
Copyright  2016, Texas Instruments Israel Ltd.

PRELIMINARY: This documents contain information on a product under development and are issued for evaluation

purposes only. Features characteristic data and other information are subject to change.

Please be aware that an important notice concerning availability, standard warranty, and use

in critical applications of Texas Instruments semiconductor products and disclaimers thereto

appears at the end of this data sheet.

SimpleLink Provisioning

Mobile App

Application Note

User Guide

Revision 0.2

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 2 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

Table of Contents

TERMS & ABBREVIATIONS..3

1. INTRODUCTION ...4

1.1. OVERVIEW ... 4

1.2. PROVISIONING MODES ... 6

2. TOP LEVEL ARCHITECTURE ...7

2.1. TOP LEVEL BLOCKS .. 7

2.2. PROVISIONING STEPS ... 8

2.3. STEP 1: USER INPUTS .. 8

2.4. STEP 2: SENDING CONFIGURATIONS ... 8

2.5. STEP 3: FINDING THE DEVICE ON THE NETWORK ... 9

2.6. STEP 4: CONNECTING TO THE DEVICE AND GETTING FEEDBACK ... 9

2.7. FALLBACK STEP: CONFIRMATION FAILED .. 9

3. PROVISIONING – AP MODE .. 10

3.1. OVERVIEW ... 10

3.2. AP MODE FLOW CHART ... 11

3.3. BLOCK DIAGRAM ... 12

3.4. UDP LISTENER ... 13

3.5. MDNS LISTENER ... 13

3.6. PING TASK ... 14

3.7. HTTP REQUESTS FOR AP MODE ... 15

4. IOS VS ANDROID DEVELOPMENT GUIDELINES ... 19

5. PORTING INSTRUCTIONS ... 20

6. SETTINGS ... 22

7. LOGGER AND EMAIL .. 23

Table of Figures

Figure 1 – Overview ... 5

Figure 2 – Top level architecture.. 7

Figure 6 – Flow chart ... 11

Figure 7 – Android block diagram .. 12

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 3 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

Terms & Abbreviations

Abbreviation /Term Meaning / Explanation

HTTP Hypertext Transfer Protocol

SC SmartConfig™

mDNS Multicast DNS

UDP User Datagram Protocol

Bcast Broadcast

JSON Javascript Object Notation

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 4 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

1. Introduction

1.1. Overview

This document describes the Provisioning TI’s SimpleLink™ Wi-Fi® device and how to

use it.

The main focus of the document is to describe the usage of the Android/iOS building

blocks for UI requirements, networking and provisioning APIs required for building the

mobile application.

A first step in utilizing CC3xxx in a Wi-Fi enabled application (“Wi-Fi Starter Pro”) is to
configure CC3xxx to a user’s Wi-Fi network. This requires information on the AP, or SSID
name, and the security passcode when WEP/WPA/WPA2 is enabled. Considering that
embedded Wi-Fi applications will generally lack user interfaces such as keypads or
touchscreens, this process can be complex without the use of advanced I/O.

SmartConfig™ leverages the standard mechanisms present in Wi-Fi to configure a
CC3xxx's association information on the fly, regardless of whether user-interface is
available. In this process a Wi-Fi enabled device such as a smartphone, tablet or a laptop
is used to send the association information to the CC3xxx.

Additionally, SmartConfig does not depend on the host microcontroller's I/O capabilities,
thereby usable by deeply embedded applications. It can be used to associate multiple
devices to the same AP simultaneously. And furthermore, the device used to configure
(smartphone or tablet) stays connected to the user’s home network during the
configuration process (as opposed to other methods that require disconnection).

Figure 1 describes this procedure in general – a device which is not connected to the
network but exist on the network range, will be able to accept the information which is
required for connecting to the network, using the combination of the embedded application
(which is described in another document) and the mobile application which is going to be
introduced in this document.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 5 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

Figure 1 – Overview

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 6 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

1.2. Provisioning Mode

Wi-Fi Provisioning is usually done once, while connecting a new device to the network or

in case of a changes on the local network which requires configurations changes.

