Rev E 11 December 2013

The SD16_A as a thermal random number-generator
Phil Ekstrom and Ray Glaze, Northwest Marine Technology, Inc.

The SD16_A analog-to-digital converter module, implemented in some members of the Texas Instruments
MSP430 microcontroller line, can function as a surprisingly good source of randomly generated bytes, producing
them at the rate of four per millisecond. The randomness can be traced to a fundamentally thermal source, so
this is a truly random generator, not a pseudo-random one.

What to do

Configure the SD16_A for maximum gain, input 7 (shorted), and an oversampling ratio of at least 256. (Smaller
may do in some cases - see below). Set the input clock divider to make a 1MHz converter clock and set the
LSBACC bit to give access to the low order part of the converter’s filter register.

When running with a 16 MHZ MCLK, C code to accomplish this would be (assuming an appropriate header file
that defines the symbols the same way the User’s guide does):

//1 MHz, (MCLK/16), turn reference generator on.

SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_0O + SD16REFON;

// Oversampling ratio set to 256, enable LSB access, no interrupts,

SD16CCTLO = SD160SR_256 + SD16LSBACC;

// Gain = 32 (actually 28), channel is 7 (shorted)

SD16INCTLO = SD16GAIN_32 + SD16INCH_7;

// Now Go

SD16CCTLO |=SD16SC;

After each conversion, the SC16IFG flag will set in the SD16CCTLO register. If you have the interrupt enabled (by
setting SD16IE in that same register) the module will post an interrupt. When the flag sets, the lower byte of the
SD16MEMO result register contains your new randomly generated byte. Reading that byte will reset the flag bit.
At this clock rate and OSR value, the flag bit will set again with a new randomly-generated byte every 256
useconds. To access it in C, assign the value in SD1I6MEMO to a variable of type unsigned char.

This recipe assumes that the SD16_A is used for no other purpose. In fact it can be shared with another use, and
configured as a random generator only when needed or when it is free from other demands. Even when doing
its intended job as an ADC for nonzero signals, it will also be generating a noisy byte in the bottom of its output
register as a result of each conversion. If it is run with high gain and an OSR of at least 256, and if the signal
being converted lies safely within its input range limits, one would expect that the low order byte would be
much like it is during dedicated operation. We have not investigated the quality of that byte in such conditions,
but you may find it usable.

As discussed below, you can probably also get away with an oversampling ratio as small as 128, but there is less
theory available to tell you why you should trust it then.

If all you want is a recipe, there it is.

Rev E 11 December 2013

How well it works

If we are trying to make a number generator with a uniform distribution, one that produces all possible values
with equal probability, we ought to check its output to see that all values really are produced about equally
often. If we want the generator’s past history to offer no clues about its future actions, we ought to check the
autocorrelation function of the byte sequence to make sure that a large byte value is not, for instance, usually
followed by a small one or vice versa. As will be argued in the appendix, these are necessary but not sufficient
tests for randomness.

To run these tests, we need a file of output bytes from our generator. There is a program in the appendix which
when loaded into the target board of an eZ430_2013 evaluation kit sends out bytes in start-stop serial form (for
receipt by a UART) that have been randomly generated by the SD16_A in the manner described above. It uses
the Timer_a module to

simulate a serial Histogram of 106 values
communication port and runs I T T
at 115.2KBaud with its output
on P1.1. We removed the
target board from the USB
stick hardware of that
evaluation kit, attached a
serial-to-USB interface cable
from FTDI, and read the byte
stream into a PC for further
processing.

A
=
o
L=

e A S ™ i e e e, e e e

2000 -

Muwmber of counts in hin

The results of these two tests

on a sample of N=10° bytes 1]
generated in this manner are

shown in the figures at the

right.

| | |
1] td 128 192 236
Ein valus

Histogram of 106 values
The first figure shows a 4100 T T |

histogram of values observed
in the record, accumulated by
)

setting up 256 counters (the 4000 | |
L 1
WAL N L
3900 f 1 v M |

“bins”), one for each possible
|l| ||! 1l||-| ||||r
3800

—
=

byte value, scanning the
record, and for each value
observed incrementing the
corresponding bin. The
second figure is an expanded
version with three heavy
black lines indicating the

Mumber of counts in bin

average n and the average 3700 | | |]
plus and minus the expected 0 64 . 123 142 236
standard deviation n+Vn. The Bin value

average number in each bin is

n=N/256=10°/256 = 3906.25.

The next two figures show the results of an
autocorrelation calculation based on the same data
record for lags between 0 and 20. (See the appendix for
details of the calculation.) The first figure includes for
comparison the correlation at zero lag, which is by
definition 1.

The second figure expands the scale for the remaining
values and shows for comparison two horizontal lines at

i]/\/ﬁ = #0.001 indicating the expected standard

deviation of the results for uniformly distributed
randomly-generated values.

The Tl user’s manual text and figures describing the
SD16 makes it clear that the value of the converted
number does not settle in a single conversion cycle, and
that for two cycles after an input value changes there is
a significant error in the most significant bits of the ADC
result. The new value remains correlated with the
previous value. We would not expect this correlation to
occur with constant input and in the noisy lower bits,
and the results shown here confirm that indeed it does
not. Successive bytes in the sequence are effectively
uncorrelated.

A stream of uncorrelated symbols, each occurring with
probability p;, has a Shannon entropy in bits per symbol

defined by S = —z p, -log,(p,), where the

summation index i runs over all symbols. In our case,
0 <1< 255. For a theoretically perfect generator, all
the probabilities would be p, =1/256,

—log,(p;)=8, and s=8.

=
(=]

orrelaton functon

>

0.002

0.001

i

—0.001

—0.002

orrelation function
=

Rev E 11 December 2013

Correlation of values in the sequence
I I I

L
A

0 5 10
Lag

Correlation of values in the sequence

20

| A
T

We can approximate the probability of seeing a byte of value i by the relative frequency of occurrence of that
value in our test sequence. With a finite sequence, the bin contents will of course not be exactly equal and not
exactly equal to the underlying probability so we do not expect the resulting estimate to be exactly $S=8, but with

a large sample such as the one we have, we expect to be close. To make that estimate we take p; ~ N, /N

where n; is the number of counts in the i-th bin (as plotted in the first two figures of this section) and N is the

255

total length of the sample, N = Z N, . Estimating S in this way gives S = 7.99981 bits/symbol. We will not be

i=0

far wrong to call that 8 bits of entropy per generated byte.

Rev E 11 December 2013

The appendix contains a pointer to a suite of tests offered by NIST for candidate random number generators,
and to the “Dieharder” test suite, a more convenient implementation of those tests along with several others.

It also contains some rude words about the ability of any test to actually confirm true randomness. Still, if we
have a supposedly random generator of numbers, it ought to be able to pass those tests, as the appendix argues
they should, most of the time. When we ran the STS suite on the same file of 10° randomly generated bytes
tested above it passed all tests successfully. The result file is in the last appendix.

Why it works at all
Every time a capacitor is connected to a resistive source, allowed to settle, and then disconnected it acquires a

randomly generated voltage with standard deviation Vg, = /KT/C in addition to whatever voltage the source

is intentionally providing. This random addition is called “contact noise”, but it is actually the resistor that is
noisy, not the contact, as explained in the appendix. Here k is Boltzmann’s constant and T is the absolute

temperature, so at room temperature this becomes Vs = 64,uV/\/E for Cin picofarads.

Every microsecond when the input sampler of the SD16_A contacts the external circuit and the voltage on its
20pF sampling capacitor settles to a new measurement of the nominally zero input value, that value is zero plus
or minus “contact noise” that has a standard deviation of 64/Y20 = 14 microvolts. That voltage is amplified by a
factor of 28, so will have a standard deviation of 0.4mV, and applied to the sigma-delta modulator. In the course
of the conversion, 256 of these values will be more-or-less averaged by the digital filter, to yield a random
contribution no smaller than 400/\/256z25uv. This truly-random contribution could approach that theoretically
smallest value if the filter simply averaged. In fact it does something more complicated to minimize the shaped
guantization noise of the second order delta modulator, so we expect that there will be more of the truly
random noise than this minimum. For OSR = 256, the most significant bit of the output register is bit 23 (see
figure 26-5 of the MSP430F2xxx User’s guide, SLAU144lJ), and that bit is worth 600 mV. The least significant bit
of the register is therefore worth 2> *600 mV~72nV. That means the 251V noise contribution is worth at least
25uV/72nV = 350 LSB, and we expect it to be Gaussian noise, distributed along the familiar bell-shaped curve of
probability density.

The simple treatment in the paragraph above requires some assumptions about just how the input amplifier and
delta modulator are constructed and operated. Based on the gain and capacitance specifications and the fact
that the module still offers gain when the active amplifiers are omitted, | have assumed that each of the two Cs
capacitors (10pF at gain 32) in figure 26-2 of theF2xx users guide (SLAU144)) is made of eight 1.25pF capacitors
(like the one that is used at gain 1) that are charged in parallel and then connected in series when presented to
the ADC core. A final factor-of-four gain is achieved some other way, perhaps in the delta modulator, or perhaps
by actually splitting each of the 1.25pF capacitors four ways. There are other ways that the input amplifier could
be operating, but most of them lead to the same noise estimate. None we have thought of leads to a smaller
one.

As we will see, the output is actually noisier than this estimate would lead us to expect, but that’s more-or-less
OK even though it is not quite clear just where that is all coming from. We can guess that it is quantizing noise
which will be pretty well randomized by the presence of the contact noise, but we only need a guarantee of
enough thermal noise to make things genuinely random, to fill up the lower byte with “good” noise known to
originate in a thermal source that we expect to have a Gaussian distribution.

To check on this noise estimate, a program was written for the eZ430F2013 that accumulated statistics on the
SD16_A output in the upper (normally used) section of the SD16 output register. For comparison, we need a

Rev E 11 December 2013

prediction based on our noise model above for what we should expect. The MSB of the upper output register is
worth 600mV at Gain=1, so its LSB is worth 600mV*2*° = 18uV. At any other gain it is worth 18uV/G. Our
simple model of the filter effect is that it will simply average the noise samples, so we expect them to be
attenuated by a factor of 1/+/OSR Thus we predict a noise in f the upper register equal to

64N G 1

G
= 3.6 ————=1LSB.
JC 184V {OSR JOSReC

Plotting this out vs. . .
G/+/C for the various Predicted noise

available gain settings

@ 3.00
(tick marks on the traces) ?a
and interesting values of e 2.50 /
. . I-%
OSR;]we. orl]otaln the figure S 00
on the right. £ //
§ 1.50 — +—OSR=64
Running a program in an ‘g 1.00 ///'/’/ —e—0SR=128
€Z430F2013 to calculate @
i OSR=256
the mean and standard B 050 - d
deviation of 10° -'g"
conversions for each of g 0.00 ' ' ' '
those cases gives instead 0.00 2.00 4.00 6.00 8.00
the next figure. It has Gain/sqrt(C)

approximately the same
shape, but the measured values are about four times larger than the predicted ones. If we knew where all that
came from and how securely it was tied to a thermal source, perhaps we could confidently use a smaller OSR

and generate bytes more

rapidly. As things stand, Observed noise

this note recommends
OSR=256. 14.00

12.00

10.00 //
8.00 -
/ / —+—0SR=64
6.00
/ / —+—0SR=128
4.00

/ OSR=256
2.00 |

0.00 | | | 1
0.00 2.00 4.00 6.00 8.00

Gain/sqrt(C)

One of the authors’ major
goals in writing this note
is to lure some of the
SD16 design team into
commenting on this
comparison and revising
the previous several
paragraphs — all in aid of
making more secure the
theoretical foundations of
the scheme and perhaps
making it faster by
leaving us more comfortable with smaller values of OSR.

Standard deviation in upper ,LSB

Rev E 11 December 2013

Why it works so well
When you have a set of data with a Gaussian

distribution and you take those numbers modulo
something comparable with or smaller than their A Lok -
standard deviation, the result always comes out to be I‘ b= 5p5

nearly uniformly distributed. That is the real key; if you l
have enough Gaussian noise to fill your byte, you don’t 08 b]'
care about much else. The rest of this section will show 1
how that works.
06
In the example at the right, we see some graphs
illustrating how that begins to take effect, where in
these graphs we are taking things modulo 1. In our 04 F .
present application we can think of that unit 1 as being |'|'
one byte; in our hardware the numbers are taken ! l'

Probahility density

modulo 256. In the first figure the standard deviation of 02 b | h .
the Gaussian is less than half a byte — still a bit small — /

but when you take the ordinate of the curve modulo 1, \f

that is when you slice it along each of the vertical green 0

) . . 0 1 2 3 4 3 6 71 8§ 9 10
lines, superimpose those slices, and add them up as has Datum vahue, units of L SBytes

been done with the dashed lines on the left side of the

graph, you get a sum (heavy black line) that is not yet flat, but already has sharply limited variation. In this
illustration the mean of the original distribution has been chosen % unit off-center to cause the maximum
possible variation in the black trace.

Well, how about adding a little more noise? When the
Gaussian is only 20% wider, the variations in the heavy
black trace shrink markedly. Let’s plot that black trace
separately, and follow its behavior as we increase ¢
(and thereby increase the width of the Gaussian) by a 08
few more steps. |

1 6 =05 -
L=305

In these graphs below we have shown the X-axis scale in
LSB, 0 to 255, replacing the scale of 0 to 1 bytes, now
that we do not have to also show the Gaussian peak.
The values of pand o are still shown in bytes for o4l | _
compactness and would have to be multiplied by 256 to | II
get the corresponding values in LSB. j]

0.6~

Probability density

0 1 2 3 4 5 6 7 8 ¢ 10
Datum value, units of LSEytes

The first two graphs represent the two cases shown in full above.

Data modulo one byte
11

Probability Density,

l l
0e 0 100 200

Datum value, units of L3Bit

1.1

Probability Density.

0.g

Rev E 11 December 2013

Data modulo one b‘i,'te
[_
I} 3
325

g =
Ho=

%

1 1
0 100 200

Datum value, unit= of LSBit

As the standard deviation increases, the probability density rapidly flattens out until its variation becomes

completely invisible when plotted at the original scale.

Data modulo one bvte

1.1 T
. o= IZI'I5
ol p=323
=
g
E

0.9 l l

0 100 200

Diatum value, units of LEBit

Now plotting that last case again but allowing the vertical
scale to adjust we see that the shape of the variation has
not changed, but that its scale has become so small as to
be undetectable in practice. To get that degree of flatness
takes a standard deviation of 0.7 times the modulus
value. For data taken modulo one byte, that requires 180
LSB of noise standard deviation. More noiseis better, so
long as it all stays within the input range of the ADC; our
0SB=256 case, with a contact noise contribution of
350LSB, is safe by a wide margin.

But there is additional value to an extremely flat
distribution made by folding up a Gaussian as we have
done above; you can’t easily disturb it by adding

Data modulo one byt

=

1.1 T T
) og=07
%" p=2323
ER
z
B
0.9 | |
0 1] 200
Datum value, units of L3Bit
Data modulo one byte
1.0002 I T
_ ag=107T
=
B 1.0001 H
z
g
:E 09900
0.9908 ' '

0 100 200

Diatum value, units of LSBit

something else to it. Adding something to the input of the ADC just moves the mean of the input Gaussian
distribution. But when the resulting output distribution is flat, then the location of the original Gaussian’s peak
no longer matters. All that moving the peak could ever do was to move the location and perhaps reduce the

Rev E 11 December 2013

height of that wavy trace we have been watching. If the wave has a small enough amplitude to be undetectable,
then the effect of a change in the mean of the noise is also undetectable.

That is the starting point for a useful way to think about other contributions to our noise generator’s result. All
that any additive (interfering) signal can do is to move that mean. If it moves the mean and leaves it in a new
location, then quite clearly it has no effect on the performance of our generator. We won’t see the same result
of a conversion that we would have seen without the addition, but we will see another value drawn from the
same nearly-flat distribution. It will be just as unpredictable, will be drawn from the same population of values
and will have the same distribution. If the added signal moves the mean back and forth between conversions,
we still won’t have any way to tell that it has done so or any reason to wish that it hadn’t. If it changes back and
forth during a conversion, we expect that all it can do is to broaden the noise distribution, and as we can see
that helps us out. Once we have enough Gaussian noise, it looks like we can relax about interference. So long as
the SD16_A is well enough shielded to do its normal ADC function, it should be able to make high quality noise
bytes.

So much for external noise sources. However the S-D modulator will respond to the input noise and its own
guantization noise can become correlated with the contact noise. This possibility could take us into regions of
sigma-delta converter design that we do not propose to enter. The contribution of an S-D designer would be
welcome, but we will take it no farther, beyond noticing
that this proposed use of the SD16A does appear to

work remarkably well, so seems not greatly harmed by L Lok _
that possible effect. / L-shs
It is worth noting that we do need the SD16_A to be 08 - -

working well as an ADC, and as already mentioned we
need the entire input noise voltage range to fit within
its linear input range. If one tail of the input noise gets
outside the linear range of the ADC function, we can no
longer guarantee a flat noise spectrum in the result, as
illustrated in the plot at the right. The output value 04 .,ﬂ.\ -
distribution in the case illustrated here has a distortion \
that is just the negative of the missing tail of the original \ {
distribution. 01k {

0.6 - 7

Probability density
2

When the SD16_A is operating with its input range /

symmetric around zero, and with the input shorted as p ==
do here. that requirement is easilv met and th 0 1 2 3 4 5 6 71 § 9 10

we do here, that requirement is easily met and the Datum value, uats of LSBytes

situation diagrammed here is easily avoided.

Conclusion
The SD16_A sigma-delta ADC can be operated as an excellent random generator of bytes, where the source of
randomness can be traced to thermal noise.

Rev E 11 December 2013

Appendices

About Contact Noise
It is not actually the contact that is noisy.

Whenever you connect a warm resistor across a capacitor, the resistor generates Johnson (thermal) noise and
applies it to the capacitor. Meanwhile the same resistor is discharging that capacitor. As the net result of those
two actions, there is a random voltage appearing across the capacitor, which fluctuates as long as the resistor is
connected. If the RC product is small, the range of frequencies involved may be very large and mostly outside
the passband of a typical sensitive amplifier that may be looking at the capacitor. The amplifier may see nothing
happening. When the resistor is disconnected from the capacitor, as happens every microsecond in the SD16_A,
the voltage suddenly freezes at a definite value and can be seen by narrow-band circuitry. Since a new frozen
value appears any time the capacitor is contacted long enough for a new equilibrium to be established, then
disconnected, the effect has acquired the name contact noise even though the switch contact is not actually the
source of the noise. The electrical resistance of the switch and circuit is the actual source, and what it
contributes is thermal noise.

An electrical engineering text which analyzes this effect might proceed by integrating the Johnson noise
spectrum over the bandwidth defined by the resistor and capacitor, considered as a single-section low-pass
filter, and thereby could derive an expression for how much noise to expect. While it gives a nice picture of what
is going on to anyone who already knows about Johnson noise, that approach is complicated; we won’t do it
that way.

A physicist looking at the same problem would more likely think about the Equipartition Theorem from
Statistical Mechanics. It states (roughly) that any quadratic energy term in a system will have an average energy
equal to kT/2 when the system is in thermal equilibrium. In our case, we notice that the voltage across a
capacitor C gives rise to an energy term % CV which is quadratic in V, its terminal voltage. We can set that term

equal to % kT, then solve for the mean-squared terminal voltage<V ? >=KkT/C ..

At room temperature this becomes V, . =+/<V? > =kT/C = 644V //C for Cin picofarads, the result
qguoted in the body of the note. The 20pF input capacitor of the SD16_A will have a root-mean-square thermal

noise voltage due to this effect of 64,uV/\/2_0 =14,V .

About Random Numbers
There aren’t any. However there are randomly generated numbers.

Once you have a number, however generated, it has a perfectly definite value and there is nothing random
about it. The only thing that can be random about the situation is the way the number was generated. Said more
compactly, a number cannot be random, but its value can be unexpected. For most purposes it is fair to call the
process that generated it truly random if there is no way to predict (better than chance) the number that the
generator is going to make next — even if you have full knowledge of the generator’s history and internal state.

So it is fair to talk about random number-generators, but not random-number generators. Mostly, people are
not careful about that distinction, but this note will try to be.

Rev E 11 December 2013

About Testing for Randomness
There is no good way to do it.

In the output from a perfectly random generator of numbers, at least one with a uniform distribution like we are
trying to make here, all possible bit sequences are equally likely. A string of all ones or all zeros looks to us wildly
non-random, but it is as likely as any other particular sequence in a random generator’s output. In a single-byte
result from the generator proposed here, you will see a solid zero about 15 times a second. You will see a pair of
two zero bytes together more-or-less every 16 seconds, a trio of three in a row more or less every 72 minutes,
four in a row about every twelve days, and so on. No particular sequence of the same length that you could
name would be either more or less likely than one with all bits zero. You can’t call any of them right or wrong,
random or non-random in themselves.

What you can do is to test for properties that a large majority of randomly generated sequences is likely to have,
realizing that any such test will sometimes call foul on a sequence that came out of a perfectly random
generator. A truly random generator must eventually make all possible sequences — including all of those that
fail your test. Also, there may also be chaotic sequences generated by a perfectly predictable (pseudo-random)
process that always pass such a test, which a genuinely random generator could not always do.

In short, a generator that fails a sensible test consistently is with high probability not random. One that fails
rarely may or may not be truly random. One that always passes is with high probability not truly random, though
it may take an impractically long time to adequately explore “always”. So we can test for failed generators, but
not for good ones.

We talked about two tests in some detail in the body of this note, based on the ideas that: 1) all possible byte
values should occur about equally often and 2) pairs of bytes in sequence should be uncorrelated. These are
relatively simple tests that are suggested by the physical process that we expect is going on in our generator.
They characterize that process, which is believed to be fundamentally unpredictable, and they give these
physicist writers a good feeling. They are also likely to catch a programing error should we make one. But they
are not tests for randomness per se. Assurance of that has to come from knowledge of the underlying physics,
and of the electronic and computational structure built atop that physics.

That said, there are some widely accepted tests that are thought to have relevance to cryptographic strength. A
suite of them can be found at http://csrc.nist.gov/groups/ST/toolkit/rng/documentation software.html. Any
random generator of numbers that we want to take seriously ought to be able to pass them, at least most of the
time (and that may be every time we have the patience to try). Again, as should be obvious from the fact that
pseudo-random generators can also pass them, they are not tests for genuine randomness.

A more convenient implementation of some of these and other tests, ready to run on a Windows PC, can be
found at_http://www.phy.duke.edu/~rgb/General/dieharder.php

We have run the same 10°-byte sequence discussed above, produced by the generator proposed here through
the NIST test suite using the supplied default values of the test parameters. The sequence passed all tests. (We
did not successfully explore “always”.) The printout from those tests is included as the last appendix.

10

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.phy.duke.edu/~rgb/General/dieharder.php

Rev E 11 December 2013

About Autocorrelation

The autocorrelation function of a sequence of values x; at lag L is the averaged product of the deviations of x
from its average L, with the samples chosen L intervals apart, divided by the variance of the sequence. That is,
I‘(L) =<(Xjop —p)-(X; —p) >/ < (Xj _,U)' (Xj _/U)>

The pointed brackets represent an average over a range of the index j large enough to be effectively infinite. If L
= 0 we are calculating the correlation of each value of with itself; not surprisingly the numerator and
denominator are equal in that case and answer comes out 1 for any sequence longer than L that has nonzero
variance (so we don’t end up dividing by zero). Any varying sequence is perfectly correlated with itself at zero
lag.

For L >0 we are asking whether variations from the average in one sample are mirrored in any way by the
variations from average of the sample L time intervals later. If the sequence generator is purely random, the
autocorrelation for any lag value L>0 calculated over an infinite sample should be infinitely small.

But we do not have infinite sample sizes available, and when working with a small processor we may need to
calculate a finite approximation to the autocorrelation efficiently. Paying attention to samples lost at the ends of
the record and to the fact that the set of samples in the two factors are slightly different and may have slightly
different averages, we recast the result above in terms of sums over a finite sample of size N as

1 & 1 < 1 V< .
M NL &N TN LR C(L)z(mj{g(x“ k= s)} wratnely
r(L) = C(L)/C(0).

The expression for the Covariance C(L) can be expanded and simplified as:

C(L)= (ﬁj{ﬁ;(xu) (x,)—#BJZ:(X,-L —ﬂA)—ﬂAJZ:(X,- — 15)+ (N - L)ﬂBﬂA}

(Xj—L)'(Xj) —HgHp — HgHp + Hglip

= (ﬁ} J_L(xj_L) (X,-) —HgHa

This simplification depends upon recognizing two of the sums in the first expansion as proportional to £, and
Mg -The final result expresses the result for C(L) in terms of three sums that can be calculated togetherin a

single pass over the data; the data record can be processed “on the fly” and never stored, so the calculation can
be done in a processor with limited memory. With C(L) in hand the autocorrelation is obtained as

r(L)=C(L)/C(0).
Autocorrelation values in the note were obtained by evaluating these expressions in that way.
Do note that the sum of products can be large when processing a large file. A random million-byte file will

generate a sum of squares with a value approximately 128°x10°%~2** that will overflow a four-byte field. The sum
cannot be accumulated to adequate precision either as a 32-bit integer or in single precision floating point.

11

Rev E 11 December 2013

Program for the eZ430-F2013

The program below loaded into an eZ2430-F2013 will send randomly generated bytes in start-stop serial format
at 115.2 KBaud out through P1.1, which is pin 3 of the MSP430F2013 processor included in the eZ430-F2013.
The oversampling ratio may be changed by altering a statement just below the comment line // SD_16. However
notice the warning message just above that line.

The program works as described in the text only for OSR >= 128. For smaller oversampling ratios, characters are
produced faster than they can be sent, and successive characters in the serial communication output no longer
represent successive characters in the generator output.

There are two separate files below, Main.c and Timer_A.c. They were compiled using IAR Embedded
Workbench.

//Main.c

// Random Number generator test, target is MSP430F2013,
#include <msp430f2013.h>

int send_byte(char);

unsigned char Datum;

volatile unsigned int v = 0;

int main(void)

{

// Disable watchdog timer
WDTCTL = WDTPW + WDTHOLD;

// Set DCO to 16MHz, which is OK at 3.3V Vcc.
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

// Configure the ports

//P1

P1OUT=0; //Outputsare low

P1DIR = OxFF; // All pins are output
P1SEL = BIT1; // And Bit1 is timer output.
//P2

P20UT =0;

P2DIR = 0;

P2REN = OxFF;

// Timer_A

// P1.1 = data output Pin 3 of DIP package. (LED is P1.0, pin 2)
TACCRO =139; // =16 MHz/115.2 KBaud

TACCTLO = OUTMOD_1 + CCIE; // Set on event, enable interrupt;
TACTL =TASSEL_2 +ID_0+ MC_1;

// This SHIFT definition is the SD_16 register position from which the
// LSBit of the data byte is taken. SHIFT <= 8. Ordinarily O or 8.

12

#define SHIFT O
// It and the oversampling ratio set below define the case.
// OSR >= 128 assumed so bytes are sent faster than they are produced.

// SD_16

//1 MHz, (MCLK/16), turn reference generator on.

SD16CTL = SD16XDIV_2 + SD16DIV_0+ SD16SSEL_O + SD16REFON;
// Oversampling ratio set, enable LSB access, no interrupts,
SD16CCTLO = SD160OSR_256 + SD16LSBACC;

// Gain = 32, channel is 7 (shorted)

SD16INCTLO = SD16GAIN_32 + SD16INCH_7;

// Now Go

SD16CCTLO |= SD16SC;

//***************************************

v = SD16MEMO; // Clear any leftover data.

//***

__enable_interrupt();

// Event loop starts here

while(1)

{

// Wait for next value

while((SD16IFG & SD16CCTLO) == 0) v++;

// Shift during this assignment to move up the filter register.
Datum = SD16MEMO>>SHIFT;

send_byte(Datum);

}// End the event loop.

}// end main

Rev E 11 December 2013

13

// File Timer_A.c
#include <msp430f2013.h>

// Set TACCTLO to one of these to either set or clear P1.1 on next event.

// Temporary reversal for test

#define SET OUTMOD_1 + CCIE

#define RESET OUTMOD_5 + CCIE

enum {idle = 0, start, bit0, bit1, bit2, bit3, bit4, bit5, bit6, bit7, stop};
unsigned int serial_out_state = idle;

unsigned char Out;

// This routine called from main to initiate character output
// Return 0O for character accepted, 1 for refused (overrun).
int send_byte(char Outchar)
{
if(serial_out_state == idle)
{
Out = Outchar;
serial_out_state = start;
return(0);
}
return(1); //Overrun error return

}

#pragma vector=TIMERAO_VECTOR
__interrupt void Timer_AO(void)
{
switch(serial_out_state)
{
case idle:
{
TACCTLO = SET; // Set Idle line and wait for send_byte to be called.
break;

}

case start:
{
TACCTLO = RESET; // Make start bit
serial_out_state = bit0;
break;
}
// Send next bit of character.
case bit0:
case bitl:
case bit2:
case bit3:
case bit4:
case bit5:
case bit6:

Rev E 11 December 2013

14

case bit7:
{
if((Out&0x01) == 0) TACCTLO = SET; //if bitis 0, output is 1
else TACCTLO = RESET; // and vice versa.
Out=0ut>>1; // shift to next bit
serial_out_state++; // increment to next state.
break;
}
case stop:
{

TACCTLO = SET; // Set Idle line and
serial_out_state =idle; // go to idle state.
break;
}
default:
{
serial_out_state = idle;
break;
}
} //End switch(serial_out_state)
}//End __interrupt void Timer_AO(void)

Rev E 11 December 2013

15

Rev E 11 December 2013

Results of The NIST STS suite
These tests were performed running the STS test suite with the default parameters supplied by NIST.

STS Run

06 December 2013

RKG

Notes:

1) The data file, ekstrom.raw, is a file of 1076 random bytes captured from a CPU
configured to stream randomly generated numbers generated by the SD 16A in the
processor of the EZ430F2013, using the program given in the previous section.

2) The data file contains the bits in binary format. Each byte of data in the file
contains 8 bits of randomly generated data

Tests:
01 Frequency Test: Monobit
02 Frequency Test: Block
03 Cumulative Sums Test
04 Runs Test
05 Test for the Longest Runs of Ones in a Block
06 Binary Matrix Rank Test
07 Discrete Fourier Transform (Spectral Test)
08 Non-Overlapping Template Matching Test
09 Overlapping Template Matching Test
10 Maurer's Universal Statistical Test
11 Approximate Entropy Test
12 Random Excursions Test
13 Random Excursions Variant Test
14 Serial Test
15 Linear Complexity Test
FREQUENCY TEST
COMPUTATIONAL INFORMATION
(a) The nth partial sum = -898
(b) S n/n = -0.000898
SUCCESS p_value = 0.369186
BLOCK FREQUENCY TEST
COMPUTATIONAL INFORMATION
(a) Chi~2 = 7967.437500
(b) # of substrings = 7812
(c) block length = 128
(d) Note: 64 bits were discarded.
SUCCESS p _value = 0.107356

16

Rev E 11 December 2013

CUMULATIVE SUMS (FORWARD) TEST

SUCCESS p_value = 0.705472

CUMULATIVE SUMS (REVERSE) TEST

SUCCESS p_value = 0.270336

RUNS TEST

(a) Pi = 0.499551

(b) V.n obs (Total # of runs) = 500177

(c¢) V.n obs - 2 n pi (l-pi)
——————————————————————— = 0.250886

2 sqrt(2n) pi (l-pi)

SUCCESS p_value = 0.722734

LONGEST RUNS OF ONES TEST

(a) N (# of substrings) = 100
(b) M (Substring Length) = 10000
(c) Chi~2 = 3.894568

<=10 11 12 13 14 15 >=16 P-value Assignment

7 28 22 16 13 6 8
SUCCESS p_value = 0.690942
RANK TEST

(a) Probability P 32 = 0.288788
(b) P 31 = 0.577576
(c) P 30 = 0.133636
(d) Frequency F 32 = 278
(e) F 31 = 593
(f) F 30 = 105
(g) # of matrices = 976

17

(h) Chi~2 = 6.531766

(i) NOTE: 576 BITS WERE DISCARDED.

Rev E 11 December 2013

SUCCESS p_value = 0.038163
FFT TEST

COMPUTATIONAL INFORMATION:

(a) Percentile = 94.965800

(b) N 1 = 474829.000000

(c) N o = 475000.000000

(d) d = -1.569204
SUCCESS p_value = 0.116601

NONPERIODIC TEMPLATES TEST
COMPUTATIONAL INFORMATION
LAMBDA = 244.125000 M = 125000 N = n = 1000000

FREQUENCY
Template 1 w2 W3 W4 W5 W6 W7 Chi~2 P value Assignment
Index
000000001 233 237 232 250 240 239 236 4.188479 0.839730 SUCCESS 0
000000011 228 247 235 216 245 241 219 9.069123 0.336498 SUCCESS 1
000000101 241 238 271 234 222 221 265 3.412770 0.098415 SUCCESS 2
000000111 249 248 255 202 245 235 233 9.476903 0.303674 SUCCESS 3
000001001 248 242 253 239 223 243 249 7.977121 0.435708 SUCCESS 4
000001011 235 231 270 227 249 237 257 6.179714 0.627109 SUCCESS 5
000001101 252 232 227 255 233 255 248 5.983768 0.649050 SUCCESS 6
000001111 249 250 235 211 246 229 233 7.999364 0.433532 SUCCESS 7
000010001 225 225 262 254 265 250 251 7.058823 0.530300 SUCCESS 8
000010011 257 221 238 250 235 279 248 8.877414 0.352743 SUCCESS 9
000010101 229 253 229 253 240 256 256 4.470217 0.812405 SUCCESS 10
000010111 229 236 264 249 255 256 241 4.442679 0.815140 SUCCESS 11
000011001 259 266 253 256 246 243 238 9.227998 0.323429 SUCCESS 12
000011011 248 253 214 258 240 233 254 7.459188 0.487994 SUCCESS 13
000011101 267 238 218 229 227 233 232 8.626391 0.374786 SUCCESS 14
000011111 239 235 225 222 243 208 234 15.283260 0.053866 SUCCESS 15
000100011 241 238 245 246 235 236 259 1.791582 0.986748 SUCCESS 16
000100101 251 264 258 280 244 221 257 11.372813 0.181456 SUCCESS 17
000100111 252 225 231 221 253 272 251 13.212587 0.104741 SUCCESS 18
000101001 249 233 279 248 235 228 223 9.599766 0.294248 SUCCESS 19
000101011 241 276 236 230 249 237 259 6.738954 0.565042 SUCCESS 20
000101101 223 266 274 247 262 239 255 10.034025 0.262646 SUCCESS 21
000101111 249 236 237 220 249 253 237 3.782817 0.876168 SUCCESS 22
000110011 245 269 247 262 233 246 236 4.837748 0.774769 SUCCESS 23
000110101 234 250 250 273 256 266 256 7.486727 0.485140 SUCCESS 24
000110111 228 229 226 245 250 243 267 6.803564 0.557968 SUCCESS 25
000111001 257 219 262 259 227 238 265 9.268247 0.320175 SUCCESS 26
000111011 268 236 231 240 240 250 229 5.036872 0.753628 SUCCESS 27
000111101 247 243 275 224 247 247 272 11.778474 0.161365 SUCCESS 28

18

Rev E 11 December 2013

000111111 239 256 233 241 234 208 237 228 8.554368 0.381270 SUCCESS 29
001000011 266 274 238 218 243 236 253 245 9.481139 0.303345 SUCCESS 30
001000101 219 227 241 251 258 279 232 242 10.769087 0.215129 SUCCESS 31
001000111 238 235 271 245 222 232 251 256 7.069415 0.529162 SUCCESS 32
001001011 265 249 243 280 235 237 249 248 8.137056 0.420198 SUCCESS 33
001001101 224 220 241 245 262 258 220 237 9.076537 0.335881 SUCCESS 34
001001111 243 206 236 254 255 259 258 271 12.170366 0.143763 SUCCESS 35
001010011 249 242 264 253 240 206 228 249 9.559518 0.297312 SUCCESS 36
001010101 243 224 220 243 217 224 231 260 10.823105 0.211925 SUCCESS 37
001010111 243 259 232 225 249 259 239 225 5.814301 0.668024 SUCCESS 38
001011011 233 281 233 239 240 237 249 239 7.419999 0.492068 SUCCESS 39
001011101 230 260 254 226 240 239 258 238 4.875878 0.770756 SUCCESS 40
001011111 248 226 247 240 247 247 257 247 2.369888 0.967522 SUCCESS 41
001100101 268 251 247 229 234 259 230 277 10.415325 0.237076 SUCCESS 42
001100111 238 246 250 251 236 247 219 239 3.620765 0.889618 SUCCESS 43
001101011 237 258 239 264 261 243 246 255 4.543300 0.805086 SUCCESS 44
001101101 252 238 236 256 234 222 249 221 6.173359 0.627820 SUCCESS 45
001101111 234 251 220 233 249 253 241 242 4.119633 0.846172 SUCCESS 46
001110101 234 251 227 226 253 218 240 252 6.828984 0.555192 SUCCESS 47
001110111 255 233 234 241 242 237 223 207 9.465252 0.304579 SUCCESS 48
001111011 268 251 273 207 236 252 242 269 15.169929 0.055924 SUCCESS 49
001111101 240 241 233 252 227 253 235 236 3.109187 0.927320 SUCCESS 50
001111111 263 245 215 245 228 212 235 247 10.971388 0.203326 SUCCESS 51
010000011 248 243 224 258 219 251 248 222 7.612768 0.472180 SUCCESS 52
010000111 244 238 238 215 246 227 244 216 8.520474 0.384346 SUCCESS 53
2

010001011 231 240 249 236 250 262 252 247 .979968
010001111 214 248 263 259 245 223 259 261 10.393083
010010011 250 199 259 242 254 220 222 251 14.882895
010010111 249 262 223 266 216 242 239 267 11.070950
010011011 233 247 238 261 263 237 235 243 4.007361
010011111 227 245 231 264 250 248 251 277 8.638042
010100011 253 224 246 245 258 242 267 254 5.532562
010100111 235 264 264 258 270 219 238 262 11.539102
010101011 235 241 229 251 226 229 245 254 4.340999
010101111 227 249 245 241 242 253 251 231 2.670691
010110011 250 261 222 245 251 243 244 261 4.841985

0

7

5

.935608 SUCCESS 54
.238513 SUCCESS 55
.061463 SUCCESS 56
.197711 SUCCESS 57
.856459 SUCCESS 58
.373744 SUCCESS 59
.699430 SUCCESS 60
.172983 SUCCESS 61
.825122 SUCCESS 62
.953296 SUCCESS 63
.774324 SUCCESS 64
.22464°7 SUCCESS 65
.499929 SUCCESS 66
.699665 SUCCESS 67
.747362 SUCCESS 68
.141783 SUCCESS 69
.074875 SUCCESS 70
.215572 SUCCESS 71
.591806 SUCCESS 72
.253899 SUCCEsSs 73
.839730 SUCCESS 74

010110111 216 253 259 221 246 234 271 237 10.612331
010111011 252 274 246 231 257 255 250 261 .344798
010111111 226 233 240 255 258 263 255 237 .530444
011000111 252 259 230 237 230 244 256 226 5.095126
011001111 250 244 240 243 215 226 210 222 12.216970
011010111 257 233 243 232 263 272 279 220 14.274932
011011111 247 263 218 259 260 228 271 238 10.761673
011101111 271 253 240 242 225 247 247 226 6.496405
011111111 245 250 206 243 259 244 242 218 10.161125
100000000 233 237 232 250 240 239 236 267 4.188479

eNoNeoNoNoNoNololoholBoNoRoNololNoloNolNoNoNoNoNoNoNolBoNoBoNoBoNoloNeoloNoNolNololololoNoloNoloNolNoloNoNoNolNolNololNololNe]

100010000 258 247 248 242 251 236 256 262 3.364446 0.909452 SUCCESS 75
100100000 237 241 252 250 226 253 251 246 2.606082 0.956600 SUCCESS 76
100101000 243 248 246 224 244 238 265 269 6.426500 0.599571 SUCCESS 77
100110000 218 245 242 230 241 236 253 255 4.915068 0.766614 SUCCESS 78
100111000 236 233 268 254 246 236 250 254 4.486105 0.810822 SUCCESS 79
101000000 232 238 241 213 235 241 230 239 6.278216 0.616099 SUCCESS 80
101000100 272 239 227 267 228 259 231 261 10.837933 0.211052 SUCCESS 81
101001000 249 240 259 239 240 259 252 231 3.223577 0.919553 SUCCESS 82
101001100 240 261 258 222 227 249 233 242 6.054732 0.641101 SUCCESS 83
101010000 257 230 221 246 219 247 247 230 7.417881 0.492289 SUCCESS 84
101010100 277 231 210 239 241 261 202 250 19.265730 0.013501 SUCCESS 85

19

101011000
101011100
101100000
101100100
101101000
101101100
101110000
101110100
101111000
101111100
110000000
110000010
110000100
110001000
110001010
110010000
110010010
110010100
110011000
110011010
110100000
110100010
110100100
110101000
110101010
110101100
110110000
110110010
110110100
110111000
110111010
110111100
111000000
111000010
111000100
111000110
111001000
111001010
111001100
111010000
111010010
111010100
111010110
111011000
111011010
111011100
111100000
111100010
111100100
111100110
111101000
111101010
111101100
111101110
111110000
111110010
111110100

210
272
254
239
250
241
235
215
235
262
239
229
221
241
2601
258
259
240
231
256
237
250
264
263
269
202
244
234
259
218
214
233
259
218
248
243
250
249
215
261
229
232
214
260
258
234
261
246
251
253
246
240
245
245
270
255
240

232
2601
264
228
2601
265
230
240
259
239
240
223
229
239
238
267
221
254
231
227
241
247
226
248
248
237
256
269
258
231
236
235
235
271
228
221
276
223
225
222
220
244
245
247
271
257
250
242
246
233
227
241
240
248
250
241
232

255
242
271
249
253
235
241
244
235
257
252
250
248
233
254
253
241
235
246
218
234
232
230
234
219
259
261
224
243
252
249
232
250
253
245
247
235
223
239
240
241
238
243
257
226
247
225
247
254
215
231
243
235
256
239
232
220

264
219
257
250
250
207
249
217
234
238
232
226
275
239
237
245
243
239
229
252
233
263
239
239
247
267
249
241
261
236
220
223
219
274
220
225
218
218
225
220
222
253
248
245
244
240
209
223
219
253
264
249
2601
230
280
217
250

246
255
247
233
258
231
237
236
228
226
249
252
223
235
244
237
236
240
262
245
225
240
252
234
251
216
232
218
241
266
252
227
250
230
245
226
236
258
264
235
233
266
226
245
219
258
264
247
218
242
241
275
241
240
251
230
234

246
243
232
254
238
247
253
225
241
212
236
276
270
216
240
232
260
223
258
252
246
228
225
249
266
222
247
268
214
252
229
247
235
229
215
272
254
228
258
226
223
222
255
260
249
269
229
219
246
238
235
248
277
262
225
239
224

211
238
248
246
237
242
249
248
243
284
231
257
259
262
240
256
244
254
246
230
241
221
264
252
215
221
253
243
214
235
236
253
235
280
265
245
242
247
249
261
253
287
228
248
213
249
256
258
221
248
236
265
242
254
270
239
255

242
235
264
246
216
250
244
211
259
258
284
233
228
249
245
254
253
282
244
261
213
263
234
243
244
244
235
255
227
234
207
237
274
233
238
243
265
260
248
231
222
263
220
255
235
231
267
243
260
257
240
264
253
211
241
250
227

=

=
B W W oy o oo N

[= = = [
U IR O WORNDJJD O TN U s O U

= = = = =
WO WO O WO WOWO W

N
~N O WwWw Jdo Jd > 0o

.428803
.210138
.244032
.427083
.373541
.009810
.989646
.324859
.163059
.642318
.915544
.191841
.103347
.946697
.141107
.217990
.930955
.402761
.628033
.311964
.925368
.262183
.942169
.921714
.216056
.578331
.248997
.626100
.938408
.241000
.041915
.216930
. 743959
.858097
.236472
.548013
.253273
.793594
.457838
.499145
.372959
.514304
.377341
.443884
.499767
.511379
.586473
.490196
.542571
.729568
.406667
.841548
.607618
.997246
.174457
.496551
.200751

eNoNeoNoNoNoNoBoloholoNoRoNohololoNolNoNoNoNoNoNoNolBolNoloNoBoNoloNeolNoNoNoNololNololoNoloNoloNolNoloNoNoNolNolNololNololNe]

Rev E 11 December 2013

.133073
.413217
.410003
.965044
.605466
.341469
.981328
.101150
.842120
.047795
.349471
.251819
.079111
.653203
.976377
.734043
. 764930
.309466
.796491
.503378
.544706
.508627
.439140
.939174
.189755
.017285
.917774
.223798
.153973
.510868
.080679
. 734159
.364354
.022316
.322742
.381846
.247698
.279813
.305156
.301952
.239818
.069307
.311470
.903501
.130259
701779
.093201
.704126
.298609
.677495
.818697
.449099
.579497
.433739
.105986
.703422
.515136

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

20

Rev E 11 December 2013

111110110 230 250 230 257 232 254 248 244 3.638771 0.888157 SUCCESS 143
111111000 251 260 229 244 240 211 241 214 10.844288 0.210679 SUCCESS 144
111111010 256 233 220 259 254 238 254 223 7.400934 0.494056 SUCCESS 145
111111100 272 244 228 243 260 227 224 229 9.394288 0.310133 SUCCESS 146
111111110 245 250 206 243 259 244 242 218 10.161125 0.253899 SUCCESS 147
OVERLAPPING TEMPLATE OF ALL ONES TEST

COMPUTATIONAL INFORMATION:

(a) n (sequence_ length) = 1000000

(b) m (block length of 1s) =9

(c) M (length of substring) = 1032

(d) N (number of substrings) = 968

(e) lambda [(M-m+1)/2"m] = 2.000000

(f) eta = 1.000000

FREQUENCY
0 1 2 3 4 >=5 Chi~2 P-value Assignment
359 194 137 97 60 121 4.106682 0.534161 SUCCESS
UNIVERSAL STATISTICAL TEST

COMPUTATIONAL INFORMATION:

(a) L =7

(b) © = 1280

(c) K = 141577

(d) sum = 877347.519730

(e) sigma = 0.0027068

(f) variance = 3.125000

(g) exp value = 6.196251

(h) phi = 6.196964

(1) WARNING: 1 bits were discarded.
SUCCESS p value = 0.796777

APPROXIMATE ENTROPY TEST

COMPUTATIONAL INFORMATION

(a) m (block length) = 10

(b) n (sequence length) = 1000000

(c) Chi~2 = 1083.704253

(d) Phi (m) = -6.930968

(e) Phi (m+1) = -7.623573

(f) ApEn = 0.692605

(g) Log(2) = 0.693147
SUCCESS p value = 0.095242

21

RANDOM EXCURSIONS TEST

Rev E 11 December 2013

(a) Number Of Cycles
(b) Sequence Length

(J) = 1730

(n) = 1000000
(c) Rejection Constraint = 500.000000

SUCCESS x = -4 chi®2 = 2.121795 p value = 0.832049
SUCCESS x = -3 chi”®2 = 4.219629 p value = 0.518247
SUCCESS x = -2 chi®2 = 7.092899 p value = 0.213822
SUCCESS x = -1 chi”2 = 11.611561 p value = 0.040516
SUCCESS x = 1 chi®2 = 8.154913 p value = 0.147902
SUCCESS x = 2 chi®2 = 0.794205 p value = 0.977401
SUCCESS x = 3 chi®2 = 2.269508 p value = 0.810735
SUCCESS x = 4 chi®2 = 2.720236 p_value = 0.743022
RANDOM EXCURSIONS VARIANT TEST

COMPUTATIONAL INFORMATION:

(a) Number Of Cycles (J) = 1730

(b) Sequence Length (n) = 1000000
SUCCESS (x = =-9) Total visits = 1823; p-value = 0.701378
SUCCESS (x -8) Total wvisits = 1750; p-value = 0.930043
SUCCESS (x -7) Total visits = 1755; p-value = 0.906165
SUCCESS (x = -6) Total visits = 1789; p-value = 0.762328
SUCCESS (x = =5) Total visits = 1759; p-value = 0.869465
SUCCESS (x -4) Total wvisits = 1688; p-value = 0.787257
SUCCESS (x -3) Total visits = 1722; p-value = 0.951500
SUCCESS (x = =2) Total wvisits = 1873; p-value = 0.160444
SUCCESS (x = -1) Total wvisits = 1833; p-value = 0.079937
SUCCESS (x = 1) Total visits = 1839; p-value = 0.063874
SUCCESS (x = 2) Total visits = 1854; p-value = 0.223570
SUCCESS (x = 3) Total visits = 1760; p-value = 0.819580
SUCCESS (x = 4) Total wvisits = 1749; p-value = 0.902831
SUCCESS (x = 5) Total wvisits = 1733; p-value = 0.986436
SUCCESS (x = 6) Total visits = 1737; p-value = 0.971377
SUCCESS (x = 7) Total visits = 1726; p-value = 0.984952
SUCCESS (x = 8) Total visits = 1798; p-value = 0.765332
SUCCESS (x = 9) Total wvisits = 1967; p-value = 0.328467

(a) Block length
(b) Sequence length
(c) Psi m

(d) Psi m-1

(e) Psi m-2

(f) Del 1

(g) Del 2

(m) = 16

(n) = 1000000

= 65563.
= 32968.
= 16480.
= 32594.
= 16106.

586560
732672
137216
853888
258432

22

Rev E 11 December 2013

SUCCESS p_valuel = 0.750144
SUCCESS p_value2 = 0.938145

|
o

M (substring length) = 500
N (number of substrings) = 2000

Note: 0 bits were discarded!
21 62 281 980 505 114 37 5.788698 0.447272

23

