SM72442

Application Note 2124 Power Circuit Design For SolarMagic SM3320

Literature Number: SNOSB84B

Power Circuit Design For SolarMagic™ SM3320

National Semiconductor Application Note 2124 Youhao Xi February 18, 2011

Overview of SolarMagic MPPT with Panel-Mode Capability

National Semiconductor's SolarMagic technology, the stateof-the-art maximum power point tracking (MPPT) chipset. improves energy harvest of each individual Photovoltaic (PV) panel under real world conditions. To further optimize the SolarMagic performance, National Semiconductor developed the second generation chipset, anchored by the MPPT chip SM72442, capable of intelligent maximum power tracking (MPPT) as well as direct power Panel-Mode (PM). Figure 1 shows a typical architecture of a PV system employing a SolarMagic distributed MPPT/PM solution to enhance the system performance. In additional to employing a DC/DC converter for MPPT by each PV module, a direct Panel-Mode switch is introduced to be able to bypass the DC/DC converter in appropriate operating conditions. With the exception of the MPPT/PM enhancements, almost all merits of the first generation MPPT chipset are retained. Besides, it offers the following additional advantages.

 It replaces the interleaved Buck and Boost switching modes and provides an almost lossless energy harvest solution when the maximum power point voltage of the host PV panel is nearly equal to the DC/DC converter's output voltage. Instead of incurring power processing losses, the MPPT/PM controller will shutdown the switching of the DC/DC converter, and turn on the PM switch to directly extract power from the PV panel, thereby achieving almost lossless energy harvest.

It offers a backup solution to achieve DC/DC converter fault protection. When the DC/DC converter fails, though very rare, to process power, the MPPT/PM controller will turn-on the PM switch, allowing the host PV panel to be continually harvested rather than being blocked out of service.

Shown in *Figure 1*, several MPPT/PM enhanced modules are connected in series by their outputs, forming a string circuit. Multiple strings are parallel connected via blocking diodes to establish an MPPT/PM enhanced PV array, feeding power to the dc-ac power inverter which may be tied to the utility grid. The inverter operates by regulating its input dc voltage such that power intake from the PV array will be transferred to the grid instead of being stored in the dc link shunt capacitors. The regulated inverter input dc voltage, often referred to as the dc link voltage, can be considered constant, thus imposing a design constraint for SolarMagic converters.

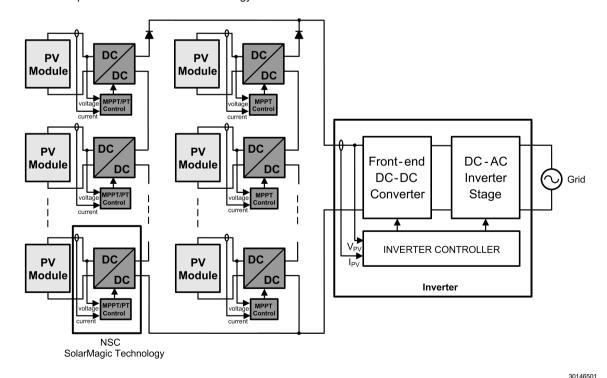


FIGURE 1. SolarMagic MPPT/PM Enhanced PV System Architecture

SolarMagic™ is a trademark of National Semiconductor Corporation.

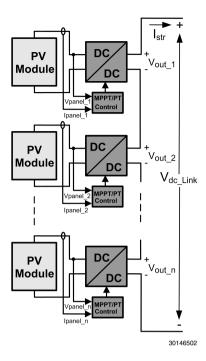


FIGURE 2. A String of MPPT/PM Enhanced PV Modules

Specifically, each converter's output voltage is a portion of the dc link voltage. Refer to *Figure 2*, which shows a single string tied to the inverter. Assuming the k-th panel in the string of "n" modules produces a power of Pk, where k = 1, 2, ...n, then the total power harvested from the string is determined by,

$$P_{str} = \sum_{k=1}^{n} P_k \tag{1}$$

Because the converters in the string are series connected, they all have the same output current, the string current, $I_{\rm str}$, which is given by

$$I_{str} = \frac{P_{str}}{V_{dc_Link}}$$
 (2)

Therefore, the output voltage of th k-th converter is governed by

$$Vout_{k} = \frac{P_{k}}{P_{str}} \bullet V_{dc_Link}$$
(3)

On the other hand, each PV panel, as a power source, is desired to operate at its maximum power point, at which the panel terminal voltage is the maximum power point voltage Vmpp. This requires that each SolarMagic DC/DC converter shown in *Figure 1* should be controlled such that it can establish its input voltage to track the panel's Vmpp. This imposes another design constraint for the SolarMagic converter. For the k-th module, the converter's input voltage should be

$$Vin_k = Vmpp_k$$
 (4)

Equation 2 and Equation 3 indicate the voltage conditions that the SolarMagic converter should be operated with.