Following the completeness of the provisioning steps, CC3xxx device saves the accepted

Wi-Fi information as an encrypted profile. This profile connects automatically to the

network when it is available, while the device is activated as Wi-Fi as a station role.

“AP mode” provisioning method connects to the device as a Wi-Fi Station and sends the

configurations. By using this mode the user should know which device to connect, by its

published SSID while acting on AP role.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 7 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

2. Top Level Architecture

2.1. Top Level blocks

Figure 2 – Top level architecture

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 8 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

2.2. Provisioning steps

There are 4 steps for completing provisioning:

 User Inputs – Use inputs from the user about the network.

 Sending configurations – Mobile is sending, device is receiving.

 Finding the device on the network – Mobile is searching the device; device is

publishing information and responses to network queries.

 Connecting to the device and getting feedback – Mobile connects to device,

over the shared network, device is responding.

2.3. Step 1: User inputs

This is the first step of using the application. The Mobile phone should be connected to

the network using Wi-Fi as a starting point, before activating provisioning.

While starting the application, the network data should be filled so that the mobile device

will be able to transmit it to the network.

The mandatory fields on both options is the network SSID (which is usually the active Wi-

Fi connection of the mobile phone) and network password, in case of using a secured

network.

Device name, if not set, will keep the default device name as it was before.

2.4. Step 2: Sending configurations

The second phase is to send the information to the device, using the active network

though the device is not a part of this network, yet.

In this case the mobile side is responsible for transmitting the information to the network

and the device listens to the information transmitted (even if it is a secured network) and

after verifying the correctness of the information will create and store a profile of this

network.

The profile is now activated and connects to the network.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 9 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

2.5. Step 3: Finding the device on the network

The third phase is to find device’s IP address, after it is connected to the Wi-Fi network

and acquired an IP address from the DHCP server.

The mobile is going to use 3 options for detecting the device on the network:

- Listening to UDP broadcast packets from the device specifying the name and ip

address

- Listening UDP multicast packets from mDNS on the network, and filtering by services

supported by the device

- Sending broadcasts ping packets and catching ping response packets from the devices

on the network.

In case the network is not totally isolated, the device is going to be detected and verified

by the mobile application in one or more of the 3 options described.

2.6. Step 4: Connecting to the device and getting feedback

The final step is to check if the device completed provisioning successfully. This is done

by sending a query from the Mobile to the device, asking for the provisioning results. This

step is performed assuming we already know the device IP address from previous step,

and the device is supporting HTTP requests.

There are several response options. Upon successful response the provisioning is

completed. In case there is a timeout or a failure, AP fallback mode is suggested to the

user by the Mobile application.

2.7. Fallback step: Confirmation failed

In case the mobile side failed to connect to the device and get a feedback, the mobile

should connect to the device directly and the device will switch to the configurations stage

as usual. In this case, the device was configured but the confirmation feedback will be

transferred using the direct connection.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 10 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3. Provisioning – AP Mode

3.1. Overview

AP mode is the process of using device AP role for configurations. After selecting the

desired AP for configurations, all settings (ssid,password,device name,uuid) are sent by

HTTP protocol. When the configurations are ready, the device will switch to STA role and

will use the profile (ssid + password) to connect to the local network. At this stage, the

mobile applications will connect to the same AP as well and will search for the SimpleLink,

using one or more of the 3 methods: Ping, mDNS and Udp brodcasts.

In case there is a problem finding SimpleLink device, the Device is going to change back

his role to AP. The Mobile side will connect to the SimpleLink device, again, but this time

to close the loop and to fetch the provisioning results.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 11 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3.2. AP mode Flow Chart

Figure 3 – Flow chart

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 12 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3.3. Block Diagram

Figure 4 – Android block diagram

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 13 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3.4. UDP listener

UDP listener is a UDP Server, running on a specific thread (Android UI thread or iOS

thread).

It should be activated as a background task so that it could find UDP broadcast from the

device, upon acquiring IP address from the network.

