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Abstract

The use of mobile devices is often limited by the capacity of the employed batteries. The battery
lifetime determines how long one can use a device. Battery modeling can help to predict, and
possibly extend this lifetime. Many different battery models have been developed over the years.
However, with these models one can only compute lifetimes for specific discharge profiles, and not
for workloads in general. In this paper, we give an overview of the different battery models that
are available, and evaluate these models in their suitability to combine them with a workload
model to create a more powerful battery model.

1 Introduction

Portable devices often rely on battery energy to work. The energy stored in these batteries
is limited. So, it is important to use this energy as efficiently as possible, to extend the
battery lifetime. In this paper, we define the lifetime as the time one can use the battery
before it is empty. Note that, for rechargeable batteries, this is not the same as the time
one can use the battery before it stops working properly.

The battery lifetime, of course, mainly depends on the rate of energy consumption of
the device. However, lowering the average consumption rate is not the only way to increase
battery lifetime. Due to nonlinear physical effects in the battery, the lifetime also depends
on the usage pattern. During periods of high energy consumption the effective battery
capacity degrades, and therefore the lifetime will be shortened. However, during periods
without energy consumption the battery can recover some of its lost capacity, and the
lifetime will be lengthened.

Energy consumption of wireless devices has been studied using performance models.
These models describe the various states a device can be in, and the energy consumption
rate in these states. However, typically these models only take the energy consumption
into account and do not deal with the effects of the usage pattern on the battery lifetime.
To be able to do this we have to extend the model, by combining it with a battery model.

In the literature, many battery models can be found. Different approaches have been
used to model the battery properties, varying from very detailed electro-chemical models
to high level stochastic models. In this report an overview of all these different battery
models is given. These models are evaluated for their suitability to combine them with a
performance model. One of the models that turns out to be well suited for this purpose
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Fig. 1: Schematic picture of an electrochemical cell

is the Kinetic Battery Model. However, some modifications need to be made to adapt the
model for the type of batteries used in the wireless devices.

The rest of this report is organized as follows. In Section 2 we give an introduction
to the battery physics and the major battery properties we want to model. The different
types of battery models are discussed in Section 3 through 6. In Section 7 the discussed
models are evaluated, and we give a motivation for our choice to combine the Kinetic
Battery Model with workload models. Finally, we end with some plans for future work.

2 Battery basics

A battery consists of one or more electrochemical cells, connected in series or parallel. In
these cells chemically stored energy is converted into electrical energy through an electro-
chemical reaction. Figure 1 shows an schematic picture of a electrochemical cell. A cell
consists of an anode, a cathode and the electrolyte, which separates the two electrodes.
During the discharge, an oxidation reaction at the anode takes place. In this reaction a
reductant (R1) donates m electrons , which are released into the (connected) circuit. At
the cathode a reduction reaction takes place. In this reaction, m electrons are accepted by
an oxidant (O2):

{

R1 → O1 + me−, at the anode,
O2 + ne− → R2, at the cathode.

Modeling the behavior of batteries is complex, because of non-linear effects during
discharge. In the ideal case, the voltage stays constant during discharge, with an instan-
taneous drop to zero when the battery is empty. The ideal capacity would be constant
for all discharge currents, and all energy stored in the battery would be used. However,
for a real battery the voltage slowly drops during discharge and the effective capacity is
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Fig. 2: Rate Capacity effect: The left figure shows the evolution of the voltage over time
for a low and high discharge current, curve 1 and 2 respectively. The voltage drops
faster for high discharge currents. The right figure shows the capacity as a function
of the discharge rate. The discharge rate is given in terms of C rating, a C rating
of 2C means that the battery is discharged in 1

2
hours. The measured capacities

are given relatively to the capacity at the 2 hour discharge rate, 0.5 C. The figure
shows that the effective capacity drops for high discharge rates
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Fig. 3: Recovery effect: for intermittend discharges the battery can recover during idle
periods. In the plot of the intermittent discharge the off-time is not shown, so one
can clearly see the extension of the battery lifetime.
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lower for high discharge currents, cf. Figure 2. This effect is termed the rate capacity
effect. Besides this, there is the so-called recovery effect : during periods of no or very low
discharge, the battery can recover the capacity “lost” during periods of high discharge to a
certain extent, cf. Figure 3. In this way the effective capacity is increased and the battery
lifetime is lengthened. For all types of batteries these effects occur. However, the extent
to which they are exhibited depends on the battery type.

For constant loads, we can easily calculate the ideal battery lifetime (L) by dividing its
capacity (C) by the discharge current (I): L = C/I. However, due to the rate capacity and
the recovery effects this relation does not hold for real batteries. Many models have been
developed to predict real battery lifetimes under a given load. In the following sections
several of these models will be discussed.

3 Electrochemical models

The electrochemical models are based on the chemical processes that take place in the
battery. The models describe these battery processes in great detail. This makes these
models the most accurate battery models. However, the highly detailed description makes
the models complex and difficult to configure.

Doyle, Fuller and Newman developed an electrochemical model for lithium and lithium-
ion cells [1, 2, 3]. This model consists of six coupled, non-linear differential equations.
Solving these equations gives the voltage and current as functions of time, and the poten-
tials in the electrolyte and electrode phases, salt concentration, reaction rate and current
density in the electrolyte as functions of time and position in the cell.

Dualfoil is a Fortran program that uses this model to simulate lithium-ion batteries. The
program is freely available on the internet [4]. It computes how all the battery properties
change over time for the load profile set by the user. From the output data, it is possible
to obtain the battery lifetime. Besides the load profile, the user has to set over 50 battery
related parameters, e.g., the thickness of the electrodes, the initial salt concentration in the
electrolyte and the overall heat capacity. To be able to set all these parameters one needs
a very detailed knowledge of the battery that is to be modelled. On the other hand, the
accuracy of the program is very high. The program is often used as a comparison against
other models, instead of using experimental results to check the accuracy.

4 Electrical-circuit models

The first electrical-circuit models were proposed by Hageman [5]. He used simple PSpice
circuits to simulate nickel-cadmium, lead-acid and alkaline batteries. The core of the
models for the different types of batteries is the same:

• a capacitor represents the capacity of the battery,

• a discharge-rate normalizer determines the lost capacity at high discharge currents,
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Fig. 4: Basic functional schematic covering all the modeled cell types. This basic schematic
requires minor changes to complete the models for each specific cell[5].

• a circuit to discharge the capacity of the battery,

• a voltage versus state-of-charge lookup table,

• a resistor representing the battery’s resistance.

Figure 4 shows the basic circuits used to model an arbitrary cell. Minor changes have to be
made to complete the model for a specific cell type. Although the models are much simpler
than the electrochemical models and therefore computationally less expensive, it still takes
some effort to configure the electrical-circuit models. Especially the lookup tables used in
the model require much experimental data on the battery’s behavior. Furthermore, the
models are less accurate, having an error of approximately 10%.

5 Analytical models

Analytical models describe the battery at a higher level of abstraction than the electro-
chemical and electrical circuit models. The major properties of the battery are modeled
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Fig. 5: An example of a piecewise constant discharge profile

using only a few equations. This makes this type of model much easier to use than the
electrochemical and electrical circuit models.

5.1 Peukert’s law

The simplest model for predicting battery lifetimes that takes into account part of the non-
linear properties of the battery is Peukert’s law [6]. It captures the non-linear relationship
between the lifetime of the battery and the rate of discharge, but without modeling the
recovery effect. According to Peukert’s law, the battery lifetime (L) can be approximated
by:

L =
a

Ib
, (1)

where I is the discharge current, and a and b are constants which are obtained from
experiments. Ideally, a would be equal to the battery capacity and b would be equal to
1. However, in practice a has a value close to the battery’s capacity, and b is a number
greater than one. For most batteries the value of b lies between 1.2 and 1.7 [7].

The results obtained by applying Peukert’s law for predicting battery lifetimes are
reasonably good for constant continuous loads. But the model does not deal well with
variable or interrupted loads. In [6], Rakhmatov and Vrudhula give an extended version
of Peukert’s law for non-constant loads. In (1) I is replaced by the average current up to
t = L. For a piecewise constant discharge profile, with tk the points in time of current
change, as shown in Figure, 5 this yields:

L =
a

[
∑n

k=1
Ik(tk−tk−1)

L

]b
. (2)

This equation is not as simple as it looks. It is impossible to easily isolate L in the equation,
since L turns up inside the n-term sum as well (tn = L). For n = 1 (2) reduces to (1).
Although the extended Peukert’s law can handle non-constant discharge profiles, it is still
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too simple. Only the average discharge current is taken into account, and the recovery
effect is still not modelled with it.

5.2 Rakhmatov and Vrudhula

Next to the extended Peukert’s law, Rakhmatov and Vrudhula give a new analytical battery
model in [6]. The model describes the diffusion process of the active material in the battery.
The diffusion is considered to be one-dimensional in a region of length w. C(x, t) is the
concentration of the active material at time t and distance x ∈ [0, w] from the electrode.
To determine the battery lifetime one has to compute the time at which the concentration
at the electrode surface, C(0, t), drops below the cutoff level Ccutoff. The one-dimensional
diffusion process is described by Fick’s laws [6]:







−J(x, t) = D
∂C (x, t)

∂x
,

∂C (x, t)
∂t

= D
∂2C (x, t)

∂x2 ,

where J(x, t) is the flux of the active matterial at time t and position x, and D is the
diffusion constant. According to Faraday’s law, the flux at the left boundary of the diffusion
region (x = 0) is proportional to the current i(t). The flux at the right boundary (x = w)
is zero. This gives the following boundary conditions:















D
∂C (x, t)

∂x

∣

∣

∣

∣

x=0

=
i (t)
νFA,

D
∂C (x, t)

∂x

∣

∣

∣

∣

x=w

= 0,

where A is the area of the electrode surface, F is Faraday’s constant (96485.31 Cmol−1),
and ν is the number of electrons involved in the electrochemical reaction at the electrode
surface.

It is possible to obtain an analytical solution from these differential equations and
boundary conditions using Laplace transforms. From the solution one can obtain the
following expression relating the load, the battery lifetime (L) and the battery parameters:

α =

∫ L

0

i (t)
√

L − τ
dτ + 2

∞
∑

m=1

∫ L

0

i (t)
√

L − τ
e−

β2m2

L−τ
dτ ,

where α = νFA
√

πDC∗ρ (L), β = w√
D

, C∗ is the concentration at t = 0, and ρ(L) =

1 − C(0,L)
C∗ .

In the special case of a constant discharge current (I) the expression for α can be
simplified to:

α = 2I
√

L + 2
∞

∑

m=1

(√
Le−

β2m2

L − βm
√

πΦ
(

βm√
L

)

)

,
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where Φ (x) = 1 − 2√
π

∫ x

0
e−y2

dy. One can obtain a good approximation for α by taking
the first ten terms of the infinite sum. Together with an approximation for Φ this gives:

α = 2I
√

L



1 + 2

10
∑

m=1



e−
β2m2

L −
πe−

β2m2

L

π − 1 +
√

1 + π L
β2m2







 . (3)

With (3) one can predict the battery lifetime for a given discharge current. To be able do
these predictions one first needs to estimate α and β from experimental data.

In [6, 8, 9] the authors compare their model with the Dualfoil battery simulation pro-
gram, and the extended version of Peukert’s formula which can handle variable loads. The
results of the Dualfoil simulation are used as reference values, since these simulations are
very precise. For constant continuous loads, the model predicts lifetimes with an average
error of 3%, and a maximum error of 6% compared to those obtained using the Dualfoil
program. In contrast, Peukert’s formula shows an average error of 14% and a maximum
error of 43%. Peukert’s formula works well for light loads, but the errors will become very
large at heavy loads. For interrupted and variable loads in the experiments, the analytical
model does even better, with a 2.7% maximum error and an average error of less than 1%.
Again Peukert’s formula performs a lot worse. This is, of course, clear when we note that
Peukert’s formula does not take the battery recovery effect into account.

5.3 Kinetic Battery Model

A third analytical model is the Kinetic Battery Model (KiBaM) of Manwell and McGowan
[10, 11, 12]. The KiBaM is a very intuitive battery model. It is called kinetic because it
uses a chemical kinetics process as its basis. In the model the battery charge is distributed
over two wells: the available-charge well and the bound-charge well (cf. Figure 6). The
available charge well supplies electrons directly to the load, whereas the bound-charge
well supplies electrons only to the available-charge well. The rate at which charge flows
between the wells depends on the difference in heights of the two wells, and on a parameter
k. The parameter c gives the fraction of the total charge in the battery that is part of
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the available-charge well. The change of the charge in both wells is given by the following
system of differential equations:







dy1

dt
= −I + k(h2 − h1),

dy2

dt
= −k(h2 − h1),

(4)

with initial conditions y1(0) = c · C and y2(0) = (1 − c) · C, where C is the total battery
capacity. For h1 and h2 we have: h1 = y1/c and h2 = y2/(1− c). When a load I is applied
to the battery, the available charge reduces, and the difference in heights between the two
wells grows. When the load is removed, charge flows from the bounded-charge well to the
available-charge well until h1 and h2 are equal again. So, during an idle period, more charge
becomes available and the battery lasts longer than when the load is applied continuously.
The differential equations can be solved using Laplace transforms, which gives:

{

y1 = y1,0e
−k′t + (y0k′c−I)(1−e−k′t)

k′ − Ic(k′t−1+e−k′t)
k′ ,

y2 = y2,0e
−k′t + y0(1 − c)(1 − e−k′t) − I(1−c)(k′t−1+e−k′t)

k
,

where k′ is defined as:

k′ =
k

c(1 − c)
,

and y1,0 and y2,0 are the amount of available and bound charge, respectively, at t = 0. For
y0 we have: y0 = y1,0 + y2,0.

Next to the charge in the battery, the KiBaM models the voltage during discharge. The
battery is modelled as a voltage source in series with an internal resistance. The level of
the voltage varies with the depth of discharge. The voltage is given by:

V = E − IR0, (5)

where I is the discharge current and R0 is the internal resistance. E is the internal voltage,
which is given by:

E = E0 + AX +
CX

D − X
, (6)

where E0 is the internal battery voltage of the fully charged battery, A is a parameter
reflecting the initial linear variation of the internal battery voltage with the state of charge,
C and D are parameters reflecting the decrease of the battery voltage when the battery is
progressively discharged, and X is the normalized charge removed from the battery. These
parameters can be obtained from discharge data. At least 3 sets of constant discharge data
are needed for the non-linear least square curve fitting, which is described in detail in [11].

The KiBaM was developed to model large lead-acid storage batteries. These batteries
have a flat discharge profile, which is well captured by (5) and (6). These equations do
not hold for the modern batteries used in mobile devices, like Li-ion batteries, which have
a sloped discharge profile. However, if one is only interested in the battery lifetime, and
not so much in its actual voltage during discharge, one can still use the two-well model of
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Fig. 7: The basic Markov chain battery model by Chiasserini and Rao [14]

the KiBaM, because the two-well model describes both the rate capacity and the recovery
effect. One still may need to adapt the term of the flow charge between the two wells in
(4) to the used battery type, which for example is done in [13] for Ni-MH batteries.

6 Stochastic models

Stochastic models aim to describe the battery in an abstract manner, like the analyti-
cal models. However, the discharging and the recovery effect are described as stochastic
processes.

6.1 Chiasserini and Rao

The first stochastic battery models were developed by Chiasserini and Rao. Between 1999
and 2001 they published a series of papers on battery modeling based on discrete-time
Markov chains [14, 15, 16, 17]. In [14] two models of a battery of a mobile communication
device for transmitting packets are described. In the first and simplest model, the battery
is described by a discrete time Markov chain with N + 1 states, numbered from 0 to N
(cf. Figure 7). The state number corresponds to the number of charge units available in
the battery. One charge unit corresponds to the amount of energy required to transmit a
single packet. N is the number of charge units directly available based on continuous use.
In this simple model, every time step either a charge unit is consumed with probability
a1 = q or recovery of one unit of charge takes place with probability a0 = 1 − q. The
battery is considered empty when the absorbing state 0 is reached or when a maximum
of T charge units have been consumed. The number of T charge units is equal to the
theoretical capacity of the battery (T > N).

The second model described in the paper is an extended version of the first. Again, we
have a discrete Markov chain with N + 1 states. But, in this second model more than one
charge unit can be consumed in any one time step, with a maximum of M charge units
(M ≤ N). In this way, a more bursty consumption of energy can be modeled. Another
new aspect is that there is a non-zero probability of staying in the same state. This means
no consumption or recovery takes place during a time step.

In the models in [15, 16, 17] further extensions are made. To improve the model, the
recovery probability is made state dependent. When less charge units are available the
probability to recover a charge unit will become smaller. Next to the state dependence of
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the recovery, there is a phase dependence. The phase number (f) is a function of the num-
ber of charge units that has been consumed. When more charge units have been consumed,
the phase number increases and this causes the probability of recovery to decrease.

In Figure 8, the state transition diagram of the model with all the extensions is shown.
With probability qi, i charge units are requested in one time slot. During the idle periods,
the battery either recovers one charge unit with probability pj (f), or stays in the same
state with probability rj (f). The recovery probability in state j and phase f is defined as
[17]:

pj (f) = q0e
(N−j)gN−gC(f) (7)

where gN and gC (f) depend on the recovery behavior of the battery. One can model
different loads by setting the transition probabilities appropriately. However, one cannot
control the order in which the transitions are taken. Thus, it is impossible to model fixed
load patterns, and compute their impact on the battery lifetime.

The main property investigated by Chiasserini and Rao is the gain (G) obtained by
a pulsed discharge relative to a constant discharge. This gain is defined as: G = m/N ,
with m the mean number of transmitted packages. G is computed as a function of the
average number of packets arriving in a given time frame, and for different N varying from
3 through 50. The gain increases when the load is decreased, due to the higher probability
to recover.

In [17] the final version of the model is used to model a Li-ion battery. To model the
battery, N is set to ∼ 2 · 106, and 3 phases are used. This results in a Markov chain with
approximately 6 · 106 states. The model is analyzed by numerical computations, and the
results are compared with the electro-chemical model developed by Doyle et al. (cf. Section
3) [1]. With both models, the gain obtained from pulsed discharge compared to constant
discharge is calculated for different discharge currents, cf. Figure 9. The gain increases for
lower discharge demand rates and higher current densities. The latter is mainly due to the
fact that the current densities are close to the specified limits of the battery. When the
current density is over this limit the battery’s capacity drops excessively fast, and therefore
the gain obtained by pulsed discharge increases.

The results of the stochastic model have a maximum deviation of 4% from the electro-
chemical model, with an average deviation of 1%. These results show that the stochastic
model gives a good qualitative description of battery behavior under pulsed discharge.
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Fig. 9: Gain obtained under pulsed discharge with respect to constant discharge for differ-
ent current densities. Results of the electrochemical model by Doyle et al.(e) and
the stochastic model by Chiasserini and Rao (s) are compared.[17]

However, it is unclear how well the model performs quantitatively, since only relative
numbers of lifetime are compared.

6.2 Stochastic modified KiBaM

Rao et al.[13] proposed a stochastic battery model in 2005, based on the analytical Kinetic
Battery Model (KiBaM) proposed by Manwell and McGowan. The stochastic KiBaM is
used to model a Ni-MH battery, instead of a lead-acid battery for which original KiBaM
was developed. To be able to model this different type of battery, a couple of modifications
have been made to the model. First, in the term corresponding to the flow of charge from
the bound charge well to the available charge well an extra factor h2 is added, changing
(4) into:







dy1

dt
= −I + ksh2(h2 − h1),

dy2

dt
= −ksh2(h2 − h1).

(8)

This causes the recovery to be slower when less charge is left in the battery. The second
modification is that in the stochastic model the possibility of no recovery during idle periods
is added.

The battery behavior is represented by a discrete time transient Markov process. The
states of the Markov chain are labeled with three parameters (i, j, t). The parameters
i and j are the discretized levels of the available charge well and bounded charge well
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Fig. 10: Part of the state transition diagram of the stochastic KiBaM[13]

respectively, and t is the length of the current idle slot; this is the number of time steps
taken since the last time some current was drawn from the battery.

Figure 10 shows a part of the state transition diagram. The transitions are summarized
by the following equations:

(i, j, t) −→







(i + Q, j − Q, t + 1)
(i, j, t + 1)
(i − I + J, j − J, 0)

(9)

The first two equations correspond to the time steps in which the current is zero. With
probability pr, the battery recovers Q charge units, and with probability pnr no recovery
occurs. Both pr and pnr depend on the length of the idle timeslot (t). The third equation
corresponds to the time steps in which a current is drawn from the battery. With proba-
bility qI , I charge units are drawn from the available charge well, and at the same time J
charge units are transfered from the bound to the available charge well.

The probabilities qI are defined by the load profile. Since the qI are equal for all states,
it is impossible to control in what sequence the currents are drawn from the battery in this
model, and thus to fully model a real usage pattern.

In the model of the Ni-MH battery the charge in the bounded and available charge well
is discretized in 27 · 107 and 45 · 107 charge units respectively. This results in a Markov
chain too big to handle as a whole. So, no analytical solution to the model can be given.
To obtain battery lifetimes several runs of discharging the battery are simulated with the
model.

In [13], Rao et al. compare the calculated battery lifetimes with some experimental
results. In a simple experimental setup, different periodic loads are applied to an AAA
Ni-MH battery, and its lifetime is measured. In the first set of experiments the frequency
of the applied load is varied, keeping the ratio of on and off time constant at one. In these
experiments the battery lifetime increases as the frequency decreases. In a second set of
experiments, the ratio between on and off time is varied by keeping the on-time fixed to 2
seconds and increasing the off-time from 0 to 3.5 seconds. As expected, the lifetime and
the delivered charge increase when the off-time increases, since the battery has more time
to recover.

The results of the simulations show that the model is quite accurate for predicting
battery lifetime and charge drawn from the battery, since a maximum error of 2.65% for
the simulations was found.
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battery R.C. Recov # accuracy
type effect effect pars.

Dualfoil [1, 2, 3] Li-ion + + > 50 very high
Electrical circuit [5] Ni-Cd, alkaline + + 15-30 medium

Lead-acid
Peukert [6] all + - 2 medium, 10% error
Rakhmatov [6] Li-ion + + 2 high ,5% error
KiBaM [10] Lead-acid + + 2 high
Chiasserini [14, 15, 16, 17] Li-ion - + 2 high, 1% error
Stochastic KiBaM [13] Ni-MH + + 2 high, 2% error

Tab. 1: Battery models overview

7 Evaluation

We want to use a battery model to combine it with a workload model. With this combina-
tion it will be possible to model the energy consumption of battery powered devices, and
predict battery lifetimes for different usage patterns. For this purpose, we need a “simple”
battery model that still gives a good description of the most important non-linear effects,
i.e., the rate capacity effect and recovery effect.

Table 1 gives an overview of the different battery models and their relevant properties.
Most battery models are not well suited to be combined with a performance model. Al-
though the electro-chemical model is the most accurate model and the Dualfoil program is
often used as “reality” to check the performance of other battery models, the model is too
complex for our needs. A very detailed knowledge of the battery is necessary to be able to
set all the parameters of the model. Furthermore, the computational complexity of solving
the six coupled partial differential equations is very high, which makes the execution of
the program slow. Like the electro-chemical model the electrical circuit models are too
complex. The modeling of the battery’s electrical properties is too detailed for what we
want from the battery model. Peukert’s formula, on the other hand, is too simple. It could
be easily implemented into a performance model. However, it does not take the recovery
effect into account. Therefore, it will underestimate battery lifetimes for usage patterns
with idle periods. The stochastic model by Chiasserini is also too limited. It focuses on
the recovery effect only. The model is designed for pulsed discharge of the battery, but it
does not handle arbitrary load profiles with varying discharge currents.

The KiBaM and the model by Rakhmatov et al. do take into account both the rate
capacity effect and the recovery effect. Both models use a system of two differential equa-
tions to describe the battery and with both models one can compute the battery lifetime
for an arbitrary piecewise constant load profile. However, the second-order differential
equation in the model by Rakhmatov and Vrudhula makes it harder to combine it with
a performance model. Furthermore, the KiBaM describes the battery in a more intuitive
manner. The differential equations give a clear insight on how the battery behavior is
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modeled. This makes the KiBaM preferable over the model by Rakhmatov.
The first order differential equations of the KiBaM can be fitted nicely into a Markov

reward model, creating the needed combination of a workload and battery model. However,
the KiBaM is designed to model a lead-acid battery, which is not used in wireless devices
and has a more linear discharge behavior than the modern batteries. Experimental results
of Rao et al. indicate that the battery lifetime of a Ni-MH battery depends strongly on
the frequency of the applied load. In the KiBaM this dependency is not seen on small time
scales. Only at large time scales, (> 30 minutes) the non-linear behavior is seen. Rao et
al. solved this problem in their stochastic KiBaM by making the probability to recover
during idle periods dependend on the length of the idle period.

In the analytical KiBaM one can also do this by making the recovery parameter k
dependend on the time the battery is idle. However, this model can not be combined with
the Markov reward model describing the usage pattern of a device anymore. Since, in this
model one does not know the time one has spend in a specific state, and thus one can not
change the parameter k appropriately.

Another approach is needed to combine the workload with the battery model. One
possible approach can be using timed automata. In this type of model one does have
the notion of local time, the time spend in a state, and one can change the parameter k
according to this time.

8 Outlook and future work

The power consumption of portable devices is an important issue, for example Martin has
written his PhD-thesis on the trade-offs between power and performance in the case of CPU
speed-setting for mobile computing [7]. Much research has been done on decreasing the av-
erage power consumption of these devices. One important approach is power-management
[18, 19, 20, 21]. In this approach, the power consumption is reduced by selective slowdown
or shutdown of components. However, in most of the research the battery is only con-
sidered as a limited-power source. The non-linear properties, rate-capacity and recovery
effect, are not taken into consideration.

The combination of a workload model with the kinetic battery model will give a powerful
model. With this model one can compare the energy consumption of various workload
schemes and their influence on the battery lifetime.

To be able to get meaningful information out of the model, we first need to set the
parameters in the kinetic battery model for the specific batteries used in the device. The
model parameters can be determined by doing some simple discharge measurements. Fur-
thermore, the battery model still has to be validated for more complex discharge profiles.
Both for the determination of the parameters and the validation of the battery model an
experimental set-up is needed. With this set-up the battery is discharged according to a
given discharge profile. During the discharge the battery voltage and discharge current are
monitored, and the battery lifetime is measured. In [13] an example of such a set-up is
given.
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The applications of the model can be various. Our focus will be on the energy con-
sumption of wireless communication devices.

One application is the energy consumption in WLAN-802.11a. Various hardware de-
signs have different energy consumption rates for the MAC states [22, 23]. Using the model
one can determine which design gives the longest battery lifetime.

Another application of the new model can be found in a cooperation with Thales Com-
munications (Huizen). Thales has developed a communication and information module
(CIM) for the Dutch army. This is a vest in which various battery powered devices, like
a radio, GPS and a display, are integrated. It is, of course, very important to use the
batteries energy efficiently. A simple version of this vest just has a GPS-device and a
radio transmittor. At fixed time intervals the position of the soldier is determined with
the GPS and sent to the commander using the radio. Using the battery-workload model
we can predict the the battery lifetime for different schemes of measuring and sending the
position of the soldier, and in this way optimize the battery usage of this system. When
an appropriate workload model is available the model can also be applied on the other
devices integrated in the CIM.

A third application is the comparison of polling schemes in bluetooth [24, 25]. The
order in which the slaves are polled by the master determines the way the load of the
slaves is distributed over time. For example, in exhaustive round robin polling the slaves
have big bursts of active periods with long idle periods in between, whereas in pure round
robin polling, the active periods are short and more evenly distributed over time.

In most of the discussed models the battery is considered as a singel chemical cell.
However, some batteries consist of more cells connected in series or parallel. In the case
of a battery with cells connected in parallel, one can exploit the non-linear properties to
extend the battery lifetime. By switching between the cells during discharge, the cells can
recover during the idle periods. Of course, the way one switches between the cells will
determine the gain in lifetime. It is important to find the optimal strategy for balancing
the load and the idle periods between the cells.

The same strategy can be applied for balancing the load over multiple batteries that
power a device. By switching between the batteries one will be able to use the device for
a longer period of time than by using the batteries sequentially.
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