

DCMOTOR

System Document

C2000 Foundation Software

©Texas Instruments Inc., December 2005 2

Table of Contents

1 SYSTEM OVERVIEW..3

2 HARDWARE CONFIGURATION (DMC550 DRIVE) ..7
2.1 MAXIMUM LINE CURRENT ...7
2.2 GAIN AND OFFSET ADJUSTMENT FOR LINE CURRENT SENSE AMPLIFIER CIRCUITS7
2.3 JUMPER SETTINGS ...8
2.4 CAUTIONS ...8

3 SOFTWARE CONFIGURATION ...11
3.1 C28X REAL DCMOTOR DEMO DIRECTORY STRUCTURE ..11
3.2 LOADING AND BUILDING CCS PROJECT FOR C “IQMATH” REAL DCMOTOR DEMO.................................12

4 INCREMENTAL SYSTEM BUILD ...14
4.1 PHASE 1 INCREMENTAL SYSTEM BUILD ...15
4.2 PHASE 2 INCREMENTAL SYSTEM BUILD ...18
4.3 PHASE 3 INCREMENTAL SYSTEM BUILD ...20

©Texas Instruments Inc., December 2005 3

System Overview

1 System Overview

This document describes the “C” real control framework to demonstrate the DCMOTOR demo
implemented using Code Composer Studio (CCS) version 2.2 (or above). The “C” framework is
designed to run on TMS320C281x and TMS320C280x based controllers on CCS V2.2 (or
above).

The framework uses the following modules viz.,

1. DATALOG
2. BDCPWM
3. QEP_NO_INDEX
4. RMPCNTL
5. PID_REG3
6. ESTIMATEDSPEED

In this system, the sensored drive of Brushed DC Motor (BDC) will be experimented. The user
can quickly start evaluating the performance of sensored drive system by studying the speed and
position controls.

The DCMOTOR demo has the following properties

 C Frame work
System Name Program memory usage

281x/280x
Data memory usage1

281x/280x

DCMOTOR (IQ) 2864 words2/3098 words2 652 words/652 words

Development/Emulation Code Composer Studio V.2.20 (or above) with Real Time debugging

Target Controller Spectrum Digital – TMS320C281x or TMS320C280x board

Emulator XDS510PP-PLUS (281x) / XDS510USB (280x)

PWM Frequency (281x) 40 kHz (BDCPWM, Timer 1-EVA)

 (280x) 40 kHz (BDCPWM, EPWM1-2)

PWM Mode Asymmetrical with no dead band (BDCPWM)

Interrupts (281x) 2 (Timer T1 underflow – Implements 40 kHz ISR execution rate, T2PISR)

 (280x) 2 (EPWM1 Time Base CNT_zero – Implements 40 kHz ISR execution

rate)

Peripheral Used (281x) Timer T1/T2, PWM1-4

 (280x) EPWM1-2

1 Excluding the Stack Size
2 Excluding “IQmath” Look-up Tables

©Texas Instruments Inc., December 2005 4

 System Overview

Figure 1 gives an overview of the hardware required for sensored control of brushed DC motor
drives. Four PWM signals, generated by the DSP controller, are used to drive the H-bridge dc/dc
converter. A pair of switches are operated depending the Rotation. For example, PWM1 and
PWM4 are used to drive motor in one Rotational direction. And PWM2 and PWM3 are used to
drive motor in another Rotational direction. The motor position can be controlled by using
feedback from the QEP encoder. In this application, the motor is assumed to have an attached
gearbox of a 256:1 ratio. That means that motor turns 256 revolutions to get 1 output revolution.
The overall block diagram can be depicted in figure 2.

Figure 1: A Brushed DC motor drive implementation

rω

∗ωr
∗θ r

rθ

0Rotation,0if r =>ω∗

1Rotation,0if r =<ω∗

DutyFunc

eZdspxx28x320TMS

Rotation

MechTheta

.iablesvarreferencemeans*erscriptsupthe:Note

motor
DCBrushed

voltage
plysupDC

Converter
BridgeH −

PIPI
.

nCalculatio
Speed

Driver
Index

_No_QEP

PWM_BDC

QEPB
QEPA

PWM1
PWM2
PWM3
PWM4

Figure 2: Overall block diagram of sensored position control of BDC motor

PWM1

PWM2

PWM3

PWM4

x28x
x

PWM1

PWM2

PWM3

PWM4

QEPA

Brushed DC
Motor

QEPB

QEPA

QEPB

QEP Encoder

©Texas Instruments Inc., December 2005 5

System Overview

0int_c

INT2/INT3
 interruptcore and

 interruptsT2Periodand
wT1underflo Enable

modules
 S/W Initialize

T1/T2 timers Initialize

INT3
INT2

loop
 Background

parameters module and
 system other Initialize

erruptint3INT

T2P_ISR

flags interrupt clear
 and contexts Save

contexts Restore Return

ISR
EXQEP_NO_IND

Update
Returncontexts Restore

module
SPEED_ESTExecute

module
EXQEP_NO_IND

Execute

module BDCPWM
 the Execute

module PID_REG3
 position Execute

module
RMP_CNTL Execute

flags interrupt clear
 and contexts Save

T1UF_ISR

interrrupt INT2

module PID_REG3
speed Execute

DATALOG Update

Figure 3a: Software flowchart (TMS320F281x series)

©Texas Instruments Inc., December 2005 6

System Overview

0int_c

INT3 interrupt
 core and interrupt

 CNT_zero base
 time EPWM1 Enable

modules
 S/W Initialize

bases time Initialize

3INT
loop

 Background

parameters module and
 system other Initialize

interrrupt INT3

ISREPWM1_INT_

flags interrupt clear
 and contexts Save

Returncontexts Restore

module
SPEED_ESTExecute

module
EXQEP_NO_IND

Execute

module BDCPWM
 the Execute

module PID_REG3
 position Execute

module
RMP_CNTL Execute

module PID_REG3
 speed Execute

DATALOG Update

Figure 3b: Software flowchart (TMS320F280x series)

©Texas Instruments Inc., December 2005 7

 Hardware Configuration

2 Hardware Configuration (DMC550 DRIVE)

The experimental system consists of the following hardware components:

1. Spectrum Digital DMC550 drive platform;
2. TMS320F2812 or TMS320F2808 eZdsp platform;
3. Brushed DC motor with QEP and a gearbox ratio;
4. IBM compatible development environment including an IBM compatible PC with Code Composer

Studio (CCS) v2.2 (or above) installed;
5. Additional instruments such as oscilloscope, digital multi-meter, current sensing probe and

function generator.

The experimental setup and connection can be illustrated in figure 4a for x2812 eZdsp and figure
4b for x2808 eZdsp. Notice that only major components in DMC550 and x28xx eZdsp are shown
in this figure. For DMC1500 only, the JP27 should be installed to allow software to enable/disable
PWM signals on DMC1500 (EN_DRIVE).

Refer to the User’s Guides and or Manuals for configuration of each component and connection
of the system for details.

2.1 Maximum Line Current

The software modules require that the line current variables be normalized with respect to their
individual instantaneous maximum values and express these variables all as fractional numbers
(i.e., Q15 format).

The choice of maximum line current depends on maximum motor current. This motor current
again depends on multiple factors such as, motor drive ratings and load characteristics. In order
to guarantee that the line current does not exceed the chosen maximum, a judgment factor can
be applied to the selection. For example, if the maximum current is determined as 1A, then the
line current can be normalized with a maximum value of 1A. The tradeoff of this large judgment
factor is reduced resolution.

Once the maximum value is chosen, the offset and gain of the current sense amplifier circuit
needs to be adjusted (by R15, R5, R6 on DMC550) for maximum output voltage (corresponding
to 3.0V for x28xx ADC pins) at the selected maximum current.

2.2 Gain and Offset Adjustment for Line Current Sense Amplifier Circuits

Only two phase line currents are sensed through two leg resistors at the two lower power
switches in the DMC550 (see schematics for details). The line currents are measured (or
sampled) when all three upper power switches are turned off. The voltages across the leg
resistors are shifted and amplified to an appropriate level by the associated current sense
amplifier circuit (R15 for offset and R6, R5 for gains of IU, IV, respectively) before being applied
to the ADC input channels of the DSP.

The knowledge of selected ADC channels and the corresponding gains/offset is required to
properly configure the software modules. Refer to the User’s Manual of DMC550 for details of
setting the ADC circuit gains.

