
Introduction

The DAC348x family is a family of digital-to-analog converter (DAC) devices with

many digital features such as FIFO, interpolation filters, quadrature modulator correction

circuits, and mixers. It also has flexibility for multi-device synchronization to ensure

output phase alignment for each device. In order to operate the DAC correctly, the

internal digital logics must be synchronized correctly at start-up. The intend of this

application note is to provide references for the digital blocks in the DAC348x devices

and describes the steps needed to synchronize these blocks. The same principle can be

applied to other Texas Instruments (TI) DAC devices such as the DAC328x family and

the DAC317x family.

Key Words:

DAC3482, DAC3484, DAC34H84, DAC34SH84, DAC3282, DAC3283, DAC3174,

FIFO, Synchronization.

Acronyms:

PVT = shift in process, voltage, and temperature.

FIFO = first in first out.

RP = read pointer of the FIFO.

WP = write pointer of the FIFO.

ISTR = input pointer strobe (DAC34H84 and DAC34SH84 control input).

FRAME = similar to ISTR. Also establishes data boundaries. (DAC3282, DAC3283,

DAC3482, and DAC3484 control input).

SYNC = functions similarly as input pointer strobe. This input also synchronizes the on-

chip PLL N-divider to synchronize the multi-device PLLs.

OSTR = output pointer strobe.

DACCLK = DAC sampling clock. This is the final DAC update rate (FDAC) after the

interpolation stages.

DATACLK = clock used to latch the LVDS data input.

FIFO-Out Clock = FIFO output pointer clock, where N is the interpolation factor. It

could be DACCLK/N or DACCLK/2N depending on the DAC configuration mode.

Reset/Synchronization Sources = sources to synchronize the digital logics. These are

typically FRAME, ISTR, SYNC, OSTR, and SIF_SYNC.

1. FIFO Architecture for Synchronization

The DAC348x family (along with the DAC328x and DAC317x family) has new FIFO

architecture to allow multiple devices synchronization. This FIFO architecture ensures

that the latency of each DAC device is the same, which allows the multiple DAC outputs

to be phase aligned. Multi-device synchronization is useful for systems such as beam-

forming, active antenna array systems, diversity, and etc.

1.1 The purpose of the FIFO

Typically, the modern digital communication transmitter system consists of clock

generation source, digital data source, and digital to analog converters (DAC). The DAC

accepts the data from the data source, and the DAC clock provides the time reference to

latch the data into the DAC. TI datasheet has specifications of the setup and hold timing

requirements (i.e. tS and tH, respectively) for the input data and the DAC clock. Figure 1

below shows the setup and hold time diagram.

tS

CLOCK

DATA

tH

tS = setup Time

tH = hold time
Figure 1. Setup and Hold Time Diagram

System designers will need to make sure the data source and clock source are aligned to

meet the DAC setup and hold time requirement for correct output waveform. The time

alignment (T_ALIGN) must be maintained over the entire system operating range. Any shift

in the data source or the DAC clock could cause bit errors because the data cannot be

registered correctly.

Data

Source

Clock

Source

DAC

T_align

- Shift in reference over PVT

- Shift in synthesizer over PVT

- Shift in setup/hold time over PVT

- PCB trace variation

T_align must be

maintained

Data

DAC Clock

Figure 2. Typical Alignment Requirement for Data and Clock Sources

Figure 2 above shows some of the challenges for meeting the requirements include the

shift of reference and clock synthesizer phase variation in clock source over process,

voltage, and temperature (PVT), shift of data source output timing specification over

PVT, and addition of PCB trace delay variations. These variables add system timing

constraints and present constant challenges to designers when ensuring bit-error free

operation.

To relax the system timing requirement, most of the TI interpolation and straight DACs

have integrated FIFO (first in first out). The FIFO is located at the boundary between the

input data and the internal DAC digital blocks. The memory depth is usually 8 or 16

samples deep, and two pointers (write and read pointers) provide reference to the memory

during normal operation. Warning flags such as collision alarm are determined by these

two pointers.

The purpose of the FIFO can be portrayed as an elastic buffer, which means the current

data sample does not have to be written and read at the same time. The write operation

can occur some times before the read operation as long as the time variation between the

two operations is within the memory depth. As shown in Figure 3, the ultimate goal for

the FIFO is to absorb the timing variations between the input data stream and the DAC

sampling clock, thus relaxing the system timing.

Data

Source

Clock

Source

DAC

Write

0

1

2

3

4

5

6

7

Read

Current samples are loaded into

the current write pointer WP0

Earlier samples are read from

read pointer RP4

DAC Clock

Figure 3. The Use of FIFO to Relax Alignment Requirement

Texas Instruments DAC328x, DAC317x, and DAC348x families require two clock

sources: the DATACLK and the DACCLK, in order to function correctly. The

DATACLK provides the time reference to latch in the digital data correctly, while the

DACCLK provides the clock to the DAC cores and internal digital logics. As shown in

Figure 4 of a typical system, the FPGA or custom ASIC provides the data stream along

with the DATACLK. The clock generation and distribution device, such as Texas

Instruments CDCE62005 or LMK04800 family, provides the reference clock to the

FPGA and also the DACCLK source to the DAC.

Data

Source

Clock

Source

DAC

Data

FIR Filters

Mixers

QMC Circuits

0

1

2

3

4

5

6

7

LMK04800

CDCE62005

FPGA

ASIC

DATACLK Domain DACCLK Domain

DATACLK

FIFO

DACCLK

Figure 4. Typical System Implementation for DAC Devices with FIFO

If the DACs do not have a FIFO, then the system must provide the DATACLK and

DACCLK, which are precisely aligned. The threshold for the alignment is typically listed

as T_ALIGN requirement in the datasheet. With the FIFO bypassed in the DAC, the input

data must be handed to the internal digital logics within a certain time frame in order for

the DAC to operate properly. The T_ALIGN requirement basically meets the timing

constraints for the internal digital logics. For a typical system, this T_ALIGN requirement

adds additional design time and cost since designers must account for the delays in the

data source in order to match the alignment requirement properly.

1.2 FIFO Operation

0

1

2

3

4

5

6

7

DATACLK

SYNC

ISTR/FRAME

DATACLK

DT

DATACLK

syncsel_fifoin(3:0)

Write Pointer (WP)

Reset Position

FIFO-Out

Clock

fifo_offset(2:0)

DATACLK

DATACLK

Read Pointer (RP)

Reset Position

OSTR

(from LVPECL receiver)

DACCLK

syncsel_fifoout(3:0)

Rising_ISTR

Rising_SYNC

SIF_SYNC_R

FIFO-Out Clock

FIFO-Out Clock

SCLK

SIF_SYNC

SIF_SYNC_R

SIF_SYNC_R

PFD

(from PLL N Divider)

PLL_ENA

FIFO-Out Clock

0

1

1 2 4 8

1
2
4
8

0

DATACLK Domain DACCLK Domain

SPI (SCLK Domain)

The ISTR and SYNC are resampled again by the FIFO-Out Clock. This is the main cause of the metastability in brute force

handoff. Other delay differences include bond wire difference and propagation delay of the ISTR and SYNC net. The ISTR

and SYNC take one path for the write pointer side and another path for the read pointer side.

Rising_ISTR

Rising_SYNC

Dt

Dt

Figure 5. DAC348x FIFO Structure

Figure 5 above shows the generic FIFO architecture of the DAC348x family. Similar

concepts can be applied to the DAC328x and DAC317x families. As mentioned

previously, the FIFO is located between the boundary of the DATACLK and DACCLK

domain. The FIFO is 8 samples deep, where the write pointer (WP) and read pointer (RP)

indicate the current memory location. The write pointer can be synchronized by

ISTR/FRAME, SYNC, or SIF_SYNC. The read pointer can be synchronized by

ISTR/FRAME, SYNC, SIF_SYNC, or OSTR.

Among the DAC328x, DAC317x, and DAC348x family, the most innovative feature for

the FIFO is the ability to select and use different synchronization sources to synchronize

the FIFO. Depending on the implementation method, the overall latency of the DAC can

be controlled. The following sections describe the operations of each mode:

1.3.1 Single Sync Source Mode

0

1

2

3

4

5

6

7

DATACLK

SYNC

ISTR/FRAME

DATACLK

DT

DATACLK

syncsel_fifoin(3:0)

Write Pointer (WP)

Reset Position

FIFO-Out

Clock

fifo_offset(2:0)

DATACLK

DATACLK

Read Pointer (RP)

Reset Position

OSTR

(from LVPECL receiver)

DACCLK

syncsel_fifoout(3:0)

Rising_ISTR

Rising_SYNC

Rising_ISTR

Rising_SYNC

SIF_SYNC_R

FIFO-Out Clock

FIFO-Out Clock

SCLK

SIF_SYNC

SIF_SYNC_R

SIF_SYNC_R

PFD

(from PLL N Divider)

PLL_ENA

FIFO-Out Clock

0

1

1 2 4 8

1
2
4
8

0

DATACLK Domain DACCLK Domain

SPI (SCLK Domain)

Dt

Dt

The ISTR and SYNC are resampled again by the FIFO-Out clock. This is the main cause of the metastability in brute force

handoff. Other delay differences include bond wire difference and propagation delay of the ISTR and SYNC net. The ISTR

and SYNC take one path for the write pointer side and another path for the read pointer side.
Figure 6. Single Sync Source Mode

In Single Sync Source mode (shown in Figure 6), the FIFO write and read pointers are

reset from the same source, either LVDS ISTR/FRAME or LVDS SYNC. The FIFO read

pointer reset signal is handed off between the two clock domains (DATACLK and

DACCLK) by simply re-sampling the write pointer reset signal (shown in Figure 7).

Since the two clocks are asynchronous, there is a small but distinct possibility of a meta-

stability during the signal handoff.

0

1

2

3

4

5

6

7

DT

DATACLK FIFO-Out

Clock

fifo_offset(2:0)

Read Pointer (RP)

Reset Position

syncsel_fifoout(3:0)

Rising_ISTR

Rising_SYNC

FIFO-Out Clock

1 2 4 8

Dt

Dt

Figure 7. Write Pointer Synchronization Signal Handoff across the FIFO

The meta-stability of the signal handoff is shown below. The zero to one transition of the

ISTR signal, for example, is sampled by the DATACLK to reset the write pointer. The

same ISTR signal crosses the clock domain and is sampled by the FIFO-Out Clock. The

FIFO-Out clock is derived internally from the DACCLK, and is related to the DAC

setting and interpolation factor. The table below shows the FIFO-Out Clock rate related

to the DAC sampling rate and interpolation factor, N. For instance, N = 2 for 2x

interpolation.

Device
FIFO Out
Clock

DAC3484 DACCLK/N

DAC3482 Byte Wide Mode DACCLK/N

DAC3482 Word Wide
Mode DACCLK/2/N

DAC34H84 DACCLK/N

DAC34SH84 DACCLK/N
Table 1. FIFO-Out Clock Rate

Since the ISTR signal is asynchronous to the FIFO-Out clock, the signal could be

sampled either one FIFO-Out Clock cycle earlier or one cycle later. The diagram shown

below has two FIFO-Out Clock possibilities. FIFO-Out Clock (2) arrives earlier than

FIFO-OUT Clock (1) by small time difference. The read pointer reset now happens at a

later time. Moreover, the consequence is that the read pointer cannot be precisely reset at

some defined time instant, and this poses a limitation for multi-device synchronization

because the latency of multiple DAC devices may have variations due the uncertainty of

read pointer position reset time instance.

RP RESET (1)

RP RESET (2)

DT is very small

WP Reset

DATACLK

Rising_ISTR

Rising_ISTR

FIFO-Out Clock (1)

FIFO-Out Clock (2)

Two DACCLK/N clock waveforms are shown because

Rising_ISTR is asynchronous to DACCLK/N.

FIFO-Out Clock (1) and RP RESET (1) = Possibility #1

FIFO-Out Clock (2) and RP RESET (2) = Possibility #2

Figure 8. Meta-stability of the Synchronization Signal Handoff across the FIFO

The FIFO in this mode can still absorb the data delay differences due to variations in the

digital source output paths or board level wiring. However, it is not possible to ensure

that multiple DAC devices have the same latency because the read pointer location of the

DAC devices cannot be precisely aligned. For instance, Figure 9 below shows two DAC

devices in Single Sync Source mode. The first DAC (DAC#1) resets the read pointer to

position number four, RP4, immediately upon the first rising edge of FIFO-OUT Clock

because the ISTR transition has enough setup and hold time. This is the ideal case where

both the read pointer and write pointer are reset to the default position at the same time

instance.

For the second DAC (DAC#2), the read pointer position resets to RP4 on the second

rising edge of FIFO-OUT Clock. The ISTR transition does not have enough setup and

hold time for the first rising edge of FIFO-OUT Clock and have to wait for the second

rising clock edge to register the reset.

WP0

DATACLK

Rising_ISTR

I0 Q0 I1 Q1 I2 Q2 I3 Q3

FIFO-Out

Clock

WP1

RP4 RP5

WP RESET

RP RESET

WP0

DATACLK

Rising_ISTR

I0 Q0 I1 Q1 I2 Q2 I3 Q3

FIFO-Out

Clock

WP1

RP4 RP5

WP RESET

RP RESET

DAC#1

Read Sequence Occurs on Time

DAC#2

Read Sequence Occurs Later by One Sample
Figure 9. Reset Time Difference of FIFO Read Pointer Position in Single Sync Source Mode

When comparing between the two DACs, the read pointer position slips by one sample.

