The equation below is the general equation for the power register. The factor of 5000 was selected by the digital designers to get good range for the INA219. The factor reflects internal register math.

 $Power_Register = \frac{Current_Register \cdot BusVoltage_Register}{5000}$ Equ 1

The equation below is for the shows how to convert the bus voltage register to an actual analog voltage. It is algebraically rearranged for use later.

BusVoltage = BusVoltage_Register · Bus_Voltage_LSB

Bus_Voltage_LSB := 0.004

BusVoltage_Register = $\frac{BusVoltage}{0.004}$ Equ 2

The equation below is for the shows how to convert the current voltage register to an actual analog voltage. It is algebraically rearranged for use later.

Current = Current_Register · Current_LSB

 $Current_Register = \frac{Current}{Current_LSB}$ Equ 3

The equation below is for the shows how to convert the current voltage register to an actual analog voltage. It is algebraically rearranged for use later.

Power = Power_Register Power_LSB

 $Power_Register = \frac{Power}{Power_LSB}$ Equ 4

Substitute Equ 2, 3, and 4 into Equ 1.

 $\frac{Power}{Power_LSB} = \frac{\frac{Current}{Current_LSB} \cdot \frac{BusVoltage}{0.004}}{5000}$ Equ 5

Simplify

Power	Current	BusVoltage
Power_LSB	Current_LSB	20

Take the recipical

Power_LSB	Current_LSB·20
Power	Current·BusVoltage

Substitute P = V*I

 $\frac{\text{Power_LSB}}{\text{Power}} = \frac{\text{Current_LSB} \cdot 20}{\text{Power}}$

Cancle Power terms on both sides.

Power_LSB = 20Current_LSB

Final Result!