
1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 1/12

CC3100 UART Host Interface

Introduction
Host low power modes
UART Host Topologies

5-Wire UART Topology
4-Wire UART Topology
3-Wire UART Topology

UART Configuration
UART Initialization
Calculating the host maximum working baud rate
Changing the UART baud rate
Implementing the UART Driver - Concept & Terminology

UART Read API implementation
UART Write API implementation

Register/Unregister Interrupt Handler API implementation
Host Interface protocol – UART perspective
Uart host command flow
Synchronization Words

The UART is a standard asynchronous serial communication that works between two entities and have a support for hardware flow control.
 In UART interface there is no Master/Slave

relationship defined by the Hardware and each entity can send data to the other side independently in full duplex mode.
The hardware flow control makes use of two hardware lines, RTS (Request

to Send) and CTS (Clear to Send) to allow each side indicate to the other side if is ready to handle data.

The figure below illustrates a typical UART setup:

Contents

Introduction



1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 2/12

Typical UART Configuration

The perspectives of the lines’ names further in this document are from the Host to the SimpleLink device:

TX – used to send the UART serial data from the Host to the CC3100 device
RX – used to send the UART serial data from the CC3100 device to the Host
RTS – used to instruct the CC3100 device to stop sending data (Host cannot handle more data)
CTS – used to instruct the Host to stop sending data (The SimpleLink device cannot handle more data)

The SimpleLink device can send a message to the Host at any given time. The SimpleLink host protocol does not allow data loss. When the Host enters into a low power mode it must raise the RTS

line to signal the SimpleLink device that it can’t receive data.

However, when RTS line is raised, the SimpleLink device will not be able to wake up the Host. In this case, to allow the Host to wake up by the SimpleLink device, the auxiliary HOST_IRQ line

should be used.

The following figure shows the typical 5-wire UART topology which is comprised of 4 standard UART lines, plus one IRQ line from the device to the host controller to allow efficient low power

mode:

Host low power modes

UART Host Topologies

5-Wire UART Topology

https://processors.wiki.ti.com/index.php/File:UART_Configuration.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 3/12

Typical 5-Wire UART Configuration

This is the typical and recommended UART topology as it gives the maximum communication reliability and flexibility between the host and the SimpleLink device.

In this topology the Host IRQ line is omitted.
Using this topology is allowed only if one of the following conditions is met:
•	Host always stays awake/active
•	Host goes to sleep but its UART

module has receiver start-edge detection for auto wake up and does not loss data in this case

4-Wire UART Configuration

In this topology, only the following lines are required:

RX
TX
CTS

Using this topology is allowed only if one of the following conditions is met:

Host always stays awake/active
Host goes to sleep but its UART module has receiver start-edge detection for auto wake up and does not loss data in this case
Host is always able to receive any amount of data transmitted by the SimpleLink device since there is no flow control in this direction

3-Wire UART Configuration

Since there is no full flow control, the host can’t stop the SimpleLink device to send its data thus the following parameters must be carefully considered:

4-Wire UART Topology

3-Wire UART Topology

https://processors.wiki.ti.com/index.php/File:Typical_5-Wire_UART_Configuration.png
https://processors.wiki.ti.com/index.php/File:4-Wire_UART_Configuration.png
https://processors.wiki.ti.com/index.php/File:3-Wire_UART_Configuration.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 4/12

Max baud rate
RX character interrupt latency and low level driver jitter buffer
Time consumed by user’s application

The SimpleLink device requires the following UART configuration:

Property Supported CC3100 Configuration

Baud rate 115200bps, No auto-baud rate detection, could be changed by the Host up to 3Mbps using special command

Data bits 8 bits

Flow Control CTS/RTS

Parity None

Stop bits 1

Bit order LSBit first

Host Interrupt polarity Active high

Host Interrupt mode Rising edge or level ‘1’

Endianness Little Endian only1

1The SimpleLink device does not support automatic detection of the Host length while using the UART interface.

The UART module is initialized upon calling to the sl_start() API, which will call the function sl_IfOpen.

The diagram below illustrates the UART initialization sequence:

UART Configuration

UART Initialization



1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 5/12

https://processors.wiki.ti.com/index.php/File:UART_initialization_sequence.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 6/12

UART initialization sequence

As mentioned above, the maximum supported baud rate of the CC3100 device is 3M.
Having said that, the host UART driver designer must calculate the maximum baud rate which ensures the

protection of a potential overridden of its UART HW internal RX Buffer.

The maximum baud rate can be estimated using the following formula:

BRmax = RxFifoSize ∙ 10 ∙ 106

Tlatency + RxFifoSize ∙ Tread
Where:

BRmax The maximum baud rate in bps units that could be used
RxFifoSize The size of the HW UART FIFO buffer. In most of the low-cost and tiny controllers this size is 1
Tlatency The time that elapses from the moment that a HW interrupt is generated to the moment that the service routine is called in worst case scenario

Tread The time it takes to read one byte from the HW UART FIFO and store it in SW buffer. This time should take in account all SW logic involved in worst
case scenario

This formula doesn’t take in account all parameters and it is only for estimation purposes.
The formula based on the following:

1 character equal to 10 bits (8 data bits, 1 start bit and 1 stop bit)
Timing measured in micro seconds

For example, if we select the MSP430EXP5529 host running the TI UART driver example application in 25MHz clock, where:

Tlatency = 3uSec
Tread = 7uSec

Hence:

BRmax = 1 ∙ 107

3uSec + 1∙ 7uSec

Calculating the host maximum working baud rate

https://processors.wiki.ti.com/index.php/File:UART_initialization_sequence.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 7/12

Changing the baud rate can be done using the host sl_UartSetMode() command.
The command takes the following 2 parameters:

uint32 BaudRate – the new desired baud rate
void* pParams – pointer to user specific parameter set
The diagram below illustrates the changing baud rate sequence:

Changing the UART baud rate



1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 8/12

https://processors.wiki.ti.com/index.php/File:UART_change_baud_rate_sequence.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 9/12

UART change baud rate sequence

The user which implements the low level UART driver must consider the following components in mind:

Jitter buffer - An internal buffer (minimum of 4 bytes size) which is responsible to store the bytes sent by the SimpleLink device till the host read operation starts. The host driver is informed
on new data reception upon character detection on the RX UART line, and is expected to start its read operation immediately afterwards.
SW Flow Control Manager – The SimpleLink device requires the UART to use HW flow control. In some low-cost controllers there is no support for HW flow control in their UART peripheral.
In these cases the user must implement SW flow control that would protect the jitter buffer from being overridden by asserting the RTS line before it gets full, and follow the CC3100 device
flow control state by testing the CTS line before sending any data.
Active Buffer – points to the current buffer to accept the incoming bytes. At the beginning of received message points to the jitter buffer, and upon UART read operation start is switched to
the host driver supplied one.

A full UART driver example code can be found in the SDK package. This example includes an implementation of SW flow control.

This API is responsible to read bytes from an opened communication port into a buffer starting at pBuff.
The read operation will be blocked till all the expected data received.

The following table lists the required parameters for such function:

Name Type Description

Fd Fd_t handle to the Uart control block, This structure could be changed by the user to include the required parameters in the target platform

pBuff char* pointer to the first location of a buffer that contains enough space for all expected data

Len unsigned int number of bytes to read from the communication port

The UART read API should implements the logic below:

Implementing the UART Driver - Concept & Terminology

UART Read API implementation

https://processors.wiki.ti.com/index.php/File:UART_change_baud_rate_sequence.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 10/12

1. Disabling RX interrupt and switch Active buffer to point to the supplied buffer (pBuff)
2. Copy all bytes from the jitter buffer to the Active Buffer
3. Clear the RTS line as the user provide buffer to accept the remaining data.
4. Enabling RX interrupt and waits till all bytes (length) are fully written to the supplied buffer (pBuff). These bytes are expected to be read from the UART RX FIFO upon UART RX interrupt

service routine.
5. Once length bytes received, switch back the active buffer to point to the jitter buffer

This API is responsible to write all required bytes to the opened communication port.

The table below lists the required parameters for such function:

Name Type Description

Fd Fd_t handle to the Uart control block, This structure could be changed by the user to include the required parameters in the target platform

pBuff char* pointer to the first location of a buffer that contains the data to send to the communication port

Len unsigned int number of bytes to write to the communication port

The UART write implementation has no special behavior. The function should send the bytes from the buffer on the UART lines. The function must make sure that the actual transmission will be

executed only if the following conditions are met:

1. The host UART HW is ready to transmit data
2. The CTS line is low meaning the SimpleLink device is ready to accept data from the host

If these conditions are not met, the function should wait until they will (blocked)

This API is responsible to register/unregister an interrupt service routine that will be called upon detection of new UART message from the SimpleLink device.
The service routine might be

registered directly to the interrupt vector table, or can be registered internally as callback that would be called by other function on the UART driver.

The UART driver will call the handler only once, at the beginning of every UART message. This handler is expected to be masked by the host SimpleLink driver (by calling the sl_IfMaskIntHdlr
API), before the driver starts to handle the message received. The handler will be unmasked when the SimpleLink driver finished to handles the message (by calling the sl_IfUnMaskIntHdlr API).

As described on Message Types, the communication between the host and the CC3100 device is comprised of several types of messages:

1. Command
2. Command complete
3. Data
4. Asynchronous events

UART Write API implementation

Register/Unregister Interrupt Handler API implementation

Host Interface protocol – UART perspective

Uart host command flow



1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 11/12

The diagram below describes the flow of a command from the host to the device along with the command complete indication from the device to the host followed by some async event. It also

illustrates the behavior as appear in the sample code provided with the SimpleLink SDK for MSP430 processors.

CC3100 UART Host Command Flow

As seen in the drawing, the communication starts with the host sending the long (8 bytes) SYNC word followed by the command itself which includes header information and payload (when

applicable).

Once the command has been analyzed by the device, it asserts the RTS line for the sleep exit transition duration (if was in sleep mode). The device then begins to transmit the command response

which starts with the short (4 bytes) SYNC word, which being suspended by the host flow control RTS line (due to its very small 4 bytes jitter buffer). Once the host de-asserts the RTS line, the

command response transmission is resumed. Later on the device may enter (if required) again to sleep mode.

The last transmission shown in the drawing above is an independent async event sent by the CC3100 device.

The communication to and from the host uses synchronization words to keep the host and
CC3100 device in sync.

There are 2 types of synchronization words in use:

Host to Device (8 bytes)
Device to host (4 bytes).

The patterns are given in the following table:

Sync Word Pattern (Hex)

Host to Device (Long Sync) 12 34 43 21 BB DD EE FF

Device to Host (Short Sync) AB CD DC BA

The first 4 bytes of the Long sync are dummy bytes and have no meaning to the CC3100 device. The long sync is required to prevent data loss in case that the Host does not stop the transmission

immediately on the next byte when the RTS is raised.

{{ Keystone= C2000=For DaVinci=For MSP430=For OMAP35x=For OMAPL1=For MAVRK=For For technical support

Synchronization Words

https://processors.wiki.ti.com/index.php/File:CC3100_UART_Host_Command_Flow.png


1/13/22, 11:45 AM CC3100 UART Host Interface - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface 12/12

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article CC3100 UART Host
Interface here.

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article CC3100 UART
Host Interface here.

technical
support on
the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article
CC3100
UART
Host
Interface
here.

technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article CC3100
UART Host
Interface here.

technical
support on
MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article
CC3100
UART Host
Interface
here.

technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article CC3100
UART Host
Interface
here.

technical
support on
OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article
CC3100
UART Host
Interface
here.

technical
support on
MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article
CC3100
UART Host
Interface
here.

please post your
questions at
http://e2e.ti.com.
Please post only
comments about the
article CC3100 UART
Host Interface here.
}}

Links
Amplifiers & Linear

Audio

Broadband RF/IF & Digital Radio

Clocks & Timers

Data Converters

DLP & MEMS

High-Reliability

Interface

Logic

Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers

Temperature Sensors & Control ICs

Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface&oldid=227432"

This page was last edited on 9 May 2017, at 15:16.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003&sectionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=CC3100_UART_Host_Interface&oldid=227432
http://creativecommons.org/licenses/by-sa/3.0/