In a string, when a converter loses its power due to heavy shading over the host PV panel or failure in either the panel or the DC/DC converter, it may block the string current. The solution is to employ an output bypass diode, as shown in *Figure 3*. During normal operation the output bypass diode is reverse biased, and while in converter shutdown mode the diode becomes forward biased continues the string current to keep the string in service.

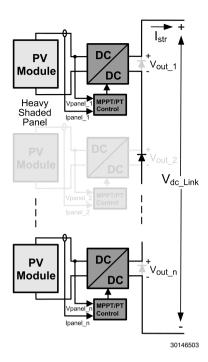


FIGURE 3. Output Bypass Diode Continues the String Current

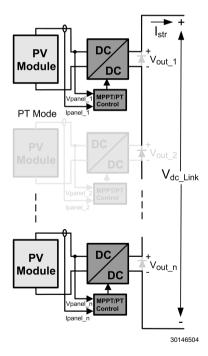


FIGURE 4. Panel Mode Offering Almost Lossless Energy Harvest

3

Figure 4 illustrates a scenario when the second PV module in the string operates in panel mode. More modules or the entire string may operate in panel mode when the panel mode conditions are valid. In panel mode, the DC/DC converter is shutdown to eliminate the switch-mode power conversion losses. The power produced by the host PV panel is almost losslessly harvested via the PM switch. Note that the PM switch may also be engaged as a fault protection mechanism

to continue the power production by the host PV panel. These fault conditions may be over-current, over-temperature, or converter stage failure.

Power Converter Topology Selection

It is clear that the SolarMagic converter is required to establish the link between the two voltages defined by *Equation 2* and *Equation 3*. In reality, for a given PV system, these two voltages will vary with sun light irradiation conditions perceived by each PV module or other factors. The converter should be flexible to cope with these variations, namely able to operate in all of the following conditions: (i) Vin < Vout; (ii) Vin = Vout; (iii) and Vin>Vout. In other words, the converter should be able to boost up or buck down the input voltage. This leads to the selection of a four switch Buck and Boost converter topology with PM switch. The PM switch can establish an almost lossless direct link to the string.

Figure 5 shows a Buck-and-Boost converter topology with PM switch. It consists of the following components:

(i) Power Inductor L1

- (ii) Buck (BK) switch leg including Q1 and Q2
- (iii) Boost (BST) switch leg including Q3 and Q4
- (iv) Input and Output filter capacitors Cin and Cout
- (v) Output bypass diode D1
- (vi) PM switch implemented with common-gate and common-source MOSFETs Q5A and Q5B

Theoretically Q2 and Q4, the two synchronous rectifiers, can be replaced with rectifier diodes without affecting the operating function. The circuit seems simpler, but efficiency-wise the diode will cause more conduction losses than the synchronous rectifier, making the use of a diode prohibitive in the converter legs.

The output bypass diode D1 is employed to continue the string current when its host PV model losses power such as in heavy shading conditions. During normal energy harvest, D1 will remain reverse biased.

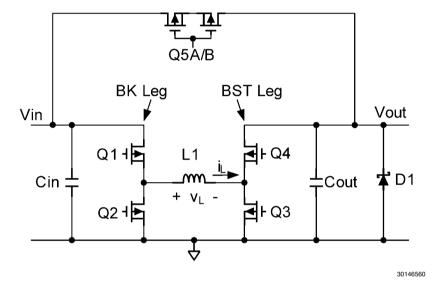


FIGURE 5. Buck-and-Boost Converter Topology with Panel Mode Switch

Operating Principle and Power Converter Design Equations

Based on real time assessment of the operating conditions, the SolarMagic MPPT/PM controller will dynamically determine an optimal mode among the three, so as to operate the converter to track the maximum power point of the PV panel. When the optimal operating condition falls into a narrow window that Vin and Vout are within about ±2% of each other, the panel mode is engaged to take the advantage of the almost lossless energy harvest feature. In panel mode as shown in *Figure 6*, Q5A/B remains ON while the DC/DC converter shuts down, establishing a direct link between the PV panel output and the string. Note that the panel mode replaces the interleaved Buck and Boost modes in the first generation SolarMagic SM1230 solution with the SM72441 MPPT control IC.

When the panel mode is not the optimal operating condition, the MPPT/PM controller will turn-off PM switches and engage the DC/DC converter for maximum power tracking. In a conventional Buck-and-Boost converter, switching of the diagonal switches is synchronized. Namely Q1 and Q3 are turned on and off at the same time. So are Q2 and Q4. In SolarMagic applications, the switching sequence of the four switches in *Figure 5* is different from the conventional Buck-and-Boost converter. The SolarMagic converter has three operating modes, which are the buck-only mode (BK); the boost-only mode (BST); and the buck-boost-interleaved mode (BB). Based on real time assessment of the operating conditions, the SolarMagic MPPT/PM controller will dynamically determine an optimal mode to operate the converter in order to track the maximum power point of the PV panel.

Generally, when the PV panel's Vmpp is lower than about 98% of Vout defined in *Equation 2*, the controller will run the converter in the BK mode. *Figure 7*a shows the equivalent circuit of BK mode, where only Q1 and Q2 are switching, while Q3 remains OFF and Q4 stays ON.

When the PV panel's Vmpp is greater than about 102% of the output voltage defined in *Equation 2*, the controller will run the converter in the BST mode. Figure 7b shows the equivalent circuit of BST mode. Only Q3 and Q4 are switching, while Q2 remains OFF and Q1 stays ON.

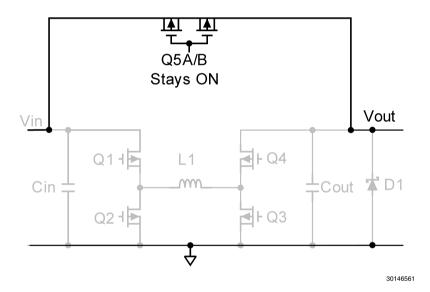


FIGURE 6. Panel Mode

5

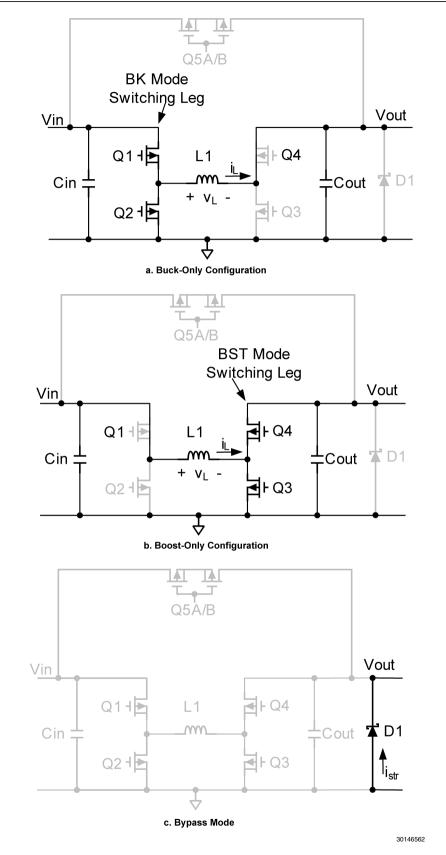


FIGURE 7. Buck-Only, Boost-Only and Output Bypass Configurations

For convenience in discussion, the following assumptions are made:

- (i) The inductor L1 is an ideal inductor. Its inductance is constant. Its equivalent resistance is negligible.
- (ii) The input and output capacitors are ideal capacitors. Their capacitances are constants. Their equivalent resistances are negligible.
- (iii) The inductor and capacitors form an ideal LC filter, such that the input current ripples and output voltage ripples are negligible.
- (iv) Q1 through Q4 are ideal switches. They can be switched ON and OFF instantaneously, and their conduction resistance Rds (on) is negligible.
- (v) The gate drive dead times between Q1 and Q2, and between Q3 and Q4, are negligible.
- (vi) Other power losses in the converter are negligible.

1. BK Mode

Figure 8 shows key waveforms of the converter of Figure 5 when it operates in BK mode (equivalent to Figure 7a). Q1 and Q2 are switched complementarily. The voltage across the inductor, v_L, is (Vin-Vout) when Q1 is ON, and (-Vout) when Q1 is OFF. For steady state, the inductor's volt-second product must be balanced each switching cycle, namely,

$$(Vin - Vout) \times D + (-Vout) \times (1 - D) = 0$$
 (5)

Where D is the duty cycle of the Q1.

Substituting the PV panel voltage Vmpp from Equation 3 into Equation 4, one will obtain the converter duty cycle in BK mode, which is

$$D_{BK} = \frac{Vout}{Vmpp}$$
 (6)

Note: Equation 5 indicates the duty cycle required to establish the power link in BK mode between the PV panel maximum voltage (Vmpp) and the shared system dc link voltage Vout as defined in Equation 2.

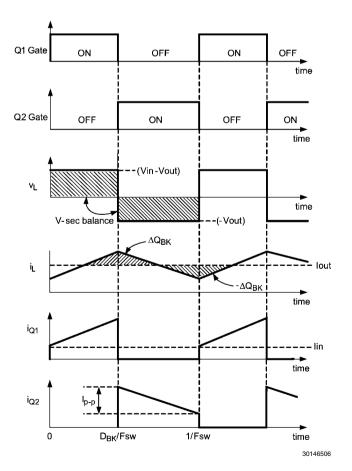


FIGURE 8. Buck-Only Key Waveforms

2. BST Mode

Figure 9 shows key waveforms of the converter of Figure 5 when it operates in BST mode (equivalent to Figure 7b). In BST mode, Q3 and Q4 are switched complementarily. The voltage across the inductor, v_L , is Vin when Q3 is ON, and (Vin-Vout) when Q3 is OFF. For steady state, the inductor's volt-second product must be balanced each switching cycle, namely,

$$Vin \times D + (Vin - Vout) \times (1 - D) = 0$$
 (7)

Where D is the duty cycle of the Q3.

Substituting the PV panel voltage Vmpp from Equation 3 into Equation 6, one will obtain the converter duty cycle in BST mode, which is

$$D_{BST} = \frac{Vout - Vmpp}{Vout}$$
 (8)

Note: Equation 7 indicates the duty cycle required to establish the power link in BST mode between the PV panel maximum voltage (Vmpp) and the shared system dc link voltage Vout as defined in Equation 2.

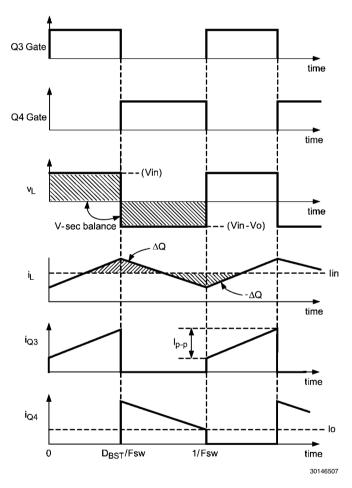


FIGURE 9. Boost-Only Key Waveforms

3. Converter Power Circuit Design Equations

Assuming the converter is operating at the panel maximum power point, Pmpp, and the converter internal losses are negligible. The following can be obtained.

$$\begin{cases}
lin = \frac{Pmpp}{Vmpp} = lmpp \\
lout = \frac{Pmpp}{Vout}
\end{cases}$$
(9)

3.1 Inductor Current

Now let us first look at the inductor current. In BK mode (refer to *Figure 7*a and *Figure 8*), when Q1 is on, (Vin-Vout) is applied across the inductor L1, thereby its current will rise linearly. When Q2 is on, (-Vout) is applied across L1, thereby the current will decrease linearly. This leads to a saw-tooth current waveform as shown in *Figure 8*.

Similarly, for BST mode (refer to *Figure 7*b and *Figure 9*), when Q3 is on, (Vin) is applied across the inductor L1, thereby its current will rise linearly. When Q4 is on, (Vin-Vout) is applied across L1, thereby the current will decrease linearly. This leads to a saw-tooth current waveform as shown in *Figure 9*.

Obviously the inductor ripple current is determined by:

$$I_{p-p} = \begin{cases} \frac{\text{Vout}}{\text{L1}} \bullet \frac{1 - D_{BK}}{\text{Fsw}} & (BK_Mode) \\ \frac{\text{Vmpp}}{\text{L1}} \bullet \frac{D_{BST}}{\text{Fsw}} & (BST_Mode) \end{cases}$$
(10)

Since the averaged current through the inductor is lout in BK mode, and lin in BST mode, the peak inductor current is given by

$$I_{pk} = \begin{cases} Io + \frac{Vout}{2 \cdot L1} \cdot \frac{1 - D_{BK}}{Fsw} & (BK_Mode) \\ Iin + \frac{Vmpp}{2 \cdot L1} \cdot \frac{D_{BST}}{Fsw} & (BST_Mode) \end{cases}$$
(11)

3.2 Capacitor Ripple Voltage

The area of the shaded triangles shown in the i_L curves in *Figure 8* and *Figure 9* are equal to the total electric charge exchanged in and out of the input or output capacitors, respectively, in one switching cycle. The net charge exchange in the capacitor within a switching cycle is thus determined by

$$\begin{cases} \Delta Q_{BK} = \frac{1}{8} \bullet \frac{I_{p-p}}{Fsw} = \frac{(1 - D_{BST}) \bullet Vout}{8 \bullet Fsw^2 \bullet L1} & (BK_Mode) \\ \Delta Q_{BST} = \frac{1}{8} \bullet \frac{I_{p-p}}{Fsw} = \frac{D_{BST} \bullet Vmpp}{8 \bullet Fsw^2 \bullet L1} & (BST_Mode) \end{cases}$$
(12)

Therefore, the input and output ripple voltages can be estimated by

$$\begin{cases} \Delta vout_{pk-pk} = \frac{\Delta Q_{BK}}{Cout} = \frac{(Vmpp - Vout) \cdot Vout}{8 \cdot Fsw^2 \cdot L1 \cdot Cout \cdot Vmpp} \\ \Delta vin_{pk-pk} = \frac{\Delta Q_{BST}}{Cin} = \frac{Vout - Vmpp}{8 \cdot Fsw^2 \cdot L1 \cdot Cin} \end{cases}$$
(BSTMode)

3.3 MOSFET Currents

The peak current through each MOSFET is determined by Equation 10. Now let us find out the rms current of each MOSFET.

9

Referring to the waveforms in Figure 8 and Figure 9, the rms current through Q1 can be approximated as

$$I_{rms_Q1} = \begin{cases} lout \bullet \sqrt{D_{BK}} & (BK_Mode) \\ lmpp & (BST_Mode) \end{cases}$$
(14)

Substituting Equation 5 and Equation 8 into Equation 13, one can obtain

$$I_{rms_Q1} = \begin{cases} \frac{Pmpp}{\sqrt{Vout \cdot Vmpp}} & (BK_Mode) \\ Impp & (BST_Mode) \end{cases}$$
(15)

Similarly, the rms current through Q2 is given by

$$I_{rms_Q2} = \begin{cases} \frac{Pmpp}{Vout} \bullet \sqrt{1 - \frac{Vout}{Vmpp}} & (BK_Mode) \\ 0 & (BST_Mode) \end{cases}$$
(16)

The rms current through Q3 is given by

And the rms current through Q4 is given by

$$I_{rms_Q4} = \begin{cases} 0 & (BK_Mode) \\ \frac{Pmpp}{\sqrt{Vout \cdot Vmpp}} & (BST_Mode) \end{cases}$$
(18)

The worst case values defined in through Equation 17 define the extreme requirements the power components need to meet.

Power Converter Component Selection Procedure

Step 1: PV Panel Characteristics

To select the components for the power circuit of the converter shown in *Figure 5*, we first need to know the targeted PV panel's electrical characteristics, including the following:

- **P**_{max}: PV panel maximum power level
- Voc_{min}, Voc_{max}: Minimum and Maximum PV panel open circuit voltages
 Applicable absolute maximum Voc is limited either by SolarMagic driver IC's 100V maximum rating, or by application specified limit, whichever is lower.
- Vmpp_{min}, Vmpp_{max}: Minimum and Maximum MPP voltage. May sometimes be approximated by, Vmpp_{max} ≈0.78 x Voc_{max}; Vmpp_{min} ≈0.78 x Voc_{min}.
- Isc_{max}: PV panel maximum short circuit current.
- Impp_{min}, Impp_{max}: Minimum and Maximum PV panel MPP current. Obviously, Impp_{min} = P_{max} / Vmpp_{max}; Impp_{max} = P_{max} / Vmpp_{min}

These parameters define the power circuit's input specifications.

Step 2: Other Converter Specifications

The following additional parameters need to be determined, too, before selecting the components.

• Vout_{max}: Maximum output voltage.

Absolute maximum output voltage is limited either by SolarMagic driver IC's 100V maximum rating, or by application specified limit, whichever is lower.

- Voutmin: Minimum buck down voltage at full power, which may be determined by the following, whichever is smaller.
 - Vout_{min} = P_{max} / lout_{max}, as limited by the maximum output current limit,
 - Vout min = Vdc_Link_min/n as limited by Inverter dc link voltage, where n is the number of PV modules to be installed in a string, and Vdc_lin_min is the minimum inverter dc link voltage for maximum power operation.
- ΔVin_{p-p}: Maximum peak-to-peak input ripple voltages Generally less than 5% of input dc voltage.
- ΔVout_{p-p}: Maximum peak-to-peak output ripple voltage. Generally less than 5% of the output voltage.
- Fsw: Switching frequency controlled by SolarMagic MPPT controller. The nominal Fsw is 200 kHz, with ±10% tolerance.

 $Fsw_{min} = 180 \text{ kHz}$

Fsw_{max} = 220 kHz

Step 3: Decide the Full Power BK and BST Duty Cycles

Since the power circuit components to be selected below need be able to support the worst operating conditions, which can be reflected in the worst case converter duty cycles, we need to determine (i) the minimum BK duty cycle that relates to the maximum voltage step down ratio from the input to the output; and (ii) the maximum BST duty cycle that corresponds to the maximum voltage step up ratio from the input to the output, both at maximum power. According to *Equation 5* and *Equation 7*, we can easily find that these worst case duty cycles are given by:

$$\begin{cases} D_{BK_min} = \frac{Vout_{min}}{Vmpp_{max}} & (BK_Mode) \\ D_{BST_max} = \frac{Vout_{max} - Vmpp_{min}}{Vout_{max}} & (BST_Mode) \end{cases}$$
(19)

Step 4: Select the Inductor L1, Input Capacitor Cin and Output Capacitance Cout.

In BK mode the inductor L1 teams up with Cout to fulfill an output L-C filter, and in BST mode it works with Cin to fulfill an input L-C filter. Because both the inductor and capacitors affect the filter performance, selections of L1, Cin and Cout are correlated. Selection trade-offs between the values of inductor and capacitors are normally required.

According to Equation 9, one can obtain the maximum inductor ripple current, as given by

$$I_{p-p_max} = \begin{cases} \frac{Vout_{min}}{L1} \bullet \frac{1 - D_{BK_min}}{Fsw_{min}} & (BK_Mode) \\ \frac{Vmpp_{min}}{L1} \bullet \frac{D_{BST_max}}{Fsw_{min}} & (BST_Mode) \end{cases}$$
(20)

A good design practice is to limit the inductor ripple current to below 30% of the maximum DC current, or the peak-to-peak ripple be 60% of the maximum DC current. Applying this constraint to *Equation 19*, the minimum inductance should satisfy the following:

$$\begin{cases} L1 \geq \frac{Vout_{min}^2}{0.6 \bullet P_{max}} \bullet \frac{1 - D_{BK_min}}{Fsw_{min}} & (BK_Mode) \\ And & whichever is greater. \\ L1 \geq \frac{Vmpp^2}{0.6 \bullet P_{max}} \bullet \frac{D_{BST_max}}{Fsw_{min}} & (BST_Mode) \end{cases}$$

In addition to the inductance value requirement, L1 should stay away from saturation at the peak current defined by *Equation 10*. Substituting the worst case values, the peak current that L1 needs to handle without being saturated is given by

the worst case values, the peak current that L1 needs to handle without being saturated is given by
$$I_{pk} = \begin{cases} \frac{P_{max}}{Vout_{min}} + \frac{Vout_{min}}{2 \cdot L1} \cdot \frac{1 \cdot D_{BK_{min}}}{Fsw_{min}} & (BK_Mode) \\ & & \text{whichever is greater.} \end{cases}$$

$$\frac{P_{max}}{Vmpp_{min}} + \frac{Vmpp_{min}}{2 \cdot L1} \cdot \frac{D_{BST_{max}}}{Fsw_{min}} & (BST_Mode)$$
(22)

The inductor windings are recommended to use multiple strand wires in order to reduce power losses.

Substituting the input and output ripple specification limits to *Equation 12*, and applying the worst case parameters obtained previously, we can obtain the minimum filter capacitance required to meet the ripple limits, as follows

$$\begin{cases} C_{out} \geq \frac{\left(Vmpp_{max} - Vout_{min}\right) \bullet Vout_{min}}{8 \bullet Fsw_{min}^2 \bullet L1 \bullet Vmpp_{max} \bullet \Delta vout_{p-p}} \\ \\ C_{in} \geq \frac{Vout_{max} - Vmpp_{min}}{8 \bullet Fsw_{min}^2 \bullet L1 \bullet \Delta vin_{p-p}} \end{cases}$$

$$(23)$$

Obviously, the capacitors' voltage rating should satisfy the following,

$$\begin{cases} V_{rating_of_C_{out}} \ge Vout_{max} \\ \\ V_{rating_of_C_{in}} \ge Voc_{max} \end{cases}$$
 (24)

Seen from Equation 22 that a greater valued L1 can reduce the need of capacitance of Cin and Cout, and vice versa. Trade-offs among the overall cost, size and availability are recommended in selecting L1, Cin and Cout.

Ceramic capacitors of X7R type are recommended for Cin and Cout. In addition, Cin and Cout can be a combination of multiple smaller valued capacitors connected in parallel instead of a single large valued one. Normally this approach can reduce the overall cost owing to component availability, unit price, and procurement lead time.

Step 5. Determine the Power MOSFET Switches

Power MOSFETs are generally selected according to voltage rating, rms current requirement, and peak current. It is obvious that the voltage rating requirements of the four MOSFETs are determined by

$$\begin{cases} V_{rating_of_Q1} \ge Voc_{max} \\ V_{rating_of_Q2} \ge Voc_{max} \\ V_{rating_of_Q3} \ge Vout_{max} \\ V_{rating_of_Q4} \ge Vout_{max} \end{cases}$$
 (25)

The peak current of the MOSFETs are all determined by Equation 21.

The RMS current of the four MOSFETs are determined, respectively, by substituting the worst case values into *Equation 14* through *Equation 17*, which yields the following:

$$I_{rms_Q1} = \begin{cases} \frac{P_{max}}{\sqrt{Vout_{min} \cdot Vmpp_{max}}} & (BK_Mode) \\ \frac{P_{max}}{Vmpp_{min}} & (BST_Mode) \end{cases}$$
 whichever is greater. (26)

$$I_{rms_Q2} = \frac{P_{max}}{Vout_{min}} \bullet \sqrt{1 - \frac{Vout_{min}}{Vmpp_{max}}}$$
(27)

$$I_{rms_Q3} = \begin{cases} \frac{P_{max}}{Vout_{min}} & (BK_Mode) \\ \frac{P_{max}}{Vmpp_{min}} & \sqrt{\frac{Vout_{max} - Vmpp_{min}}{Vout_{max}}} & (BST_Mode) \end{cases}$$
(28)

$$I_{rms_Q4} = \frac{P_{max}}{\sqrt{Vout_{max} \cdot Vmpp_{min}}}$$
(29)

In addition, a MOSFET's Rds(on) and gate charge are two other factors that need to be considered to reduce the overall power losses in the MSOFET. However, a lower Rds(on) MOSFET will generally have greater gate charge, therefore it may reduce conduction losses at the cost of increased switching losses. Besides, a lower Rds(on) MOSFET usually costs more than a higher Rds(on) MOSFETs at the same voltage and current ratings and package. Trade-offs among overall efficiency and cost are recommended in selecting the MOSFETs.

Step 6. Determine the Output Bypass Diode Obviously the output bypass diode must support a reverse voltage greater than the maximum output voltage. When it is in conduction mode, it should continue the maximum string current. Therefore, the ratings of the output bypass diode should meet the following requirements,

$$\begin{cases} V_{rating_of_D1} > Vout_{max} \\ I_{rating_of_D1} > \frac{P_{max}}{Vout_{min}} \end{cases}$$
 (30)

A Schottky diode is recommended for the sake of minimal conduction losses in the diode when it is conducting. The conduction losses will turn into a thermal burden, thus a Schottky diode will help reduce the cooling requirement, and consequently the overall cost of the converter.

Step 7. Determine the PM Switch Selection

Step 7 is only required when utilizing the second generation MPPT controller SM72442 and it's panel mode function. When the converter is in panel mode, Q5A/B conducts the panel maximum power point current Impp. On the other hand, since the panel mode switch is also engaged in converter fault conditions, the PM switch should be able to conduct the maximum PV panel short circuit current Isc. Therefore, PM switches current rating should satisfy

$$I_{D_{Q5A}} = I_{D_{Q5B}} \ge I_{sc max}$$
 (31)

When the converter is in panel mode, the maximum voltage across the PM switches is given by:

In order to minimize the conduction losses in Q5A/B, an ultra low Rds(on) FET meeting the rating requirements given in *Equation* 30 and *Equation* 31 should be selected.

Summary of Power Circuit Selection Guide

Table 1 summarizes key selection criteria of the SolarMagic Power Converter

Cout Cout Cout $\geq \frac{Vout_{min}}{0.6 \bullet P_m}$ Cout $C_{out} \geq \frac{V_{out}}{8 \bullet F}$ Cout $C_{out} \geq \frac{V_{out}}{8 \bullet F}$ Cout $C_{out} \geq \frac{V_{out}}{8 \bullet F}$	Multi-strand windings in parallel to minimize power losses in winding. Recommending multiple ceramic capacitors. Recommending multiple ceramic capacitors. Trade-off between low Rds(on) and low gate charge MOSFETs needed to minimize overall power dissipation. [e)
	Pmax
Voutmin ² 1 - D _{BK_min} (BK_Mode) L1 ≥ Vmpp ² • Fswmin L1 ≥ Vmpp ² • D _{BST_max} (BST_Mode) Rever is greater. C _{in} ≥ Voutmax - Vmppmin C _{in} ≥ Voutmax - Vmppmin (Vmppmax - Voutmin) • Voutmin ut ≥ (Vmppmax - Voutmin) • Voutmin S • Fswmin ² • L1 • Vmppmax • Δvoutp _{-p}	

Notes	Trade-off between low Rds(on) and low gate charge MOSFETs needed to minimize overall power dissipation.				Trade-off between low Rds(on) and low gate charge MOSFETs	needed to minimize overall power dissipation.						
		(bK_Mode)	(BST_Mode)		(BKMode)	(BST_Mode)		(BK_Mode)		(BST_Mode)		
Rating	Ims_Q2 = Pmax Voutmin 1 - DBK min 1	$ Vout_{min} + 2 \cdot L1 \cdot Fsw_{min}$	P _{max} + Vmpp _{min} D _{BST_{max} Vmpp_{min} Vmpp_{min} F_{SW_{min}}}	whichever is greater. $V_{\rm rating_of_Q2} \ge Voc_{\rm max}$		Pmax Voutmax - Vmppmin Vmppmin Voutmax	whichever is greater.	P _{max} + Vout _{min} 1 - D _{BKmin} Vout _{min} 1 - S _{Wmin}	p _k =	P _{max} + Vmpp _{min} D _{BSTmax} Vmpp _{min} 2 • L1 Fsw _{min}	whichever is greater.	V_rating_of_Q3 ≥ Vout _{max}
Value												
Compo	02				03							

15

Notes	Trade-off between low Rds(on) and low gate charge MOSFETs	overall power dissipation.					Ultra-Low forward voltage drop Schottky diode	preferred.	Ultra-Low Rds(on) MOSFET preferred.			
Rating	I _{rms_Q4} = P _{max} /Vout _{max} • Vmpp _{min}	P _{max} + Vout _{min} + 1 - D _{BKmin} (BK_Mode)	pk =	P _{max} + Vmpp _{min} D _{BSTmax} (BST_Mode) Vmpp _{min} 2 • L1 Fsw _{min}	whichever is greater.	V_rating_of_Q4 ≥ Vout _{max}	V_rating_of_D1> Vout _{max}	$I_rating_of_D1 > \frac{P_{max}}{Vout_{min}}$	V_rating_of_Q5A = V_rating_of_Q5B > Voc _{max}	whichever is greater	V_rating_of_Q5A = V_rating_of_Q5B > Vout _{max}	D_Q5A = D_Q5B ≥ Iso_max
Value												
Compo	04						10		Q5A, Q5B			

AN-2124

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support				
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench			
Audio	www.national.com/audio	App Notes	www.national.com/appnotes			
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns			
Data Converters	www.national.com/adc	Samples	www.national.com/samples			
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards			
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging			
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green			
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts			
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality			
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback			
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy			
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions			
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero			
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic			
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training			

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated