
Introduction 

 

The DAC348x family is a family of digital-to-analog converter (DAC) devices with 

many digital features such as FIFO, interpolation filters, quadrature modulator correction 

circuits, and mixers. It also has flexibility for multi-device synchronization to ensure 

output phase alignment for each device. In order to operate the DAC correctly, the 

internal digital logics must be synchronized correctly at start-up. The intend of this 

application note is to provide references for the digital blocks in the DAC348x devices 

and describes the steps needed to synchronize these blocks. The same principle can be 

applied to other Texas Instruments (TI) DAC devices such as the DAC328x family and 

the DAC317x family. 
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Acronyms: 

PVT = shift in process, voltage, and temperature. 

 

FIFO = first in first out.  

RP = read pointer of the FIFO. 

WP = write pointer of the FIFO. 

 

ISTR = input pointer strobe (DAC34H84 and DAC34SH84 control input). 

FRAME = similar to ISTR. Also establishes data boundaries. (DAC3282, DAC3283, 

DAC3482, and DAC3484 control input).  

SYNC = functions similarly as input pointer strobe. This input also synchronizes the on-

chip PLL N-divider to synchronize the multi-device PLLs.  

OSTR = output pointer strobe. 

 

DACCLK = DAC sampling clock. This is the final DAC update rate (FDAC) after the 

interpolation stages.  

DATACLK = clock used to latch the LVDS data input. 

FIFO-Out Clock = FIFO output pointer clock, where N is the interpolation factor. It 

could be DACCLK/N or DACCLK/2N depending on the DAC configuration mode.  

 

Reset/Synchronization Sources = sources to synchronize the digital logics. These are 

typically FRAME, ISTR, SYNC, OSTR, and SIF_SYNC.  

 

1. FIFO Architecture for Synchronization 

The DAC348x family (along with the DAC328x and DAC317x family) has new FIFO 

architecture to allow multiple devices synchronization. This FIFO architecture ensures 

that the latency of each DAC device is the same, which allows the multiple DAC outputs 

to be phase aligned. Multi-device synchronization is useful for systems such as beam-

forming, active antenna array systems, diversity, and etc. 

 



1.1 The purpose of the FIFO 

 

Typically, the modern digital communication transmitter system consists of clock 

generation source, digital data source, and digital to analog converters (DAC). The DAC 

accepts the data from the data source, and the DAC clock provides the time reference to 

latch the data into the DAC. TI datasheet has specifications of the setup and hold timing 

requirements (i.e. tS and tH, respectively) for the input data and the DAC clock. Figure 1 

below shows the setup and hold time diagram.  
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Figure 1. Setup and Hold Time Diagram 

 

System designers will need to make sure the data source and clock source are aligned to 

meet the DAC setup and hold time requirement for correct output waveform. The time 

alignment (T_ALIGN) must be maintained over the entire system operating range. Any shift 

in the data source or the DAC clock could cause bit errors because the data cannot be 

registered correctly. 
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Figure 2. Typical Alignment Requirement for Data and Clock Sources 

 

Figure 2 above shows some of the challenges for meeting the requirements include the 

shift of reference and clock synthesizer phase variation in clock source over process, 

voltage, and temperature (PVT), shift of data source output timing specification over 

PVT, and addition of PCB trace delay variations. These variables add system timing 

constraints and present constant challenges to designers when ensuring bit-error free 

operation.  



 

To relax the system timing requirement, most of the TI interpolation and straight DACs 

have integrated FIFO (first in first out). The FIFO is located at the boundary between the 

input data and the internal DAC digital blocks. The memory depth is usually 8 or 16 

samples deep, and two pointers (write and read pointers) provide reference to the memory 

during normal operation. Warning flags such as collision alarm are determined by these 

two pointers. 

 

The purpose of the FIFO can be portrayed as an elastic buffer, which means the current 

data sample does not have to be written and read at the same time. The write operation 

can occur some times before the read operation as long as the time variation between the 

two operations is within the memory depth. As shown in Figure 3, the ultimate goal for 

the FIFO is to absorb the timing variations between the input data stream and the DAC 

sampling clock, thus relaxing the system timing.  
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Figure 3. The Use of FIFO to Relax Alignment Requirement 

 

Texas Instruments DAC328x, DAC317x, and DAC348x families require two clock 

sources: the DATACLK and the DACCLK, in order to function correctly. The 

DATACLK provides the time reference to latch in the digital data correctly, while the 

DACCLK provides the clock to the DAC cores and internal digital logics. As shown in 

Figure 4 of a typical system, the FPGA or custom ASIC provides the data stream along 

with the DATACLK. The clock generation and distribution device, such as Texas 

Instruments CDCE62005 or LMK04800 family, provides the reference clock to the 

FPGA and also the DACCLK source to the DAC.  
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Figure 4. Typical System Implementation for DAC Devices with FIFO 

 

If the DACs do not have a FIFO, then the system must provide the DATACLK and 

DACCLK, which are precisely aligned. The threshold for the alignment is typically listed 

as T_ALIGN requirement in the datasheet. With the FIFO bypassed in the DAC, the input 

data must be handed to the internal digital logics within a certain time frame in order for 

the DAC to operate properly. The T_ALIGN requirement basically meets the timing 

constraints for the internal digital logics. For a typical system, this T_ALIGN requirement 

adds additional design time and cost since designers must account for the delays in the 

data source in order to match the alignment requirement properly.  

 

1.2 FIFO Operation 
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Figure 5. DAC348x FIFO Structure 

 

Figure 5 above shows the generic FIFO architecture of the DAC348x family. Similar 

concepts can be applied to the DAC328x and DAC317x families. As mentioned 

previously, the FIFO is located between the boundary of the DATACLK and DACCLK 

domain. The FIFO is 8 samples deep, where the write pointer (WP) and read pointer (RP) 

indicate the current memory location. The write pointer can be synchronized by 

ISTR/FRAME, SYNC, or SIF_SYNC. The read pointer can be synchronized by 

ISTR/FRAME, SYNC, SIF_SYNC, or OSTR.  

 

Among the DAC328x, DAC317x, and DAC348x family, the most innovative feature for 

the FIFO is the ability to select and use different synchronization sources to synchronize 

the FIFO. Depending on the implementation method, the overall latency of the DAC can 

be controlled. The following sections describe the operations of each mode: 

 

 
1.3.1 Single Sync Source Mode 
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Figure 6. Single Sync Source Mode 

 

In Single Sync Source mode (shown in Figure 6), the FIFO write and read pointers are 

reset from the same source, either LVDS ISTR/FRAME or LVDS SYNC. The FIFO read 

pointer reset signal is handed off between the two clock domains (DATACLK and 

DACCLK) by simply re-sampling the write pointer reset signal (shown in Figure 7). 

Since the two clocks are asynchronous, there is a small but distinct possibility of a meta-

stability during the signal handoff.  
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Figure 7. Write Pointer Synchronization Signal Handoff across the FIFO 

 



The meta-stability of the signal handoff is shown below. The zero to one transition of the 

ISTR signal, for example, is sampled by the DATACLK to reset the write pointer. The 

same ISTR signal crosses the clock domain and is sampled by the FIFO-Out Clock. The 

FIFO-Out clock is derived internally from the DACCLK, and is related to the DAC 

setting and interpolation factor. The table below shows the FIFO-Out Clock rate related 

to the DAC sampling rate and interpolation factor, N. For instance, N = 2 for 2x 

interpolation. 

 

Device 
FIFO Out 
Clock 

DAC3484 DACCLK/N 

DAC3482 Byte Wide Mode DACCLK/N 

DAC3482 Word Wide 
Mode DACCLK/2/N 

DAC34H84 DACCLK/N 

DAC34SH84 DACCLK/N 
Table 1. FIFO-Out Clock Rate 

 

Since the ISTR signal is asynchronous to the FIFO-Out clock, the signal could be 

sampled either one FIFO-Out Clock cycle earlier or one cycle later. The diagram shown 

below has two FIFO-Out Clock possibilities. FIFO-Out Clock (2) arrives earlier than 

FIFO-OUT Clock (1) by small time difference. The read pointer reset now happens at a 

later time. Moreover, the consequence is that the read pointer cannot be precisely reset at 

some defined time instant, and this poses a limitation for multi-device synchronization 

because the latency of multiple DAC devices may have variations due the uncertainty of 

read pointer position reset time instance.  
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Figure 8. Meta-stability of the Synchronization Signal Handoff across the FIFO 

 

The FIFO in this mode can still absorb the data delay differences due to variations in the 

digital source output paths or board level wiring. However, it is not possible to ensure 

that multiple DAC devices have the same latency because the read pointer location of the 

DAC devices cannot be precisely aligned. For instance, Figure 9 below shows two DAC 

devices in Single Sync Source mode. The first DAC (DAC#1) resets the read pointer to 

position number four, RP4, immediately upon the first rising edge of FIFO-OUT Clock 

because the ISTR transition has enough setup and hold time. This is the ideal case where 



both the read pointer and write pointer are reset to the default position at the same time 

instance.  

 

For the second DAC (DAC#2), the read pointer position resets to RP4 on the second 

rising edge of FIFO-OUT Clock. The ISTR transition does not have enough setup and 

hold time for the first rising edge of FIFO-OUT Clock and have to wait for the second 

rising clock edge to register the reset. 
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Figure 9. Reset Time Difference of FIFO Read Pointer Position in Single Sync Source Mode 

 

When comparing between the two DACs, the read pointer position slips by one sample. 

The two diagrams below elaborate the write and read sequence over the next eight time 

instance. For DAC #1, data S0 is loaded into write memory location #0 at time instance 

#0, and also write sequence #0. The read memory location #4 does not have any data at 

the time until four sequences later. After eight sequences, write sequence #8 load data S8 

into write memory location #8, and earlier sample S4 is loaded into the DAC at time 

instance #8.  

 

**Note: During DAC initialization, the DAC output is held at mid-code by driving the 

TXENABLE pin LOW. The DAC can start transmitting the data once the FIFO are filled 

with proper samples by pulling TXENABLE pin HIGH.  
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Figure 10. DAC#1 FIFO Write/Read Sequence 

(Read Sequence Occurs On Time) 

 

 

The same derivation is done on the second case DAC#2. For this case, the read pointer 

reset does not occur until time instance #1 and write sequence #1 complete. Therefore, 

the read pointer reset is delayed by one sample. After eight sequences, the earlier data S3 

is loaded into the DAC at time instance #8. Note that DAC#1 and DAC#2 have one 

sample difference at the same exact time instance.  
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Figure 11. DAC#2 FIFO Write/Read Sequence 

(Read Sequence Occurs Later by One Sample) 

 

The synchronization signal such as ISTR/FRAME or SYNC has to cross the DATACLK 

domain to the DACCLK domain, and the clock domain crossing could introduce timing 

variation in time unit of DACCLK. Along with the reset time meta-stability of the FIFO 

read pointer, the total latency variation could have time units of both the FIFO-Out Clock 

period and DACCLK period. Furthermore, although less likely, other factors such as 

DATACLK to DACCLK skew, PVT, and internal signal transition variation due to 

internal net bond wire differences can introduce additional latency control variables.  

 

Ultimately, if the Single Sync Source mode is used, the write pointer and read pointer 

delta among the DAC devices cannot be precisely controlled, and the overall latency of 

all the DAC devices cannot be matched. Although this mode is very suitable for simple 

system implementation without additional timing control, it is not practical for 

applications requiring multi-device synchronization or precise latency control. To 

facilitate latency synchronization, TI recommends Dual Sync Sources mode.  

 

1.3.2 Single Sync Source mode with SIF_SYNC 

 

Besides synchronizing the FIFO write and/or read pointers, the ISTR/FRAME or the 

SYNC signal also aligns the FIFO’s internal data formatter to ensure the I and Q signals 

are aligned properly. For instance, Figure 12 below shows the data format of the 

DAC3484 in byte wide interface mode. The rising edge of DATACLK occurs at upper 

eight bits of sample A and sample B (i.e. A[15:8] and B[15:8]), while the falling edge of 

DATACLK occurs at lower eight bits of sample A and sample B (i.e. A[7:0] and B[7:0]). 

The zero to one transition of ISTR/FRAME or SYNC signal is used to indicate the 

beginning of sample A. If the FRAME or SYNC signal does not make the transition 



correctly, the internal pattern could be swapped since the rising edge of DATACLK 

could also occur at the beginning of sample B. Same concept also applies to DAC328x 

and DAC317x family.  

 

 
Figure 12. Byte Wide Data Transmission Format (copy from Figure 53 of SLAS749C) 

 

 

For the DAC3482 in word wide mode, DAC34H84, and DAC34SH84, each sample is 

located on the distinctive DATACLK edge as shown in Figure 13. Even if the 

ISTR/FRAME or SYNC signal is not present, the samples will not be swapped in 

position.  

 

 
Figure 13. Word Wide Data Transmission Format (copy from Figure 51 of SLAS748) 

 

In some applications where the FPGA or ASIC has limited IO pins, the control signal can 

be eliminated by using the SIF_SYNC SPI register bit. The FIFO (and other parts of the 

circuit such as NCO, QMCs, etc) can be synchronized by a zero to one transition of the 

SPI register bit – SIF_SYNC. Figure 14 below shows the signal path for the SIF_SYNC. 

A zero-to-one transition of the SIF_SYNC bit in CONFIG31 will be first registered by 

the SPI bus in the SCLK domain. The signal is then re-sampled by the DATACLK to 

synchronize the FIFO write pointer position. It is also re-sampled by the FIFO-OUT 

Clock to synchronize the FIFO read pointer position.  
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Figure 14. Single Sync Mode Using SIF_SYNC 

 

Since the SIF_SYNC signal is asynchronous to both the DATACLK and FIFO-OUT 

Clock, not only it is possible that the read pointer position may vary from time-to-time 

and device-to-device, the sample sequence loaded into the FIFO memory may also be 

different. The example below (shown in Figure 15) demonstrates this idea.  
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Figure 15. Reset Time Difference of FIFO Read Pointer in SIF_SYNC Mode 

 

The ideal DAC#1 (also shown in the previous section) has both write pointer and read 

pointer reset at sample S0. In DAC#3, the SIF_SYNC source arrived one sample later. 

The write pointer and read pointer reset to default at S1 instead of S0, and effectively, 

DAC#3 load the same memory into the FIFO one sample earlier than DAC#1 (as shown 

in Figure 16). Comparison between Figure 10 and Figure 16 indicates the sample time 

difference.  
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Figure 16. DAC#3 FIFO Write/Read Sequence  

(Read Sequence Occurs Ahead by One Sample) 

 

Primarily, this mode allows the user to save I/O pins in the FPGA or ASIC. With the 

existing read pointer uncertainty and also the addition of write sequence uncertainty (due 

to the asynchronous nature of SIF_SYNC to both the DATACLK and the DACCLK), 

latency control remains a challenge and is not practical in this mode. If the system 

requires multi-device synchronization, TI recommends the Dual Sync Sources mode.  

 

1.4 Optimize FIFO location for Single Sync Source Mode 

 

The default FIFO write pointer position of WP0 and read pointer position RP4 creates the 

optimal FIFO setup. The read pointer position is placed in the middle of the FIFO to 

absorb timing variations in either the write direction or the read direction shown in Figure 

17. An example for the worst case timing variation in the write direction would be the 

DATACLK and the data stopped completely while the read operation continues with the 

DACCLK running. In the default setup, the FIFO could absorb at most three samples 

before collision. The same principle can be applied to the worst case timing variation in 

the read direction where the DACCLK and the read operation stop completely while the 

write operation continues. In this case, the FIFO could also absorb three samples before 

collision. Since the FIFO loops around, the optimal write pointer position is in the 

beginning and the read pointer position is in the middle.  
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Figure 17. FIFO Memory Buffer for Both the Write and Read Direction 



 

Since the Single Sync Source mode is not recommended for applications requiring 

precise latency control, the following section only describes the optimal setup for system 

with only single DAC device or multi-DAC devices system without the need for latency 

synchronization. As mentioned in the previous section, the Single Sync Source mode 

could cause the read pointer position to slip in either direction. For the SIF_SYNC 

operation, both the write pointer position and read pointer position could slip in either 

direction. Therefore, it is possible that the spacing between the read pointer position and 

write pointer position is not optimal at start-up.  

 

To help designers optimize the FIFO setup at start-up, the DAC families includes FIFO 

alarms to indicate the pointer position delta. The three primary alarms are FIFO 2-away, 

FIFO 1-away, and FIFO collision. FIFO 2-away indicates absolute read and write pointer 

position difference (i.e. either write to read pointer position or read to write pointer 

position) have two spaces. FIFO 1-away indicates the absolute pointer position difference 

have one space. FIFO collision indicates that the FIFO pointers have collided and 

requires re-synchronization. Figure 18 shows the possible conditions to trigger the alarms.  
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Figure 18. Possible Alarm Conditions (Assuming RP4 Occurs) 

 

The alarm registers in the DAC family have a memory system and do not self-clear upon 

system recovery. This is important for designer if the system diagnosis algorithm only 

consisted of polling architecture (as oppose to both polling and interrupt service 

routine****). If the alarms do self-clear upon system recovery, there are possibilities that 

the polling interval missed the alarm, and the system will not be able to detect the alarm 

and issue remedies for the error.  

 

****the DAC family do have dedicated alarm signal output to trigger interrupt service 

routine (ISR) if the system design requires such provision.  

 

Upon system power up, the alarm registers could detect various alarms due to power up 

transitions. For instance, the DACCLK could be running before the DATACLK, and the 

FIFO alarms could trigger. Therefore, it is important to clear the alarm registers by 

writing all zeros to the alarms registers before reading back the register. After the system 

clocks and the DAC have settled, the system diagnosis algorithm should check the alarms 

registers. If the FIFO alarms remain triggered, the read pointer position (programmed in 



the FIFO offset register) can be adjusted accordingly to clear the alarms and optimize the 

FIFO spacing.  

 

Table 2 shows the typical FIFO alarm behavior of each read pointer position after the 

initial start-up synchronization. The experiment consists of five independent tests of eight 

different start-ups. For each start-up, the FIFO write pointer position is always reset to 

WP0, and the FIFO read pointer position is programmed from RP0 to RP7. Therefore, 

different FIFO alarms will trigger at each start-up.  

 

Read Pointer Position Test #1 Test #2 Test #3 Test #4 Test #5

RP0 collision collision collision collision collison

RP1 1 1 1 1 1

RP2 2 2 2 2 2

RP3 no no no no no 

RP4 no no no no no 

RP5 no no no no no 

RP6 2 2 2 2 2

RP7 1 1 1 1 1  
Table 2. FIFO Alarm Distribution vs. FIFO Offset Location (Single Sync Source Mode – ISTR only) 

 

When compared among the power up status with various FIFO offset position, the data 

has shown the optimal “green” region where the least amount of FIFO alarms occurred. 

The actual “green” region may shift due to the design of Single Sync Source mode, 

DATACLK to DACCLK skew, sequence of DATACLK and DACCLK presence, and 

PVT. If the optimal region of FIFO offset is found, the FIFO offset adjustment process 

can quickly yield the best FIFO pointer position.  

 

Table 3 shows the test result of Single Sync Source mode with SIF_SYNC.  Note that the 

SIF SYNC only mode has more variations of the alarm distribution due to the SIF_SYNC 

being asynchronous to both the DATACLK and DACCLK.  

 

Read Pointer Position Test #1 Test #2 Test #3 Test #4 Test #5

RP0 1 away 1 away 1 away 1 away collision

RP1 2 away 1 away 2 away 1 away 2 away

RP2 0 0 2 away 0 0

RP3 0 0 0 0 0

RP4 0 0 0 0 0

RP5 2 away 0 2 away 0 0

RP6 2 away 2 away 2 away 2 away 1 away

RP7 1 away 1 away 1 away 1 away 1 away  
Table 3. FIFO Alarm Distribution vs. FIFO Offset Location (Single Sync Source Mode – SIF_SYNC 

only) 

 

The following software loop demonstrates the alarm checking algorithm and the 

associated FIFO offset adjustment for optimal write and read pointer spacing. Each path 

starts off with the default FIFO offset and the checking of the FIFO alarms. Depending 



on the alarms detected, the FIFO offset is adjusted accordingly. After the adjustment, the 

alarms are rechecked again to ensure the FIFO has the optimal spacing. Since the FIFO 

pointers in this mode have uncertainties in the exact pointer position, the loop has 

implemented additional error checking and FIFO offset corrections. Each path can be re-

used depending on the alarm status.  

 
Figure 19. FIFO Offset Adjustment Algorithm 

 

The ultimate goal for FIFO position optimizing in Single Sync Source mode is to adjust 

the read pointer such that it has enough space from the write pointer in either direction of 

the FIFO space movement. This will be the best approach for system with only single 

DAC device or multi-DAC devices system without the need for latency control. 

 

1.5 Dual Sync Sources Mode 

 

The Dual Sync Sources mode is the recommended mode of operation for those 

applications that require precise control of the output timing and latency. In Dual Sync 

Sources mode, the FIFO write and read pointers are synchronized independently by two 

sources. The FIFO write pointer is reset using the LVDS ISTR/FRAME or SYNC signal, 

and the FIFO read pointer is reset using the OSTR signal (either from external LVPECL 

source or the on-chip PLL’s internal PFD frequency). The OSTR signal can control the 

latency (or phase) of the output for either a single chip or multiple chips. Multiple DAC 

devices can be fully synchronized in this mode.  
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Figure 20. Dual Sync Sources Mode 

 

The ISTR or SYNC signal should come from the data source and has the same timing 

relationship as the DATACLK, and the OSTR signal comes from the clock source and 

has the same timing relationship as DACCLK. This implementation does not need to re-

sample the reset signal in two different clock domains, thus eliminating the possibility of 

meta-stability during reset signal handoff.  

 

 
Figure 21. Typical Dual Sync Sources System Setup (Figure 60 of SLAS749). 

 

The two key principles in achieving the multi-device synchronization are the 

following: 

1. The data is loaded into the FIFO in the same order and same FIFO location for all 

the DAC devices. The ISTR/FRAME or SYNC signal needs to be aligned with 

the first sample properly in order to load the data in the correct sequence.  

 



2. All the DAC devices read same FIFO location at the same time to achieve the 

same latency. In order to meet this condition, the OSTR and DACCLK signals 

must have the same delay among the DAC devices in order to reset the FIFO read 

pointer at the same time.  

 

The following example demonstrates this idea. Shown in Figure 22, the system 

contains two data sources and two DAC devices. Each data path to the DAC 

device has different time delay due to shift in data source timing over PVT and 

PCB trace variations. Path #1 has less delay than Path #2. To keep the analysis 

simple, this example utilizes DAC input with double data rate format, which 

latches one channel data on the rising edge of DATACLK and another channel 

data on the falling edge of DATACLK (i.e. DAC3482 Word Wide Input Format 

or the DAC34H84 Input Format). The time difference between the paths is two 

DATACLK cycles, or two samples in double data rate (DDR) fashion, which is 

shown in Figure 23.   

 

Data 

Source 

#1

Data 

Source 

#2

DAC

Device

#1

DAC

Device

#2

Path #1 = DT1

Path #2 = DT2

In this example:

· DT1 is less than DT2

· The difference in time delay is due to shift in data 

source timing over PVT and PCB trace variation. 

· DT2 - DT1 = two DATACLK cycles or two 

samples in DDR fashion. For example, DAC3482 

Word Wide Input Format or DAC34H84 Input 

Format

 
Figure 22. Multi-Device Synchronization Example:  

Path#2 Has Additional Two Sample Delay when Compared to Path#1 
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Figure 23. Multi-Device Synchronization Example:  

Data Sequence vs. Time between Path#1 and Path#2 



 

The rising edge of ISTR signal has two purposes: to indicate the first sample of 

the data sequence, and to reset the FIFO write pointer position to default WP0. 

This indication allows the data of different data paths to be loaded in the same 

sequence regardless of the data path delay. At this point, this implementation 

allows the system to meet the first requirement of multi-device synchronization.  

 

To continue the demonstration, Figure 24 shows FIFO write process of the system. 

Three snap-shots of the FIFO are demonstrated. The first snap-shot shows the 

time instance #2 where Path#1 is loading sample S2, while Path#2 is loading the 

initial sample, S0. The second and third snap-shots show the subsequent FIFO 

states three and six samples later, respectively.  

 

The first and second snap-shots have demonstrated that the data sequences of the 

two paths are loaded into the FIFO in the same order. Once the FIFOs of the two 

paths have been fully loaded, the same data sample can be released from the FIFO 

at the same time. The synchronization of the FIFO release time is based on the 

OSTR signal. Per the second requirement of multi-device synchronization, the 

system implementation must guarantee that the OSTR and DACCLK timing are 

the same for all the DAC devices in the system. Once this requirement is met, all 

the DAC devices can read the same data sequence at the same time. Since the rest 

of the digital logics after the FIFO operate in the DACCLK domain, the DAC 

devices in the system can achieve the same latency.  

 

To simplify the analysis, the FIFO read process is not presented until the third 

snap-shot of the FIFO. In actual system implementation, the FIFO write and read 

sequence is synchronized during the DAC initialization stage, and the 

TXENABLE of the DAC is held LOW to disable the DAC output. In this process, 

the FIFO memory can be flushed out without the DAC outputting transient 

waveforms, which may damage subsequent signal chain devices. Once the FIFO 

is initialized properly with the proper samples loaded, the TXENABLE can be 

pulled HIGH to enable the DAC output for transmission.  

  

Ultimately, the FIFO absorbs the input path delay difference to allow equal 

latency after the FIFO. This example has input path delay difference of two 

samples, which is within the FIFO depth. If the input path delay is greater than the 

FIFO depth, then the FIFO cannot absorb the delay difference, and latency 

alignment cannot be achieved.  
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Figure 24. Multi-Device Synchronization Example: FIFO State Snap-shots 

 



 

Beside data, control signals such as SYNC and ISTR, are treated as data and can 

be read from the FIFO at the same time instance. An example is shown in Figure 

25, where the rising edge of SYNC pulse is registered at the same time sample S4 

is latched. When all the DAC devices in the system release RP4 in the FIFO, the 

SYNC pulse stamp will also be released. This stamp will be registered by the 

appropriate digital logics (based on DAC programming) and used for logic 

synchronization. This is useful for synchronizing internal digital logics such as 

NCO and QMC. These circuits can process the signal amplitude and phase. By 

setting these circuits to look for the synchronized control signals, multiple devices 

can adjust the signal amplitude and phase at the same precise moment. 
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Figure 25. Multi-Device Synchronization Example: SYNC Pulse Loading for Logic Synchronization 

 

 

For the DAC348x family configured as external clock mode, the external clock 

synthesizer and distribution circuits such as the LMK04800 family and the 

CDCE62005 will need to ensure the OSTR and DACCLK signals going to each 

DAC348x device have zero skew. The timing diagram is shown in Figure 26 



 
Figure 26. Timing Diagram for LVPECL Synchronization Signals of DAC3484 (Figure 61 of 

SLAS749) 

 

For the DAC348x family with PLL mode enabled, multiple DAC348x device on-

chip PLLs must be synchronized in order to have zero skew OSTR and DACCLK 

signals. As shown in Figure 27, the on-chip PLL is synchronized by the rising 

edge of LVDS SYNC signal going to the N-divider circuit. The idea is that if the 

reference frequencies of the PLLs are aligned in time, then the OSTR and 

DACCLK signals will also be aligned.  
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Figure 27. DAC348x On-Chip PLL DACCLK and OSTR Generation 

 

One important note about the OSTR signal in PLL mode is that the OSTR is the 

PFD frequency after the N-divider. Therefore, the reference clock (REFCLK), N-

divider, and M-divider must be configured to meet the OSTR frequency requirement 

and also the PLL lock requirement.  

 

1.6 Optimal FIFO position setup for Dual Sync Sources mode 



 

In Dual Sync Sources mode, the FIFO read pointers of multiple DAC devices can start at 

the same location at the same exact time instance given that the OSTR and DACCLK 

signals among all the devices have the same delay. At the data input side, as long as the 

load sequences of each DAC devices are the same, the FIFO’s memory depth can absorb 

some variations at the data input side. The FIFO has limited length and has to absorb 

timing variations from both input and output pointer side. Therefore, it is important that 

the FIFO position starts in an optimal position. 

 

In the previous example of Path#1 and Path#2, both paths have to have the same read 

pointer position in order to have the same latency. However, the write side of Path#1 has 

less delay than Path#2, and Path#1 will load data into the FIFO earlier than Path#2. 

Therefore, Path#1 has narrower FIFO write to read pointer position gap than Path#2.  

 

The FIFO offset adjustment procedure is shown in Figure 28. The green arrow shows the 

write to read pointer gap, while the red arrow shows the read to write pointer gap. When 

the pointer gap is narrower, the chance of FIFO collision is higher. Counting from the 

write pointer to read pointer, Path#1 with read pointer position of 4 only has one memory 

gap. If somehow the DATACLK or DACCLK has interruption or the skew has changed, 

for instance, the clock generator started to shift the delay of the OSTR and DACCLK 

signals over PVT, the FIFO read pointer could reset earlier and cause collision. 
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Figure 28. FIFO Offset Adjustment for Dual Sync Sources Mode 

 

By changing FIFO read pointer position from RP4 to RP5, the write pointer to read 

pointer gap (shown in green) has increased from one to two in Path#1. The read pointer 

to write pointer gap (shown in red) has decreased from five gaps to four gaps, but it is the 

best option without disturbing the setup for Path#2. If the read pointer position is 

increased further, then Path#2 will not have enough read pointer to write pointer gap. If 

either the DATACLK or DACCLK is disturbed, the FIFO does not have much buffer and 



collides with higher probability. As mentioned in the previous section, designers should 

check the FIFO alarms upon start-up to ensure each device has optimal FIFO position.  

 

2 Digital Logic Synchronization 

Besides the FIFO, other digital logics such as clock divider, data formatter, mixers, and 

quadrature modulator correction features, require initialization during start-up to ensure 

proper operation. Each of the digital blocks is described in this section.  

 

2.1 FIFO and data formatter (configured and synchronized upon initial start-

up): 

The FIFO synchronization method would depend on the end application requirement. 

Depending on the Single Sync Source mode or Dual Sync Sources mode configuration, 

the syncsel_fifoin(3:0) and the syncsel_fifoout(3:0) in Config32 register can be 

programmed accordingly.  

 

For the DAC3482 and DAC3484, the data interface options can be either 16-bit word 

wide interface or 8-bit byte wide interface. The FIFO includes a data formatter to format 

the FIFO memory accordingly. The synchronization source can be selected by 

syncsel_dataformatter(1:0) in Config31, with the option including the FRAME or SYNC. 

As mentioned previously, the rising edge of FRAME or SYNC can be used to establish 

data boundary to ensure the data are interpreted correctly.  

 

The data formatter is not needed for the DAC34H84 and DAC34SH84 since the 32-bit 

interface forces the A and C channels always latched on the rising edge of DATACLK 

and B and D channels always latched on the falling edge of DATACLK.  

 

The DAC3482 word wide interface operates in the similar fashion and some users may 

choose to use SIF_SYNC to synchronize the FIFO. In this case, the 

syncsel_dataformatter(1:0) in Config31 can be set to “10” or “11” option for no sync 

options.  

 

 

2.2 Clock Divider (configured and synchronized upon initial start-up): 
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Figure 29. Simplified Clock Divider Block Diagram 

 



The purpose of the clock divider is to provide divided-down clocks. Figure 29 above 

shows the simplified clock divider structure. The source of the clock divider comes from 

the DACCLK, and the clock divider can be reset by the OSTR signal or the FIFO input 

pointer reset source.  

 

The clock divider needs to be synchronized at start-up along with the FIFO and data 

formatter (if needed). The clock divider synchronization source will be the same as the 

FIFO output pointer synchronization source. In Single Sync Source mode, the clock 

divider will be synchronized by ISTR, SYNC, or SIF_SYNC. In Dual Sync Sources 

mode, the clock divider will be synchronized by the OSTR signal (either externally 

provided to the DAC348x or internally generated by the PLL PFD).  

 

2.3 Double Buffered Registers (adjusted during system operation).  

 

FIR filters and coarse mixers have pre-set algorithm values. Once these circuits are 

enabled at start-up along with start-up synchronization routine (i.e. FIFO and clock 

divider synchronization), additional synchronization is not required. Since the NCO and 

QMC logics have programmable algorithms, the circuits require additional 

synchronization of the double-buffered register. A double-buffered register is designed to 

prevent instantaneous change to logic behavior when the desired logic behavior requires 

more than one serial port interface (SPI) configuration. For instance, the NCO register 

requires two 16-bit frequency information and one 16-bit phase information. The SPI 

register is 16-bit per register, and if the NCO logic changes instantaneously for every SPI 

write transaction, the output frequency may change three times over the programming 

period before settling to the final output frequency. The same principle applies to QMC 

gain/phase adjustment and QMC offset adjustment circuits. The double-buffered registers 

prevent unintentional gain, phase, and/or offset corrections during the programming of 

the register.  
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Figure 30. Double-Buffered Registers 



 

For flexibility, the double-buffered register can have one or more synchronization sources, 

and the user should plan out the synchronization method. The sources can be SIF_SYNC, 

SYNC, OSTR, or auto-sync. For the synchronization using the SIF_SYNC, SYNC, and 

OSTR, the corresponding zero to one transition of the signal will create a synchronization 

event. For auto-sync selection, the synchronization will occur only when specific 

registers are written, and the register may not necessary be the last sequence of registers. 

Therefore, users will need to design their start-up sequence to write to auto-sync register 

specifically to synchronize the double buffered circuit. The table below shows the double 

buffered synchronization source select register for each digital block and the 

corresponding auto-sync register, and the detailed description of synchronization sources 

can be found on Table 4 and Table 5. 

 
Digital Blocks Double-Buffered Synchronization Source Selection Auto-Sync Register

QMC Gain/Phase AB Channels Config30 Config16

QMC Gain/Phase CD Channels Config30 Config17

QMC Offset AB Channels Config30 Config8 

QMC Offset CD Channels Config30 Config10 

NCO Mixer AB Channels Config31 Config18

NCO Mixer CD Channels Config31 Config19  
 
 

Table 4. DAC348x Double-Buffered Registers and the Associated Auto-Sync Registers 

 
Synchronization Source Selection Synchronization Source Description

8 SIF_SYNC 0->1 Transition of the SIF_SYNC bit in Config31, bit2

4 SYNC 0->1 Transition on the LVDS SYNC. FIFO must be enabled

2 OSTR 0->1 Transition on the OSTR signal (either externally provided on the LVPECL OSTRp/n source or internally generated PFD)

1 Auto-Sync from Register Write writing to the auto-sync register

 
Table 5. DAC348x Doube-Buffered Synchronization Sources Description 

 

Programmable digital logics such as NCO and QMC circuits allow the system to change 

the DAC output values as the DAC is running. The output adjustments require the 

double-buffered synchronization sources as mentioned above, and these sources can be 

the same sources for the FIFO, data formatter, and the clock divider synchronization 

sources. Accidental reset to the FIFO, data formatter, and the clock divider may cause 

unexpected output behavior. Therefore, it is important for users to avoid this type of 

conflicts in system design.  

 

For instance, when the LVDS SYNC or external LVPECL OSTR signal is used to 

synchronize the double-buffered registers, the occurrence of the zero to one signal 

transition must match the clock timing (i.e. DATACLK for SYNC and DACCLK for 

OSTR) and must not disrupt the FIFO flow. The design of the signal transition must 

occur at the beginning of the eight sample spaces.  

 

If the programming of the double-buffered logics could affect the FIFO, data formatter, 

or clock divider operation, a good design practice is to disable FIFO, data formatter, and 

clock divider synchronization when the same synchronization sources are shared. After 



the initial synchronization of the FIFO, data formatter, and clock divider, these circuits 

can be programmed to not pay attention to the synchronization sources.  

 

Finally, the easiest way is to plan out the synchronization signal such that the 

synchronization sources for the double-buffered registers are different than the FIFO, the 

data formatter, and the clock divider. For instance, the auto-sync register write feature is 

a dedicate synchronization source for the double-buffered registers.  

 

2.4 NCO Accumulator (adjusted during system operation) 

The NCO accumulator is used to generate the desired sine and cosine term from a look-

up table. After loading the frequency and phase information into the NCO double 

buffered registers, the NCO accumulator requires a reset to ensure that a correct, known 

state is initialized. The NCO block diagram is shown in Figure 31. 

 
Figure 31. NCO Block Diagram (Figure 73, SLAS749) 

 

The following table shows the synchronization sources for the NCO accumulator.  
Synchronization Source Selection Synchronization Source Description

8 SIF_SYNC 0->1 Transition of the SIF_SYNC bit in Config31, bit2

4 SYNC 0->1 Transition on the LVDS SYNC. FIFO must be enabled

2 OSTR 0->1 Transition on the OSTR signal (either externally provided on the LVPECL OSTRp/n source or internally generated PFD)

1 ISTR 0->1 Transition on the LVDS SYNC. FIFO must be enabled

 
Table 6. Synchronization Sources for NCO Accumulator 

 

Per register Config21 of the DAC348x, the sources can be SIF_SYNC, SYNC, OSTR, or 

ISTR. If the end application does not require specific timing or phase synchronization, 

the zero-to-one transition of the SIF_SYNC bit is the easiest to implement and sufficient 

for most of the general purpose NCO accumulator initialization. While the ISTR, SYNC, 

and/or OSTR can be used for accumulator reset, the primary intention of these 

synchronization methods is to ensure the NCOs of multiple DAC devices reset at the 

same instance of time to achieve output phase alignment. 

 

As mentioned in section 1.5, the ISTR and/or SYNC are treated as data in the FIFO. If 

the ISTR and/or SYNC data are loaded to the devices of the same system in the correct 

sequence, then the signal data will be read at the same time instance. The signal data will 

reset the NCO accumulator at the same time instance, thus achieving synchronization. 

 



When the OSTR option is selected, the synchronization signal is either the external 

OSTR signal or the internally generated OSTR signal from the on-chip PLL N-divider. 

As part of the multi-device synchronization requirement, the OSTR signals to the 

multiple devices must be time aligned. Therefore, the NCO accumulators of multiple 

devices will also be aligned.  

 

Synchronizing the NCO accumulator may pose some issues due to the repeating nature of 

some synchronization sources and the looping structure of the NCO accumulator. When 

the synchronization signal is repetitive (i.e. ISTR and OSTR signals used in Dual Sync 

Sources mode), then the NCO frequency must be some integer multiple of the 

synchronization frequency. As shown in Figure 32, if the periodic synchronization signal 

does not allow the complete cycling of the NCO accumulator, the output of the NCO will 

be distorted.  

NCO Accumulator

Synchronization Signal

restarts the accumulator

Synchronization Signal

restarts the accumulator

NCO Accumulator

The NCO frequency is integer multiple of 

synchronization signal. The NCO can cycle 

through completely before the next reset.

The NCO frequency is not integer multiple of synchronization 

signal. The NCO cannot cycle through completely before the 

next reset. Output waveforms are distorted.

 
Figure 32. NCO Accumulator Operation with Repetitive Synchronization Signals 

 

The requirements for the NCO accumulator synchronization signals:  

• Single Pulse Signal 
There is no requirement for NCO frequency to be evenly divisible by FDAC if a 

single pulse OSTR signal is used to reset the FIFO and NCO during initialization.  

• Periodic Signal:  

The periodic synchronization signals are used in Dual Sync Sources mode where 

the ISTR (or SYNC) and OSTR are used to synchronized the FIFO write and read 

pointers. In this case, the synchronization signal frequency must meet both the 

FIFO block requirement and the NCO accumulator requirement.  

– FIFO: Refer to the DAC348x family device datasheet for FIFO 

synchronization requirements. 

– NCO accumulator: The synchronization signal frequency must be integer 

divisible by the NCO frequency. This allows the NCO counter to complete 

the cycle at least once without interruption.  

– To meet both requirements, the synchronization signal frequency must be 

the least common multiple (LCM) of both the FIFO block requirement and 

NCO accumulator requirement.  

– The example below shows the DAC34H84 NCO using the OSTR signal 

when the DAC34H84 is in Dual Sync Sources mode.  
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Table 7 below summarizes the synchronization needed for the DAC348x device logics.  

 
Circuits FIFO Data Formatter Clock Divider NCO Accumulator NCO Double Buffered QMC Gain/Phase QMC Offset

ISTR/FRAME ISTR/FRAME ISTR/FRAME SIF_SYNC SIF_SYNC SIF_SYNC SIF_SYNC

SYNC SYNC SYNC SYNC SYNC SYNC SYNC

SIF_SYNC SIF SYNC OSTR OSTR OSTR OSTR

OSTR OSTR ISTR Auto-sync from register write Auto-sync from register write Auto-sync from register write

Sync Sources

 
Table 7. DAC348x Device Logics Synchronization Sources 

 

3. Start-up Sequence 

The section goes over the recommended start-up sequence for the DAC348x family. The 

important steps are to synchronize the FIFO, clock divider, and the data formatter (if 

needed) as the first step. The programmable logics such as QMC and NCO can be 

synchronized afterwards as the DAC is running. Designers must be careful to avoid 

accidental synchronizations to unintended logics in order to prevent unexpected output 

behavior. An example start-up sequence is listed at the end of this application note.  

 

1. Ensure the TXENABLE or TXENA pin are low. This disables any potential data 

transmission to the output.  

2. Supply voltages to DACVDD, DIGVDD, CLKVDD, VFUSE, AVDD, IOVDD, and 

PLLAVDD. These supplies can be powered up simultaneously or in any order. There are 

no specific requirements on the ramp rate for the supplies. 

3. Provide all LVPECL inputs: DACCLKP/N and the optional OSTRP/N. These inputs can 

also be provided after the SIF register programming.  

4. Toggle the RESETB pin for a minimum 25 ns active low pulse width.  

5. Program the SIF registers. 

6. FIFO configuration needed for synchronization: 

a. Program syncsel_fifoin(3:0) (config32, bit<15:12>) to select the FIFO input 

pointer sync source. 



b. Program syncsel_fifoout(3:0) (config32, bit<11:8>) to select the FIFO output 

pointer sync source. 

c. Program syncsel_dataformatter(1:0) (config31, bit<3:2>) to select the FIFO Data 

Formatter sync source. 

7. Clock divider configuration needed for synchronization:  

a. Program clkdiv_sync_sel (config32, bit<0>) to select the clock divider sync 

source.  

b. Program clkdiv_sync_ena (config0, bit<2>) to “1” to enable clock divider sync.  

8. Provide all LVDS inputs (DAB[15:0]P/N, DCD[15:0]P/N, DATACLKP/N, ISTRP/N, 

SYNCP/N and PARITYP/N) simultaneously. Synchronize the FIFO and clock divider by 

providing the pulse or periodic signals needed. For example, provide a pulse on the 

ISTRP/N LVDS pair and the pulse on the OSTRP/N LVPECL pair in Dual Sync Source 

Mode.  

9. FIFO and clock divider configurations after all the sync signals have provided the initial 

sync pulses needed for synchronization:  

a. The clock divider operates in the DACCLK domain and provides the divided-

down clocks for the digital circuits inside the DAC. Therefore, for Single Sync 

Source Mode where the clock divider sync source is either ISTRP/N or 

SYNCP/N, clock divider syncing must be disabled after DAC34H84 initialization 

and before the data transmission by setting clkdiv_sync_ena (config0, bit 2) to 

“0”. Enabling the clock divider syncing at all time for Single Sync Source Mode is 

not recommended due to the possible phase ambiguity between the DATACLK 

and DACCLK clock domains 

b. For Dual Sync Source Mode, where the clock divider sync source is from the 

OSTR signal (either from external OSTRP/N or internal PLL N divider output), the 

clock divider syncing may be enabled at all time.  

c. Optionally, disable FIFO syncing by setting syncsel_fifoin(4:0) and 

syncsel_fifoout(4:0) to “0000” after the FIFO input and output pointers are 

initialized. 

10. Enable transmit of data by asserting the TXENABLE/TXENA pin or set sif_txenable to 

“1”. 

 

EXAMPLE START-UP ROUTINE 

 

Device Configuration: 

 

fDATA = 737.28MSPS 

 

Interpolation = 2x 

 

Input data = baseband data 

 

fOUT  = 122.88MHz 

 

PLL = Enabled 

 



Full Mixer = Enabled 

 

NCO = Enabled 

 

Dual Sync Sources Mode 

 

PLL Configuration: 

 

fREFCLK = 737.28MHz at the DACCLKP/N LVPECL pins 

 

fDACCLK = fDATA x Interpolation = 1474.56MHz 

 

fVCO = 2 x fDACCLK = 2949.12MHz (keep fVCO between 2.7GHz to 3.3GHz) 

 

PFD = fOSTR = 46.08MHz 

 

N = 16, M = 32, P = 2, single charge pump 

 

PLL_VCO(5:0) = “011100” (28) 

 

NCO Configuration: 

 

fNCO = 122.88MHz 

 

fNCO_CLK = 1474.56MHz 

 

freq = fNCO x 2^32 / 1228.8  

       = 357913941  

       = 0x15555555 

 

phaseaddAB(31:0) and/or phaseaddCD(31:0) = 0x15555555 

 

NCO  synchronization method  = rising edge of LVDS SYNC 

 
Step Read/Write Address Value Description 

1 N/A N/A N/A Set TXENA Low 

2 N/A N/A N/A Power Up the device 

3 N/A N/A N/A Apply LVPECL DACCLKP/N for PLL 

reference clock 

4 N/A N/A N/A Toggle RESETB pin 

5 Write 0x00 0xF19F 

  

QMC offset and correction enabled, 

2x int, FIFO enabled, Alarm enabled, 

clock divider sync enabled, inverse 

sinc filter enabled. 

6 Write 0x01 0x040E Single parity enabled, FIFO alarms 

enabled (2 away, 1 away, and 

collision). 

7 Write 0x02 0x7052 Output shut-off when DACCLK gone, 



DATACLK gone, and FIFO collision. 

Mixer block with NCO enabled, twos 

complement. 

8 Write 0x03 0xA000 Output current set to 20mAFS with 

internal reference and 1.28kohm RBIAS 

resistor. 

9 Write 0x07 0xD8FF Un-mask FIFO collision, DACCLK-gone, 

and DATACLK-gone alarms to the Alarm 

output. 

10 Write 0x08 N/A Program the desired channel A QMC 

offset value. (Causes Auto-Sync for 

QMC AB-Channels Offset Block) 

11 Write 0x09 N/A Program the desired FIFO offset 

value and channel B QMC offset 

value. 

12 Write 0x0A N/A Program the desired channel C QMC 

offset value. (Causes Auto-Sync for 

QMC CD-Channels Offset Block) 

13 Write 0x0B N/A Program the desired channel D QMC 

offset value. 

14 Write 0x0C N/A Program the desired channel A QMC 

gain value. 

15 Write 0x0D N/A Coarse mixer mode not used. Program 

the desired channel B QMC gain 

value. 

16 Write 0x0E N/A Program the desired channel B QMC 

gain value. 

17 Write 0x0F N/A Program the desired channel C QMC 

gain value. 

18 Write 0x10 N/A Program the desired channel AB QMC 

phase value. (Causes Auto-Sync QMC 

AB-Channels Correction Block) 

19 Write 0x11 N/A Program the desired channel CD QMC 

phase value. (Causes Auto-Sync for 

the QMC CD-Channels Correction 

Block) 

20 Write 0x12 N/A Program the desired channel AB NCO 

phase offset value. (Causes Auto-

Sync for Channel AB NCO Mixer) 

21 Write 0x13 N/A Program the desired channel CD NCO 

phase offset value. (Causes Auto-

Sync for Channel CD NCO Mixer) 

22 Write 0x14 0x5555 Program the desired channel AB NCO 

frequency value 

23 Write 0x15 0x1555 Program the desired channel AB NCO 

frequency value 

24 Write 0x16 0x5555 Program the desired channel CD NCO 

frequency value 

25 Write 0x17 0x1555 Program the desired channel CD NCO 

frequency value 

26 Write 0x18 0x2C50 PLL enabled, PLL N-dividers sync 

enabled, single charge pump, 

prescaler = 2. 



27 Write 0x19 0x20F4 M = 32, N = 16, PLL VCO bias tune = 

“01” 

28 Write 0x1A 0x7010 PLL VCO coarse tune = 28 

29 Write 0x1B 0x0800 Internal reference 

30 Write 0x1E 0x9999 QMC offset AB, QMC offset CD, QMC 

correction AB, and QMC correction CD 

can be synced by sif_sync or auto-

sync from register write 

31 Write 0x1F 0x4440 Mixer AB and CD values synced by 

SYNCP/N. NCO accumulator synced by 

SYNCP/N. FIFO data formatter synced 

by ISTRP/N.  

32 Write 0x20 0x2400 FIFO Input Pointer Sync Source = 

ISTR 

FIFO Output Pointer Sync Source = 

OSTR (from PLL N-divider output) 

Clock Divider Sync Source = OSTR 

33 N/A N/A N/A Provide all the LVDS DATA and 

DATACLK 

Provide rising edge FRAMEP/N and 

rising edge SYNCP/N to sync the FIFO 

input pointer and PLL N-dividers.  

34 Read 0x18 N/A Read back pll_lfvolt(2:0). If the 

value is not optimal, adjust 

pll_vco(5:0) in 0x1A. 

35 Write 0x05 0x0000 Clear all alarms in 0x05. 

36 Read 0x05 N/A Read back all alarms in 0x05. Check 

for PLL lock, FIFO collision, 

DACCLK-gone, DATACLK-gone, etc. Fix 

the error appropriately. Repeat step 

34 and 35 as necessary.  

37 Write 0x1F 0x4442 Sync all the QMC blocks using 

sif_sync. These blocks can also be 

synced via auto-sync through 

appropriate register writes.  

38 Write 0x00 0xF19B Disable clock divider sync. 

39 Write 0x1F 0x4448 Disable FIFO data formatter sync. 

Set sif_sync to “0” for the next 

sif_sync event.  

40 Write 0x20 0x0000 Disable FIFO input and output 

pointer sync.  

41 Write 0x18 0x2450 Disable PLL N-dividers sync.  

42 N/A N/A N/A Set TXENA high. Enable data 

transmission.  

 

 

 

  


