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The SD16_A as a thermal random number-generator 
Phil Ekstrom and Ray Glaze, Northwest Marine Technology, Inc. 

 
 
The SD16_A analog-to-digital converter module, implemented in some members of the Texas Instruments 
MSP430 microcontroller line, can function as a surprisingly good source of randomly generated bytes, producing 
them at the rate of four per millisecond. The randomness can be traced to a fundamentally thermal source, so 
this is a truly random generator, not a pseudo-random one.  
 
What to do 
Configure the SD16_A for maximum gain, input 7 (shorted), and an oversampling ratio of at least 256. (Smaller 
may do in some cases - see below). Set the input clock divider to make a 1MHz converter clock and set the 
LSBACC bit to give access to the low order part of the converter’s filter register.  
 
When running with a 16MHZ MCLK, C code to accomplish this would be (assuming an appropriate header file 
that defines the symbols the same way the User’s guide does): 

//1 MHz, (MCLK/16), turn reference generator on. 
SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_0 + SD16REFON; 
// Oversampling ratio set to 256, enable LSB access, no interrupts,  
SD16CCTL0 = SD16OSR_256 + SD16LSBACC; 
// Gain = 32 (actually 28), channel is 7 (shorted) 
SD16INCTL0 = SD16GAIN_32 + SD16INCH_7; 
// Now Go 
SD16CCTL0 |= SD16SC; 
 

After each conversion, the SC16IFG flag will set in the SD16CCTL0 register. If you have the interrupt enabled (by 
setting SD16IE in that same register) the module will post an interrupt. When the flag sets, the lower byte of the 
SD16MEM0 result register contains your new randomly generated byte. Reading that byte will reset the flag bit.  
At this clock rate and OSR value, the flag bit will set again with a new randomly-generated byte every 256 

seconds. To access it in C, assign the value in SD16MEM0 to a variable of type unsigned char. 
 
This recipe assumes that the SD16_A is used for no other purpose. In fact it can be shared with another use, and 
configured as a random generator only when needed or when it is free from other demands. Even when doing 
its intended job as an ADC for nonzero signals, it will also be generating a noisy byte in the bottom of its output 
register as a result of each conversion. If it is run with high gain and an OSR of at least 256, and if the signal 
being converted lies safely within its input range limits, one would expect that the low order byte would be 
much like it is during dedicated operation. We have not investigated the quality of that byte in such conditions, 
but you may find it usable.  
 
As discussed below, you can probably also get away with an oversampling ratio as small as 128, but there is less 
theory available to tell you why you should trust it then.  
 
If all you want is a recipe, there it is. 
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How well it works 
If we are trying to make a number generator with a uniform distribution, one that produces all possible values 
with equal probability, we ought to check its output to see that all values really are produced about equally 
often. If we want the generator’s past history to offer no clues about its future actions, we ought to check the 
autocorrelation function of the byte sequence to make sure that a large byte value is not, for instance, usually 
followed by a small one or vice versa.  As will be argued in the appendix, these are necessary but not sufficient 
tests for randomness.   
 
To run these tests, we need a file of output bytes from our generator. There is a program in the appendix which 
when loaded into the target board of an eZ430_2013 evaluation kit sends out bytes in start-stop serial form (for 
receipt by a UART) that have been randomly generated by the SD16_A in the manner described above. It uses 
the Timer_a module to 
simulate a serial 
communication port and runs 
at 115.2KBaud with its output 
on P1.1. We removed the 
target board from the USB 
stick hardware of that 
evaluation kit, attached a 
serial-to-USB interface cable 
from FTDI, and read the byte 
stream into a PC for further 
processing.  
 
The results of these two tests 
on a sample of N=106 bytes 
generated in this manner are 
shown in the figures at the 
right.  
 
The first figure shows a 
histogram of values observed 
in the record, accumulated by 
setting up 256 counters (the 
“bins”), one for each possible 
byte value, scanning the 
record, and for each value 
observed incrementing the 
corresponding bin. The 
second figure is an expanded 
version with three heavy 
black lines indicating the 
average n and the average 
plus and minus the expected 

standard deviation nn. The 
average number in each bin is 

 25610256/ 6Nn  3906.25.   
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The next two figures show the results of an 
autocorrelation calculation based on the same data 
record for lags between 0 and 20. (See the appendix for 
details of the calculation.) The first figure includes for 
comparison the correlation at zero lag, which is by 
definition 1. 
 
 The second figure expands the scale for the remaining 
values and shows for comparison two horizontal lines at 

001.01  N  indicating the expected standard 

deviation of the results for uniformly distributed 
randomly-generated values. 
 
The TI user’s manual text and figures describing the 
SD16 makes it clear that the value of the converted 
number does not settle in a single conversion cycle, and 
that for two cycles after an input  value changes there is 
a significant error in the most significant bits of the ADC 
result. The new value remains correlated with the 
previous value. We would not expect this correlation to 
occur with constant input and in the noisy lower bits, 
and the results shown here confirm that indeed it does 
not. Successive bytes in the sequence are effectively 
uncorrelated.  
 
A stream of uncorrelated symbols, each occurring with 
probability pi, has a Shannon entropy in bits per symbol 

defined by   
i

ii ppS 2log , where the 

summation index i runs over all symbols. In our case, 

2550  i . For a theoretically perfect generator, all 

the probabilities would be 2561ip ,  

  8log 2  ip , and S=8. 

 
 We can approximate the probability of seeing a byte of value i by the relative frequency of occurrence of that 
value in our test sequence. With a finite sequence, the bin contents will of course not be exactly equal and not 
exactly equal to the underlying probability so we do not expect the resulting estimate to be exactly S=8, but with 

a large sample such as the one we have, we expect to be close. To make that estimate we take Nnp ii 

where in is the number of counts in the i-th bin (as plotted in the first two figures of this section) and N is the 

total length of the sample, 



255

0i

inN . Estimating S in this way gives S  7.99981 bits/symbol.  We will not be 

far wrong to call that 8 bits of entropy per generated byte.  
 

.
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The appendix contains a pointer to a suite of tests offered by NIST for candidate random number generators, 
and to the “Dieharder” test suite, a more convenient implementation of those tests along with several others.  
 
It also contains some rude words about the ability of any test to actually confirm true randomness. Still, if we 
have a supposedly random generator of numbers, it ought to be able to pass those tests, as the appendix argues 
they should, most of the time.  When we ran the STS suite on the same file of 106 randomly generated bytes 
tested above it passed all tests successfully. The result file is in the last appendix. 
 
Why it works at all 
Every time a capacitor is connected to a resistive source, allowed to settle, and then disconnected it acquires a 

randomly generated voltage with standard deviation CkTVRMS  in addition to whatever voltage the source 

is intentionally providing. This random addition is called “contact noise”, but it is actually the resistor that is 
noisy, not the contact, as explained in the appendix. Here k is Boltzmann’s constant and T is the absolute 

temperature, so at room temperature this becomes CVVRMS 64 for C in picofarads.  

 
Every microsecond when the input sampler of the SD16_A contacts the external circuit and the voltage on its 
20pF sampling capacitor settles to a new measurement of the nominally zero input value, that value is zero plus 

or minus “contact noise” that has a standard deviation of 64/20 = 14 microvolts.  That voltage is amplified by a 
factor of 28, so will have a standard deviation of 0.4mV, and applied to the sigma-delta modulator.  In the course 
of the conversion, 256 of these values will be more-or-less averaged by the digital filter, to yield a random 

contribution no smaller than 400/25625V. This truly-random contribution could approach that theoretically 
smallest value if the filter simply averaged. In fact it does something more complicated to minimize the shaped 
quantization noise of the second order delta modulator, so we expect that there will be more of the truly 
random noise than this minimum. For OSR = 256, the most significant bit of the output register is bit 23 (see 
figure 26-5 of the MSP430F2xxx User’s guide, SLAU144J), and that bit is worth 600 mV. The least significant bit 

of the register is therefore worth 2-23 *600 mV72nV. That means the 25V noise contribution is worth at least 

25V/72nV = 350 LSB, and we expect it to be Gaussian noise, distributed along the familiar bell-shaped curve of 
probability density.  
 
The simple treatment in the paragraph above requires some assumptions about just how the input amplifier and 
delta modulator are constructed and operated. Based on the gain and capacitance specifications and the fact 
that the module still offers gain when the active amplifiers are omitted, I have assumed that each of the two Cs 
capacitors (10pF at gain 32) in figure 26-2 of theF2xx users guide (SLAU144J ) is made of eight 1.25pF capacitors 
(like the one that is used at gain 1) that are charged in parallel and then connected in series when presented to 
the ADC core. A final factor-of-four gain is achieved some other way, perhaps in the delta modulator, or perhaps 
by actually splitting each of the 1.25pF capacitors four ways. There are other ways that the input amplifier could 
be operating, but most of them lead to the same noise estimate. None we have thought of leads to a smaller 
one.  
 
As we will see, the output is actually noisier than this estimate would lead us to expect, but that’s more-or-less 
OK even though it is not quite clear just where that is all coming from. We can guess that it is quantizing noise 
which will be pretty well randomized by the presence of the contact noise, but we only need a guarantee of 
enough thermal noise to make things genuinely random, to fill up the lower byte with “good” noise known to 
originate in a thermal source that we expect to have a Gaussian distribution. 
 
To check on this noise estimate, a program was written for the eZ430F2013 that accumulated statistics on the 
SD16_A output in the upper (normally used) section of the SD16 output register. For comparison, we need a 
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prediction based on our noise model above for what we should expect. The MSB of the upper output register is 

worth 600mV at Gain=1, so its LSB is worth 600mV*2-15 = 18V. At any other gain it is worth 18V/G.  Our 
simple model of the filter effect is that it will simply average the noise samples, so we expect them to be 

attenuated by a factor of OSR/1 Thus we predict a noise in f the upper register equal to 

COSR

G

OSRV

G

C

V


 6.3

1

18

64




LSB. 

 
Plotting this out vs. 

CG /  for the various 

available gain settings 
(tick marks on the traces) 
and interesting values of 
OSR, we obtain the figure 
on the right. 
 
Running a program in an 
eZ430F2013 to calculate 
the mean and standard 
deviation of 106 
conversions for each of 
those cases gives instead 
the next figure. It has 
approximately the same 
shape, but the measured values are about four times larger than the predicted ones. If we knew where all that 
came from and how securely it was tied to a thermal source, perhaps we could confidently use a smaller OSR 
and generate bytes more 
rapidly. As things stand, 
this note recommends 
OSR=256. 
 
One of the authors’ major 
goals in writing this note 
is to lure some of the 
SD16 design team into 
commenting on this 
comparison and revising 
the previous several 
paragraphs – all in aid of 
making more secure the 
theoretical foundations of 
the scheme and perhaps 
making it faster by 
leaving us more comfortable with smaller values of OSR. 
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Why it works so well  
When you have a set of data with a Gaussian 
distribution and you take those numbers modulo 
something comparable with or smaller than their 
standard deviation, the result always comes out to be 
nearly uniformly distributed. That is the real key; if you 
have enough Gaussian noise to fill your byte, you don’t 
care about much else. The rest of this section will show 
how that works. 
 
In the example at the right, we see some graphs 
illustrating how that begins to take effect, where in 
these graphs we are taking things modulo 1. In our 
present application we can think of that unit 1 as being 
one byte; in our hardware the numbers are taken 
modulo 256. In the first figure the standard deviation of 
the Gaussian is less than half a byte – still a bit small – 
but when you take the ordinate of the curve modulo 1, 
that is when you slice it along each of the vertical green 
lines, superimpose those slices, and add them up as has 
been done with the dashed lines on the left side of the 
graph, you get a sum (heavy black line) that is not yet flat, but already has sharply limited variation. In this 
illustration the mean of the original distribution has been chosen ¼ unit off-center to cause the maximum 
possible variation in the black trace. 
 
Well, how about adding a little more noise? When the 
Gaussian is only 20% wider, the variations in the heavy 
black trace shrink markedly. Let’s plot that black trace 

separately, and follow its behavior as we increase  
(and thereby increase the width of the Gaussian) by a 
few more steps.  
 
In these graphs below we have shown the X-axis scale in 
LSB, 0 to 255, replacing the scale of 0 to 1 bytes, now 
that we do not have to also show the Gaussian peak. 

The values of  and  are still shown in bytes for 
compactness and would have to be multiplied by 256 to 
get the corresponding values in LSB. 
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The first two graphs represent the two cases shown in full above. 
  
 
 
 
 
 
 
 
 
 
 
 
 

As the standard deviation increases, the probability density rapidly flattens out until its variation becomes 
completely invisible when plotted at the original scale.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now plotting that last case again but allowing the vertical 
scale to adjust we see that the shape of the variation has 
not changed, but that its scale has become so small as to 
be undetectable in practice. To get that degree of flatness 
takes a standard deviation of 0.7 times the modulus 
value.  For data taken modulo one byte, that requires 180 
LSB of noise standard deviation. More noiseis better, so 
long as it all stays within the input range of the ADC; our 
OSB=256 case, with a contact noise contribution of 
350LSB, is safe by a wide margin.  
 
But there is additional value to an extremely flat 
distribution made by folding up a Gaussian as we have 
done above; you can’t easily disturb it by adding 
something else to it. Adding something to the input of the ADC just moves the mean of the input Gaussian 
distribution. But when the resulting output distribution is flat, then the location of the original Gaussian’s peak 
no longer matters. All that moving the peak could ever do was to move the location and perhaps reduce the 
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height of that wavy trace we have been watching. If the wave has a small enough amplitude to be undetectable, 
then the effect of a change in the mean of the noise is also undetectable.  
 
That is the starting point for a useful way to think about other contributions to our noise generator’s result. All 
that any additive (interfering) signal can do is to move that mean. If it moves the mean and leaves it in a new 
location, then quite clearly it has no effect on the performance of our generator. We won’t see the same result 
of a conversion that we would have seen without the addition,  but we will see another value drawn from the 
same nearly-flat distribution. It will be just as unpredictable, will be drawn from the same population of values 
and will have the same distribution. If the added signal moves the mean back and forth between conversions, 
we still won’t have any way to tell that it has done so or any reason to wish that it hadn’t. If it changes back and 
forth during a conversion, we expect that all it can do is to broaden the noise distribution, and as we can see 
that helps us out. Once we have enough Gaussian noise, it looks like we can relax about interference. So long as 
the SD16_A is well enough shielded to do its normal ADC function, it should be able to make high quality noise 
bytes. 
 
So much for external noise sources. However the S-D modulator will respond to the input noise and its own 
quantization noise can become correlated with the contact noise. This possibility could take us into regions of 
sigma-delta converter design that we do not propose to enter. The contribution of an S-D designer would be 
welcome, but we will take it no farther, beyond noticing 
that this proposed use of the SD16A does appear to 
work remarkably well, so seems not greatly harmed by 
that possible effect. 
 
It is worth noting that we do need the SD16_A to be 
working well as an ADC, and as already mentioned we 
need the entire input noise voltage range to fit within 
its linear input range.  If one tail of the input noise gets 
outside the linear range of the ADC function, we can no 
longer guarantee a flat noise spectrum in the result, as 
illustrated in the plot at the right. The output value 
distribution in the case illustrated here has a distortion 
that is just the negative of the missing tail of the original 
distribution.  
 
When the SD16_A is operating with its input range 
symmetric around zero, and with the input shorted as 
we do here, that requirement is easily met and the 
situation diagrammed here is easily avoided. 
 
Conclusion 
The SD16_A sigma-delta ADC can be operated as an excellent random generator of bytes, where the source of 
randomness can be traced to thermal noise.  
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Appendices 
About Contact Noise 
It is not actually the contact that is noisy. 
 
Whenever you connect a warm resistor across a capacitor, the resistor generates Johnson (thermal) noise and 
applies it to the capacitor. Meanwhile the same resistor is discharging that capacitor. As the net result of those 
two actions, there is a random voltage appearing across the capacitor, which fluctuates as long as the resistor is 
connected. If the RC product is small, the range of frequencies involved may be very large and mostly outside 
the passband of a typical sensitive amplifier that may be looking at the capacitor. The amplifier may see nothing 
happening. When the resistor is disconnected from the capacitor, as happens every microsecond in the SD16_A, 
the voltage suddenly freezes at a definite value and can be seen by narrow-band circuitry. Since a new frozen 
value appears any time the capacitor is contacted long enough for a new equilibrium to be established, then 
disconnected, the effect has acquired the name contact noise even though the switch contact is not actually the 
source of the noise. The electrical resistance of the switch and circuit is the actual source, and what it 
contributes is thermal noise. 
 
An electrical engineering text which analyzes this effect might proceed by integrating the Johnson noise 
spectrum over the bandwidth defined by the resistor and capacitor, considered as a single-section low-pass 
filter, and thereby could derive an expression for how much noise to expect. While it gives a nice picture of what 
is going on to anyone who already knows about Johnson noise, that approach is complicated; we won’t do it 
that way.  
 
A physicist looking at the same problem would more likely think about the Equipartition Theorem from 
Statistical Mechanics. It states (roughly) that any quadratic energy term in a system will have an average energy 
equal to kT/2 when the system is in thermal equilibrium. In our case, we notice that the voltage across a 
capacitor C gives rise to an energy term ½ CV2 which is quadratic in V, its terminal voltage. We can set that term 

equal to ½ kT, then solve for the mean-squared terminal voltage CkTV /2  .  
 

At room temperature this becomes CVCkTVVrms 64/2  for C in picofarads, the result 

quoted in the body of the note. The 20pF input capacitor of the SD16_A will have a root-mean-square thermal 

noise voltage due to this effect of VV  142064  .  

 
About Random Numbers 
There aren’t any. However there are randomly generated numbers. 
 
 Once you have a number, however generated, it has a perfectly definite value and there is nothing random 
about it. The only thing that can be random about the situation is the way the number was generated. Said more 
compactly, a number cannot be random, but its value can be unexpected. For most purposes it is fair to call the 
process that generated it truly random if there is no way to predict (better than chance) the number that the 
generator is going to make next – even if you have full knowledge of the generator’s history and internal state.  
 
So it is fair to talk about random number-generators, but not random-number generators. Mostly, people are 
not careful about that distinction, but this note will try to be. 
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About Testing for Randomness 
There is no good way to do it.  
 
In the output from a perfectly random generator of numbers, at least one with a uniform distribution like we are 
trying to make here, all possible bit sequences are equally likely. A string of all ones or all zeros looks to us wildly 
non-random, but it is as likely as any other particular sequence in a random generator’s output. In a single-byte 
result from the generator proposed here, you will see a solid zero about 15 times a second. You will see a pair of 
two zero bytes together more-or-less every 16 seconds, a trio of three in a row more or less every 72 minutes, 
four in a row about every twelve days, and so on. No particular sequence of the same length that you could 
name would be either more or less likely than one with all bits zero. You can’t call any of them right or wrong, 
random or non-random in themselves. 
 
What you can do is to test for properties that a large majority of randomly generated sequences is likely to have, 
realizing that any such test will sometimes call foul on a sequence that came out of a perfectly random 
generator. A truly random generator must eventually make all possible sequences – including all of those that 
fail your test. Also, there may also be chaotic sequences generated by a perfectly predictable (pseudo-random) 
process that always pass such a test, which a genuinely random generator could not always do.  
 
In short, a generator that fails a sensible test consistently is with high probability not random. One that fails 
rarely may or may not be truly random. One that always passes is with high probability not truly random, though 
it may take an impractically long time to adequately explore “always”. So we can test for failed generators, but 
not for good ones. 
 
We talked about two tests in some detail in the body of this note, based on the ideas that: 1) all possible byte 
values should occur about equally often and 2) pairs of bytes in sequence should be uncorrelated. These are 
relatively simple tests that are suggested by the physical process that we expect is going on in our generator. 
They characterize that process, which is believed to be fundamentally unpredictable, and they give these 
physicist writers a good feeling. They are also likely to catch a programing error should we make one.  But they 
are not tests for randomness per se. Assurance of that has to come from knowledge of the underlying physics, 
and of the electronic and computational structure built atop that physics. 
 
That said, there are some widely accepted tests that are thought to have relevance to cryptographic strength. A 
suite of them can be found at http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html. Any 
random generator of numbers that we want to take seriously ought to be able to pass them, at least most of the 
time (and that may be every time we have the patience to try). Again, as should be obvious from the fact that 
pseudo-random generators can also pass them, they are not tests for genuine randomness. 
  
A more convenient implementation of some of these and other tests, ready to run on a Windows PC, can be 
found at http://www.phy.duke.edu/~rgb/General/dieharder.php 
 
We have run the same 106-byte sequence discussed above, produced by the generator proposed here through 
the NIST test suite using the supplied default values of the test parameters. The sequence passed all tests. (We 
did not successfully explore “always”.) The printout from those tests is included as the last appendix. 
 
  

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.phy.duke.edu/~rgb/General/dieharder.php
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About Autocorrelation 
The autocorrelation function of a sequence of values xj at lag L is the averaged product of the deviations of x 

from its average , with the samples chosen L intervals apart, divided by the variance of the sequence. That is, 

        jjjLj xxxxLr /)()(  

The pointed brackets represent an average over a range of the index j large enough to be effectively infinite. If L 
= 0 we are calculating the correlation of each value of with itself; not surprisingly the numerator and 
denominator are equal in that case and  answer comes out 1 for any sequence longer than L that has nonzero 
variance (so we don’t end up dividing by zero). Any varying sequence is perfectly correlated with itself at zero 
lag.  
 
For L >0 we are asking whether variations from the average in one sample are mirrored in any way by the 
variations from average of the sample L time intervals later. If the sequence generator is purely random, the 
autocorrelation for any lag value L>0 calculated over an infinite sample should be infinitely small. 
 
But we do not have infinite sample sizes available, and when working with a small processor we may need to 
calculate a finite approximation to the autocorrelation efficiently. Paying attention to samples lost at the ends of 
the record and to the fact that the set of samples in the two factors are slightly different and may have slightly 
different averages, we recast the result above in terms of sums over a finite sample of size N as 
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The expression for the Covariance C(L) can be expanded and simplified as: 
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This simplification depends upon recognizing two of the sums in the first expansion as proportional to A  and 

B .The final result expresses the result for C(L) in terms of three sums that can be calculated together in a 

single pass over the data; the data record can be processed “on the fly” and never stored, so the calculation can 
be done in a processor with limited memory. With C(L) in hand the autocorrelation is obtained as 

)0(/)()( CLCLr  .  

 
Autocorrelation values in the note were obtained by evaluating these expressions in that way.  
 
Do note that the sum of products can be large when processing a large file. A random million-byte file will 

generate a sum of squares with a value approximately 1282x106
234 that will overflow a four-byte field. The sum 

cannot be accumulated to adequate precision either as a 32-bit integer or in single precision floating point. 
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Program for the eZ430-F2013 
The program below loaded into an eZ430-F2013 will send randomly generated bytes in start-stop serial format 
at 115.2 KBaud out through P1.1, which is pin 3 of the MSP430F2013 processor included in the eZ430-F2013. 
The oversampling ratio may be changed by altering a statement just below the comment line // SD_16. However 
notice the warning message just above that line.  
 
The program works as described in the text only for OSR >= 128. For smaller oversampling ratios, characters are 
produced faster than they can be sent, and successive characters in the serial communication output no longer 
represent successive characters in the generator output.   
 
There are two separate files below, Main.c and Timer_A.c. They were compiled using IAR Embedded 
Workbench. 
 
 
//Main.c 
// Random Number generator test, target is MSP430F2013, 
#include <msp430f2013.h> 
int send_byte(char); 
unsigned char Datum; 
volatile unsigned int v = 0; 
 
int main( void ) 
{ 
// Disable watchdog timer 
WDTCTL =  WDTPW + WDTHOLD; 
 
// Set DCO to 16MHz, which is OK at 3.3V Vcc. 
BCSCTL1 = CALBC1_16MHZ; 
DCOCTL  = CALDCO_16MHZ; 
 
// Configure the ports 
//P1    
P1OUT = 0;      // Outputs are low 
P1DIR = 0xFF;   // All pins are output 
P1SEL = BIT1;   // And Bit1 is timer output. 
//P2 
P2OUT = 0; 
P2DIR = 0; 
P2REN = 0xFF; 
    
// Timer_A 
// P1.1 = data output Pin 3 of DIP package. (LED is P1.0, pin 2) 
TACCR0 = 139;         // = 16 MHz/115.2 KBaud 
TACCTL0 = OUTMOD_1 + CCIE;   // Set on event, enable interrupt; 
TACTL = TASSEL_2 + ID_0 + MC_1; 
 
// This SHIFT definition is the SD_16 register position from which the 
// LSBit of the data byte is taken. SHIFT <= 8. Ordinarily 0 or 8. 
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#define SHIFT 0 
// It and the oversampling ratio set below define the case.  
// OSR >= 128 assumed so bytes are sent faster than they are produced. 
 
// SD_16 
//1 MHz, (MCLK/16), turn reference generator on. 
SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_0 + SD16REFON; 
// Oversampling ratio set, enable LSB access, no interrupts,  
SD16CCTL0 = SD16OSR_256 + SD16LSBACC; 
// Gain = 32, channel is 7 (shorted) 
SD16INCTL0 = SD16GAIN_32 + SD16INCH_7; 
// Now Go 
SD16CCTL0 |= SD16SC; 
 
//*************************************** 
v = SD16MEM0; // Clear any leftover data. 
//******************************************************************* 
__enable_interrupt(); 
 
// Event loop starts here 
while(1) 
{ 
// Wait for next value 
while((SD16IFG & SD16CCTL0) == 0) v++; 
// Shift during this assignment to move up the filter register. 
 Datum = SD16MEM0>>SHIFT; 
send_byte(Datum); 
} // End the event loop. 
 
} // end main 
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// File Timer_A.c 
#include <msp430f2013.h> 
// Set TACCTL0 to one of these to either set or clear P1.1 on next event. 
// Temporary reversal for test 
#define SET   OUTMOD_1 + CCIE 
#define RESET OUTMOD_5 + CCIE 
enum {idle = 0, start, bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, stop}; 
unsigned int serial_out_state = idle; 
unsigned char Out;  
 
// This routine called from main to initiate character output 
// Return 0 for character accepted, 1 for refused (overrun). 
int send_byte(char Outchar) 
{ 
  if(serial_out_state == idle) 
  { 
    Out = Outchar; 
    serial_out_state = start; 
    return(0); 
  } 
  return(1); //Overrun error return 
}   
 
#pragma vector=TIMERA0_VECTOR 
__interrupt void Timer_A0( void ) 
{ 
switch(serial_out_state) 
{ 
case idle: 
  { 
    TACCTL0 = SET; // Set Idle line and wait for send_byte to be called. 
    break; 
  } 
   
case start: 
  { 
    TACCTL0 = RESET; // Make start bit 
    serial_out_state = bit0; 
    break; 
  } 
// Send next bit of character. 
case bit0: 
case bit1: 
case bit2: 
case bit3: 
case bit4: 
case bit5: 
case bit6: 
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case bit7: 
  { 
    if((Out&0x01) == 0) TACCTL0 = SET;   // if bit is 0, output is 1 
    else                TACCTL0 = RESET; // and vice versa. 
    Out=Out>>1;                              // shift to next bit 
    serial_out_state++;                      // increment to next state. 
    break; 
  } 
case stop: 
  { 
    TACCTL0 = SET; // Set Idle line and  
    serial_out_state = idle;    // go to idle state. 
    break; 
  } 
default: 
  { 
    serial_out_state = idle; 
    break; 
  } 
} //End switch(serial_out_state) 
} //End __interrupt void Timer_A0( void ) 
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Results of The NIST STS suite 
These tests were performed running the STS test suite with the default parameters supplied by NIST. 
 

STS Run  

06 December 2013 

RKG 

-------------------------------------------------------------------------- 

Notes:  

1) The data file, ekstrom.raw, is a file of 10^6 random bytes captured from a CPU 

configured to stream randomly generated numbers generated by the SD_16A in the 

processor of the EZ430F2013, using the program given in the previous section.   

 

2) The data file contains the bits in binary format.  Each byte of data in the file 

contains 8 bits of randomly generated data 

-------------------------------------------------------------------------- 

Tests: 

01 Frequency Test: Monobit 

02 Frequency Test: Block 

03 Cumulative Sums Test 

04 Runs Test 

05 Test for the Longest Runs of Ones in a Block 

06 Binary Matrix Rank Test 

07 Discrete Fourier Transform (Spectral Test) 

08 Non-Overlapping Template Matching Test 

09 Overlapping Template Matching Test 

10 Maurer's Universal Statistical Test 

11 Approximate Entropy Test 

12 Random Excursions Test 

13  Random Excursions Variant Test 

14 Serial Test 

15 Linear Complexity Test 

============================================================================= 

 

                               FREQUENCY TEST 

  --------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  --------------------------------------------- 

  (a) The nth partial sum = -898 

  (b) S_n/n               = -0.000898 

  --------------------------------------------- 

SUCCESS  p_value = 0.369186 

============================================================================= 

                                                

      BLOCK FREQUENCY TEST 

  --------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  --------------------------------------------- 

  (a) Chi^2           = 7967.437500 

  (b) # of substrings = 7812 

  (c) block length    = 128 

  (d) Note: 64 bits were discarded. 

  --------------------------------------------- 

SUCCESS  p_value = 0.107356 

=============================================================================  
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        CUMULATIVE SUMS (FORWARD) TEST 

  ------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  ------------------------------------------- 

  (a) The maximum partial sum = 918 

  ------------------------------------------- 

SUCCESS  p_value = 0.705472 

 

        CUMULATIVE SUMS (REVERSE) TEST 

  ------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  ------------------------------------------- 

  (a) The maximum partial sum = 1494 

  ------------------------------------------- 

SUCCESS  p_value = 0.270336 

============================================================================= 

    

    RUNS TEST 

  ------------------------------------------ 

  COMPUTATIONAL INFORMATION: 

  ------------------------------------------ 

  (a) Pi                        = 0.499551 

  (b) V_n_obs (Total # of runs) = 500177 

  (c) V_n_obs - 2 n pi (1-pi) 

      -----------------------   = 0.250886 

        2 sqrt(2n) pi (1-pi) 

  ------------------------------------------ 

SUCCESS  p_value = 0.722734 

============================================================================= 

    

     LONGEST RUNS OF ONES TEST 

  --------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  --------------------------------------------- 

  (a) N (# of substrings)  = 100 

  (b) M (Substring Length) = 10000 

  (c) Chi^2                = 3.894568 

  --------------------------------------------- 

        F R E Q U E N C Y 

  --------------------------------------------- 

  <=10  11  12  13  14  15 >=16 P-value  Assignment 

     7  28  22  16  13   6    8  

SUCCESS  p_value = 0.690942 

============================================================================= 

    

    RANK TEST 

  --------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  --------------------------------------------- 

  (a) Probability P_32 = 0.288788 

  (b)             P_31 = 0.577576 

  (c)             P_30 = 0.133636 

  (d) Frequency   F_32 = 278 

  (e)             F_31 = 593 

  (f)             F_30 = 105 

  (g) # of matrices    = 976 
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  (h) Chi^2            = 6.531766 

  (i) NOTE: 576 BITS WERE DISCARDED. 

  --------------------------------------------- 

SUCCESS  p_value = 0.038163 

============================================================================= 

    

    FFT TEST 

  ------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  ------------------------------------------- 

  (a) Percentile = 94.965800 

  (b) N_l        = 474829.000000 

  (c) N_o        = 475000.000000 

  (d) d          = -1.569204 

  ------------------------------------------- 

SUCCESS  p_value = 0.116601 

============================================================================= 

    

    NONPERIODIC TEMPLATES TEST 

----------------------------------------------------------------------------- 

    COMPUTATIONAL INFORMATION 

----------------------------------------------------------------------------- 

 LAMBDA = 244.125000 M = 125000 N = 8 m = 9 n = 1000000 

----------------------------------------------------------------------------- 

  F R E Q U E N C Y 

Template   W_1  W_2  W_3  W_4  W_5  W_6  W_7  W_8    Chi^2   P_value Assignment 

Index 

----------------------------------------------------------------------------- 

000000001  233  237  232  250  240  239  236  267  4.188479 0.839730 SUCCESS   0 

000000011  228  247  235  216  245  241  219  263  9.069123 0.336498 SUCCESS   1 

000000101  241  238  271  234  222  221  265  273 13.412770 0.098415 SUCCESS   2 

000000111  249  248  255  202  245  235  233  254  9.476903 0.303674 SUCCESS   3 

000001001  248  242  253  239  223  243  249  280  7.977121 0.435708 SUCCESS   4 

000001011  235  231  270  227  249  237  257  244  6.179714 0.627109 SUCCESS   5 

000001101  252  232  227  255  233  255  248  221  5.983768 0.649050 SUCCESS   6 

000001111  249  250  235  211  246  229  233  227  7.999364 0.433532 SUCCESS   7 

000010001  225  225  262  254  265  250  251  244  7.058823 0.530300 SUCCESS   8 

000010011  257  221  238  250  235  279  248  247  8.877414 0.352743 SUCCESS   9 

000010101  229  253  229  253  240  256  256  256  4.470217 0.812405 SUCCESS  10 

000010111  229  236  264  249  255  256  241  236  4.442679 0.815140 SUCCESS  11 

000011001  259  266  253  256  246  243  238  279  9.227998 0.323429 SUCCESS  12 

000011011  248  253  214  258  240  233  254  226  7.459188 0.487994 SUCCESS  13 

000011101  267  238  218  229  227  233  232  244  8.626391 0.374786 SUCCESS  14 

000011111  239  235  225  222  243  208  234  209 15.283260 0.053866 SUCCESS  15 

000100011  241  238  245  246  235  236  259  245  1.791582 0.986748 SUCCESS  16 

000100101  251  264  258  280  244  221  257  252 11.372813 0.181456 SUCCESS  17 

000100111  252  225  231  221  253  272  251  277 13.212587 0.104741 SUCCESS  18 

000101001  249  233  279  248  235  228  223  254  9.599766 0.294248 SUCCESS  19 

000101011  241  276  236  230  249  237  259  246  6.738954 0.565042 SUCCESS  20 

000101101  223  266  274  247  262  239  255  253 10.034025 0.262646 SUCCESS  21 

000101111  249  236  237  220  249  253  237  240  3.782817 0.876168 SUCCESS  22 

000110011  245  269  247  262  233  246  236  243  4.837748 0.774769 SUCCESS  23 

000110101  234  250  250  273  256  266  256  243  7.486727 0.485140 SUCCESS  24 

000110111  228  229  226  245  250  243  267  229  6.803564 0.557968 SUCCESS  25 

000111001  257  219  262  259  227  238  265  235  9.268247 0.320175 SUCCESS  26 

000111011  268  236  231  240  240  250  229  235  5.036872 0.753628 SUCCESS  27 

000111101  247  243  275  224  247  247  272  269 11.778474 0.161365 SUCCESS  28 
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000111111  239  256  233  241  234  208  237  228  8.554368 0.381270 SUCCESS  29 

001000011  266  274  238  218  243  236  253  245  9.481139 0.303345 SUCCESS  30 

001000101  219  227  241  251  258  279  232  242 10.769087 0.215129 SUCCESS  31 

001000111  238  235  271  245  222  232  251  256  7.069415 0.529162 SUCCESS  32 

001001011  265  249  243  280  235  237  249  248  8.137056 0.420198 SUCCESS  33 

001001101  224  220  241  245  262  258  220  237  9.076537 0.335881 SUCCESS  34 

001001111  243  206  236  254  255  259  258  271 12.170366 0.143763 SUCCESS  35 

001010011  249  242  264  253  240  206  228  249  9.559518 0.297312 SUCCESS  36 

001010101  243  224  220  243  217  224  231  260 10.823105 0.211925 SUCCESS  37 

001010111  243  259  232  225  249  259  239  225  5.814301 0.668024 SUCCESS  38 

001011011  233  281  233  239  240  237  249  239  7.419999 0.492068 SUCCESS  39 

001011101  230  260  254  226  240  239  258  238  4.875878 0.770756 SUCCESS  40 

001011111  248  226  247  240  247  247  257  247  2.369888 0.967522 SUCCESS  41 

001100101  268  251  247  229  234  259  230  277 10.415325 0.237076 SUCCESS  42 

001100111  238  246  250  251  236  247  219  239  3.620765 0.889618 SUCCESS  43 

001101011  237  258  239  264  261  243  246  255  4.543300 0.805086 SUCCESS  44 

001101101  252  238  236  256  234  222  249  221  6.173359 0.627820 SUCCESS  45 

001101111  234  251  220  233  249  253  241  242  4.119633 0.846172 SUCCESS  46 

001110101  234  251  227  226  253  218  240  252  6.828984 0.555192 SUCCESS  47 

001110111  255  233  234  241  242  237  223  207  9.465252 0.304579 SUCCESS  48 

001111011  268  251  273  207  236  252  242  269 15.169929 0.055924 SUCCESS  49 

001111101  240  241  233  252  227  253  235  236  3.109187 0.927320 SUCCESS  50 

001111111  263  245  215  245  228  212  235  247 10.971388 0.203326 SUCCESS  51 

010000011  248  243  224  258  219  251  248  222  7.612768 0.472180 SUCCESS  52 

010000111  244  238  238  215  246  227  244  216  8.520474 0.384346 SUCCESS  53 

010001011  231  240  249  236  250  262  252  247  2.979968 0.935608 SUCCESS  54 

010001111  214  248  263  259  245  223  259  261 10.393083 0.238513 SUCCESS  55 

010010011  250  199  259  242  254  220  222  251 14.882895 0.061463 SUCCESS  56 

010010111  249  262  223  266  216  242  239  267 11.070950 0.197711 SUCCESS  57 

010011011  233  247  238  261  263  237  235  243  4.007361 0.856459 SUCCESS  58 

010011111  227  245  231  264  250  248  251  277  8.638042 0.373744 SUCCESS  59 

010100011  253  224  246  245  258  242  267  254  5.532562 0.699430 SUCCESS  60 

010100111  235  264  264  258  270  219  238  262 11.539102 0.172983 SUCCESS  61 

010101011  235  241  229  251  226  229  245  254  4.340999 0.825122 SUCCESS  62 

010101111  227  249  245  241  242  253  251  231  2.670691 0.953296 SUCCESS  63 

010110011  250  261  222  245  251  243  244  261  4.841985 0.774324 SUCCESS  64 

010110111  216  253  259  221  246  234  271  237 10.612331 0.224647 SUCCESS  65 

010111011  252  274  246  231  257  255  250  261  7.344798 0.499929 SUCCESS  66 

010111111  226  233  240  255  258  263  255  237  5.530444 0.699665 SUCCESS  67 

011000111  252  259  230  237  230  244  256  226  5.095126 0.747362 SUCCESS  68 

011001111  250  244  240  243  215  226  210  222 12.216970 0.141783 SUCCESS  69 

011010111  257  233  243  232  263  272  279  220 14.274932 0.074875 SUCCESS  70 

011011111  247  263  218  259  260  228  271  238 10.761673 0.215572 SUCCESS  71 

011101111  271  253  240  242  225  247  247  226  6.496405 0.591806 SUCCESS  72 

011111111  245  250  206  243  259  244  242  218 10.161125 0.253899 SUCCESS  73 

100000000  233  237  232  250  240  239  236  267  4.188479 0.839730 SUCCESS  74 

100010000  258  247  248  242  251  236  256  262  3.364446 0.909452 SUCCESS  75 

100100000  237  241  252  250  226  253  251  246  2.606082 0.956600 SUCCESS  76 

100101000  243  248  246  224  244  238  265  269  6.426500 0.599571 SUCCESS  77 

100110000  218  245  242  230  241  236  253  255  4.915068 0.766614 SUCCESS  78 

100111000  236  233  268  254  246  236  250  254  4.486105 0.810822 SUCCESS  79 

101000000  232  238  241  213  235  241  230  239  6.278216 0.616099 SUCCESS  80 

101000100  272  239  227  267  228  259  231  261 10.837933 0.211052 SUCCESS  81 

101001000  249  240  259  239  240  259  252  231  3.223577 0.919553 SUCCESS  82 

101001100  240  261  258  222  227  249  233  242  6.054732 0.641101 SUCCESS  83 

101010000  257  230  221  246  219  247  247  230  7.417881 0.492289 SUCCESS  84 

101010100  277  231  210  239  241  261  202  250 19.265730 0.013501 SUCCESS  85 
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101011000  210  232  255  264  246  246  211  242 12.428803 0.133073 SUCCESS  86 

101011100  272  261  242  219  255  243  238  235  8.210138 0.413217 SUCCESS  87 

101100000  254  264  271  257  247  232  248  264  8.244032 0.410003 SUCCESS  88 

101100100  239  228  249  250  233  254  246  246  2.427083 0.965044 SUCCESS  89 

101101000  250  261  253  250  258  238  237  216  6.373541 0.605466 SUCCESS  90 

101101100  241  265  235  207  231  247  242  250  9.009810 0.341469 SUCCESS  91 

101110000  235  230  241  249  237  253  249  244  1.989646 0.981328 SUCCESS  92 

101110100  215  240  244  217  236  225  248  211 13.324859 0.101150 SUCCESS  93 

101111000  235  259  235  234  228  241  243  259  4.163059 0.842120 SUCCESS  94 

101111100  262  239  257  238  226  212  284  258 15.642318 0.047795 SUCCESS  95 

110000000  239  240  252  232  249  236  231  284  8.915544 0.349471 SUCCESS  96 

110000010  229  223  250  226  252  276  257  233 10.191841 0.251819 SUCCESS  97 

110000100  221  229  248  275  223  270  259  228 14.103347 0.079111 SUCCESS  98 

110001000  241  239  233  239  235  216  262  249  5.946697 0.653203 SUCCESS  99 

110001010  261  238  254  237  244  240  240  245  2.141107 0.976377 SUCCESS 100 

110010000  258  267  253  245  237  232  256  254  5.217990 0.734043 SUCCESS 101 

110010010  259  221  241  243  236  260  244  253  4.930955 0.764930 SUCCESS 102 

110010100  240  254  235  239  240  223  254  282  9.402761 0.309466 SUCCESS 103 

110011000  231  231  246  229  262  258  246  244  4.628033 0.796491 SUCCESS 104 

110011010  256  227  218  252  245  252  230  261  7.311964 0.503378 SUCCESS 105 

110100000  237  241  234  233  225  246  241  213  6.925368 0.544706 SUCCESS 106 

110100010  250  247  232  263  240  228  221  263  7.262183 0.508627 SUCCESS 107 

110100100  264  226  230  239  252  225  264  234  7.942169 0.439140 SUCCESS 108 

110101000  263  248  234  239  234  249  252  243  2.921714 0.939174 SUCCESS 109 

110101010  269  248  219  247  251  266  215  244 11.216056 0.189755 SUCCESS 110 

110101100  202  237  259  267  216  222  221  244 18.578331 0.017285 SUCCESS 111 

110110000  244  256  261  249  232  247  253  235  3.248997 0.917774 SUCCESS 112 

110110010  234  269  224  241  218  268  243  255 10.626100 0.223798 SUCCESS 113 

110110100  259  258  243  261  241  214  214  227 11.938408 0.153973 SUCCESS 114 

110111000  218  231  252  236  266  252  235  234  7.241000 0.510868 SUCCESS 115 

110111010  214  236  249  220  252  229  236  207 14.041915 0.080679 SUCCESS 116 

110111100  233  235  232  223  227  247  253  237  5.216930 0.734159 SUCCESS 117 

111000000  259  235  250  219  250  235  235  274  8.743959 0.364354 SUCCESS 118 

111000010  218  271  253  274  230  229  280  233 17.858097 0.022316 SUCCESS 119 

111000100  248  228  245  220  245  215  265  238  9.236472 0.322742 SUCCESS 120 

111000110  243  221  247  225  226  272  245  243  8.548013 0.381846 SUCCESS 121 

111001000  250  276  235  218  236  254  242  265 10.253273 0.247698 SUCCESS 122 

111001010  249  223  223  218  258  228  247  260  9.793594 0.279813 SUCCESS 123 

111001100  215  225  239  225  264  258  249  248  9.457838 0.305156 SUCCESS 124 

111010000  261  222  240  220  235  226  261  231  9.499145 0.301952 SUCCESS 125 

111010010  229  220  241  222  233  223  253  222 10.372959 0.239818 SUCCESS 126 

111010100  232  244  238  253  266  222  287  263 14.514304 0.069307 SUCCESS 127 

111010110  214  245  243  248  226  255  228  220  9.377341 0.311470 SUCCESS 128 

111011000  260  247  257  245  245  260  248  255  3.443884 0.903501 SUCCESS 129 

111011010  258  271  226  244  219  249  213  235 12.499767 0.130259 SUCCESS 130 

111011100  234  257  247  240  258  269  249  231  5.511379 0.701779 SUCCESS 131 

111100000  261  250  225  209  264  229  256  267 13.586473 0.093201 SUCCESS 132 

111100010  246  242  247  223  247  219  258  243  5.490196 0.704126 SUCCESS 133 

111100100  251  246  254  219  218  246  221  260  9.542571 0.298609 SUCCESS 134 

111100110  253  233  215  253  242  238  248  257  5.729568 0.677495 SUCCESS 135 

111101000  246  227  231  264  241  235  236  240  4.406667 0.818697 SUCCESS 136 

111101010  240  241  243  249  275  248  265  264  7.841548 0.449099 SUCCESS 137 

111101100  245  240  235  261  241  277  242  253  6.607618 0.579497 SUCCESS 138 

111101110  245  248  256  230  240  262  254  211  7.997246 0.433739 SUCCESS 139 

111110000  270  250  239  280  251  225  270  241 13.174457 0.105986 SUCCESS 140 

111110010  255  241  232  217  230  239  239  250  5.496551 0.703422 SUCCESS 141 

111110100  240  232  220  250  234  224  255  227  7.200751 0.515136 SUCCESS 142 
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111110110  230  250  230  257  232  254  248  244  3.638771 0.888157 SUCCESS 143 

111111000  251  260  229  244  240  211  241  214 10.844288 0.210679 SUCCESS 144 

111111010  256  233  220  259  254  238  254  223  7.400934 0.494056 SUCCESS 145 

111111100  272  244  228  243  260  227  224  229  9.394288 0.310133 SUCCESS 146 

111111110  245  250  206  243  259  244  242  218 10.161125 0.253899 SUCCESS 147 

=================================================================================== 

    

      OVERLAPPING TEMPLATE OF ALL ONES TEST 

  ----------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  ----------------------------------------------- 

  (a) n (sequence_length)      = 1000000 

  (b) m (block length of 1s)   = 9 

  (c) M (length of substring)  = 1032 

  (d) N (number of substrings) = 968 

  (e) lambda [(M-m+1)/2^m]     = 2.000000 

  (f) eta                      = 1.000000 

  ----------------------------------------------- 

     F R E Q U E N C Y 

    0   1   2   3   4 >=5   Chi^2   P-value  Assignment 

  ----------------------------------------------- 

  359 194 137  97  60 121  4.106682 0.534161 SUCCESS 

=================================================================================== 

 

   

    UNIVERSAL STATISTICAL TEST 

  -------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  -------------------------------------------- 

  (a) L         = 7 

  (b) Q         = 1280 

  (c) K         = 141577 

  (d) sum       = 877347.519730 

  (e) sigma     = 0.002768 

  (f) variance  = 3.125000 

  (g) exp_value = 6.196251 

  (h) phi       = 6.196964 

  (i) WARNING:  1 bits were discarded. 

  ----------------------------------------- 

SUCCESS  p_value = 0.796777 

=================================================================================== 

    

   APPROXIMATE ENTROPY TEST 

  -------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  -------------------------------------------- 

  (a) m (block length)    = 10 

  (b) n (sequence length) = 1000000 

  (c) Chi^2               = 1083.704253 

  (d) Phi(m)        = -6.930968 

  (e) Phi(m+1)        = -7.623573 

  (f) ApEn                = 0.692605 

  (g) Log(2)              = 0.693147 

  -------------------------------------------- 

SUCCESS  p_value = 0.095242 

=================================================================================== 
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     RANDOM EXCURSIONS TEST 

  -------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  -------------------------------------------- 

  (a) Number Of Cycles (J) = 1730 

  (b) Sequence Length (n)  = 1000000 

  (c) Rejection Constraint = 500.000000 

  ------------------------------------------- 

SUCCESS  x = -4 chi^2 =  2.121795 p_value = 0.832049 

SUCCESS  x = -3 chi^2 =  4.219629 p_value = 0.518247 

SUCCESS  x = -2 chi^2 =  7.092899 p_value = 0.213822 

SUCCESS  x = -1 chi^2 = 11.611561 p_value = 0.040516 

SUCCESS  x =  1 chi^2 =  8.154913 p_value = 0.147902 

SUCCESS  x =  2 chi^2 =  0.794205 p_value = 0.977401 

SUCCESS  x =  3 chi^2 =  2.269508 p_value = 0.810735 

SUCCESS  x =  4 chi^2 =  2.720236 p_value = 0.743022 

=================================================================================== 

    

   RANDOM EXCURSIONS VARIANT TEST 

  -------------------------------------------- 

  COMPUTATIONAL INFORMATION: 

  -------------------------------------------- 

  (a) Number Of Cycles (J) = 1730 

  (b) Sequence Length (n)  = 1000000 

  -------------------------------------------- 

SUCCESS  (x = -9) Total visits = 1823; p-value = 0.701378 

SUCCESS  (x = -8) Total visits = 1750; p-value = 0.930043 

SUCCESS  (x = -7) Total visits = 1755; p-value = 0.906165 

SUCCESS  (x = -6) Total visits = 1789; p-value = 0.762328 

SUCCESS  (x = -5) Total visits = 1759; p-value = 0.869465 

SUCCESS  (x = -4) Total visits = 1688; p-value = 0.787257 

SUCCESS  (x = -3) Total visits = 1722; p-value = 0.951500 

SUCCESS  (x = -2) Total visits = 1873; p-value = 0.160444 

SUCCESS  (x = -1) Total visits = 1833; p-value = 0.079937 

SUCCESS  (x =  1) Total visits = 1839; p-value = 0.063874 

SUCCESS  (x =  2) Total visits = 1854; p-value = 0.223570 

SUCCESS  (x =  3) Total visits = 1760; p-value = 0.819580 

SUCCESS  (x =  4) Total visits = 1749; p-value = 0.902831 

SUCCESS  (x =  5) Total visits = 1733; p-value = 0.986436 

SUCCESS  (x =  6) Total visits = 1737; p-value = 0.971377 

SUCCESS  (x =  7) Total visits = 1726; p-value = 0.984952 

SUCCESS  (x =  8) Total visits = 1798; p-value = 0.765332 

SUCCESS  (x =  9) Total visits = 1967; p-value = 0.328467 

=================================================================================== 

 

        SERIAL TEST 

  --------------------------------------------- 

   COMPUTATIONAL INFORMATION:     

  --------------------------------------------- 

  (a) Block length    (m) = 16 

  (b) Sequence length (n) = 1000000 

  (c) Psi_m               = 65563.586560 

  (d) Psi_m-1             = 32968.732672 

  (e) Psi_m-2             = 16480.137216 

  (f) Del_1               = 32594.853888 

  (g) Del_2               = 16106.258432 

  --------------------------------------------- 
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SUCCESS  p_value1 = 0.750144 

SUCCESS  p_value2 = 0.938145 

=================================================================================== 

    

----------------------------------------------------- 

 L I N E A R  C O M P L E X I T Y 

----------------------------------------------------- 

 M (substring length)     = 500 

 N (number of substrings) = 2000 

----------------------------------------------------- 

        F R E Q U E N C Y                             

----------------------------------------------------- 

  C0   C1   C2   C3   C4   C5   C6    CHI2    P-value 

----------------------------------------------------- 

 Note: 0 bits were discarded! 

  21   62  281  980  505  114   37  5.788698 0.447272 

 

 

 

 

 

 


