#include <msp430g2452.h>
 #define LEFT_MOTOR BIT0
 #define RIGHT_MOTOR BIT6
 #define LEFT_LDR BIT4
 #define RIGHT_LDR BIT5
 #define SENSOR_LED BIT7
 #define MAX_COUNT 100
 // Sensor Calibration
 #define CAL_SAMPLES 5
 #define CAL_SPEED1 75
 #define CAL_SPEED2 40
 #define CAL_MOVE_DELAY 320
 // PWM Duty Cycle Threshold
 #define MAX_THRESHOLD 75
 #define MIN_THRESHOLD 60
 // Sensor Status
 #define LEFT_SENSOR 0
 #define RIGHT_SENSOR 1
 unsigned int pwm_count=0;
 unsigned int pwm_m1=0;
 unsigned int pwm_m2=0;
 unsigned int min_leftLDR=0;
 unsigned int max_leftLDR=0;
 unsigned int min_rightLDR=0;
 unsigned int max_rightLDR=0;
 unsigned int adc2cycle(unsigned int adc, unsigned int in_min, unsigned int in_max)
 {
 unsigned int adc_val;

 // Calculate the result and put it within 0 to 100% PWM Duty Cycle value
 adc_val = 100 - ((adc - in_min) * 100 / (in_max - in_min));
 if (adc_val <= MIN_THRESHOLD)
 adc_val=0;
 if (adc_val >= MAX_THRESHOLD)
 adc_val=MAX_THRESHOLD;
 return(adc_val);
 }
 void DelayMs(unsigned int ms)
 {
 while(ms--) {
 __delay_cycles(1000); // 1 ms delay for 1 MHz Internal Clock
 }
 }
 // TimerA Channel 0 interrupt service routine
 #pragma vector=TIMER0_A0_VECTOR
 __interrupt void Timer_A (void)
 {
 // The PWM Period is about: 101 x 0.1 ms = 10.1 ms
 pwm_count++;
 if (pwm_count >= MAX_COUNT) {
 pwm_count=0;
 P1OUT |= LEFT_MOTOR; // Turn On Left Motor
 P1OUT |= RIGHT_MOTOR; // Turn On Right Motor
 }
 if (pwm_count == pwm_m1) {
 P1OUT &= ~LEFT_MOTOR; // Turn Off Left Motor
 }

 if (pwm_count == pwm_m2) {
 P1OUT &= ~RIGHT_MOTOR; // Turn Off Right Motor
 }
 }
 unsigned int ReadSensor(unsigned char chn_stat)
 {
 ADC10CTL0 &= ~ENC; // Disable ADC10
 if (chn_stat) {
 	 ADC10CTL1 &= ~INCH_4; // Deselect ADC Channel 4
 ADC10CTL1 |= INCH_5; // Select ADC Channel 5 (A5), Right LDR
 } else {
 	 ADC10CTL1 &= ~INCH_5; // Deselect ADC Channel 5
 ADC10CTL1 = INCH_4; // Select ADC Channel 4 (A4), Left LDR
 }
 ADC10CTL0 |= ENC + ADC10SC; // Enable ADC10 and Conversion start
 while (ADC10CTL1 & ADC10BUSY); // Wait for ADC Conversion
 return(ADC10MEM); // Return ADC Value
 }
 void CalibrateSensor()
 {
 unsigned char i;
 unsigned int tmp_left,tmp_right;

 // Get the Maximum Value Sensor Value (over black line)
 P1OUT |= SENSOR_LED; // Turn On the Sensor LED
 DelayMs(1000); // Give enough time to light the LDR

 tmp_left=0;
 tmp_right=0;
 for(i=0; i < CAL_SAMPLES; i++) {
 tmp_left += ReadSensor(LEFT_SENSOR); // Read The Left LDR (A4)
 __delay_cycles(50);
 tmp_right += ReadSensor(RIGHT_SENSOR); // Read The Right LDR (A5)
 __delay_cycles(50);
 }
 max_leftLDR = tmp_left / CAL_SAMPLES; // Get the Max Left Average Value
 max_rightLDR = tmp_right / CAL_SAMPLES; // Get the Max Right Average Value

 // Now move the robot to the next calibration stage
 pwm_m1=CAL_SPEED1;
 pwm_m2=CAL_SPEED2;
 DelayMs(CAL_MOVE_DELAY);

 // Turn off the Motor (Duty Cycle 0)
 pwm_m1=0;
 pwm_m2=0;

 // Get the Minimum Value Sensor Value (over white line)
 tmp_left=0;
 tmp_right=0;
 for(i=0; i < CAL_SAMPLES; i++) {
 tmp_left += ReadSensor(LEFT_SENSOR); // Read The Left LDR (A4)
 __delay_cycles(50);
 tmp_right += ReadSensor(RIGHT_SENSOR); // Read The Right LDR (A5)
 __delay_cycles(50);
 }
 min_leftLDR = tmp_left / CAL_SAMPLES; // Get the Min Left Average Value
 min_rightLDR = tmp_right / CAL_SAMPLES; // Get the Min Right Average Value

 // Blink the Sensor LED after calibrating
 for(i=0; i < CAL_SAMPLES; i++) {
 P1OUT &= ~SENSOR_LED; // Turn Off LED
 DelayMs(500);
 P1OUT |= SENSOR_LED; // Turn On LED
 DelayMs(30);
 }
 }
 void main(void)
 {
 unsigned int sensor_val;

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 // P1.0,P1.6 and P1.7 output, Other as Input
 P1DIR = LEFT_MOTOR + RIGHT_MOTOR + SENSOR_LED;
 // Enable the pull-down resistor on the unused input ports
 P1REN = BIT1 + BIT2 + BIT3;
 P2REN = BIT6 + BIT7;
 // Reset all the Output
 P1OUT = 0x00;

 // TIMER A channel 0 will interrupt every 100 cycles
 // Interrupt time counter period: 100 / 1.000.000 = 0.1 ms
 TACCTL0 = CCIE; // CCR0 interrupt enabled
 TACCR0 = 99;
 TACTL = TASSEL_2 + MC_1; // Start Timer, SMCLK, Up Mode

 // Start the ADC10 Peripheral
 // Vref = Vcc, 16 ADC Clock, Enable ADC10
 ADC10CTL0 = SREF_0 + ADC10SHT_3 + ADC10ON;

 // Sample-and-hold ADC10SC bit, ADC10 Clock /1, ADC10 Source Clock, Single Channel Conversion
 ADC10CTL1 = SHS_0 + ADC10DIV_0 + ADC10SSEL_0 + CONSEQ_0;
 ADC10AE0 = LEFT_LDR + RIGHT_LDR; // Enable A4 and A5 as ADC Input
 DelayMs(1); // Wait for ADC Ref to settle

 // Initial the PWM Duty Cycle and Enable the MSP430 Interrupts
 pwm_count=0;
 pwm_m1=0;
 pwm_m2=0;
 __enable_interrupt();

 // Now we Calibrate the LDR Sensors
 CalibrateSensor();
 DelayMs(1000); // Delay 1000 ms before start

 // Loop Forever
 for(;;) {
 	 // Read the Left LDR Sensor and make sure is within the range
 	 sensor_val=ReadSensor(LEFT_SENSOR);
 	 if (sensor_val > max_leftLDR)
 	 sensor_val=max_leftLDR;
 	 if (sensor_val < min_leftLDR)
 	 sensor_val=min_leftLDR;

 	 // Assigned the Left PWM Duty Cycle
 	 pwm_m1=adc2cycle(sensor_val,min_leftLDR,max_leftLDR);
 	 __delay_cycles(20);

 	 // Read the Right LDR Sensor and make sure is within the range
 	 sensor_val=ReadSensor(RIGHT_SENSOR);
 	 if (sensor_val > max_rightLDR)
 	 sensor_val=max_rightLDR;
 	 if (sensor_val < min_rightLDR)
 	 sensor_val=min_rightLDR;

 	 // Assigned the Right PWM Duty Cycle
 	 pwm_m2=adc2cycle(sensor_val,min_rightLDR,max_rightLDR);
 	 __delay_cycles(20);
 }
 }
[bookmark: _GoBack] /* EOF: LineFollower.c */
