

PCI Express® 3.0 PHY Electrical Layer Requirements

Dan Froelich Intel Corporation Intel Corporation

Third party marks and brands are the property of their respective owners.

- $\mathcal{L}_{\mathcal{A}}$ PHY Requirements
- \blacksquare Preliminary Jitter Budget
- \blacksquare Statistical Simulation Tools
- \blacksquare 3.0 PHY Rate
- \blacksquare Transmitter Specification
	- \checkmark PLL Bandwidth
	- \checkmark Reference Location
	- \checkmark Timing Parameters
	- \checkmark Equalization
- \blacksquare Reference Clock Specification
- \blacksquare Receiver Specification
- \blacksquare Major Form Factor Work Areas
- \blacksquare Next Steps

PCIe ® 3.0 Electrical Requirements

b. Backwards Compatibility

- \checkmark Gen1/Gen2 cards must operate in Gen3 slots at Gen1/Gen2 performance
- \checkmark 2.0 clocking architectures must be supported.
- **EX Compatible with 2.0 Power Budgets**
	- \checkmark Low PHY Power Consumption
- \blacksquare Cost: No required changes to connectors, clocks, materials, HVM manufacturing practices.
	- \checkmark Extreme server channels may require channel optimizations.
- BER of E-12 or better.
- At least 2x effective data rate of PCIe 2.0 (5.0 GT/s)
- \blacksquare Channel Length Support
	- \checkmark Client
		- 1 Connecter, 14" end to end, microstrip, FR4.
	- \checkmark Server
		- 2 Connector, 20" end to end, stripline, FR4.

System Jitter Budget 8.0 GT/s

***Simluation Simluation with Statistical Tool Required To Capture Channel Interactions with Statistical Tool Required To Capture Channel Interactions**

PERCIAS Communist Confidential Confiden

Rate Selection Process

- **Select worst case channels.**
	- \checkmark Several companies provided channel models for HVM 2.0 client and server systems at length target limits.
- Use statistical simulation tools
- Analyze rates that can provide \sim 2x data throughput increase
	- \checkmark 8 GT/s with scrambling.
	- \checkmark 10 GT/s with 8b/10b.
- **Analyze different receiver equalization methods** \checkmark CTLE \sqrt{DEF}

Statistical Simulation Tools

- \blacksquare Provides jitter relief by moving jitter from Dj bin to Rj bin
	- \checkmark For a given channel, enables I/O designers to determine what type, order and equalization resolution is required for a BER target
	- \checkmark Accurately models high frequency Tx jitter
- \blacksquare Uses statistically weighted data patterns
	- \checkmark More accurate, less conservative than PDA
- P. Operates on pulse response of channel
	- \checkmark Comprehends x-talk, ISI, reflections, etc.
- \blacksquare Accurately models both Common Refclk and Data Driven architectures
	- \checkmark Accurately models the interaction of CDRs and ISI
	- \checkmark Simulates clock models with supply noise sensitivity, device thermal noise, duty-cycle error and jitter amplification

E.g.: Statistical Treatment of Jitter

- p. Consider T_{MIN_PULSE} parameter
	- \checkmark Defined to limit channel induced jitter amplification

$\textcolor{red}{\bullet}$ 5.0G spec defines $\textsf{T}_{\textsf{MIN_PULSE}}$ as 0.1 UI (max)

- \checkmark 5.0G spec makes no assumptions regarding Dj/Rj breakdown
- \checkmark This method of budgeting T $_{\sf MIN_PULSE}$ assumes jitter is 100% bimodal Dj
- \checkmark Equivalent to 20 ps Dj, 0 ps Rj

Analysis of Tx jitter sources yields different results

- \checkmark Jitter over 1.5G Nyquist will generate jitter amplification
- \checkmark Rj and Dj over this range tend to be spectrally flat
- \checkmark Substantial reduction of Dj can be achieved

Statistical Signaling Analysis

PCI

Client Channel Configuration

PCI

HVM Server Channel SIG Configuration

- **Two Connectors**
- **Mostly Stripline Routing**
- **20" Total Trace Length**
	- 9**4" AIC**
	- 9**4" Riser**
	- 9**16" Main Board**

Client Channel - Frequency SIG and Pulse Responses

The insertion loss at 10GT/s is 6dB more than at 8GT/s

 \checkmark IL at 4GHz is -13.5dB (8GT/s)

 \checkmark IL at 5GHz is -19.3dB (10GT/s)

Sample BER Eye Diagrams

PCI

PCI **HVM Server Channel - Frequency SIG and Pulse Responses**

 \checkmark IL at 4GHz is -16.5dB (8GT/s)

 \checkmark IL at 5GHz is -18.4dB (10GT/s)

Simulation Results (Nominal)

PCI

Simulation Results (Est W/C)

PCI

- 8GT/s is feasible over channels of interest with reasonable equalization
- 10GT/s imposes a power penalty
	- \checkmark 8G-10G power increase somewhere between linear and quadratic
- 10GT/s imposes a cost penalty
	- \checkmark Lower loss PCB materials
	- \checkmark Backdrilled vias
	- \checkmark Layout restrictions

PCI-SIG Confidential

- **Transmitter Electrical parameters**
	- \checkmark Transmit PLL Characteristics
	- \checkmark Tx Specification Location
	- \checkmark Tx Timing Specifications
	- \checkmark Adaptive TX Equalization?

 \blacksquare 8.0 GT/s requires Tx PLL bandwidth and jitter peaking to be more tightly controlled than for 5.0 GT/s

Copyright © 2008, PCI-SIG, All Rights Reserved 18

Base Spec TX Spec Location

 \blacksquare TX specification at silicon pins (2.0 base location)

 \checkmark Too difficult to quantify package interaction with unknown channel

- \blacksquare TX specification at die pad
	- \checkmark Current spec direction

SIG

- \checkmark All relevant parameters can be specified at point that is independent of package and channel
- \checkmark Direct measurements not possible
	- Standard de-embedding algorithm/methodology needed in base spec.
- **TX** specification at the end of reference channel(s)
	- \checkmark Other option discussed in EWG
	- \checkmark TX is compliant if it can produce passing signaling through a worst case channel(s)
	- \checkmark Can a small number of reference channels capture all worst case Tx/package/channel interactions?

PCI-SIG Confidential Copyright © 2008, PCI-SIG, All Rights Reserved 19 \checkmark Contributions from various TX variables not clearly separated

Transmitter specs

Substantial differences between 5.0 and 8.0 GT/s based on need to account for additional jitter effects (jitter amplification, etc)

PCI

Transmitter specs continued

■ TX Equalization

- $\sqrt{2}$ or 3 tap
- \checkmark Adjustable coefficients may be required
	- $-$ Complicates TX silicon and form factor testing

- **Reference Clock Electrical parameters**
	- \checkmark Refclk Architectures
	- \checkmark Post processing steps
	- \checkmark Jitter definitions

SIG Clock Architectures

- \blacksquare PCIe Base spec defines two distinct Refclk architectures at 5.0 GT/s and 8.0 GT/s: common clock and data clocked
	- \checkmark At 2.5 GT/s spec does not differentiate between 2 cases, but implicitly supports both
- \blacksquare Jitter margins for the two differ at 5.0 GT/s -- same at 8.0 GT/s.
	- \checkmark PLL and CDR bandwidth changes remove any difference in jitter values between two architectures

Refclk Post Processing for 8.0 GT/s

- \blacksquare Post processing removes jitter components that are measurement artifacts or otherwise irrelevant
- $\mathcal{L}_{\mathcal{A}}$ This process is NOT clock architecture dependent

- PLI diff function: Difference between min and max PLL bandwidths
- Edge filtering: Edge Smoothing function to reduce effects of sampling aperture inaccuracy
- Step filter ■ Step filter Separates jitter into <10 MHz and ≥10 MHz bins

Reference Clock Data

- p. Obtained Connector Reference Clock Data With Several PCI Express 2.0 Systems
	- \checkmark Measured with PCI-SIG® CLB 2.0 test fixture and RT scope.

Analyzed HF Jitter with PCIe 2.0 and 3.0 Filters

- \checkmark 2.0 (3.1 ps RMS limit)
	- H1 16 Mhz, 3db Peaking, 40 db/dec rolloff
	- H2 5 Mhz, 1db Peaking, 40 db/dec rolloff
	- H3 1.5 Mhz High Pass Step.
- \checkmark 3.0 (1.0 ps RMS limit)
	- H1 $\,$ 4 Mhz, 3db Peaking, 40 db/dec rolloff
	- H2 2 Mhz, 3db Peaking, 40 db/dec rolloff
	- H3 10 Mhz Step

Copyright © 2008, PCI-SIG, All Rights Reserved 26 2008, 26

PCIe 3.0 Channel Spec – Major Changes

- p. Tx package defined in terms of C_{DIF} , C_{PAD} , and a swept length
- \blacksquare Rx package defined in terms of C_{DIF} , C_{PAD} , and a swept length
- Ξ Tx jitter is defined in terms of Dj and an Rj distribution
- $\overline{}$ Statistical simulation tools used to capture TX, channel, RX interactions
- A reference Rx equalization algorithm is applied to raw data as it appears at the Rx die pad

- **PCIe 3.0 Receiver Specification**
	- \checkmark Major Change Summary
	- \checkmark Scrambling Impact
	- \checkmark RX Measurement Methodology

Major RX Specification Changes

- Jitter and voltage limits referenced to die pad
- $\mathcal{L}_{\mathcal{A}}$ Rx PLL bandwidth reduced to 2-4 Mhz.
- $\overline{}$ RX CDR bandwidth increased to 10 Mhz minimum.
- $\mathcal{L}_{\mathcal{A}}$ Jitter defined with bandlimited TJ and Dj components
- **• RX return loss replaced with** C_{DIE} **,** C_{PIN} **,** C_{LENGTH}
- \blacksquare Jitter measured after applying inverse equalization algorithm

Base Spec Rx Equalization

 \blacksquare RX equalization is required.

- $\mathcal{L}_{\mathcal{A}}$ A specific RX equalization algorithm/method is not required by the specification.
- \blacksquare . It is expected that most designs will be able to pass receiver base spec requirements with a simple technique like single pole CTLE.
- **I** Impact on RX Measurement Methodology (Tolerance Test)
	- \checkmark Apply baseline receiver equalization algorithm to calibrate test source OR
	- \checkmark Calibrate noise sources with open eye and assume linearity as sources are increased
- b. Impact on form factor specifications
	- \checkmark May have to apply baseline receiver equalization algorithm as part of TX data post processing.

Impact of Scrambling

PHY Impact

SIG

- \checkmark Statistical DC balance only: DC wander
- \checkmark Statistical transition density: CDR tracking
- \checkmark Both appear to be solvable with minor circuit changes

\blacksquare Ongoing PHY Work

- \checkmark Determine magnitude of DC wander and potential need for mitigation in Tx or Rx
- \checkmark Quantify frequency wander for DD architecture in presence of SSC and no data edges

What is Baseline Wander?

- • In an AC coupled data transmission system, low freq signal components are removed by the HPF
- • The average or DC value of the signal becomes data pattern dependent
- •This causes a 'wandering' average
- • The severity of baseline wander is dependent on the cut-off freq of the HPF and the PSD of the signal below this cut-off

Simple Channel Model: With On-Die Capacitance

٠ 3 different HPF bandwidths

SIG

- Case 1: A nominal capacitance 1pF with 100kW resistor for low cutoff
- Case 2: A stretch (500kW) resistor case
- Case 3: Similar to Case 1 with a 200nF AC line cap
- ٠ Sim conditions: 1.0 Vpp $@$ Tx, 10⁶ random bits

- R1: source resistance
- C1: off-chip capacitor
- R2: termination resistance
- C2: on-die capacitance
- R3: on-die resistance

On Die RC Dominates Wander If On Die Capacitance Present

SIG Baseline wander vs. On-Die HPF bandwidth

- Sweep on-chip RC keeping off-chip RC constant (R1=50 Ω , R2=50 Ω , C1=75nF)
- As on-die HPF cut-off freq approaches off-chip bandwidth (=42.4 KHz), baseline wander reduction saturates as expected

On Die RC Dominates Wander If On Die Capacitance Present

SIG Effect of Transmit Equalization

- BLW scales linearly with transmit amplitude, i.e. it is a function of pre-aperture eye height
- Tx equalization attenuates low freq components resulting in reduced BLW
- Tx EQ sims:
	- ¾ 1 tap (postcursor) de-emphasis Tx Eq
	- ¾ Sweep tap coefficient for same Tx amplitude (1Vpp)

 \triangleright BLW with and without on-chip cap are simulated (nominal case: R1=50 Ω , C1=75nF, R2=50 Ω , C2=1рF, R3=100 $\Omega)$

- Ongoing simulation work to determine accurate worst case number.
- **Analyze possible mitigation techniques**
	- \checkmark Bit Stuffing
	- \checkmark DC restoration circuit in RX
	- \checkmark DC coupled receiver
	- \checkmark Combinations of above approaches
	- \checkmark Other techniques?

Form Factor TX Measurement Methodology

- п Option 1 - Specify standard fixture(s) requirements and include in determining form factor limits (CEM 2.0 methodology)
	- \sqrt{P} Pros
		- Don't need to specify de-embedding algorithm/procedure that can be applied consistently across industry
		- PCI-SIG can provide standard fixtures to members
	- \checkmark Cons
		- Will require tight control of fixture parameters and likely add cost to fixtures
			- Fixtures may be high cost anyway if they have to provide receiver feedback to drive TX adaptive EQ to different states
			- Fixture cost still small relative to test equipment cost
		- May not be possible at 8 GT/s. (investigation needed)
- п Option 2 – Specifying standard de-embedding process/requirements for any form factor fixture (don't include fixture in form factor limits)
	- \sqrt{P} Pros
		- A variety of fixtures with different characteristics could provide equivalent results
	- \checkmark Cons
		- Need to specify de-embedding algorithm/procedure that can be applied consistently across industry
		- Getting accurate simulation results exactly at the edge finger/connector may be difficult

SIG Form Factor Reference Clock Testing

- Г Option 1 – Test Reference Clock Separately
	- $\sqrt{ }$ Pros
		- Simpler measurement setup than dual port
	- \checkmark Cons
		- Removes ability to trade off clock and data jitter at system level
		- Must account for not having a clean reference clock for standard motherboard TX test
- Г Option 2 – Use Dual Port Simultaneously Clock/Data (Methodology Specified in CEM 2.0)

 $\sqrt{ }$ Pros

- Allows tradeoff of data and clock jitter at system level
- Don't have to worry about how to test real motherboard without clean clock
- No issues testing with SSC on
- \checkmark Cons
	- More complex measurement setup but already proven for CEM 2.0
	- Ability to trade off clock and data jitter adds little relief with clock jitter budget at 1 ps Rj (RSS with other other parts of RJ budget)

Form Factor Methodology For 3.0

• Need to investigate whether CEM 2.0 methodology for determining connector voltage/jitter limits will work for 3.0

 \checkmark Less margin available

- **Additional constraints beyond jitter/voltage margin** may be needed to preserve enough solution space for 3.0
	- \checkmark TDR
	- \checkmark Return Loss
	- \checkmark Other ...

SIG Major Work Items Upcoming

- \blacksquare Demonstrate method of de-embedding to die pad
	- \checkmark Good progress: several options being evaluated
- Close on Tx equalization choices
	- \checkmark Trainable vs. fixed coefficients
- $\mathcal{L}_{\mathcal{A}}$ Resolve DC wander effects
	- \checkmark Rx voltage margin, effective CDR BW impact
- \blacksquare Long server channel mitigation costs/effectiveness

SIG Future Plans

- **Revo.3**
	- \checkmark Data rate, encoding set
	- \checkmark Tx, Rx parameter tables
	- \checkmark Being reviewed by EWG now

Revo.5

- \checkmark Tx, Rx reference planes defined
- \checkmark All parameters defined
- \checkmark Tx, Rx equalization defined

R ev 0.7

- \checkmark All parameter values stable
- \checkmark Statistical scripts included in spec
- **Revo.9**
	- \checkmark Minor formatting/typo edits

CEM 2.0 Methodology Review

- **If Identify all end to end failures (worst case pattern)**
	- 120 mVolt Eye Height (Base Spec Rx Pin Limit)
	- 142 ps Eye Width (Interconnect only) (Base Spec Channel Limit)

SIG Worst Case Patterns

- Peak Distortion Analysis
	- \checkmark Deterministically Calculates Worst Case Patterns Given
		- –Channel S Parameters
		- Pulse Response
	- \checkmark Used For Simulation Data In This Presentation
- \blacksquare Differences From Pseudo Random or CMM Patterns Can Be Very Large $($ \sim 30 ps eye width)

Simulate end to connector eye diagrams

- Use CMM pattern as with real world test
- Correlate with end to end worst case pattern failures
- **CEM eye specifications include ideal fixture** \checkmark No need to de-embed if similar fixture used

Simulation Methodology

П **The resultant eyes of the End** to End and CEM simulations are plotted against each other for a large number of cases

- П A Horizontal line is drawnwith respect to the End to End eye to signify insufficient opening in the system
- П **A** Vertical line is drawn such that no End to end failures are to the right
- П Instances in the lower right quadrant would indicate End to End failures not screened out by CEM
- П Instances in the upper left quadrant are cases which work End to End, but are screened out by the CEM*