The Device should send a few messages, with delays between them to publish its ip

address and name.

The data is published using port number “1501” and is contains device name and device

ip address, comma separated on a textual format.

Upon successful receiving and parsing the data, UDP listener callback is activated and

the device is added to the device containers, after it is converted to JSON format.

There is no use for UDP listener while the device is used as “AP” mode.

For example – starting UDP server on Android:

udpBcastServer = new UdpBcastServer(mCallback);

3.5. mDNS listener

mDNS listener assumes the device, using its default configurations, support mDNS &

HTTP server.

In this case, upon acquiring an ip address, the device is going to announce it services by

using multicast messages. The http is one of the services going to be published to the

network.

Since http service contains some known information, we rely on this information for adding

the device containing this specific information to our device list.

The txt fields on the mDNS packet we check should contains the string
"srcvers=1D90645" for confirming the correctness of this device.
In case a valid SimpleLink device is detected using mDNS, we construct a JSON
message with the device name and its ip address and add it to our device container.

On Android – mDNSHelper is handling mDNS initialization and callback function for
accepting and parsing incoming mDNS information from the local network.
There is no use for mDNS listener while the device is used as “AP” mode.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 14 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3.6. Ping task

Ping task is a background task, which is activated after SmartConfig is done, to find

devices on the local network and it is based on sending a broadcast ICMP ECHO request

(ping request) from the device and waiting for ECHO reply (ping reply) from devices on

the local network.

SimpleLink device is designed to reply to broadcast ping requests by default. Upon

accepting response from the network devices, the mobile application will filter only

SimpleLink devices by querying specific http request – getting the device version. In case

we got a valid response, it will indicate this is a simple link device and we can add it to our

devices container in a JSON format.

Ping class is handling ping generation and task activity of accepting ping response and
creating an http request for validation the device name.

There is no use for mDNS listener while the device is used as “AP” mode.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 15 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3.7. HTTP requests for AP mode

Since HTTP queries are usually long and may take time to complete (depends on Host

speed and interface, link quality) all HTTP actions are wrapper on an async thread and

should not stall any UI activity.

3.7.1. Get Device Version

The HTTP call is based on “http://[ip address]/param_product_version.txt”
This specific API is good for both “R1” and for “R2” since it should return the current

version.

After getting version information, it should be used on the next HTTP APIs as one of the

input parameters

Device method:

public static DeviceVersion getSLVersion(String baseUrl)

3.7.2. Get Configurations Results

This API is called after the device is already connected to the local network and the

reason it is activates are:

- Check the error code stored on the device for notifying the user about the success or

failure of the provisioning.

- In case the device waits for 30 seconds and this request is not activated by the mobile

side, it assumes the provisioning is uncompleted and it switches to AP role as fallback.

public static String getCGFResultFromDevice(String baseUrl, DeviceVersion version)

3.7.3. Get Response number code

The string fetched from previous API “getCGFResultFromDevice” should be converted to

a number by using the string by the following conversion table:

String Value

“5” or “4” Success

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 16 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

"Unknown Token" Unknown_token

“Timeout” Timeout

“0” Not_Started

“1” Ap_not_found

“2” Wrong_Password

“3” Ip_add_failed

Any other string Failure

For example:

CFG_Result_Enum result_Enum = NetworkUtil.cfgEnumForResponse(resultString)

3.7.4. Get Error Message from Number

This API converts from the number to a human readable string. This string is shown to the

user as a result of the provisioning actions, upon finish.

public static String getErrorMsgForCFGResult(CFG_Result_Enum result)

Enum String

Success "Provisioning Successful"

Unknown_token "CFG_Result_Enum: Unknown_Token";

Timeout "CFG_Result_Enum: Time_Out"

Not_Started "The provisioning sequence has not started yet. Device is

waiting for configuration to be sent"

Ap_not_found "Could not find the selected WiFi network; it is either turned

off or out of range. When the WiFi network is available please

restart the device in order to connect."

Wrong_Password "Connection to selected AP has failed. Please try one of the

following:

Check your password entered correctly and try again

Check your AP is working\nRestart your AP"

Ip_add_failed "Failed to acquire IP address from the selected AP. Please

try one of the following:

Try connecting a new device to the WiFi AP to see if it is OK

Restart the WiFi AP"

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 17 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

Failure "Please try to restart the device and the configuration

application and try again"

For example:

result = NetworkUtil.getErrorMsgForCFGResult(result_Enum);

3.7.5. Set IoT uuid

Send iotUUID string, up to 64 characters to the device. In the case device can handle

uuid, it will send it to the iot server, if configured.

This is an optional setting and by default the UI is not going to show it.

public static Boolean setIotUuid(String newName, String baseUrl)

3.7.6. Get Device Name

This API reads the device name from the device.

Device name is presented on the UI, in case the user decides to get the default device

name and not to set a device name.

public static String getDeviceName(String baseUrl, DeviceVersion version)

*It is recommended to set a device name since if some devices will response to mDNS,

the mobile device cannot decide which one belongs to the active one, since no name was

set

3.7.7. Set Device Name

Set the device URN name, in case the “Device Name” field is being used by the user

public static Boolean setNewDeviceName(String newName, String baseUrl,
DeviceVersion version)

AP mode requires additional HTTP APIs since the profile for the device is being

transferred directly from the mobile side to the device using an existing Wi-Fi connection.

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 18 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

3.7.8. Get SSID List from Device

This API request AP’s list from the device. The API will accept the list of scanned APs.

The query will not initiate a scan. It will fetch the latest APs from the device’s list.

It will be activated while pressing “WiFi network” on AP mode.

public static ArrayList<String> getSSIDListFromDevice(String baseUrl, DeviceVersion
version

3.7.9. Rescan Networks on Device

API for setting scan interval settings.

public static Boolean rescanNetworksOnDevice(String url, DeviceVersion version)

3.7.10. Add Profile

This API is a direct profile activation API for storing an new profile. It accepts connection

details like SSID, password and security type and sends the data to the device, using

HTTP protocol.

public static Boolean addProfile(String baseUrl, SecurityType securityType, String ssid,
String password, String priorityString, DeviceVersion version)

3.7.11. Notify Device Profile is ready

Upon setting a new profile, the mobile side schedules an activation of this profile by using
this API. It notifies the device that the mobile is ready for the next step, and the device
should restart as Wi-Fi station mode for starting to use the profile that was set previously.

public static Boolean moveStateMachineAfterProfileAddition(String baseUrl, String ssid,
DeviceVersion version)

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 19 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

4. iOS vs Android development guidelines

iOS is different on the way it is activated and used in several points:

 iOS prevents Wi-Fi connection/disconnection from the application side. While using

provisioning using AP mode requires connecting to Device or Mobile from the “Settings”

menu and cannot be handled by the application code.

In such cases, the application will notify the user what to do, and the user should

perform the action, manually from the “Phone Settings” application.

 iOS prevents APIs for scanning Wi-Fi networks. In such cases, the application will notify

the user to open “Phone Settings” and

 iOS has no API that may expose the security type of the connected device. In case of

selecting an AP for provisioning (from the Device list) the user should specify if and what

is the password for this AP

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 20 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

5. Porting Instructions

5.1.1. Generate UI fields required for your network

 SSID name

 Password

 Device name

5.1.2. Android Ap provisioning mode

1. Find your device by name and connected to it by Wi-Fi Manager Android API.

2. Check that the device can track your AP by activating device scanning from the

device using “getSSIDListFromDevice“ API

3. Activate “addProfile” API with the required parameters from UI

4. Optionally, set device name

5. Activate “moveStateMachineAfterProfileAddition” to indicate the device is ready

to restart after all settings are added

6. The device should connect to the required network by adding a profile and

restarting at STA role.

7. Mobile application should connect to the same AP network, by Wi-Fi manager

8. Mobile should activate all the services find the new device: mDNS,Ping

(broadcast) and UDP server

9. After finding the new device’s IP address, “getCGFResultFromDevice” API

should be activated to fetch the result and to indicate that provisioning is done

10. In case the device is not detected or no response from it, the Mobile application

will try to connect to it (assuming it moved to AP role), for getting the result and

completing the provisioning

11. After getting the results, provisioning is finished in case of success.

12. In case of failure, the error should be inspected and fixed (wrong password,

range issues etc.)

5.1.3. iOS Ap provisioning mode

1. Find your device manually (iOS has no API fore scanning or Wi-Fi

connect/disconnect)

2. Optionally, activate get version using “getProductVersionFromUrl” API to verify

you use a simplelink device

3. Optionally set device name using “setDeviceNameFromUrl”

4. Activate add profile API by “startAddingProfileProcedureFromURL” which is

wrapper by “addProfile”. This API is used for adding a profile and it is followed by

sending a reset request from the device by calling

“moveStateMachineAfterProfileAddition” API

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 21 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

5. Upon adding profile, activate “mDdnsDiscoveryStart”,ping activity timer and UDP
listener (“startStopUdp”)

6. After finding the new device’s IP address, “getCGFResultwithUrl” |API should be
activated to fetch the result and to indicate that provisioning is done

7. In case the device is not detected or not responsding, Mobile application will try
to connect to it (assuming it moved to AP role), for getting provisioning’s results

8. After getting the results, provisioning is finished in case of success.
9. In case of failure, the error should be inspected and fixed (wrong password,

range issues etc.)

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 22 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

6. Settings

Settings tab is used for application configurations. it is a persistent storage on the

application’s local storage.

Using Android it is saved as a “SharedPreferences” object for persistency.

Using iOS the data is stored using “NSUserDefaults” class object.

 Auto Device Selection – Using AP mode – connects automatically to a SimpleLink

device, if only one device is detected

 Enable SmartConfig – Unsupported mode. This setting should be set to False.

 Enable QR reader – Adds a QR code option

 Show Device Name- Display device name optional field

 Show Security Key – Show SmartConfig security key for encryption

 Open in Devices Screen – Changes default init screen

 Show iotLink UUID – Optional field for iotLink services

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 23 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

7. Logger and Email

Both iOS and Android application stores data logs for sending the information to TI in case

any problem should be reported (passwords are not stored as a part of this log file).

The log file exist on the application’s local storage and in some cases it is not exposed

from the phone’s UI.

The applications contains an email send button on the “Settings” screen which allows the

user to fetch and send the latest log file sends it to ecs-bugreport@list.ti.com as an

attachment.

mailto:ecs-bugreport@list.ti.com

Simple link Provisioning - Mobile

Revision 0.2

 Print Date: 27 May 2016

Copyright  2016, Texas Instruments Israel Ltd. Page 24 of 24

Printed specifications are not controlled documents. Updated version is on network only, verify version

before using

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their

products or to discontinue any product or service without notice, and advise customers

to obtain the latest version of relevant information to verify, before placing orders, that

information being relied on is current and complete. All products are sold subject to the

terms and conditions of sale supplied at the time of order acknowledgement, including

those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable

at the time of sale in accordance with TI’s standard warranty. Testing and other quality

control techniques are utilized to the extent TI deems necessary to support this

warranty. Specific testing of all parameters of each device is not necessarily performed,

except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE

POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR

ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR

PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE

SUITABLE FOR USE IN LIFE–SUPPORT DEVICES OR SYSTEMS OR OTHER

CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS

IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, the customer to

minimize inherent or procedural hazards must provide adequate design and operating

safeguards.

TI assumes no liability for applications assistance or customer product design. TI does

not warrant or represent that any license, either express or implied, is granted under

any patent right, copyright, mask work right, or other intellectual property right of TI

covering or relating to any combination, machine, or process in which such

semiconductor products or services might be or are used. TI’s publication of information

regarding any third party’s products or services does not constitute TI’s approval,

warranty or endorsement thereof.