Note: The DC-bus voltage (optional) measurement has no gain adjustment on DMC550 board.

©Texas Instruments Inc., December 2005 8

Hardware Configuration

2.3 Jumper Settings

1. On DMC550 board, install the following jumpers:
 - JP3 (Current offset phase U)
 - JP10 (Current offset phase V)

2. Then, install position 2-3 for the following jumpers:
 - JP4 (Capture2/Hall Effect2) = Encoder 2 (B+) is mapped to Capture 2
 - JP5 (Capture1/Hall Effect1) = Encoder 1 (A+) is mapped to Capture 1
 - JP13 (VIO, Voltage Range Selection) = 3.3 Volt for 28xx DSP
 - JP14 (Voltage Control, Pot or P4) = Potentiometer R66 controls V control (optional)

Note: when viewing the power input 5-v (P6) be upper right corner of DMC550 board,
position 2-3 in each jumper is numbered as follows. (0 0 0) ===> (1 2 3)

2.4 Cautions

1. Pin #18 (at P1, Analog interface) on DMC550 must be cut. Because this same pin #18 (P9,

Analog interface) on eZdsp2812/eZdsp2808 board might be shorted circuit with GND (any odd
pin). This prevents the short circuited VIOANALOG on DMC550 board.

2. If the over-current trips PDPINT (pin #37, P2 on DMC550) bringing to low logic, then the DSP

must be reset. The user might unplug 5-volt power supply, and wait a few seconds, then re-plug it
again.

©Texas Instruments Inc., December 2005 9

Hardware Configuration

MotorDCBrushed

DMC550Encoder
QEP

eZdsp2TMS320x281

Port
Parallel

AdapterAC

SupplyPowerDC

DSP

P3 P4 P5

+
−

+
−

V
M

otor U
M

otor

(G
N

D
)

B
us

B
us

−
−

+
−

G
N

D
--

--
-- C
A

P
1

5v

 C
A

P
2

− − −
+

− −

Figure 4a: Experimental setup and connection (TMS320F2812 eZdsp)

©Texas Instruments Inc., December 2005 10

Hardware Configuration

MotorDCBrushed

DMC550Encoder
QEP

eZdsp8TMS320x280

Port
USB

AdapterAC

SupplyPowerDC

DSP

P3 P4 P5

+
−

+
−

V
M

otor U
M

otor

(G
N

D
)

B
us

B
us

−
−

+
−

G
N

D
--

--
-- C
A

P
1

5v

 C
A

P
2

− − −
+

− −

Figure 4b: Experimental setup and connection (TMS320F2808 eZdsp)

Note: Make a +5V solder connection on JP4 for eZdsp2808. Otherwise, an additional DC power supply 5 volt is required (connected at P6 port).

©Texas Instruments Inc., December 2005 11

Software Configuration

3 Software Configuration

3.1 C28x Real DCMOTOR Demo Directory Structure

vxxx\c28\dmc\\tidcs:c sys

lib

1xdcmotor_28

0xdcmotor_28

drvlib281x

drvlib280x

dmc cfloat

cIQmath

cIQmath

cIQmath

build
include
obj
src
build
include
obj
src

systemF281x
basedIQmath""c

systemF280x
basedIQmath""c

library
driverF281xbased

point"-fixedbit-"16c

library
driverF280xbased

point"-fixedbit-"16c

librarydmcbased
point"-floating"c

librarydmcbased
IQmath""c

peripheralchip-onthe
configure&control to-(HAL)

LayernAbstractioHardware

\vxxx\dsp281x\c28\\tidcs:c

\vxxx\dsp280x\c28\\tidcs:c

mmonDSP281x_co
amplesDSP281x_ex
adersDSP281x_he

doc
mmonDSP280x_co
amplesDSP280x_ex
adersDSP280x_he

doc

build
include

obj
src

lib

build
include

obj
src

lib

build
include

obj
src

lib

build
include

obj
src

lib

Notice that the HAL and DMC software for F281x/F280x are located under the ..\vxxx directory
where xxx is the release version number.

All system-related files used in the real dcmotor system are available in “C” only, they are located
under dcmotor_281x (for F281x target) and dcmotor_280x (for F280x target) directories. The
workspace (*.wks)/project (*.pjt)/linker command files (*.cmd), source files (*.c) and header files
(*.h) are also located in the separate directories as seen in above directory structure.

All module-related files are located under drvlib281x (for F281x target), drvlib280x (for F280x
target), and dmclib directories. The driver modules located in drvlib281x and drvlib280x
directories are implemented in 16-bit word-length. However, the dmc library located in dmclib
directory has both floating-point and IQ formats (32-bit word-length).

©Texas Instruments Inc., December 2005 12

Software Configuration

3.2 Loading and Building CCS Project for C “IQmath” Real DCMOTOR demo

The workspace file (*.wks) and project file (*.pjt) for C framework to demonstrate the “IQmath”
real DCMOTOR demo are located in the ..\dcmotor_281x\cIQmath\build (for F281x target) or
..\dcmotor_280x\cIQmath\build (for F280x target) directory. The CCS workspace file, contains
the setup information for the whole project and the debugging environment such us the graph
window properties, watch window parameters, break points and probe points etc. It facilitates the
user to save and restore the same environment between debugging sessions instead of
reconfiguring the working environment again and again for each debugging session. Notice that
although the spectrum digital driver is named differently from the default one, “sdgo2812eZdsp”
for TMS320F2812 eZdsp or “F28xx XDS510USB Emulator (Spectrum Digital)” for
TMS320F2808 eZdsp, the CCS could bring up the workspace file successfully with a warning
message.

• To quickly execute demo using the pre-configured work environment, load the correct

workspace file according to the DSP target and CCS version from
..\dcmotor_281x\cIQmath\build (for F281x target) or ..\dcmotor_280x\cIQmath\build (for
F280x target) directory as described below:

For TMS320F2812 eZdsp, dcmotor_281x_CCS2x.wks and dcmotor_281x_CCS3x.wks
are for CCS v2.x and v3.x, respectively.

For TMS320F2808 eZdsp, dcmotor_280x_CCS2x.wks and dcmotor_280x_CCS3x.wks
are for CCS v2.x and v3.x, respectively.

Loading the workspace file will automatically open up the project file (*.pjt) for the
corresponding project and show all the files relevant to the project in the FILEVIEW tab.

• From the Project menu choose ‘Rebuild All’ or the ‘Rebuild All’ shortcut on the toolbar to

compile the program and load it to the target.

Once this is done, the expanded project view as part of the CCS environment will be as
shown in figures 5 and 6, if you have loaded the workspace file.

• To enable real-time mode, from the Debug menu choose ‘Reset CPU’, then select ‘Real
Time Mode’. Then, click ‘Yes’ when a message box asks “Do you want to allow realtime
mode switching?: Can’t enter real time mode unless debug events are enabled. Bit 1 of ST1
must be 0”.

• After selecting Real Time Mode, run the software by choosing Run from the Debug menu or

using the tool bar shortcut.

• The default ISR frequency is 40 kHz which can be easily changed in the header file
parameter.h under ..\dcmotor_281x\cIQmath\include (for F281x target) or
..\dcmotor_280x\cIQmath\include (for F280x target) directory.

• The BDC motor parameters, base quantities, mechanical parameters, and sampling period

time (i.e., ISR period) can be conveniently changed in the header file, parameter.h.

• The overall Q (called GLOBAL_Q, default GLOBAL_Q is set at 24) is adjustable in the
header file, IQmathLib.h under ..\lib\dmclib\cIQmath\include directory.

©Texas Instruments Inc., December 2005 13

Software Configuration

Figure 5: CCS project view of real DCMOTOR demo using C framework

Figure 6: Run time view of real DCMOTOR demo using C framework

©Texas Instruments Inc., December 2005 14

Incremental System Build

4 Incremental System Build

The system is gradually built up in order for the final system can be confidently operated. Three
phases of the incremental system build are designed to verify the major software modules used in
the system. Table 1 summarizes the modules testing and using in each incremental system build.

Software module Phase 1 Phase 2 Phase 3
DATALOG √ √ √

RMP_CNTL √ √ √
BDCPWM_DRV √√ √ √

QEP_NO_INDEX_DRV √√ √ √
ESTIMATEDSPEED √√ √ √

PID_REG3 √√ √√
Note: the symbol √ means this module is using and the symbol √√ means this module is testing in this phase.

Table 1: Testing modules in each incremental system build

Table 2 conveniently shows the specified input/output variable names for each module. The
formats of the variables are also indicated, accordingly.

Input Output Software module
Name Format Name Format

DATALOG *iptr1
*iptr2
*iptr3
*iptr4

Pointer to Q15

variables

N/A Memory

RMP_CNTL TargetValue IQ SetpointValue IQ

BDCPWM_DRV
Rotation

DutyFunc
Q0

Q15
CMPR1
CMPR2
T1PER

EV registers

QEP_NO_INDEX_DRV CAP1,2 EV H/W pin MechTheta
OutputTheta
DirectionQep

Q15
Q15
Q0

ESTIMATEDSPEED EstimatedTheta IQ EstimatedSpeed IQ
PID_REG3 Ref

Fdb
IQ Out IQ

Table 2. Input/output variable names and corresponding formats for each software module

©Texas Instruments Inc., December 2005 15

Incremental System Build

4.1 Phase 1 Incremental System Build

Assuming sections 2-3 are completed successfully, this section describes the steps for a
“minimum” system check-out which confirms operation of system interrupts, some peripheral &
target dependent modules. The position and speed are verified by the open-loop operation of
motor.

In the build.h header file located under ..\dcmotor_281x\cIQmath\include (for F281x target) or
..\dcmotor_280x\cIQmath\include (for F280x target) directory, select phase 1 incremental build
option by setting the build level to level 1. Use the ‘Rebuild All’ feature of CCS to save the
program, compile it and load it to the target.

After running and setting real time mode, set “EnableFlag” to 1 in watch windows in order to
enable interrupt T1UF (for x281x) and EPWM1 (for x280x). The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

• pwm1.DutyFunc (Q15 format): for changing the PWM duty cycle in per-unit.
• pwm1.Rotation (Q0 format): for changing the rotational direction of DC motor.

• Compile/load/run program with real time mode.

• Set DutyFunc to a small value in Q15 (e.g., 0x0F00). The Rotation could be set either 0 or 1.

• Gradually increase voltage at DC power supply to get an appropriate DC-bus voltage and now

the motor is running with a certain speed.

• Check the PWM outputs with an oscilloscope. For the Rotation = 0, the PWM1/4 are active,
whereas PWM2/3 are inactive (forced OFF). For the Rotation = 1, the PWM2/3 are active,
whereas PWM1/4 are inactive (forced OFF).

• Check the position (MechTheta) from QEP_NO_INDEX module by comparing the calculated

speed (EstimatedSpeed) from ESTIMATEDSPEED module with the speed calculated by 1/Tp,
where Tp is the period of the motor position.

• Reduce voltage at DC power supply to zero, halt program and stop real time mode. Now the

motor is stopping.

During running this build, the waveforms in the CCS graphs should be appeared as follow:

©Texas Instruments Inc., December 2005 16

Incremental System Build

Channel 1: motor mechanical angle, Channel 2: output angle, Channel 3: motor speed, Channel
4: PWM duty function

©Texas Instruments Inc., December 2005 17

Incremental System Build

Phase 1 Incremental System Build Block Diagram

Scope

BDC_
PWM_DRV

Q0

Rotation

DutyFunc

PWM1

PWM2

PWM3

PWM4

EV

HW

H-Bridge
Converter

BD

Motor
QEP

SPEED
EST

EstimatedS

EstimatedSpeed

EstimatedThe
QEP_NO_

INDEX
DRV

QEP_A OutputTheta

MechTheta

DirectionQ
QEP_B

©Texas Instruments Inc., December 2005 18

Incremental System Build

4.2 Phase 2 Incremental System Build

Assuming section 4.1 is completed successfully, this section verifies the closed loop speed PI
controller.

In the build.h header file located under ..\dcmotor_281x\cIQmath\include (for F281x target) or
..\dcmotor_280x\cIQmath\include (for F280x target) directory, select phase 2 incremental build
option by setting the build level to level 2. Use the ‘Rebuild All’ feature of CCS to save the
program, compile it and load it to the target.

After running and setting real time mode, set “EnableFlag” to 1 in watch windows in order to
enable interrupt T1UF (for x281x) and EPWM1 (for x280x). The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

• SpeedRef (floating format): for changing the reference rotor speed in per-unit.

• Compile/load/run program with real time mode.

• Set SpeedRef to 0.5 pu (or another suitable value if the base speed is different).

• Gradually increase voltage at DC power supply to get an appropriate DC-bus voltage and now
the motor is running with this reference speed (0.5 pu).

• Compare pid1_spd.Fdb with pid1_spd.Ref in the watch windows with continuous refresh feature

whether or not it should be nearly the same.

• To confirm this speed PID module, try different values of SpeedRef.

• For speed PID controller, the proportional, integral, derivative and integral correction gains may
be re-tuned to have the satisfied responses.

• Reduce voltage at DC power supply to zero, halt program and stop real time mode. Now the

motor is stopping.

During running this build, the waveforms in the CCS graphs should be appeared as follow:

Channel 1: motor mechanical angle, Channel 2: output angle, Channel 3: speed reference,
Channel 4: speed feedback

©Texas Instruments Inc., December 2005 19

Incremental System Build

Phase 2 Incremental System Build Block Diagram

Scope

BDC_
PWM_DRV

Q0

Rotation

DutyFunc

PWM1

PWM2

PWM3

PWM4

EV

HW

H-Bridge
Converter

BD

Motor
QEP

SPEED
EST

EstimatedS

EstimatedSpeed

EstimatedThe
QEP_NO_

INDEX
DRV

QEP_A OutputThetaput

MechTheta

DirectionQ
QEP_B

Ref

Fdb

PID_REG3 Out

EqualFlag

TargetValue
SetpointValue

RAMP_C
NTL SpeedRef

| . |

If input > 0, output = 0
else output = 1

©Texas Instruments Inc., December 2005 20

Incremental System Build

4.3 Phase 3 Incremental System Build

Assuming section 4.2 is completed successfully, this section verifies the closed loop position PI
controller.

In the build.h header file located under ..\dcmotor_281x\cIQmath\include (for F281x target) or
..\dcmotor_280x\cIQmath\include (for F280x target) directory, select phase 3 incremental build
option by setting the build level to level 3. Use the ‘Rebuild All’ feature of CCS to save the
program, compile it and load it to the target.

After running and setting real time mode, set “EnableFlag” to 1 in watch windows in order to
enable interrupt T1UF (for x281x) and EPWM1 (for x280x). The variable named “IsrTicker” will be
incrementally increased as seen in watch windows to confirm the interrupt working properly.

In the software, the key variables to be adjusted are summarized below.

• PositionRef (floating format): for changing the reference output position in per-unit.

• Compile/load/run program with real time mode.

• Set PositionRef to 0.5 pu.

• Gradually increase voltage at DC power supply to get an appropriate DC-bus voltage and now
the motor is turning to this reference position (0.5 pu) from the initial position of zero degree.

Note that the controlled position is the output position, not the shaft motor position.

• Compare pid1_pos.Fdb with pid1_pos.Ref in the watch windows with continuous refresh feature
whether or not it should be nearly the same.

• To confirm this position PID module, try different values of PositionRef.

• For position PID controller, the proportional, integral, derivative and integral correction gains may

be re-tuned to have the satisfied responses.

• Reduce voltage at DC power supply to zero, halt program and stop real time mode. Now the
motor is stopping.

During running this build, the waveforms in the CCS graphs should be appeared as follow:

Channel 1: motor mechanical angle, Channel 2: output angle, Channel 3: output position
reference, Channel 4: output position feedback

©Texas Instruments Inc., December 2005 21

Incremental System Build

Phase 3 Incremental System Build Block Diagram

Scope

BDC_
PWM_DRV

Q0

Rotation

DutyFunc

PWM1

PWM2

PWM3

PWM4

EV

HW

H-Bridge
Converter

BDC

Motor
QEP

SPEED
EST

EstimatedS

EstimatedSpeed

EstimatedThet
QEP_NO_I

NDEX
DRV

Q15 / HW

QEP_A OutputThetaput

MechTheta

DirectionQ
QEP_B

EqualFlag

TargetValue
SetpointValue

RAMP_CN
TL

PositionRef | . |

Ref

Fdb

PID_REG3
Out

If input > 0, output = 0
else output = 1

Ref

Fdb

PID_REG3 Out

