Startup sequence

Scope signals description

IM_Z	Current through motor windings	Measured with TEK current probe TCP0030
24V	DRV8812 power supply	
OUT1,2	DRV8812 AOUT1, AOUT2 outputs	
RESET	DRV8812 nRESET signal	Threshold of scope digital input probe = 1.4V
DECAY	DRV8812 DECAY signal	Threshold of scope digital input probe = 0.8V

MSO4104 - 11.33.19 18/11/2010

MSO4104 - 11.35.17 18/11/2010

MSO4104 - 11.34.24 18/11/2010

FAST decay function is active also after PWM signal OFF.

$DECAY = L \Rightarrow SLOW decay function$

 $\underline{DECAY} = H \Rightarrow FAST \ decay \ function$

Here DRV8812 always activates FAST decay mode, independently of DECAY signal status

MSO4104 - 12.31.26 18/11/2010

Additional scope signal description

$DECAY = L \Rightarrow SLOW decay function$

MTZ_PWM RESET

Coupling

DC AC A

20.0 V

Invert

Off

Impedance

1ΜΩ 50Ω

DECAY 1 20.0 V

MSO4104 - 13.21.14 18/11/2010

Z 40.0µs 11→▼1.39267 s

D15-D0 ▶ Timing Resolution: 400ns

More

Comparing scope traces it becomes clear that DECAY signal differentiates decay function ONLY if current chopping level is overcomed, i.e. only when MTZ_PWM = DRV8812 xENBL pin = H BUT NOT when PWM = xENBL = L, where current decay is ALWAYS FAST.