TI CC3100 SDK-Ver-1.3.0 Email No Longer Works
V2.0
A. Solution Request
We are looking for a TI fix for the CC3100 email example. The current posted CC3100 email example no longer works. So please either provide a solution, or provide an update WARNING that the CC3100 no longer supports emails. Attached is Code Composer Studio exported application that works, except for send email based on TI example that worked for 9 years, but recent email service security changes make it no longer work. We get an SMTP failure return code of -111.
B. CC3100 Email code Working with Gmail for over 9 years
For over 9 years we have had multiple TI CC3100 BOOST using SDK-1.3.0 mounted on both F5529 and FR6989 launch pads Microcontrollers using WiFi to both “Get Time from an SNTP Timer Server”, and “Send status emails” from GMAIL using smtp and sending the email to a number of different destination email services.
In 2021 GMAIL required AP’s like TI Microcontrollers with CC3100 WiFi cards to upgrade to use a GMAIL generated AP password. Creating the Gmail AP password enabled the TI devices to successfully send emails.
C. TI CC3100 email no long works on Gmail, Outlook.com email, or SOHO email
In the fall to 2022 Gmail posting was that they would soon not support AP passwords and less secure devices in the future. On Friday January 27, 2023 multiple TI microcontrollers with the CC3100, in different states all stopped being able to send email status. These microcontrollers have no means of remote software updates, so no code changes were made to multiple micro’s. Also there is near zero probability that multiple micro’s in multiple cities / states had a code corruption at the exact same date and hour. Obviously some Gmail code and security change is now blocking TI micro’s.
We have tried Outlook.com email, SOHO email, AOL email, and Proton email. None of these email services work with the TI CC3100 and SDK-1.3.0. All of these email services progress through the code to the same point and end with “Device couldn’t send the email”. Some Web research say that for GMAIL now needs to support Oauth 2.0, but I don’t believe this is true for all email services.
D. Code Composer Studio working Application attached
“Gennerator_Ammeter_wMPU_FR6989-TI-V3.1-3-17-2023.zip”
Attached is a Code Composer Studio exported application that has worked for 9 years, and still does work, except it is no longer able to Send Status Emails.
******This should make it very easy for TI Engineers to reproduce the problem and develop a working solution. *****
****** We are happy to share this code other TI customers in the expectation that a solution will be developed to enable the CC3100 with an FR6989 microcontroller to again be able to send status emails. Other TI customers can benefit from Multiple LCD static and scrolling message examples and framework, multiple A/D examples, Extensive Timer code, LMT01 temperature sensor code, RTC code, get Time from a time server, and hopefully soon an again working Send Email Status function.

The CC3100 Wifi code is 99% the original TI code from the email example still in the TI CC100 SDK-1.3.0. The original example code was all in main.c. To keep main.c cleaner with the application code, the WiFi code was all moved in a file emailAndGetTime.c and emailAndGetTime.h. We added a few changes to tie the WiFi code into our applications. *****All of this code has worked perfectly for 9 years. The January 2023 GMAIL and other email services security changes are now making the TI Send Email code no longer functional.
This application will run on an FR6989 launch pad, with a CC3100 Boost WiFi daughter card. The application measures Voltages, Currents, and temperatures using the TI LMT01 temperature sensors. Of course with no supporting electrical interface circuits the application numbers are not valid, but the application will run perfect, step through the LCD display values, via WiFi successfully get the time from an SNPT time server, and attempt to send a status email.
Ten easy steps to Run and Test 1) The Application 2) Get Time, and 3) Attempt to Send Email. This will enable you to very easily test and verify that CC3100 GetTime via WiFi is working, and then to test trying to Send an Email. (***Again Send Email code had worked for 9 years before GMAIL and other mail service security changes. ****)
1. Import the Code Composer Studio application
2. Under Includes, sl_common enter your WiFi SSID and password
3. Open confiq.h enter the sending Email Address and Password, and Destination email address
4. Compile and load the code to the FR6989 launch pad, press run
5. The Application will start to run and display messages on the LCD display
6. Press 1 for longer than 2 seconds
After Pushing S1 longer than 2 seconds you will see this message displayed:
· SETTINGS MODE
7. Press S1 for less than 2 seconds to step through the next 4 settings until get to SST OFF
· SCR ON or SCR OF:
· ACM25:
· SEM10: orSEH2
· LCDT 4: LCD display time per variable in ¼ sec steps
· SST ON or SMS OFF: SMS is Secondary Setting On or Off.
8. When get to SST OFF, press S2, the LCD display will toggle to SST ON. Need this ON so can get to the Get Time and Send Email settings. Press S1 again to get to GET OFF
· GET ON or GET OFF: ON WiFi Module gets the time from a Time Server on Restart and then every 100 days. OFF all the code is still available and running.
9. OFF to ON toggle in Settings mode, micro will immediately try to Get Time.
Via TERA TERM you can see that that micro successfully got the time (See example below)
If not successful toggle to GET OFF then back to GET ON to try again
Press S1 to step to EML OFF
· EML ON or EML OFF: On WiFi Module will send email summary messages at 1PM and Midnight.
10. OFF to ON toggle, the micro will immediately assemble and attempt to send a 64 byte Subject and 64 byte Body email.
Via TERA TERM you will see that “Device couldn’t send email”
****This worked on multiple applications, and devices from 2014 to Jan 2023
Press S1 for longer than 2 seconds will take you back to Application Mode
Email Example
This is what the Email 64 byte subject and 64 byte body will look like. With 3-4 bytes/characters/numbers per reading/status variable one can get data on 20 to 40 parameters. One can soon easily read this just like reading an email with full variable words. The example below are all Amps, Volts, Temperatures current and minimum and maximum for last 24 hours and month
From: xxxxx@gmail.com
Sent: Saturday, January 14, 2023 12:44 PM
To: xxxxx@verizon.net
Subject: AmpGnPoHv M01D14 T1241 GH10m10 UON00.0 Vb682 T055m50h058L50H075
1L092M123 2L074M162 Gt000m49 Pa087m127t015m607 Ha192M21t006m080

E. Tera Term VT Code Sequence Trace
This shows that the device can first connect to an SNPT time server and SUCCESFULLY get the TIME. This proves that the CC3100 hardware, most of the Code, WiFi access, etc are all still working. The SEND EMAIL trace shows that it is NOT able to send an email.
[image:]

Get time application - Version 1.3.0

 Line 1774 Device is configured in default state
 Line 1791 Device started as STATION
 Line 1803 Connection established w/ AP and IP is acquired
 Line 1808 LH Just after get HostIP
 Line 1818 LH Just after createConnection
 Line 1825 LH Just BEFORE getSNTPTTime...
 Line 336 In socket.c, sl_Sendto
 Line 95 In socket.c, _sl_BuildAddress
 Line 95 In socket.c, _sl_BuildAddress
 Line 1829 LH Just AFTER getSNTPTTime...
 Line 1488 in _i32 disconnectFromAP() after retVal = sl_WlanDisconnect();
 Line 1490 in _i32 disconnectFromAP() after if(0 == retVal)
 Line 1022 Device disconnected from the AP on application's request

 Email application - Version 1.3.0

 Line 881 Device is configured in default state
 Line 898 Device started as STATION
 Line 171 email Username
 Line 180 email Password
 Line 159 email port, security
 Line 915 Connection established w/ AP and IP is acquired
 Line 918 Sending email...
 Line 189 email Destination
 Line 1253 After...DESTINATION_EMAIL
 Line 198 email Subject
 Line 1265 After...LHemailSubject
 Line 208 email Message Body
 Line 1278 After...LHemailBody
 Line 301 In _smtpConnect after if TLS create secure socket
 Line 306 In _smtpConnect Set Socket
 Line 333 In _smtpConnect before connect to Socket
 Line 513 In socket.c, _sl_Connect
 Line 95 In socket.c, _sl_BuildAddress
 Line 554 In socket.c, _sl_Connect Verify_RET_OK
 Line 335 In _smtpConnect after connect to Socket
 Line 339 In _smtpConnect if Status < 0 && SL_ESECSNOVERIFY != Status
 Line 1281 After...Status = sl_NetAppEmailConnect()
 Line 922 Device couldn't send the email
 Line 1488 in _i32 disconnectFromAP() after retVal = sl_WlanDisconnect();
 Line 1490 in _i32 disconnectFromAP() after if(0 == retVal)
 Line 1011 Device disconnected from the AP on application's request

