green LED Current (MSByte)
Byte 5	Measured Blue LED current (LSByte)
Byte 6	Measured Blue LED current (MSByte)
Byte 7	Measured Red LED Voltage (LSByte)
Byte 8	Measured Red LED Voltage (MSByte)
Byte 9	Measured Green LED Voltage (LSByte)
Byte 10	Measured Green LED Voltage (MSByte)
Byte 12	Measured Blue LED Voltage (LSByte)
Byte 13	Measured Blue LED Voltage (MSByte)
Byte 14	Measured Red LED Power (LSByte)
Byte 15	Measured Red LED Power (MSByte)
Byte 16	Measured Green LED Power (LSByte)
Byte 17	Measured Green LED Power (MSByte)
Byte 18	Measured Blue LED Power (LSByte)
Byte 19	Total LED Power (LSByte)
Byte 20	Total LED Power (MSByte)

Table 3-77. Return Parameters

NOTE: Current will be specified as Milliamps \times 2, with the maximum value = 32767.5 mA. (Example: 1287.5 mA = 0A0Fh).

NOTE: Voltage will be specified as Voltage × 1700, with the maximum value = 38.550 V. (Example: 1.548 mA = 0A48h).

NOTE: Power will be specified as Watts \times 325, with the maximum value = 201.64 W. (Example: 7.923 W = A0Fh).

3.1.45 Read CAIC RGB LED Current (Offset = 5Fh)

This command reads the state of the current for the red, green, and blue LEDs of the display module.

Parameter Bytes	Description
Byte 1	Red LED current parameter (LSByte)
Byte 2	Red LED current parameter (MSByte)
Byte 3	Green LED current parameter (LSByte)
Byte 4	Green LED current parameter (MSByte)
Byte 5	Blue LED current parameter (LSByte)
Byte 6	Blue LED current parameter (MSByte)

Table 3-78. Return Parameters

NOTE: The parameters returned by this command will have a resolution of 10 bits, and will be as defined by the appropriate PAD specification.

When the CAIC algorithm is enabled using the LED Output Control Method command.

- The Write RGB LED Current command will directly set the LED currents when an all white image is being displayed. If the image is changed from an all white image, depending on the image, the CAIC algorithm may alter one or more of the LED currents from those specified the Write RGB LED current command and the total LED power may also drop. The actual LED currents for the image currently being displayed can be read using this command (the Read CAIC RGB LED Current (5Fh) command)
- In the case of an all white image, the values returned by this command will closely match, but may not exactly match, those specified using the Write RGB LED Current command. For an all white image, this command will provide values within +/- 4 PAD device current steps for each LED color relative to those specified with the Write RGB LED Current command.
 - **NOTE:** Use of this command is only appropriate when the LED Output Control Method is set to CAIC (Automatic) RGB LED Current Control.

NOTE: Unused most significant bits will be set to '0'.

System Write/Read Commands

3.1.46 Write XPR FPGA Input Image Size (Offset = 60h)

This command is used to specify the active data size of the external input image that goes to the XPR FPGA.

Parameter Bytes	Description
Byte 1	Pixels per line (LSByte)
Byte 2	Pixels per line (MSByte)
Byte 3	Lines per frame (LSByte)
Byte 4	Lines per frame (MSByte)

3.1.47 Read XPR FPGA Input Image Size (Offset = 61h)

This command is used to read specified data size of the external input image to the display module.

System Write/Read Commands

3.1.48 Write XPR FPGA Source Select (Offset = 62h)

This command is used to specify XPR FPGA input source.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-79. Write XPR FPGA Source Select (62h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	Input source 0h = TPG 1h = External Parallel Video 2h = FPD-Link or LVDS 3h = Reserved

3.1.49 Read XPR FPGA Source Select (Offset = 63h)

This command is used to read selected XPR FPGA input source.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-80. Read XPR FPGA Source Select (63h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	Input source 0h = TPG 1h = External Parallel Video 2h = FPD-Link or LVDS 3h = Reserved

3.1.50 Read XPR FPGA Version (Offset = 64h)

This command is used to read the XPR FPGA software and bitstream version.

Parameter Bytes	Description			
Byte 1	FPGA ARM software version - Minor (LSByte)			
Byte 2	FPGA ARM software version - Major (MSByte)			
Byte 3:6	 b(31:28) = FPGA Firmware Version – Build Level b(27:20) = FPGA Firmware Version – Minor b(19:12) = FPGA Firmware Version – Major b(11:0) = FPGA Firmware Version – Build Number 			

3.1.51 Write XPR FPGA Test Pattern Select (Offset = 67h)

This command is used to specify an internal test pattern from XPR FPGA for display on the display module.

Parameter Bytes	Description		
Byte 1	TPG pattern select (LSByte)		
Byte 2	Size of pattern (MSByte)		

MSB	Byte 1 and 2						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-81. Write XPR FPGA Test Pattern Select (67h) Register Field Descriptions

Bit	Туре	Description
7	W	Test Pattern Boarder 0h = Disabled (default) 1h = Enabled
6-4	W	Color Oh = Black 1h = Blue 2h = Red 3h = Magenta 4h = Green 5h = Cyan 6h = Yellow 7h = White
3-0	W	Pattern Select Oh = Solid Field 1h = Grids 2h = Horizontal Ramp 4h = Checkerboard 5h = Horizontal Lines 6h = Vertical Lines 7h = Diagonal Lines 8h = Actuator Calibration Pattern 9h = 3D Test Pattern Ah - Fh = Reserved

Byte 2 Size of the pattern: for the patterns where size is not required (e.g solid field), this should be set to 0.

NOTE: Test Pattern Vertical Lines is not supporting border enable.

3.1.52 Read XPR FPGA Test Pattern Select (Offset = 68h)

This command is used to an internal test pattern from XPR FPGA.

Parameter Bytes	Description
Byte 1	TPG pattern select (LSByte)
Byte 2	Size of pattern (MSByte)

MSB	Byte 1 and 2						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-82. Read XPR FPGA Test Pattern Select (68h) Register Field Descriptions

Bit	Туре	Description
7	R	Test Pattern Boarder
		0h = Disabled (default) 1h = Enabled
6-4	R	Color Oh = Black
		1h = Blue 2h = Red
		3h = Magenta
		4h = Green
		5h = Cyan
		6h = Yellow
		7h = White
3-0	R	Pattern Select
		0h = Solid Field
		1h = Grids
		2h = Horizontal Ramp
		4h = Checkerboard
		5h = Horizontal Lines
		6h = Vertical Lines
		7h = Diagonal Lines
		8h = Actuator Calibration Pattern
		9h = 3D Test Pattern
		Ah - Fh = Reserved

Byte 2: Size of pattern.

NOTE: Test Pattern Vertical Lines is not supporting border enable.

System Write/Read Commands

3.1.53 Write XPR FPGA Parallel Video Control (Offset = 6Bh)

This command is used to configure polarity of syncs and sampling edge of the pixel clock in XPR FPGA.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-83. Write XPR FPGA Parallel Video Control (6Bh) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3	W	VSync Polarity 0h = Active Low 1h = Active High
2	W	HSync Polarity 0h = Active Low 1h = Active High
1	W	IValid Polarity 0h = Active Low 1h = Active High
0	W	Pixel Clock Sampling Edge 0h = Falling Edge 1h = Rising Edge

3.1.54 Read XPR FPGA Parallel Video Control (Offset = 6Ch)

This command is used to read XPR FPGA video format.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-84. Read XPR FPGA Parallel Video Control (6Ch) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3	R	VSync Polarity 0h = Active Low 1h = Active High
2	R	HSync Polarity 0h = Active Low 1h = Active High
1	R	IValid Polarity Oh = Active Low 1h = Active High
0	R	Pixel Clock Sampling Edge 0h = Falling Edge 1h = Rising Edge

3.1.55 Write XPR FPGA Video Format Select (Offset = 6Dh)

This command is used to specify XPR FPGA video format.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-85. Write XPR FPGA Video Format Select (6Dh) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	Input source format
		• 0h = RGB888
		• 1h = RGB565
		• 2h = RGB666
		• 3h = YCbCr422
		• 4h = YCbCr444
		• 5h = YCbCr565
		• 6h = YCbCr666

3.1.56 Read XPR FPGA Video Format Select (Offset = 6Eh)

This command is used to read XPR FPGA video format.

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-86. Read XPR FPGA Video Format Select (6Eh) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	W	Input source format
		• 0h = RGB888
		• 1h = RGB565
		• 2h = RGB666
		• 3h = YCbCr422
		• 4h = YCbCr444
		• 5h = YCbCr565
		• 6h = YCbCr666

System Write/Read Commands

3.1.57 Read XPR FPGA Status (Offset = 6Fh)

This command is used to read XPR FPGA status.

MSB	Byte 1						
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-87. Read XPR FPGA Status (6Fh) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1	R	Display Mode 0h = Non-XPR Mode 1h = XPR Mode
0	R	FPGA Keying Status 0h = Failed 1h = Passed

3.1.58 Write Actuator Latency (Offset = 70h)

This command is used to specify the Actuator Latency. This command is required for Actuator calibration.

The reset value is the latency value in the sequence header.

MSB		Byte 4						
b7	b6	b5	b4	b3	b2	b1	b0	

Table 3-88. Write Actuator Latency (70h) Register Field Descriptions

Bit	Туре	Description		
7-1	R	Reserved		
0	W	Manual Latency Enable 0h = Manual Latency disabled – Latency value stored in the sequence header will be used. 1h = Latency value will be used provided in Byte 1-3.		

3.1.59 Read Actuator Latency (Offset = 71h)

This command is used to read the Actuator Latency. This command is required for Actuator calibration. The reset value is the latency value in the sequence header.

Parameter Bytes	Description
Byte 1	Latency (LSByte)
Byte 2	Latency
Byte 3	Latency (MSByte)
Byte 4	See below

Table 3-89. Read Actuator Latency (71h) Register Field Descriptions

Bit	Туре	Description		
7-1	R	Reserved		
0	R	Manual Latency Enable 0h = Manual Latency disabled – Latency value stored in the sequence header will be used. 1h = Latency value will be used provided in Byte 1-3.		

System Write/Read Commands

3.1.60 Write Actuator Gain (Offset = 72h)

This command is used to specify the Actuator Gain parameter.

Parameter Bytes	Description
Byte 1	Actuator Gain

NOTE: Value is presented in fixed point format.

1 = 0.007813

Valid range (0 to 1.9921875)

3.1.61 Read Actuator Gain (Offset = 73h)

This command is used to read the Actuator Gain parameter.

NOTE: Value is presented in fixed point format.

1 = 0.007813

Valid range (0 to 1.9921875)

3.1.62 Write Segment Length (Offset = 74h)

This command is used to specify the Actuator Segment Length parameter.

Parameter Bytes	Description
Byte 1	Segment Length (LSByte)
Byte 2	Segment Length (MSByte)

NOTE: Valid segment length is 2 to 65535.

3.1.63 Read Segment Length (Offset = 75h)

This command is used to read the Actuator Segment Length parameter.

Parameter Bytes	Description		
Byte 1	Segment Length (LSByte)		
Byte 2	Segment Length (MSByte)		

NOTE: Valid segment length is 2 to 65535.

System Write/Read Commands

System Write/Read Commands

3.1.64 Write Manual Actuator Sync Delay (Offset = 76h)

This command is used to specify the Actuator Sync Delay parameter.

The reset value is pre-configured in the sequence header.

Parameter Bytes	Description
Byte 1	Actuator Sync Delay (LSByte)
Byte 2	Actuator Sync Delay
Byte 3	Actuator Sync Delay (MSByte)
Byte 4	Manual / Auto Actuator Sync Delay enable

MSB	Byte 4					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-90. Write Manual Actuator Sync Delay (76h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1	W	Auto-scaling enable. Applicable only when manual Actuator Sync Delay override mode is enabled, b(0)=1. Oh = No scaling is performed. Actuator Sync delay is applied as defined in Byte 1-3 1h = Auto scaling is performed with frame rate change.
0	W	Manual Actuator Sync Delay override enable 0h = Actuator Sync Delay defined in Byte 1 to 3 will not be applied only when this bit is disabled. Instead, the Actuator Sync Delay defined in the flash as part of the sequence data is applied. 1h = Actuator Sync Delay defined in Byte 1 to 3 will be applied only when this bit is enabled.

NOTE: This command is executed in conjunction with Write Actuator Latency command. Latency corrections are always made to the Actuator delay before writing to the hardware register. In case Latency correction is not required, then Latency should be set to 0.

3.1.65 Read Manual Actuator Sync Delay (Offset = 77h)

This command is used to read Manual Actuator Sync Delay parameter.

The reset value is pre-configured in the sequence header.

Parameter Bytes	Description
Byte 1	Actuator Sync Delay (LSByte)
Byte 2	Actuator Sync Delay
Byte 3	Actuator Sync Delay (MSByte)
Byte 4	Manual / Auto Actuator Sync Delay enable

MSB	Byte 4					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-91. Read Manual Actuator Sync Delay (77h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1	R	Auto-scaling enable. Applicable only when manual Actuator Sync Delay override mode is enabled, b(0)=1. Oh = No scaling is performed. Actuator Sync delay is applied as defined in Byte 1-3 1h = Auto scaling is performed with frame rate change.
0	R	Manual Actuator Sync Delay override enable 0h = Actuator Sync Delay defined in Byte 1 to 3 will not be applied only when this bit is disabled. Instead, the Actuator Sync Delay defined in the flash as part of the sequence data is applied. 1h = Actuator Sync Delay defined in Byte 1 to 3 will be applied only when this bit is enabled.

NOTE: This command is executed in conjunction with Write Actuator Latency command. Latency corrections are always made to the Actuator delay before writing to the hardware register. In case Latency correction is not required, then Latency should be set to 0.

3.1.66 Write Manual Actuator Offset (Offset = 78h)

This command is used to specify the Manual Actuator Offset parameter.

Parameter Bytes	Description
Byte 1	Manual Actuator Offset (LSByte)
Byte 2	Manual Actuator Offset (MSByte)

MSB		Byte 2					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-92. Write Manual Actuator Offset (78h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-0	W	Manual Actuator Offset

NOTE: This Actuator Manual Offset is presented in fixed point format (1 = 00.0078130)

Valid values of Actuator Manual Offset is 0 - 31.9921875.

3.1.67 Read Manual Actuator Offset (Offset = 79h)

This command is used to read the Manual Actuator Offset parameter.

Parameter Bytes	Description
Byte 1	Manual Actuator Offset (LSByte)
Byte 2	Manual Actuator Offset (MSByte)

MSB		Byte 2					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-93. Read Manual Actuator Offset (79h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-0	R	Manual Actuator Offset

NOTE: This Actuator Manual Offset is presented in fixed point format (1 = 00.0078130)Valid values of Actuator Manual Offset is 0 - 31.9921875.

System Write/Read Commands

3.1.68 Write Actuator Fixed Output (Offset = 7Ah)

This command is used to specify the Actuator Fixed Output parameter.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-94. Write Actuator Fixed Output (7Ah) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	W	Enable Fixed Output 0h = Disable Fixed Output (means switch to auto output mode) 1h = Enable Fixed Output (Fixed output state is defined in flash)

3.1.69 Read Actuator Fixed Output (Offset = 7Bh)

This command is used to read the Actuator Fixed Output parameter.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-95. Read Actuator Fixed Output (7Bh) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	W	Enable Fixed Output
		0h = Disable Fixed Output (means switch to auto output mode)
		1h = Enable Fixed Output (Fixed output state is defined in flash)

System Write/Read Commands

3.1.70 Write Actuator Direction (Offset = 7Ch)

This command is used to specify the Actuator Waveform Direction parameter.

MSB		Byte 1					LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-96. Write Actuator Direction (7Ch) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	W	Actuator Waveform Direction 0h = Normal 1h = Reverse

3.1.71 Read Actuator Direction (Offset = 7Dh)

This command is used to read the Actuator Waveform Direction parameter.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-97. Read Actuator Direction (7Dh) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	R	Actuator Waveform Direction 0h = Normal 1h = Reverse

System Write/Read Commands

3.1.72 Write Actuator Enable (Offset = 7Eh)

This command is used to specify the Actuator Enable parameter.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-98. Write Actuator Enable (7Eh) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	W	Actuator Waveform Direction 0h = Disabled 1h = Enabled

System Write/Read Commands

3.1.73 Read Enable (Offset = 7Fh)

This command is used to read the Actuator Enable parameter.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-99. Read Enable (7Fh) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	R	Actuator Waveform Direction 0h = Disabled 1h = Enabled

90 List of System Write/Read Software Commands

System Write/Read Commands

3.1.74 Write Local Area Brightness Boost Control (Offset = 80h) [Reset = 1h]

This command controls the local area brightness boost image processing functionality for the display module.

Table 3-100. Write Parameters

Parameter Bytes	Description
Byte 1	See below
Byte 2	LABB strength setting

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-101. Write Local Area Brightness Boost Control (80h) Register Field Descriptions

Bit	Туре	Description			
7-4	W	Sharpness strength			
3-2	R	Reserved			
1-0	W	LABB control Oh = Disabled 1h = Enabled: Manual strength control (no light sensor) 2h = Enabled: Automatic strength control (uses light sensor) 3h = Reserved			

NOTE: The key function of the LABB is to adaptively gain up darker parts of the image to achieve an overall brighter image.

- **NOTE:** For automatic strength control, a light sensor will be used to automatically adjust the applied image strength based on the measured black level of the screen, or the ambient lighting level of the room.
- **NOTE:** For LABB Strength, 0 indicates no boost applied, and 255 indicates the maximum boost that is considered viable in a product. The strength is not a direct indication of the gain since the gain will vary depending on image content.
- **NOTE:** Sharpness strength can range from 0 to 15, with 0 indicating sharpness disabled, and 15 indicating the maximum sharpness. The LABB function must be enabled (either Manual or Automatic) to make use of Sharpness.

NOTE: LABB is supported in TPG, Splash, External Input mode, but auto-disabled in curtain mode.

System Write/Read Commands

www.ti.com

3.1.75 Read Local Area Brightness Boost Control (Offset = 81h)

This command reads the state of the local area brightness boost image processing functionality for the display module.

Figure 3-4. Return Parameters						
Parameter Bytes Description						
Byte 1	See below					
Byte 2	LABB strength setting					
Byte 3	LABB gain value					

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-102. Read Local Area Brightness Boost Control (81h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Sharpness strength
3-2	R	Reserved
1-0	R	LABB control 0h = Disabled 1h = Enabled: Manual strength control (no light sensor) 2h = Enabled: Automatic strength control (uses light sensor) 3h = Reserved

Figure 3-5 shows the bit order and weighting for the LABB gain value, which ranges from 1 to 8 (the controller software should limit the lower value to 1).

Figure 3-5. Bit Weight Definition for LABB Gain Value

b7	b6	b5	b4	b3	b2	b1	b0
2 ²	2 ¹	2 ⁰	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵

The software equation to calculate LABB Gain as a fixed point value is shown below:

LABB_gain = add_8lsb(APL) / pre_LABB_APL

(//add 8 LSBs (u8.0 / u8.0 = u8.8 / u8.0 = u8.8)

3.1.76 Write CAIC Image Processing Control (Offset = 84h) [Reset = User specified]

This command controls the CAIC functionality for the display module.

Table 3-103. Write Parameters

Parameter Bytes	Description
Byte 1	See below
Byte 2	CAIC maximum lumens gain
Byte 3	CAIC clipping threshold

MSB			Ву	Byte 1						
b7	b6	b5	b4	b3	b2	b1	b0			

Table 3-104. Write CAIC Image Processing Control (84h) Register Field Descriptions

Bit	Туре	Description
7	W	CAIC gain display enable 0h = Disabled 1h = Enabled
6	W	CAIC gain display scale 0h = 100% = 1024 pixels 1h = 100% = 512 pixels
5-3	R	Reserved
2-0	W	CAIC WPC control 0h = White point correction disabled 1h = White point correction enabled

- **NOTE:** The CAIC algorithm (Content Adaptive Illumination Control) provides adaptive control of the LED currents and the digital gain applied to the image. In addition, when an external sensor is provided by the OEM (and when WPC is enabled by this command), the algorithm will provide automatic white point correction.
- **NOTE:** The CAIC algorithm is enabled or disabled based on the method of LED current control selected by the OEM using the Write LED Output Control Method command. When enabled, the CAIC algorithm provides automatic control of the LED currents as specified by this command and the Write LED Output Control Method command.
- **NOTE:** The CAIC Gain Display provides a visual presentation of the instantaneous gain provided by the CAIC algorithm. This is typically used as a debug tool and to show the performance of the algorithm. It should never be used for normal operation. The display is made up of 5 bars, where the bottom three bars (green, red, and blue) show the respective CAIC gain for each color. The top two bars are for TI debug use only. For SW, the CAIC Gain Display Enable is controlled by CAIC_DEBUG_MODE (2:0), where Disabled = 0h, and Enabled = 3h. The Display Scale is set using CAIC_DEBUG_MODE(3).
- **NOTE:** Figure 3-6 shows the bit order and weighting for the CAIC Maximum Lumens Gain value, which has a valid range from 1.0 to 4.0. Values outside of this range will be considered an error (invalid command parameter value communication status) and the command will not be executed.

System Write/Read Commands

b7 2 www.ti.com

	Figu	ure 3-6. Bit W	eight Definitio	on for the CAI	C Maximum C	Gain Value	
b7	b6	b5	b4	b3	b2	b1	b0
2 ²	2 ¹	2 ⁰	2-1	2-2	2-3	2 ⁻⁴	2-5

The CAIC Maximum Lumens Gain parameter sets the maximum lumens gain that a pixel can have as a result of both digital gain and increasing LED currents. It also serves to bias the CAIC algorithm towards either Constant Power (variable brightness) or Constant Lumens (variable power). Some examples are listed below:

- Maximum Gain value = 1.0h = This biases CAIC performance to Constant Lumens. In this case, LED
 power is reduced for those images where this is possible, but lumens do not increase or decrease.
- Maximum Lumens Gain value = 4.0h = This biases CAIC performance to Constant Power. In this case, power is held constant for most images, while the lumens are gained up. It should be noted that for the small percent of images where the gain would exceed 4.0, lumens will stop increasing and the power is reduced instead.
 - **NOTE:** Figure 3-7 shows the bit order and weighting for the CAIC Clipping Threshold value, which has a valid range from 0.0% to 2.0%. Values outside of this range will be considered an error (invalid command parameter value communication status) and the command will not be executed.

o7	b6	b5	b4	b3	b2	b1	b0
2 ¹	2 ⁰	2 ⁻¹	2-2	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶

- **NOTE:** The CAIC Clipping Threshold parameter sets the percentage of pixels that can be clipped by the CAIC algorithm over the full frame of active data due to the digital gain being applied by the CAIC algorithm.
- **NOTE:** The below shows the bit order and weighting for the CAIC RGB Intensity Gain values, which have a valid range from 0.0 to almost 1.0. Values outside of this range will be considered an error (invalid command parameter value communication status) and the command will not be executed.

Figure 3-8. E	Bit Weight Definition	for the CAIC RGB Ir	ntensity Gain Values
I Iguie J-0. L			

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
Res	Res	Res	Res	Res	Res	2 ⁻¹	2-2	2 ⁻³	2-4	2-5	2-6	2-7	2 ⁻⁸	2-9	2-10	

CAIC can be enabled in TPG and external input mode, but auto-disabled in splash and curtain mode.

Table 3-105. LABB and CAIC Modes	Table	3-105.	LABB	and	CAIC	Modes
----------------------------------	-------	--------	------	-----	------	-------

Feature	TPG	Splash	Curtain	External Input
LABB	Supported	Supported	Auto-disabled	Supported
CAIC	Supported	Auto-disabled	Auto-disabled	Supported

3.1.77 Read CAIC Image Processing Control (Offset = 85h)

This command reads the state of the CAIC functionality within the display module.

Table 3-106. Return Parameters

Parameter Bytes	Description		
Byte 1	See below		
Byte 2	CAIC maximum lumens gain		
Byte 3	CAIC clipping threshold		

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-107. Read CAIC Image Processing Control (85h) Register Field Descriptions

Bit	Туре	Description
7	R	CAIC gain display enable 0h = Disabled 1h = Enabled
6	R	CAIC gain display scale 0h = 100% = 1024 pixels 1h = 100% = 512 pixels
5-3	R	Reserved
2-0	R	CAIC WPC control 0h = White point correction disabled 1h = White point correction enabled

Information on these parameters can be found in Write CAIC Image Processing Control Section 3.1.76.

System Write/Read Commands

3.1.78 Write Color Coordinate Adjustment Control (Offset = 86h) [Reset = 1h]

This command controls the CCA image processing functionality for the display module.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-108. Write Color Coordinate Adjustment Control (86h) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	R	CCA enable 0h = Disabled 1h = Enabled

This command is for TI debug purposes only. This function should remain enabled during normal operation.

When CCA is disabled, use an identity matrix.

3.1.79 Read Color Coordinate Adjustment Control (Offset = 87h)

This command reads the state of the CCA image processing within the display module.

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-109. Read Color Coordinate Adjustment Control (87h) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	R	CCA enable 0h = Disabled 1h = Enabled

3.1.80 Write Keystone Correction Control (Offset = 88h) [Reset = 0h]

This command controls the keystone correction image processing functionality for the display module.

Table 3-110. Write Parameters

Parameter Bytes	Description
Byte 1	See below
Byte 2	Optical throw ratio (LSByte)
Byte 3	Optical throw ratio (MSByte)
Byte 4	Optical DMD offset (LSByte)
Byte 5	Optical DMD offset (MSByte)

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-111. Write Keystone Correction Control (88h) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0		Keystone correction enable 0h = Disabled 1h = Enabled

NOTE: Refer to "Keystone Parameters Supported Range" for valid range of Keystone Control Parameters.

3.1.81 Read Keystone Correction Control (Offset = 89h)

This command reads the state of the keystone correction image processing within the display module.

Table 3-112. Return Parameters

Parameter Bytes	Description		
Byte 1	See		
Byte 2	Optical throw ratio (LSByte)		
Byte 3	Optical throw ratio (MSByte)		
Byte 4	Optical DMD offset (LSByte)		
Byte 5	Optical DMD offset (MSByte)		

MSB		Byte 1					
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-113. Read Keystone Correction Control (89h) Register Field Descriptions

Bit	Туре	Description
7-1	R	Reserved
0	R	Keystone correction enable 0h = Disabled 1h = Enabled

System Write/Read Commands

3.1.82 Write Border Color (Offset = B2h) [Reset = 0h]

This command specifies the onscreen border color for the display module.

MSB	Byte 1 LSB					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-114. Write Border Color (B2h) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2-0	W	Display border color 0h = Black 1h = Red 2h = Green 3h = Blue 4h = Cyan 5h = Magenta 6h = Yellow 7h = White

- **NOTE:** Whenever the display image size is smaller than the active area of the DMD, this border color will be used for all non image pixels. Some examples where a border might come into play would be for a Window Box, Pillar Box, or Letterbox image.
- **NOTE:** For the special case of displaying a pillar box image (Figure 3-9), the OEM can make use of the border color defined by this command, or make use of a dithered 24-bit border color. The definition of this dithered 24-bit border color, as well as the decision whether to use it, or use the color selected by this command is made with the DLP GUI software tool and stored in flash.
- **NOTE:** The border color specified by this command is separate from the curtain color defined in the Write Display Image Curtain command (Section 3.1.10), even though they are both displayed using the curtain capability.

NOTE: The dithered 24-bit border color is specified in the VGP/CCP.

www.ti.com

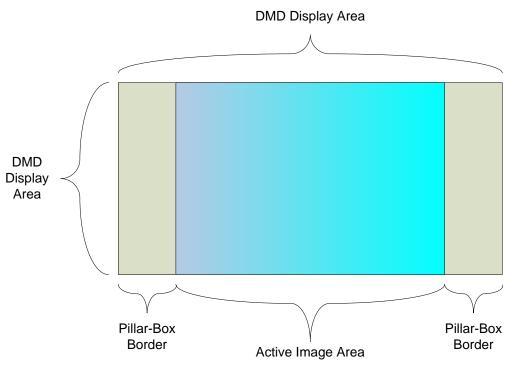


Figure 3-9. Pillar-Box Border Example

System Write/Read Commands

3.1.83 Read Border Color (Offset = B3h)

This command reads the state of the on screen border color for the display module.

MSB			Ву	te 1			LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-115. Read Border Color (B3h) Register Field Descriptions

Bit	Туре	Description
7	R	Pillar-box border color source 0h = Defined by this command 1h = Flash defined 24-bit color
6-3	R	Reserved
2-0	R	Display border color 0h = Black 1h = Red 2h = Green 3h = Blue 4h = Cyan 5h = Magenta 6h = Yellow 7h = White

NOTE: For the special case of a pillar box image (Figure 3-9), the OEM can make use of the border color defined by the Write Border Color command (Section 3.1.82), or make use of a dithered 24-bit border color. The definition of this dithered 24-bit border color, as well as the decision whether to use it or use the color selected by this command, is made with the DLP GUI software tool and stored in flash. The use decision stored in flash is shown by bit-7 of this command.

3.1.84 Write Keystone Projection Pitch Angle (Offset = BBh) [Reset = 0h]

This command specifies the projection pitch angle for the display module.

Table 3-116. Write Parameters

Parameter Bytes	Description
Byte 1	Projection pitch angle (LSByte)
Byte 2	Projection pitch angle (MSByte)

Figure 3-10 shows the bit order and weighting for the 2's-complement projection pitch angle data.

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2-2	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2-7	2 ⁻⁸

This command is used in conjunction with the Write Keystone Correction Control command.

Format of pitch angle is defined as: Projection pitch angle = s7.8.

Refer to "Keystone Parameters Supported Range" for valid range of keystone control parameters. Figure 3-11 shows examples of the projection pitch angle.

(Side View)

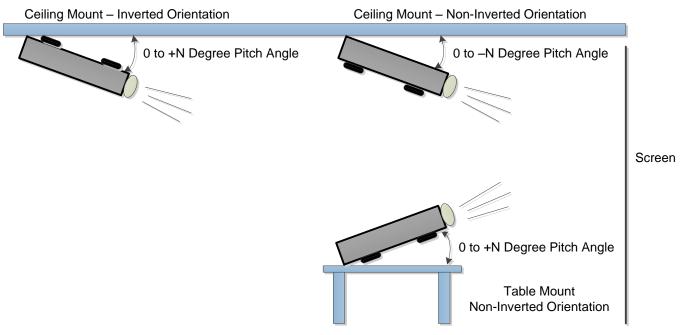


Figure 3-11. Examples of Projection Pitch Angle

3.1.85 Read Keystone Projection Pitch Angle (Offset = BCh)

This command reads the specified projection pitch angle for the display module.

Table 3-117. Return Parameters

Parameter Bytes	Description
Byte 1	Projection pitch angle (LSByte)
Byte 2	Projection pitch angle (MSByte)

List of System Write/Read Software Commands 101

System Write/Read Commands

3.1.86 Read Short Status (Offset = D0h)

This command provides a short system status for the display module.

MSB			Byte 1 – Ge	eneral Status			LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-118. Read Short Status (D0h) Register Field Descriptions

Bit	Туре	Description
7	R	Boot/main application 0h = Boot 1h = Main
6	R	Reserved
5	R	Flash error 0h = No error 1h = Error
4	R	Flash erase complete 0h = Complete 1h = Not complete
3	R	System error Oh = No error 1h = Error
2	R	Reserved
1	R	Communication error 0h = No error 1h = Error
0	R	System initialization Oh = Not complete 1h = Complete

- **NOTE:** The flash erase complete status bit will be set at the start of the flash erase process and will be cleared when the erase process is complete. The flash status can be obtained during or after the erase process. To obtain this status during the erase process, only this command can be sent after the start of the flash erase. If any other command is sent during the erase process, it will be held without processing until the flash erase has completed (thus blocking any following status requests until the previously sent command is processed).
- **NOTE:** The flash error bit is used to indicate an error during any flash operation. For flash writes, this bit will be updated at the end of each write transaction, however, once an error has been detected, this bit will remain in the error state until cleared. This will allow the OEM the option of checking the status between each write transaction, or at the end of the update. Once a write transaction has started, the flash status (and this error bit) will not be accessible until the write transaction has completed.
- **NOTE:** The communication error bit is used to indicate any error on the I²C command interfaces. Specific details about communication errors are available using the read communication status command.
- **NOTE:** Any errors other than flash error and communication error are indicated by the system error bit. Specific details about system errors are available using the read system status command.

- **NOTE:** The flash error, communication error, and system error bits will be cleared when the read short status is read.
- **NOTE:** The read short status command should only be checked periodically, not continuously. It is likely that continuous access will severely impact system performance.

3.1.87 Read System Status (Offset = D1h)

This command reads system status information for the display module.

Table 3-119. Return Parameters

Parameter Bytes	Description
Byte 1	DMD interface status
Byte 2	LED status
Byte 3	Internal interrupt status
Byte 4	Miscellaneous status

NOTE: All system status error bits are cleared when the read system status is read.

MSB	Byte 1 - 4			LSB			
b7	b6	b5	b4	b3	b2	b1	b0

Bit	Туре	Description
7-3	R	Reserved
2	R	DMD training error 0h = No error 1h = Error
1	R	DMD interface error 0h = No error 1h = Error
0	R	DMD device error 0h = No error 1h = Error

Table 3-120. Byte 1 Read System Status (D1h) Register Field Descriptions

NOTE: The system will set the DMD device error for the following conditions:

- The system cannot read the DMD device ID from the DMD
- The firmware specified DMD device ID does not match the actual DMD Device ID
- **NOTE:** The system will set the DMD interface error when there are power management setup conflicts on this interface.
- **NOTE:** The system will set the DMD training error when the training algorithm can't find a data eye that will meet the specified requirements.

Bit	Туре	Description	
7-6	R	Reserved	
5	R	Blue LED error Oh = No error 1h = Error	
4	R	Green LED error 0h = No error 1h = Error	
3	R	Red LED error Oh = No error 1h = Error	
2	R	Blue LED state 0h = Off 1h = On	
1	R	Green LED state 0h = Off 1h = On	
0	R	Red LED state 0h = Off 1h = On	

System Write/Read Commands

www.ti.com

Bit	Туре	Description
7-2	R	Reserved
1	R	Sequence error 0h = No error 1h = Error
0	R	Sequence abort error 0h = No error 1h = Error

Table 3-122. Byte 3 Read System Status (D1h) Register Field Descriptions

Bit	Туре	Description
7-6	R	Reserved
5	R	Watchdog timer timeout Oh = No timeout 1h = Timeout
4	R	Product configuration error 0h = No error 1h = Error
3	R	Master versus slave operation Oh = Master 1h = Slave
2	R	Single versus dual controller configuration 0h = Single 1h = Dual
1	R	SPI flashless communication error 0h = No error 1h = Error
0	R	SPI flashless data request error Oh = No error 1h = Error

Table 3-123. Byte 4 Read System Status (D1h) Register Field Descriptions

- **NOTE:** The system will set the SPI flashless data request error bit if the display does not start sending the requested data before the SPI flashless data request timeout is exceeded. Once the timeout is exceeded, the display will abort the current request, and then try again.
- **NOTE:** The system will set the SPI flashless communication error bit if the display has three consecutive SPI flashless data request errors. If this happens, it is assumed that the SPI communication link is not operational, and system operations will halt. A reset will be required to restart operations.
- **NOTE:** The system will set the master versus slave bit as appropriate in both single and dual controller configurations.
- **NOTE:** The system will set the product configuration error bit if it determines that some piece of the product configuration is not correct. Some examples are:
 - Invalid controller/DMD combination
 - Invalid controller/DLPA300x combination
 - Invalid flash build for current controller, DMD, or DLPA300x configuration
- **NOTE:** The system will set the watchdog timer timeout bit if the system has been reset due to a watchdog timer timeout.

3.1.88 Read System Software Version (Offset = D2h)

This command reads the main application software version information for the display module.

Table 3-124. Return Parameters

Parameter Bytes	Description
Byte 1	Controller main application software version – patch LSByte
Byte 2	Controller main application software version – patch MSByte
Byte 3	Controller main application software version – Minor
Byte 4	Controller main application software version – Major

3.1.89 Read Communication Status (Offset = D3h)

This command reads system status information for the display module.

3.1.89.1 Read Parameters

The read parameters are described below.

Table 3-125. Read Parameters

Parameter Bytes	Description	
Byte 1	Command bus status selection	

MSB		Byte 1 – Command Bus Status Selection					
b7	b6	b6 b5 b4 b3 b2 b1					

Table 3-126. Read Communication Status (D3h) Register Field Descriptions

Bit	Туре	Description
7-2	R	Reserved
1-0	R	Command bus status selection 00h = Reserved 01h = Reserved 10h = I ² C only 11h = Reserved

NOTE: This command will return the communication status for the command bus specified.

• Reserved: This selection will return status bytes 1 through 6

• Reserved: This selection will return status bytes 1 though 4

• I²C only: This selection will return status bytes 5 though 6

System Write/Read Commands

www.ti.com

3.1.89.2 Return Parameters

The return parameters are described below.

Table 3-127. Return Parameters

Parameter Bytes	Description
Byte 1	Reserved
Byte 2	Reserved
Byte 3	Reserved
Byte 4	Reserved
Byte 5	I ² C communication status
Byte 6	I ² C aborted offset

All communication status error bits are cleared when the Read Communication Status is read.

MSB	Byte 5 – Communication Status						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-128. Byte 5 Read Communication Status (D3h) Register Field Descriptions

Bit	Туре	Description
7	R	Reserved
6	R	Bus timeout by display error 0h = No error 1h = Error
5	R	Invalid number of command parameters 0h = No error 1h = Error
4	R	Read command error 0h = No error 1h = Error
3	R	Flash batch file error 0h = No error 1h = Error
2	R	Command processing error 0h = No error 1h = Error
1	R	Invalid command parameter value 0h = No error 1h = Error
0	R	Invalid command error Oh = No error 1h = Error

The system will set the invalid command error bit when it does not recognize the command offset. The invalid command offset will be reported in the I²C CMD error offset byte of this status.

The system will set the invalid command parameter error bit when the it detects that the value of a command parameter is not valid (for example, out of allowed range).

The system will set the command processing error bit when a fault is detected when processing a command. In this case, the command will be aborted with the system moving on to the next command. The offset for the aborted command will be reported in the I²C CMD error offset byte of this status.

The system will set the flash batch file error bit when an error occurs during the processing of a flash batch file. When this bit is set, typically another bit will be set to indicate what kind of error was detected (for example, invalid command error).

The system will set the read command error bit when the host terminates the read operation before all of the requested data has been provided, or if the host continues to request read data after all of the requested data has been provided.

The system will set the Invalid number of command parameters error bit when too many or too few command parameters are received. In this case, the command will be aborted with the system moving on to the next command. The offset for the aborted command will be reported in the I²C CMD error offset byte of this status.

The system will set the bus timeout by display error bit when the display releases control of the bus because the bus timeout value was exceeded.

MSB	Byte 6 – CMD Error Offset						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-129. Read Communication Status (D3h) Register Field Descriptions

Bit	Туре	Description
7-0	R	I ² C CMD error offset

The CMD error offset is associated with various I²C communication status bits, and reports the offset for an I²C command as noted.

System Write/Read Commands

3.1.90 Read Controller Device ID (Offset = D4h)

This command reads the controller device ID for the display module.

MSB		Byte 1					LSB
b7	b6	b6 b5 b4 b3 b2 b1					b0

Table 3-130. Read Controller Device ID (D4h) Register Field Descriptions

Bit	Туре	Description
7-4	R	Reserved
3-0	R	Controller device ID

The controller device ID can be decoded using Table 3-131.

Table 3-131	Controller	Device	ID Decode
-------------	------------	--------	-----------

Controller Device ID	Device Number	DMD Resolution	# of Controllers	Package	LED Driver
00h	DLPC3430	<1280x720	1	7mm x 7mm (0.4mm pitch)	DLPA200x
01h	DLPC3433	<1280x720	1	7mm x 7mm (0.4mm pitch)	DLPA200x/ DLPA3000
04h	DLPC3435	<1280x720	1	13mm x 13mm (0.8mm pitch)	DLPA200x
05h	DLPC3438	<1280x720	1	13mm x 13mm (0.8mm pitch)	DLPA200x/ DLPA3000
09h	DLPC3437	1920x1080	2	13mm x 13mm (0.8mm pitch)	DLPA3000/ 3005

3.1.91 Read DMD Device ID (Offset = D5h)

This command is used to read the DMD device ID for the display module.

3.1.91.1 Read Parameters

The read parameters are described below.

MSB	Byte 1 – DMD Register Selection					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-132. Read DMD Device ID (D5h) Register Field Descriptions

Bit	Туре	Description		
7-3	R	Reserved		
2-0	R	DMD data selection 0h = DMD device ID 1h - 7h = Reserved		

3.1.91.2 Return Parameters

Table 3-133 describes the return parameters.

Table 3-133. DMD Device ID Reference Table

DMD Device ID						
Byte 1 (Identifier)	Byte 1 (Identifier) Byte 2 (Byte Count) Byte 3 (ID-msbyte) Byte 4 (ID-Isbyte)					

System Write/Read Commands

3.1.92 Read System Temperature (Offset = D6h)

This command is used to read the system temperature for the display module.

Parameter Bytes	Description
Byte 1	See below (LSByte)
Byte 2	See below (MSByte)

Figure 3-12 shows the bit order and definition for the signed magnitude system temperature data, which will be returned in °C. The unspecified msbits (bits 15:12) will be set to '0'.

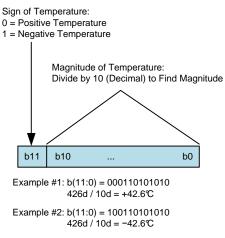


Figure 3-12. Bit Order and Definition

3.1.93 Read Flash Build Version (Offset = D9h)

This command reads the controller flash version for the display module.

Table 3-134. Return Parameters

Parameter Bytes	Description
Byte 1	Flash build version – patch LSByte
Byte 2	Flash build version – patch MSByte
Byte 3	Flash build version – Minor
Byte 4	Flash build version – Major

The OEM is allowed to specify a version number for the controller flash build in the format specified by this command. This command allows the OEM to read back this version information.

System Write/Read Commands

3.1.94 Write Flash Batch File Delay (Offset = DBh) [Reset = User specified]

This command is used to specify an execution time delay within a flash batch file for the display module.

Parameter Bytes	Description
Byte 1	Flash batch file delay (LSB)
Byte 2	Flash batch file delay (MSB)

This command is used to specify an execution delay time within a flash batch file. It can only be used within a flash batch file, and is not a valid command on the I²C interfaces.

The flash batch file delay is to be specified in units of 1 ms (for example, 500 ms = 1F4h).

Typical use of this command will be in the auto-init flash batch file (batch file 0), but is valid for use in any batch file (See write execute flash batch file).

Software should make use of the available hardware timers.

System Write/Read Commands

3.1.95 Read DMD I/F Training Data (Offset = DCh)

This command is used to read back the DMD interface training data for the display module.

3.1.95.1 Read Parameters

The command parameters are described below.

MSB	Byte 1 – DMD I/F Data Selection					LSB	
b7	b6	b5	b4	b3	b2	b1	b0

Bit	Туре	Description			
7-5	R	Reserved			
4	R	Training data selection 0h = High/Low/Selected 1h = Full profile			
3-0	R	Controller pin pair selection 0h = A 1h = B 2h = C 3h = D 4h = E 5h = F 6h = G 7h = H 8h - Fh = Reserved			

This command will return the DMD I/F training data specified for the controller pin pair specified.

- High/Low/Selected: This selection will return bytes 1 through 4
- Full profile: This selection will return bytes 5 though 11

3.1.95.2 Return Parameters

The return parameters are described below.

Table 3-136. DMD I/F Training Data Return Parameters

Parameter Bytes	Description
Byte 1	High/Low/Selected (see below) (LSB)
Byte 2	High/Low/Selected (see below)
Byte 3	High/Low/Selected (see below)
Byte 4	High/Low/Selected (see below) (MSB)
Byte 5	Full profile (bits 7-0) (LSB)
Byte 6	Full profile (bits 15-8)
Byte 7	Full profile (bits 23-16)
Byte 8	Full profile (bits 31-24)
Byte 9	Full profile (bits 39-32)
Byte 10	Full profile (bits 47-40)
Byte 11	Full profile (bits 50-48) (MSB)

MSB	Byte 1 - 4				LSB		
b7	b6	b5	b4	b3	b2	b1	b0

System Write/Read Commands

www.ti.com

Bit	Туре	Description
7-6	R	Reserved
5	R	Training error Oh = No error 1h = Error
4	R	Pin pair selected for training 0h = No 1h = Yes
3-0	R	Controller pin pair selection 0h = A 1h = B 2h = C 3h = D 4h = E 5h = F 6h = G 7h = H 8h - Fh = Reserved

Table 3-137. Byte 1 Read DMD I/F Training Data (DCh) Register Field Descriptions

Table 3-138. Byte 2 Read DMD I/F Training Data (DCh) Register Field Descriptions

Bit	Туре	Description
7-6	R	Reserved
5-0	R	Selected DLL (delay-locked loop) value

Table 3-139. Byte 3 Read DMD I/F Training Data (DCh) Register Field Descriptions

Bit	Туре	Description
7-6	R	Reserved
5-0	R	Low pass DLL value

Table 3-140. Byte 4 Read DMD I/F Training Data (DCh) Register Field Descriptions

Bit	Туре	Description
7-6	R	Reserved
5-0	R	High pass DLL value

This command is typically used for debug or characterization of the controller to DMD interface.

The return data is specified by the read parameter data.

DMD I/F training tests/calibrates the DLL that is associated with each contoller pin pair, trying each of the DLL parameter values (0 to 50), looking for a pass ('0') or fail ('1') response for each value. Thus, the full training profile for each pin pair is made up of a 51 bit pass/fail result. This result is provided on full profile bits 50:0.

The full profile response should have a region of passing DLL values. The highest DLL value for this region is returned as the high pass DLL value, the smallest DLL value is returned as the low pass DLL value, and the algorithm selected value as the selected DLL value.

This command does not run the DMD I/F training algorithm. This is done automatically by the system. This command returns the result from the most recent training event.

3.1.96 Flash Update PreCheck (Offset = DDh)

This command is used to verify that a pending flash update (write) is appropriate for the specified block of the display module flash.

3.1.96.1 Read Parameters

The command parameters are described below.

Table 3-141. Return Parameters

Parameter Bytes	Description
Byte 1	Flash build data size (LSB)
Byte 2	Flash build data size
Byte 3	Flash build data size
Byte 4	Flash build data size (MSB)

3.1.96.2 Return Parameters

The return parameters are described below.

MSB	Byte 1 - Flash PreCheck Results						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-142. Flash Update PreCheck (DDh) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2	R	Package configuration (identifier) 0h = No error 1h = Error
1	R	Package configuration (collapsed) Oh = No error 1h = Error
0	R	Package size Oh = No error 1h = Error

This command is used in conjunction with the flash data type select command. This command would be sent after the flash data type has been selected, but before any other flash operation. The purpose is to verify that the desired flash update is compatible, and will fit within the existing flash space, for the current flash configuration.

The flash build data size specifies the size of the flash update package in bytes.

When the controller software receives the flash build data size, it will verify that the package is appropriate for the specified location. This includes size, identifier, sequence build type, and so forth.

A package size error indicates that the flash package is too large to fit into the specified location. A few examples are listed:

- If replacing the entire flash, the size of the flash build exceeds the size of the flash device in the system.
- If replacing the entire flash except for the OEM blocks, the size of the flash build will either overwrite some portion of the existing OEM blocks, or exceed the size of the flash device in the system.
- If replacing the LOOK block, the size of the flash build exceeds the size of the existing LOOK block in the flash.
- If replacing a single sequence (for example, a partial update), the size of the flash build exceeds the size of the existing splash screen.

System Write/Read Commands

A package configuration error indicates that the flash package is not appropriate for the flash update requested. An example is listed below.

• If replacing a single splash screen (for example, a partial update), and the specified splash screen index value (identifier) is not being used in the flash build. Partial updates can only replace an existing flash entity.

If an error is returned by this command, the OEM is responsible for correcting the error before updating the flash. If the OEM chooses to ignore the error and update the flash anyway, the system will allow this. In this case, the OEM is responsible for any problems or system behaviors that arise from this. It should also be noted that this pre-check does *not* cover all possible mismatches that might arise when replacing blocks or partial blocks in the flash.

3.1.97 Flash Data Type Select (Offset = DEh) [Offset = 0h]

This command is used to specify the type of data that will be written to or read from the flash of the display module.

Parameter Bytes	Description
Byte 1	Flash data type (See below)
Byte 2	Optional: Partial data identifier (See Byte 1 Below)
Byte 3	Optional: Partial data identifier (See Byte 1 Below)
Byte 4	Optional: Partial data identifier (See Byte 1 Below)

MSB	Byte 1						LSB
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-143. Flash Data Type Select (DEh) Register Field Descriptions

Bit	Туре	Description
7-0	W	Flash data type Entire flash 00h = Entire flash 01h = Reserved 02h = Entire flash except OEM calibration data and OEM scratchpad data 03h - 0Fh = Reserved
		TI software 10h = Main software application 11h - 1Fh = Reserved
		TI application data 20h = TI application data set (AOM) 21h - 2Fh = Reserved
		OEM batch files 30h = OEM batch files 31h - 3Fh = Reserved
		Look data 40h = Look data set 41h - 4Fh = Reserved
		Sequence data 50h = Entire sequence data set 51h = Entire sequence data set (Reads only) 52h - 5Fh = Reserved
		Degamma/CMT data 60h = Entire degamma/CMT data set 61h = Partial degamma/CMT data set (reads only) 62h - 6Fh = Reserved
		CCA data 70h = CCA data set 71h - 7Fh = Reserved
		General LUT data 80h = CCA data set 81h - 8Fh = Reserved

Bit	Туре	Description
7-0	W	OEM Splash screen data 90h = Entire OEM splash screen data set 91h = Partial OEM splash screen data set 92h - 9Fh = Reserved
		OEM Calibration data A0h = OEM calibration data set A1h - AFh = Reserved
		OEM scratchpad data B0h = Entire OEM scratchpad data set 0 B1h = Partial OEM scratchpad data set 0 B2h = Entire OEM scratchpad data set 1
		B3h = Partial OEM scratchpad data set 1 B4h = Entire OEM scratchpad data set 2 B5h = Partial OEM scratchpad data set 2 B6h = Entire OEM scratchpad data set 3
		B7h = Partial OEM scratchpad data set 3 B8h - BFh = Reserved

Table 3-143. Flash Data Type Select (DEh) Register Field Descriptions (continued)

The flash data type command must be provided each time a new flash write or read operation is desired to ensure that the appropriate data type parameters are provided. The system expects four parameter bytes regardless of whether all four bytes are needed. Any unused bytes should be set to zero.

The flash data length must be provided to indicate the amount of flash data that will be provided for each write or read transaction.

The specified flash data will be written to or read from flash using the write flash start, write flash continue, read flash start, and read flash continue commands.

While all of the flash data sets indicated can be written/replaced in their entirety, a few will also support partial writes/updates. Partial update command parameters will use an "odd" command number (for example, 91h, B1h) which will indicate that one to three additional command parameter bytes of information must be provided to specify which subset of data is to be updated. The additional command parameter data required is described below.

System Write/Read Commands

Table 3-144.	Command	Parameters	for Partial	Flash Data	Set

Data Type (Writes Only)	2nd CMD Parameter (Byte 2)	3rd CMD Parameter (Byte 2)	4th CMD Parameter (Byte 2)	Comments
Partial OEM splash screen set	Splash number	N/A	N/A	A splash screen will be specified by its splash screen number
Partial OEM scratchpad data set	Sector number	N/A	N/A	If this data set is allocated more than one sector, each sector can be specified ($0 = 1$ st sector, $1 = 2$ nd sector, and so forth)
Partial sequence data set	Look number	Sequence index number		A sequence data set will be specified by its sequence index number.
Partial CMT data set	Look number	Sequence index number		A CMT data set will be specified by its CMT index number.
Partial OEM splash screen set	Splash number	N/A	N/A	A Splash screen will be specified by its Splash screen number.
Partial OEM scratchpad data set	Splash number	Sub-sector address (LSB)	Sub-sector address (MSB)	If this data set is allocated more than one sector, each sector can be specified ($0 = 1$ st sector, $1 = 2$ nd sector, and so forth) The host is also allowed to specify the start address within the sector specified in byte 2. This address needs to be a relative address within the specified sector (that is, the value can range from 0 to 4096), and must be a 32-bit aligned byte address.

While all of the flash data sets indicated can be read starting at the beginning of the data set, a few will also support read starts at the beginning of a data subset. The partial update command parameters which use an "odd" command number (for example, 41h, 43h, 75h) will indicate that one to three additional command parameter bytes must be provided to specify the start location for these reads. The additional command parameter data required is described in the previous table.

It is expected that all TI formatted factory calibration data, including the golden ratio, the power-up RGB currents, and the OEM thermister LUT trim data, will be stored in the OEM calibration block of the flash. It will be the responsibility of the OEM to manage updates to this block, which may require the OEM to read the entire block, modify, and then rewrite the entire block when making an update within the block.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

It is recommended that the OEM make use of the flash update pre-check command before updating an existing flash build.

The system allows the OEM to allocate up to four separable blocks of flash space for their own use (OEM scratchpad data). The OEM can also specify the size of each of these blocks, where each block can be one or more sectors in (one sector = 4 kB). This is all defined via the GUI. It is the responsibility of the OEM to manage these data sets, including updates, which may require the OEM to read an entire sector, modify, and then rewrite the entire sector when making an update within a sector. References to an unavailable data set will result in an invalid command parameter value error in the communication status.

System Write/Read Commands

3.1.98 Flash Data Length (Offset = DFh) [Reset = 0h]

This command is used to specify the length of the data that will be written to or read from the flash of the display module.

Parameter Bytes	Description
Byte 1	Flash data length (LSB)
Byte 2	Flash data length (MSB)

Flash data length must be a multiple of four bytes.

The flash data length applies to each write or read transaction, not to the length of the data type selected.

The maximum data length allowed for each write transaction is 1024 bytes. The maximum data length allowed for each read transaction is 256 bytes.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

3.1.99 Erase Flash Data (Offset = E0h) [Reset = 0h]

This command directs the display module to erase the specified flash data.

Parameter Bytes	Description
Byte 1	Signature: Value = AAh
Byte 2	Signature: Value = BBh
Byte 3	Signature: Value = CCh
Byte 4	Signature: Value = DDh

When this command is executed, the system will erase all sectors associated with the data type specified by the flash data type select command. As such, this command does not make use of the flash data length parameter

Since the process of erasing flash sectors can take a significant amount of time, the flash erase complete status bit in the read short status command should be checked periodically (not continuously) to determine when this task has been completed. This bit will be set at the start of the erase process, and will be cleared when the erase process is complete. Flash writes should not be started before the erase process has been completed.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

The signature bytes are used to minimize unintended flash erases. The command offset and four signature bytes must be received correctly before this command will be recognized and executed.

3.1.100 Write Flash Start (Offset = E1h)

This command is used to write data to the flash for the display module.

Parameter Bytes	Description
Byte 1	Data byte 1
Byte 2	Data byte 2
Byte 3	Data byte 3
Byte 4	Data byte 4
Byte 5 n	Data byte 5 n

The flash data length command must be used to specify how much data will be sent by the write flash start command.

The write flash start command is used to write up to 1024 bytes of data starting at the first address of the data type selected. If more than 1024 bytes are to be written, the write flash continue command must be used. Up to 1024 bytes of data can be written with each write flash continue command, which starts at the end of the last data written.

The flash error bit of the write short status command will indicate if the flash update was successful. This bit will be set for an error at the end of each write transaction, however, once an error has been detected, this bit will remain in the error state until a new data type is selected (selecting a new data type will clear this bit). This will allow the OEM the option of checking the status between each write transaction, or at the end of the update of a specific data type. Once a write transaction has started, the flash status (and this error bit) will not be accessible until the write transaction has completed.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

3.1.101 Write Flash Continue (Offset = E2h)

Parameter Bytes	Description	
Byte 1	Data byte 1	
Byte 2	Data byte 2	
Byte 3	Data byte 3	
Byte 4	Data byte 4	
Byte 5 n	Data byte 5 n	

This command is used to write data to the flash for the display module.

The flash data length command must be used to specify how much data will be sent by the write flash start command.

The write flash start command is used to write up to 1024 bytes of data starting at the first address of the data type selected. If more than 1024 bytes are to be written, the write flash continue command must be used. Up to 1024 bytes of data can be written with each write flash continue command, which starts at the end of the last data written.

The flash error bit of the write short status command will indicate if the flash update was successful. This bit will be set for an error at the end of each write transaction, however, once an error has been detected, this bit will remain in the error state until a new data type is selected (selecting a new data type will clear this bit). This will allow the OEM the option of checking the status between each write transaction, or at the end of the update of a specific data type. Once a write transaction has started, the flash status (and this error bit) will not be accessible until the write transaction has completed.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

3.1.102 Read Flash Start (Offset = E3h)

This command is used to read data from the flash for the display module.

Parameter Bytes	Description	
Byte 1	Data byte 1	
Byte 2	Data byte 2	
Byte 3	Data byte 3	
Byte 4	Data byte 4	
Byte 5 n	Data byte 5 n	

The flash data length command must be used to specify how much data is to be read by the read flash start command.

The read flash start command is used to read up to 256 bytes of data starting at the specified address, or at the first address of the data type selected. If more than 256 bytes are to be read, the read flash continue command must be used. Up to 256 bytes of data can be read with each read flash continue command, which starts at the end of the last data read.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

The full profile response should have a region of contiguous passing DLL values. The highest DLL value for this contiguous region is returned as the high, the smallest DLL value is returned as the low, and the algorithm selected value as the selected.

This command does not run the DMD I/F training algorithm. This is done automatically by the system. This command returns the result from the most recent training event.

3.1.103 Read Flash Continue (E4h)

Parameter Bytes	Description	
Byte 1	Data byte 1	
Byte 2	Data byte 2	
Byte 3	Data byte 3	
Byte 4	Data byte 4	
Byte 5 n	Data byte 5 … n	

This command is used to read data from the flash for the display module.

The flash data length command must be used to specify how much data is to be read by the read flash continue command.

The read flash start command is used to read up to 256 bytes of data starting at the specified address, or at the first address of the data type selected. If more than 256 bytes are to be read, the read flash continue command must be used. Up to 256 bytes of data can be read with each read flash continue command, which starts at the end of the last data read.

While flash processing requires that flash commands be executed in the proper order (for example, flash must be erased prior to being written), due to the flexibility provided for flash updates, command order checking is not provided.

System Write/Read Commands

3.1.104 Write External PAD Address (Offset = EBh) [Reset = 0h]

This command is used to specify the parameters for an external PAD device transaction. This command is applicable to both writes and reads.

Parameter Bytes	Description	
Byte 1	Byte 1 PAD register start address (LSB)	
Byte 2	PAD register start address	
Byte 3	PAD register start address (MSB)	
Byte 4	Data length	
Byte 5	See the following table	

MSB	Byte 5			LSB			
b7	b6	b5	b4	b3	b2	b1	b0

Table 3-145. Write External PAD Address (EBh) Register Field Descriptions

Bit	Туре	Description
7-3	R	Reserved
2-0	W	Write/Read 0h = Write 1h = Read

This command is to be used in conjunction with the write external PAD data and the read external PAD data commands.

The maximum data length is 32 bytes, and the minimum data length is 1 byte. This is true for write or read transactions.

If a read operation is specified, software will immediately proceed to obtain the requested read data so that it will be available when the read external PAD data command is received.

The PAD registers feature an address auto-increment. As such, single or multiple register accesses only need the indicated start address.

No error checking will be done to verify that the address command specified write/read operation matches the actual write/read command. The outcome of a mismatch: For writes, software will write the provided data to the previously provided address – thus no error. For reads, since no read data was obtained, the software can return any value. For instance, the value can be all F's; if the memory has been allocated, it can be whatever was previously in the allocated memory. The software will return a value that is provided with the greatest efficiency with no error checking. It is accepted that the read data in this case will not be valid.

System Write/Read Commands

3.1.105 Write External DLPA Data (Offset = ECh)

Parameter Bytes	Description	
Byte 1	Data byte 1	
Byte 2	Data byte 2	
Byte 3	Data byte 3	
Byte 4	Data byte 4	
Byte 5 n	Data byte 5 n	

This command is used to write data to an external DLPA device.

This command is to be used in conjunction with the write external DLPA address and the read external DLPA data commands.

The maximum data length allowed for a write transaction is 32 bytes.

3.1.106 Read External DLPA Data (Offset = EDh)

This command is used to read data from an external DLPA device.

Parameter Bytes	Description	
Byte 1	Data byte 1	
Byte 2	Data byte 2	
Byte 3	Data byte 3	
Byte 4	Data byte 4	
Byte 5 n	Data byte 5 … n	

This command is to be used in conjunction with the write external DLPA address and the write external DLPA data commands.

The maximum data length allowed for a read transaction is 32 bytes.

Appendix

A.1 Legal Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated