
Nick Lethaby 
IoT Ecosystem Manager
Texas Instruments

A more secure and reliable  
OTA update architecture  
for IoT devices 



                                          I         2   
 
A more secure and reliable OTA update architecture for IoT devices October 2018

Over-the-air (OTA) updates offer many benefits 
for Internet of Things (IoT) devices. They 
enable remote patching of bugs or security 
flaws, rather than having expensive service 
technicians or inexperienced users perform  
the updates in-person.           

How OTA update security and 

reliability becomes compromised

It is first important to understand how and where  

an OTA update can be compromised.

The process of downloading OTA update files 

to an IoT device represents one set of risks. 

Transmission errors may corrupt some of the file 

contents and render them unusable. Hackers can 

exploit security flaws to compromise the download. 

For example, the IoT device might be tricked into 

downloading from a different server, which could 

substitute malware in place of the real OTA update. 

Or a “man-in-the-middle” attack could substitute 

files different from those sent by the original OTA 

server. If an earlier version of the device software 

contained known security vulnerabilities, an attacker 

might attempt to have the device “update” to 

the earlier (but flawed) software version and then 

exploit any vulnerability. Hackers can also mount 

physical attacks on IoT devices to read memory, 

They also offer the potential for enhanced revenue streams, as the original equipment 

manufacturer (OEM) can offer add-on services through an OTA update.

These benefits, however, must be balanced by the risks: a poorly executed OTA 

update can result in “bricked” (nonfunctioning) devices and significant inconvenience 

to consumers, as well as reputational damage to the OEM. In addition, OTA updates 

offer a potential path for the introduction of malware on IoT devices and can therefore 

compromise security for both consumers and the OEM. With millions of IoT devices, 

even a small percentage of OTA failures or security breaches will result in thousands or 

tens of thousands of affected consumers.

In this paper, I will look at the requirements for a secure and reliable OTA update 

mechanism, focusing on the embedded software and hardware on the IoT device, while 

also covering some of the services that must be available on the cloud side.  

I will then examine an implementation based on the combination of Amazon FreeRTOS 

and Texas Instruments (TI) SimpleLink™ Wi-Fi®-connected microcontrollers (MCUs).



                                          I         3   
 
A more secure and reliable OTA update architecture for IoT devices October 2018

extracting the image and its associated metadata, 

cryptographic keys, or other critical information that 

could compromise future OTA updates.

Even after the successful storage of the correct OTA 

update files, transitioning the IoT device to a new 

image may fail. For example, a power failure during 

reboot or a flaw in the update image may cause the 

IoT device to lose network or service connectivity 

and become unrecoverable.

As massive networks of IoT devices emerge, access 

to device-management systems offers a third 

source of potential compromise. These device-

management systems will typically originate large-

scale OTA update processes, and enforcing secured 

access is critical.

Key elements of an OTA update 

implementation

Let’s walk through the key elements of an OTA 

update process in the context of potential threats 

and mishaps:

•	 OTA deployment operator security.  		

	 A device-management service will inform 		

    connected devices that an OTA update is 	  	

	 available and how to obtain it. Giving only 		

	 highly trusted users access to the 			 

	 device-management system will minimize 		

	 the possibility of careless errors or hackers 		

	 injecting malware into the system.

•	 Incremental roll-out of OTA updates. 		

	 Simultaneously informing millions of devices 		

	 that an update is available can result in significant 	

	 negative consequences, such as the server being 	

	 overwhelmed with upgrade requests. In addition, 	

	 IoT devices may use different software versions, 	

	 with some versions requiring a specific update 		

    (such as a security patch) that others do not. 		

	 Thus, the ability to update only certain devices 		

	 is critical. An incremental update approach 		

	 also allows any major problems to surface  		

	 before full deployment, thereby limiting the 		

	 number of consumers adversely affected.

•  Securely downloading the update. 			 

    Once an IoT device is aware that an 			 

	 update is available, it will need to download 		

	 it. One approach is to connect to a dedicated 		

	 server and download the update image. But 		

	 since an IoT device is typically already connected 	

	 to the cloud via a secure telemetry channel, 		

	 which typically operates using the Message 		

	 Queuing Telemetry Transport (MQTT) protocol,  

	 using a separate mechanism for OTA updates 		

	 increases the attack surface for hackers. An 		

	 alternative is to download the OTA update via  

	 the MQTT channel. Using the MQTT channel is  

	 also more memory-efficient, as there is no 		

	 need for an HTTP client or an 				  

	 additional Transport Layer Security (TLS) 		

	 channel (although this is mostly beneficial 		

	 when the MCU is executing the application and 	

	 networking stack in the same memory space). 		

	 Whether the OTA update downloads via the 		

	 MQTT channel or from a separate HTTPS server, 	

	 the device will need to support protocols such as 	

	 TLS to first establish a secure connection.

•	 Security from physical attacks.  

	 Although remote attacks are the most common 		

	 security threats, IoT device physical 			 

	 security is also important, especially 			 

	 since large deployments may attract more 		

	 sophisticated attacks. To hinder physical 		

	 attacks, the IoT device should prevent 			 

	 attackers from easily reading everything 		

	 in memory. For example, JTAG ports 			 

	 should not be open for use on a 			 

	 production device. The IoT device 			 

	 must store security credentials and code  

	 images in an encrypted state, rendering 		

		 them useless should an attacker find a  

	 way to read or write memory.

vikas

vikas

vikas

vikas



                                          I         4   
 
A more secure and reliable OTA update architecture for IoT devices October 2018

•	 Authenticating the OTA update image. 		

		 Connecting the IoT device to the correct 		

	 source for the OTA update does not guarantee 		

	 that the device will receive the correct image,as 		

	 the image might be corrupted by transmission 		

	 errors or replaced by a different one in a  

	 man-in-the-middle attack. An IoT device 		

	 must be able to authenticate that the 			 

	 image is indeed the original sent by the 		

		 OTA update service. This requires the 			 

	 IoT device OEM signs the image using 			

	 their code-signing certificate and attaches 		

	 metadata, such as a version number and 		

	 company of origin. Performing a hash of the		

	 image and associated metadata with the private 		

	 key in the OEM’s certificate generates a signature.	

	 The IoT device, which contains the OEM’s 

	 public signing certificate, decrypts the hash 		

	 and compares it to a hash of the image it 		

	 generated itself. If these match, the device knows 	

	 that the image is authentic. The metadata 		

	 enables additional checks, such as 			 

	 confirming that the image is a later one than what 

	 is already on the device (rather than a flawed 		

	 earlier version). The device’s bootloader must 		

	 also verify that any image it is attempting to boot 

	 is signed appropriately to ensure that the device 	

	 will never boot an unauthorized image.

•	 Minimizing intrusion. Although prompt 		

		 updating with the latest security patches is 		

	 very important, the update process will often 		

	 need 	to operate in the background as much 		

	 as possible. For applications such as remote 		

	 sensors that report data only periodically, it may 	

	 be acceptable to cease normal operation and 		

	 immediately boot the OTA update image. But an 	

	 OTA update must not stop a robotic cleaner or 		

	 smart coffee machine in the midst of a job.

•	 Reversion if the OTA image fails to boot 		

	 successfully. The final step is for the IoT  

	 device to successfully boot the new 			 

	 image, which requires that the device 			

	 pass some test criteria to prove that it  

	 is still functional. The test may be as			 

	 simple as successfully connecting 			 

	 back to the IoT service, but will be application-		

	 specific. If the test fails, the IoT device must 		

	 be able to revert to the previous image to 		

	 maintain functionality; otherwise, the failed update 	

	 may result in an unresponsive or bricked 		

	 device. A failed OTA update might have		

	 several causes. For example, a power 		

	 failure might occur because of  a battery 		

	 problem or an impatient user restarting 		

	 a seemingly unresponsive device. Or the OTA 		

	 update image may contain a bug that causes the 	

	 device to lose network or service connectivity 		

	 and become unrecoverable.

The OTA update process using 

Amazon FreeRTOS and  

SimpleLink Wi-Fi

An OTA update implementation based on a 

combination of Amazon FreeRTOS and SimpleLink 

Wi-Fi MCUs addresses security and reliability 

challenges.

Amazon FreeRTOS is an embedded software 

stack based on the FreeRTOS operating system, 

optimized to reside on MCUs. Amazon FreeRTOS 

is integrated with the cloud-based Amazon Web 

Services (AWS) IoT platform, which provides device 

management and telemetry. Device-management 

services include support for OTA updates, which in 

turn leverage other AWS services such as Amazon 



                                          I         5   
 
A more secure and reliable OTA update architecture for IoT devices October 2018

Certificate Management for code signing (see 

Figure 1). The embedded software stack provides 

an OTA agent that executes on the MCU as a 

FreeRTOS task to coordinate OTA operations 

such as downloading a new image from the cloud, 

validating the image and handling any interruptions 

during download.

The TI SimpleLink Wi-Fi family features MCUs 

with built-in Wi-Fi capability, including a full TCP/

IP stack with TLS. These devices, including the 

CC3100/CC3200 and CC3120/CC3220R/S/SF, 

have been successfully used in a wide range of 

IoT applications. SimpleLink Wi-Fi MCUs have a 

dual-core architecture: the user application runs 

on one core while the Wi-Fi stack and associated 

cryptographic operations run on a dedicated 

network processing core. Keys and certificates 

are stored in encrypted memory that only 

the network processor can directly access, 

enhancing device security because reading 

the application core’s memory will not reveal 

the keys. SimpleLink Wi-Fi devices also include 

cryptographic accelerators for symmetric and 

asymmetric encryption operations, further 

enhancing the performance of protocols like TLS. 

The SimpleLink software development kit (SDK) 

offers a uniform development environment for 

multiple different wireless protocols, 

including Wi-Fi,  Bluetooth® low energy,  Zigbee, 

Thread and proprietary Sub-1 GHz.

The Amazon FreeRTOS implementation for 

SimpleLink Wi-Fi MCUs uses components from 

the SimpleLink SDK and secure bootloader to 

implement its OTA update mechanism  

(see Figure 2).

Let’s look at the specific implementation details of 

the combined OTA solution:

•	 OTA deployment operator security. To initiate 	

	 an OTA update with Amazon FreeRTOS, 		

	 the operator (including any programs run 		

	 from the command line to automate the update) 	

	 must have appropriate permissions. The AWS

Cloud

Create OTA image

Sign image

Start OTA update job
for IoT device group(s)

Stream OTA update to
 IoT device 

Check for updates

Download image

Authenticate image

Boot and test image

pass fail

Commit new
version

Revert to
previous version

MQTT
Topic

22°

 IoT device 

User applications

OTA agent MQTT client

Free RTOS
Kernel

Wi-Fi
Manager

Secure Wi-Fi
stackCrypto utilities

Secure
Filesystem

Images

Keys

Manage Keys

Accelerators, RNG

TLS

TCP/IP

Device Drivers

Secure Bootloader (ROM’d)

SimpleLink W-Fi Device

Figure 1. The Amazon FreeRTOS OTA update service combines cloud services with an embedded OTA agent on the IoT device.

Figure 2. Amazon FreeRTOS (red) leverages many SimpleLink features (burgundy)  
in its OTA update solution.



                                          I         6   
 
A more secure and reliable OTA update architecture for IoT devices October 2018

	 Identity and Access Management (IAM)

	 service enforces these permissions. To create 		

	 an OTA deployment, the operator must have  

	 read access to the storage containing the OTA 		

	 image and have permissions to invoke the		

	 CreateDeployment, CreateJob and CreateStream 	

	 APIs that will combine to transmit the image to  

	 the IoT device. IAM user authorizations provide 		

	 strong protection against rogue OTA deployments.

•	 Incremental roll-out of OTA updates. The OTA 	

	 manager uses the AWS IoT Jobs service to 		

 	 deploy a new firmware image to one or 			 

	 more IoT devices. The AWS IoT Jobs service 		

	 manages scheduling, orchestration, notification 		

	 and status reporting of OTA updates on 			 

	 distributed fleets of small devices. An OTA 		

	 update job specifies which devices should 		

	 perform the update and where to find the 		

	 firmware image. To avoid triggering OTA 			

	 updates simultaneously in a large number of 		

	 devices, you can stagger updates by organizing 		

	 devices into specific groups.

•	 Securely downloading the update. The AWS 		

	 Streaming Service delivers OTA firmware updates 	

	 over the existing AWS IoT MQTT link to IoT 		

	 devices, eliminating the security risk from 		

	 creating a second connection purely for 		

	 OTA updates. This approach also means 		

	 that the OTA update download mechanism 		

	 is seamlessly integrated into the rest of AWS 		

	 IoT device management, enabling easy use 		

	 of any existing IoT device groupings to perform 		

	 incremental device updates. The Streaming 		

	 Service breaks up the firmware image into small 	

	 chunks and delivers each chunk as an MQTT 		

	 message to the updating devices. The chunk size 	

	 corresponds to the size of the IoT device’s 		

	 MQTT buffer, which on a small MCU will typically 	

	 be about 1KB. The streaming service manages 		

	 network traffic in a way that avoids swamping 		

	 MCU memory resources in the case of large 		

	 OTA updates (although this is less of a 			

	 concern with SimpleLink Wi-Fi devices, 		

	 which have a dedicated network processor 		

	 and memory). The OTA agent reassembles 		

	 these chunks into a complete image on 		

	 the IoT device. To secure the MQTT link, AWS 		

	 IoT leverages the SimpleLink Wi-Fi device’s built-in 	

	 TLS capability so that each incoming and outgoing 	

	 MQTT message undergoes strict authentication 	

	 and authorization.

•	 Security from physical attacks. In SimpleLink 	

	 Wi-Fi devices, the network processor 			 

	 maintains a secure file system and stores 		

	 cryptographic keys in encrypted memory 		

	 that the application processor cannot directly  

	 access. This prevents hackers from extracting 		

	 the keys even if they have physical access to 		

	 the hardware and the ability to read the application 	

	 processor’s memory. The factory and OTA update 	

	 images are encrypted using a device-specific key 	

	 and stored in the secure file system. This prevents 	

	 attackers from easily analyzing or running the 		

	 image on another device, either for cloning 		

	 purposes or to load an older image with known 		

	 security vulnerabilities. SimpleLink Wi-Fi devices 	

	 also have a tamper protection lockdown 		

	 mechanism against unauthorized attempts to 		

	 access application or data files. Production 		

	 devices should always ship in secure mode, with 	

	 the JTAG and debugging ports locked.

•	 Authenticating the OTA update image. The 		

	 OEM uses the AWS Certificate Manager (ACM) 		

	 to import their code-signing certificate. 		

	 The Amazon FreeRTOS OTA update service 		

	 uses the Code Signing for Amazon FreeRTOS 		

	 service, which retrieves the certificate from 		

	 ACM to automatically sign the image. The OTA 		

	 agent on the IoT device uses the signature 		

	 to perform integrity checks on the image to 		

	 verify that it was not corrupted during transmission 	

	 or replaced by another image, as well as verifying 	



	 that the image includes the OTA agent library 		

	 and that the agent’s version is more recent than 	

	 the currently installed image before it  the 		

	 update. The OTA agent leverages the SimpleLink 	

	 Wi-Fi device’s on-chip cryptographic accelerators, 	

	 which include support for secure hash functions, 	

	 to minimize central processing unit (CPU) 		

	 overhead during the image validation process.

•	 Minimizing intrusion. Although the IoT device’s 	

	 application can choose to initialize the OTA 		

	 agent at any time, it is typically initialized 		

	 at boot. Each time the OTA agent task runs, 		

	 it checks to see if an update is available. 		

	 Once the OTA agent detects an update, it  

	 initiates the download. The agent runs 			

	 as a relatively low-priority task so that the device’s 	

	 normal operations can continue, especially since 	

	 the SimpleLink Wi-Fi MCU offloads networking 		

	 onto a separate processor from the application 		

	 MCU. Once the download is complete and 		

	 validated, the agent informs the application via 		

	 a callback function. This enables the application 	

	 to complete any operations before deciding 		

	 when to boot the new image.

•	 Reversion if the OTA image fails to boot 		

	 successfully. Once the OTA agent verifies 		

	 the download of a valid firmware update, 		

	 it uses SimpleLink file system APIs to securely 		

	 store the image and signature information, 		

	 activate the image for testing, and to set  

	 the update image as the default if the tests 		

	 are passed. The secure bootloader for 		

	 SimpleLink Wi-Fi devices allows 			 

	 the booting of only correctly signed 			 

	 images. The OTA update image must 			

	 contain the OTA update agent, as a			 

	 number of AWS IoT functions are tested 		

	 when the new image boots up. This ensures 		

	 that the IoT device can securely connect to  

	 the IoT service and accept future OTA 			 

	 updates. A hook at the end of the AWS 		

	 connectivity test enables a developer 			 

	 to add their own device-specific tests. The OTA 	

	 agent uses the SimpleLink Wi-Fi bundle protection 	

	 feature (see Figure 3) to prevent a failed update 	

	 that results in a bricked device. Bundle 			

	 protection enables the “test booting” of the 		

	 image and sets a flag directing the bootloader to  	

	 boot the OTA image prior to resetting the MCU. 	

 	The bootloader starts by resetting the flag to use 	

 	the previous working image for the next 		

 	boot and sets a watchdog timer to trigger after an   	

 	appropriate period. If the boot of the new image   	

 	fails the self-test, hangs or experiences a power  	

 	failure, the bootloader will simply revert to the 	  	

	 previous image on the next boot. At that point, the 	

	 OTA agent can restart the update process again. If 	

	 the boot passes the self-test, the update image 	

	 will be set as the default going forward.

Create failsafe files

Add files to bundle

Write image files to bundle

Restart processor 
and set watchdog timer

Rollback back to the
previous version

Test image

pass

fail

Watchdog timeout

Power failure

Commit bundle as the new boot image

Figure 3. The Amazon FreeRTOS OTA update implementation leverages the bundle 
protection mechanism of the SimpleLink file system to test-run the new OTA image.



© 2018 Texas Instruments Incorporated SWAY021
The platform bar, SimpleLink, and FemtoFET are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and 
conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes 
no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents. The publication of information 
regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Summary

The ability to perform OTA updates more reliably and 

securely is essential for creating viable IoT solutions. An 

IoT device must have defenses against physical as well 

as remote attacks by storing code and data (especially 

security artifacts) in encrypted memory, and providing 

secure TLS-based connectivity for OTA updates, but 

the OEM must also sign the OTA update image itself so 

that the IoT device can authenticate its origin.

To prevent flawed OTA updates from causing IoT 

devices to cease functioning, the OTA update 

process must also include a revert mechanism. When 

combined with a TI SimpleLink Wi-Fi-connected MCU 

and SimpleLink SDK, AWS IoT and Amazon FreeRTOS 

offer a complete cloud-to-device OTA update 

implementation that provides high reliability  

and security.



IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com