This is a subset longer version of the Send Email try which shows in more detail all the SPI read and writes to the CC3100 device. Just before and after the “Line 922 Device couldn’t send the email”
Line 554 In socket.c, _sl_Connect Verify_RET_OK
 Line 211 in spi.c spi_Write(...)
 Line 239 in spi.c spi_Read(...)
 Line 239 in spi.c spi_Read(...)
 Line 239 in spi.c spi_Read(...)
 Line 335 In _smtpConnect after connect to Socket
 Line 339 In _smtpConnect if Status < 0 && SL_ESECSNOVERIFY != Status
 Line 1281 After...Status = sl_NetAppEmailConnect()
 Line 922 Device couldn't send the email
 Line 211 in spi.c spi_Write(...)
 Line 211 in spi.c spi_Write(...)
 Line 211 in spi.c spi_Write(...)
 Line 239 in spi.c spi_Read(...)
 Line 239 in spi.c spi_Read(...)
 Line 239 in spi.c spi_Read(...)
 Line 1488 in _i32 disconnectFromAP() after retVal = sl_WlanDisconnect();
 Line 1490 in _i32 disconnectFromAP() after if(0 == retVal)
 Line 211 in spi.c spi_Write(...)
 Line 239 in spi.c spi_Read(...)
 Line 239 in spi.c spi_Read(...)
 Line 239 in spi.c spi_Read(...)
 Line 1011 Device disconnected from the AP on application's request

We get an SMTP return code of -111.
Google says
The SMTP 111 error occurs when an issue is present while connecting with the remote SMTP server. For example, you would run into this error due to invalid sender domains or firewall issues.

F. Selected Code Extracts to show the main code path
E.1 _SetEmail
I suspect the reason CC3100 SDK-1.3.0 no longer works has something to do with Email service security changes. I have use TLS successfully from 2014 to 2023…….so for 9 years it has worked. I tried port 465 with SSL as well but that also does not work.
 eMailServerSetting.Family = AF_INET;
// eMailServerSetting.Port = GMAIL_HOST_PORT; //Line 27 in config.h #define GMAIL_HOST_PORT 465
// eMailServerSetting.Port = OUTLOOK_HOST_PORT; //Line i41n config.h #define OUTLOOK_PORT 587
 eMailServerSetting.Port = ZOHO_HOST_PORT; //Line i41n config.h #define OUTLOOK_PORT 587
// eMailServerSetting.Port = VERIZON_HOST_PORT; //2-14-2023 changed to Verizon so can try LBH2015NVR
 eMailServerSetting.Ip = SL_IPV4_VAL(74,125,129,108);
 eMailServerSetting.SecurityMethod = SL_SO_SEC_METHOD_TLSV1_2; //Original 2014 to Jan 2023
 eMailServerSetting.SecurityCypher = SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA; //Original 2014 to Jan 2023

 //2-23-2023 Thomas Schmitt link said Gmail port 465 with SSL
 // CC3100 SDK1.3.0 shows about 25 Transport Security Options, Two with SSL
 // SSLV3 SSL_RSA_WITH_RC4_128_SHA
 // SSLV3 SSL_RSA_WITH_RC4_128_MD5
// eMailServerSetting.SecurityMethod = SL_SO_SEC_METHOD_SSLV3;
// eMailServerSetting.SecurityCypher = SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA;
// eMailServerSetting.SecurityCypher = SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5;

E.2 Config.h
See below the settings for: GMAIL, YAHOO, OUTLOOK, ZOHO per there Websites
#define SMTP_BUF_LEN 100
//#define GMAIL_HOST_NAME "smtp.gmail.com"
//#define GMAIL_HOST_PORT 465 //Line 1212 in emailAndGetTime.c eMailServerSetting.Port = GMAIL_HOST_PORT;
//#define GMAIL_HOST_PORT 465 //Line 1212 in emailAndGetTime.c 2-23-2023 link from Thomas 465 ok for use with SSL
//#define GMAIL_HOST_PORT 587 //10-5-2022 Google post says port 465 no longer accepted as the standard port, no2 587, 2525 and 25
 // 2-18-2023 try 587, 2525, and 25
//Another post says for plain text use port 465 for SSL, use port 587 for TLS
// Line 1215 in emailAndGetTime.c defines the security method, see below looks like TLS V1_2
// eMailServerSetting.SecurityMethod = SL_SO_SEC_METHOD_TLSV1_2;

//#define YAHOO_HOST_NAME "smtp.mail.yahoo.com"
//#define YAHOO_HOST_PORT 25

//#define OUTLOOK_HOST_NAME "smtp-mail.outlook.com"
//#define OUTLOOK_HOST_PORT 587 //Port Number: 587 (With TLS)
//#define OUTLOOK_HOST_PORT 25 //Alternative Port Number: 25 (Without TLS/SSL) 2-21-2023 but in emailAndGetTime.c I don't know how to specify none

#define ZOHO_HOST_NAME "smtp.zoho.com"
//#define ZOHO_HOST_PORT 465 //Port Number: 465 (With SSL)
#define ZOHO_HOST_PORT 587 //Port Number: 587 (With TLS)

//2-14-2023
//#define AOL_HOST_NAME "smtp.aol.com"
//#define VERIZON_HOST_NAME "smtp.verizon.net"
//#define GMAIL_HOST_NAME "smtp.verizon.net" //Can't find any place were it refers to GMAIL_HOST_NAME, so I could change to Verizon so fake it
//#define VERIZON_HOST_PORT 465 //2-14-2023, found that the AOL Port is also 465

/* Source email credentials */

/* Username should be less than (MAX_USERNAME_LEN) characters */
//#define USER "<username>"
//#define USER "xxx@gmail.com" //Lorne's gmail
//#define USER "xxx@protonmail.com" //Lorne's protonmail
//#define USER "xxx@outlook.com" //Lorne's Microsoft Outlook.com email name created 2-21-2023
#define USER "xxx@zohomail.com" //Lorne's Zoho email name created 3-1-2023
//#define USER "xxx@verizon.net" //Lorne's Verizon NVR email

/* Password should be less than (MAX_PASSWORD_LEN) characters */
//#define PASS "<password>"
//#define PASS "xyzpassword" //6-8-2022 gmail Ap Password
//#define PASS "xyzpassword" //Lorne's Proton Email
//#define PASS "xyzpassword" //2-21-2023 Password generated for Outlook.com
//#define PASS "xyzpassword" //AP password for Outlook.com micro's, 2-26-2023
#define PASS "xyzpassword" //Password for ZOHO mail 3-1-2023
//#define PASS "xyzpassword" //1-25-2022 Verizon NVR Ap Password generated

/** Destination Email address should be less than (MAX_DEST_EMAIL_LEN)
 * characters */
//#define DESTINATION_EMAIL "<destination_email>"
#define DESTINATION_EMAIL "abc@verizon.net" //Lorne's email destination
//#define DESTINATION_EMAIL "abc@gmail.com" //Lorne's gamil email destination
//#define DESTINATION_EMAIL "abc@outlook.com" //Lorne's Outlook email destination
E.3 Lines 137 – 217 _i32 sl_NetAppEmailSet
_i32 sl_NetAppEmailSet(_u8 command ,_u8 pValueLen,
 _u8 *pValue)
{

 SlNetAppEmailOpt_t* pEmailOpt = 0;
 SlNetAppSourceEmail_t* pSourceEmail = NULL;
 SlNetAppSourcePassword_t* pSourcePassword = NULL;
 SlNetAppDestination_t* pDestinationEmail = NULL;
 SlNetAppEmailSubject_t* pSubject = NULL;

 switch (command)
 {
 case NETAPP_ADVANCED_OPT:
 pEmailOpt = (SlNetAppEmailOpt_t*)pValue;

 g_EmailOpt.Port = pEmailOpt->Port;
 g_EmailOpt.Family = pEmailOpt->Family;
 g_EmailOpt.SecurityMethod = pEmailOpt->SecurityMethod;
 g_EmailOpt.SecurityCypher = pEmailOpt->SecurityCypher;
 g_EmailOpt.Ip = pEmailOpt->Ip;

 g_EmailSetStatus+=1;
 CLI_Write(" Line 159 email port, security \n\r"); //2-16-2023 added
// CLI_Write(" \n Line 159 email port: %d\n\", Port); //Gives errors
 break;
// See Thermostat Controller code in mytimers.c; works there but not here
// printf("\nMessage Body is: %d\n", usiGMTOffsetHrSet); //%d is an integer
// CLI_Write("\nMessage Body is: %s\n", LHemailBody);
 case NETAPP_SOURCE_EMAIL:
 pSourceEmail = (SlNetAppSourceEmail_t*)pValue;
 pal_Memset(g_Email.Username, '\0', MAX_USERNAME_LEN);
 pal_Memcpy(g_Email.Username, pSourceEmail->Username, pValueLen);

 g_EmailSetStatus+=2;
 CLI_Write(" Line 171 email Username \n\r"); //2-16-2023 added
 break;

 case NETAPP_PASSWORD:
 pSourcePassword = (SlNetAppSourcePassword_t*)pValue;
 pal_Memset(g_SourcePass.Password, '\0', MAX_PASSWORD_LEN);
 pal_Memcpy(g_SourcePass.Password, pSourcePassword->Password, pValueLen);

 g_EmailSetStatus+=4;
 CLI_Write(" Line 180 email Password \n\r"); //2-16-2023 added
 break;

 case NETAPP_DEST_EMAIL:
 pDestinationEmail=(SlNetAppDestination_t*)pValue;
 pal_Memset(g_Destination.Email, '\0', MAX_DEST_EMAIL_LEN);
 pal_Memcpy(g_Destination.Email, pDestinationEmail->Email, pValueLen);

 g_EmailSetStatus+=8;
 CLI_Write(" Line 189 email Destination \n\r"); //2-16-2023 added
 break;

 case NETAPP_SUBJECT:
 pSubject=(SlNetAppEmailSubject_t*)pValue;
 pal_Memset(g_Subject.Value, '\0', MAX_SUBJECT_LEN);
 pal_Memcpy(g_Subject.Value, pSubject->Value, pValueLen);

 g_EmailSetStatus+=16;
 CLI_Write(" Line 198 email Subject \n\r"); //2-16-2023 added
 break;

 case NETAPP_MESSAGE:
 if(pValueLen > (MAX_MESSAGE_LEN - 1))
 {
 ASSERT_ON_ERROR(EMAIL_SET_INVALID_MESSAGE);
 }
 pal_Memset(message, '\0', MAX_MESSAGE_LEN);
 pal_Memcpy(message ,pValue, pValueLen);
 CLI_Write(" Line 208 email Message Body \n\r"); //2-16-2023 added
 break;

 default:
 CLI_Write((_u8*)"\n\rLine209 Error:Default case\n\r");
 ASSERT_ON_ERROR(EMAIL_SET_INVALID_CASE);
 }

 return SUCCESS;
}

E.4 Lines 271 – 351 _i32 _smtpConnect
static _i32 _smtpConnect(void)
{
 SlSockAddrIn_t LocalAddr;
 SlTimeval_t tTimeout;
 _i32 cipher = 0;
 _i32 LocalAddrSize = 0;
 _i8 method = 0;
 _i32 Status = 0;

 LocalAddr.sin_family = g_EmailOpt.Family;
 LocalAddr.sin_port = sl_Htons(g_EmailOpt.Port);
 LocalAddr.sin_addr.s_addr = sl_Htonl(g_EmailOpt.Ip);
 LocalAddrSize = sizeof(SlSockAddrIn_t);

 /* If TLS is required */
 if(g_EmailOpt.SecurityMethod <= 5)
 {
 /* Create secure socket */
 smtpSocket = sl_Socket(SL_AF_INET, SL_SOCK_STREAM, SL_SEC_SOCKET);
 ASSERT_ON_ERROR(smtpSocket);

 tTimeout.tv_sec = 10;
 tTimeout.tv_usec = 90000;
 Status = sl_SetSockOpt(smtpSocket, SOL_SOCKET, SL_SO_RCVTIMEO,
 &tTimeout, sizeof(SlTimeval_t));
 ASSERT_ON_ERROR(Status);

 method = g_EmailOpt.SecurityMethod;
 cipher = g_EmailOpt.SecurityCypher;

 CLI_Write(" Line 301 In _smtpConnect after if TLS create secure socket \n\r");

 /* Set Socket Options that were just defined */
 Status = sl_SetSockOpt(smtpSocket, SL_SOL_SOCKET, SL_SO_SECMETHOD,
 &method, sizeof(method));
 CLI_Write(" Line 306 In _smtpConnect Set Socket \n\r");
 if(Status < 0)
 {
 sl_Close(smtpSocket);
 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 311 In _smtpConnect sl_Close smtpSocket step 1 \n\r");
 }
 Status = sl_SetSockOpt(smtpSocket, SL_SOL_SOCKET, SL_SO_SECURE_MASK,
 &cipher, sizeof(cipher));
 if(Status < 0)
 {
 sl_Close(smtpSocket);
 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 319 In _smtpConnect sl_Close smtpSocket step 2 \n\r");
 }
 }
 /* If no TLS required */
 else
 {
 /* Create socket */
 smtpSocket = sl_Socket(SL_AF_INET, SL_SOCK_STREAM, SL_IPPROTO_TCP);
 ASSERT_ON_ERROR(smtpSocket);

 CLI_Write(" Line 329 In _smtpConnect after if NO TLS required create socket \n\r");
 }

 /* connect to socket */
 CLI_Write(" Line 333 In _smtpConnect before connect to Socket \n\r");
 Status = sl_Connect(smtpSocket, (SlSockAddr_t *)&LocalAddr, LocalAddrSize);
 CLI_Write(" Line 335 In _smtpConnect after connect to Socket \n\r"); //2-16-2023 this prints

 if((Status < 0) && (SL_ESECSNOVERIFY != Status))
 {
 CLI_Write(" Line 339 In _smtpConnect if Status < 0 && SL_ESECSNOVERIFY != Status \n\r"); //2-16-2023 this prints
// **
// Jan 30, 2023 I do get the above CLI write, but then no more
// Appears that Connect to Socket is NOT successful
// Next write I get is at line 914
// **

 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 347 In _smtpConnect Status after connect to socket \n\r"); //2-16-2023 do not get this
 }
 CLI_Write(" Line 349 In _smtpConnect right before return SUCCESS \n\r"); //2-16-2023 do not get this
 return SUCCESS;
}

E.5 Lines 839 – 951 int LHSendEmail()
int LHSendEmail()
{
 usiEmailDummy = 0;
 usiEmail1OrTime2 = 1; //In the function call set to 1 for email, set to 2 for get-time

 _i32 retVal = -1;

 retVal = initializeAppVariables();
 ASSERT_ON_ERROR(retVal);

// /* Stop WDT and initialize the system-clock of the MCU */
// stopWDT();
// initClk();

 /* Configure command line interface */
 CLI_Configure();

 displayBanner();

 /*
 * Following function configures the device to default state by cleaning
 * the persistent settings stored in NVMEM (viz. connection profiles &
 * policies, power policy etc)
 *
 * Applications may choose to skip this step if the developer is sure
 * that the device is in its default state at start of application
 *
 * Note that all profiles and persistent settings that were done on the
 * device will be lost
 */
 retVal = configureSimpleLinkToDefaultState();
 if(retVal < 0)
 {
 if (DEVICE_NOT_IN_STATION_MODE == retVal)
 CLI_Write(" Line 874 Failed to configure the device in its default state \n\r");

// 5-24-2020, I don't see the value of LOOP_FOREVER(); as this just hangs the program forever at this point
 //I think better to move on, as already printed out the failure, maybe some time later it will work
// LOOP_FOREVER();
 }

 CLI_Write(" Line 881 Device is configured in default state \n\r");

 /*
 * Initializing the CC3100 device
 * Assumption is that the device is configured in station mode already
 * and it is in its default state
 */
 retVal = sl_Start(0, 0, 0);
 if ((retVal < 0) ||
 (ROLE_STA != retVal))
 {
 CLI_Write(" Line 892 Failed to start the device \n\r");
// 5-24-2020, I don't see the value of LOOP_FOREVER(); as this just hangs the program forever at this point
 //I think better to move on, as already printed out the failure, maybe some time later it will work
// LOOP_FOREVER();
 }

 CLI_Write(" Line 898 Device started as STATION \n\r");

 /* Configure the source email */
 retVal = setEmail();
 if(retVal < 0)
 LOOP_FOREVER();

 /* Connecting to WLAN AP */
 retVal = establishConnectionWithAP();
 if(retVal < 0)
 {
 CLI_Write(" Line 909 Failed to establish connection w/ an AP \n\r");
// 5-24-2020, I don't see the value of LOOP_FOREVER(); as this just hangs the program forever at this point
 //I think better to move on, as already printed out the failure, maybe some time later it will work
// LOOP_FOREVER();
 }

 CLI_Write(" Line 915 Connection established w/ AP and IP is acquired \n\r");

 /* Configure and send the email */
 CLI_Write(" Line 918 Sending email... \n\r"); //Jan 30, 2023 successfully get this
 retVal = sendEmail();
 if (retVal < 0)
 {
 CLI_Write(" Line 922 Device couldn't send the email \n\r");
// 5-24-2020, I don't see the value of LOOP_FOREVER(); as this just hangs the program forever at this point
 //I think better to move on, as already printed out the failure, maybe some time later it will work
// LOOP_FOREVER();
// LOOP_FOREVER(); // Jan 30, 2023 put this back in as get Device couldn't send the email \n\r
 //Did not solve the problem of not sending email and just locks at this point
 }
 else
 {
 CLI_Write(" Line 931 Email Sent successfully \n\r");
 }

 /* Disconnect from AP */
 retVal = disconnectFromAP();
 if(retVal < 0)
 {
 CLI_Write(" Line 938 Failed to disconnect from the AP \n\r");
// 5-24-2020, I don't see the value of LOOP_FOREVER(); as this just hangs the program forever at this point
 //I think better to move on, as already printed out the failure, maybe some time later it will work
// LOOP_FOREVER();
 }

 retVal = sl_Stop(SL_STOP_TIMEOUT);
// 5-24-2020, I don't see the value of LOOP_FOREVER(); as this just hangs the program forever at this point
//I think better to move on, as already printed out the failure, maybe some time later it will work
// if(retVal < 0)
// LOOP_FOREVER();

 return 0;
} // Closing bracket for int LHSendEmail()

E.6 Lines 1194 – 1233 _i32 setEmail()

static _i32 setEmail()
{
 _i32 retVal = -1;
 SlNetAppSourceEmail_t sourceEmailId = {0};
 SlNetAppSourcePassword_t sourceEmailPwd = {0};
 SlNetAppEmailOpt_t eMailServerSetting = {0};

 pal_Memcpy(sourceEmailId.Username,USER,pal_Strlen(USER)+1);
 retVal = sl_NetAppEmailSet(NETAPP_SOURCE_EMAIL,pal_Strlen(USER)+1,
 (_u8*)&sourceEmailId);
 ASSERT_ON_ERROR(retVal);

 pal_Memcpy(sourceEmailPwd.Password,PASS,pal_Strlen(PASS)+1);
 retVal = sl_NetAppEmailSet(NETAPP_PASSWORD,pal_Strlen(PASS)+1,
 (_u8*)&sourceEmailPwd);
 ASSERT_ON_ERROR(retVal);

 eMailServerSetting.Family = AF_INET;
// eMailServerSetting.Port = GMAIL_HOST_PORT; //Line 27 in config.h #define GMAIL_HOST_PORT 465
// eMailServerSetting.Port = OUTLOOK_HOST_PORT; //Line i41n config.h #define OUTLOOK_PORT 587
 eMailServerSetting.Port = ZOHO_HOST_PORT; //Line i41n config.h #define OUTLOOK_PORT 587
// eMailServerSetting.Port = VERIZON_HOST_PORT; //2-14-2023 changed to Verizon so can try LBH2015NVR
 eMailServerSetting.Ip = SL_IPV4_VAL(74,125,129,108);
 eMailServerSetting.SecurityMethod = SL_SO_SEC_METHOD_TLSV1_2; //Original 2014 to Jan 2023
 eMailServerSetting.SecurityCypher = SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA; //Original 2014 to Jan 2023

 //2-23-2023 Thomas Schmitt link said Gmail port 465 with SSL
 // CC3100 SDK1.3.0 shows about 25 Transport Security Options, Two with SSL
 // SSLV3 SSL_RSA_WITH_RC4_128_SHA
 // SSLV3 SSL_RSA_WITH_RC4_128_MD5
// eMailServerSetting.SecurityMethod = SL_SO_SEC_METHOD_SSLV3;
// eMailServerSetting.SecurityCypher = SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA;
// eMailServerSetting.SecurityCypher = SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5;

 retVal = sl_NetAppEmailSet(NETAPP_ADVANCED_OPT,sizeof(SlNetAppEmailOpt_t),
 (_u8*)&eMailServerSetting);
 ASSERT_ON_ERROR(retVal);

 return SUCCESS;
}

E.7 Lines 1246 – 1290 _i32 sendEmail()
static _i32 sendEmail()
{
 _i32 Status = -1;

 Status = sl_NetAppEmailSet(NETAPP_DEST_EMAIL,
 pal_Strlen(DESTINATION_EMAIL),
 (_u8 *)DESTINATION_EMAIL);
 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 1253 After...DESTINATION_EMAIL \n\r"); //Jan 30, 2023 added this
// Status = sl_NetAppEmailSet(NETAPP_SUBJECT,
// pal_Strlen(EMAIL_SUBJECT),
// (_u8 *)EMAIL_SUBJECT);

//LH added 5-20-2020 to use my character array for the email subject
 Status = sl_NetAppEmailSet(NETAPP_SUBJECT,
 pal_Strlen(LHemailSubject),
 (_u8 *)LHemailSubject);

 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 1265 After...LHemailSubject \n\r"); //Jan 30, 2023 added, this is printed

// Status = sl_NetAppEmailSet(NETAPP_MESSAGE,
// pal_Strlen(EMAIL_MESSAGE),
// (_u8 *)EMAIL_MESSAGE);

//LH added 5-20-2020 to use my character array for the email message
 Status = sl_NetAppEmailSet(NETAPP_MESSAGE,
 pal_Strlen(LHemailBody),
 (_u8 *)LHemailBody);

 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 1278 After...LHemailBody \n\r"); //Jan 30, 2023 added this, this IS printed

 Status = sl_NetAppEmailConnect(); //2-16-2022 looks like this function does not complete
 CLI_Write(" Line 1281 After...Status = sl_NetAppEmailConnect() \n\r"); //2-16-2022, this is NOT printed
 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 1283 After...sl_NetAppEmailConnect \n\r"); //Jan 30, 2023 added this, this is NOT printed

 Status = sl_NetAppEmailSend();
 ASSERT_ON_ERROR(Status);
 CLI_Write(" Line 1287 After...sl_NetAppEmailSend \n\r"); //Jan 30, 2023 added, this is NOT printed
 return SUCCESS;
}

E.8 Lines 1480 – 1498 _i32 disconnectFromAP()
static _i32 disconnectFromAP()
{
 _i32 retVal = -1;

 /*
 * The function returns 0 if 'Disconnected done', negative number if already disconnected
 * Wait for 'disconnection' event if 0 is returned, Ignore other return-codes
 */
 retVal = sl_WlanDisconnect();
 CLI_Write(" Line 1488 in _i32 disconnectFromAP() after retVal = sl_WlanDisconnect(); \n\r");
 if(0 == retVal)
 CLI_Write(" Line 1490 in _i32 disconnectFromAP() after if(0 == retVal) \n\r");
 {
 /* Wait */
 while(IS_CONNECTED(g_Status)) { _SlNonOsMainLoopTask(); }
 }

 return SUCCESS;
}

END

TI CC3100 Email-No-Longer-Works-V2-3-20-2023	1	3/20/2023 6:48 PM
image1.png