The two diagrams below elaborate the write and read sequence over the next eight time

instance. For DAC #1, data S0 is loaded into write memory location #0 at time instance

#0, and also write sequence #0. The read memory location #4 does not have any data at

the time until four sequences later. After eight sequences, write sequence #8 load data S8

into write memory location #8, and earlier sample S4 is loaded into the DAC at time

instance #8.

**Note: During DAC initialization, the DAC output is held at mid-code by driving the

TXENABLE pin LOW. The DAC can start transmitting the data once the FIFO are filled

with proper samples by pulling TXENABLE pin HIGH.

S0

S1

S2

S3

S4

S5

S6

S7

W8

W1

W2

W3

W4

W5

W6

W7

R4

R5

R6

R7

R8

R9

R10

R11

S0

S1

S2

S3

XX

XX

XX

XX

W0

W1

W2

W3

W4

W5

W6

W7

R4

R5

R6

R7

R0

R1

R2

R3

Time instance #0

write sequence #0

Time instance #0

write sequence #0

read sequence #0

S0

S1

S2

S3

S4

S5

S6

S7

S8

S1

S2

S3

S4

S5

S6

S7

Time instance #8

write sequence #8

Time instance #8

write sequence #8

read sequence #8

WP0

DATACLK

Rising_ISTR

I0 Q0 I1 Q1 I2 Q2 I3 Q3

FIFO-Out Clock

WP1

RP4 RP5

WP RESET

RP RESET

Previous Events

Upcoming Events

Current Events

DAC#1

Read Sequence Occurs on Time

Figure 10. DAC#1 FIFO Write/Read Sequence

(Read Sequence Occurs On Time)

The same derivation is done on the second case DAC#2. For this case, the read pointer

reset does not occur until time instance #1 and write sequence #1 complete. Therefore,

the read pointer reset is delayed by one sample. After eight sequences, the earlier data S3

is loaded into the DAC at time instance #8. Note that DAC#1 and DAC#2 have one

sample difference at the same exact time instance.

S0

S1

S2

S3

S4

S5

S6

S7

W8

W1

W2

W3

W4

W5

W6

W7

R4

R5

R6

R7

R8

R9

R10

R11

S0

S1

S2

S3

XX

XX

XX

XX

W0

W1

W2

W3

W4

W5

W6

W7

R4

R5

R6

R7

R0

R1

R2

R3

Time instance #0

write sequence #0

Time instance #1

write sequence #1

read sequence #0

Time instance #1

write sequence #1

S0

S1

S2

S3

S4

S5

S6

S7

S8

S1

S2

S3

S4

S5

S6

S7

Time instance #8

write sequence #8

Time instance #8

write sequence #8

read sequence #7

WP0

DATACLK

Rising_ISTR

I0 Q0 I1 Q1 I2 Q2 I3 Q3

FIFO-Out Clock

WP1

RP4 RP5

WP RESET

RP RESET

Previous Events

Upcoming Events

Current Events

DAC#2

Read Sequence Occurs Later by One Sample

Figure 11. DAC#2 FIFO Write/Read Sequence

(Read Sequence Occurs Later by One Sample)

The synchronization signal such as ISTR/FRAME or SYNC has to cross the DATACLK

domain to the DACCLK domain, and the clock domain crossing could introduce timing

variation in time unit of DACCLK. Along with the reset time meta-stability of the FIFO

read pointer, the total latency variation could have time units of both the FIFO-Out Clock

period and DACCLK period. Furthermore, although less likely, other factors such as

DATACLK to DACCLK skew, PVT, and internal signal transition variation due to

internal net bond wire differences can introduce additional latency control variables.

Ultimately, if the Single Sync Source mode is used, the write pointer and read pointer

delta among the DAC devices cannot be precisely controlled, and the overall latency of

all the DAC devices cannot be matched. Although this mode is very suitable for simple

system implementation without additional timing control, it is not practical for

applications requiring multi-device synchronization or precise latency control. To

facilitate latency synchronization, TI recommends Dual Sync Sources mode.

1.3.2 Single Sync Source mode with SIF_SYNC

Besides synchronizing the FIFO write and/or read pointers, the ISTR/FRAME or the

SYNC signal also aligns the FIFO’s internal data formatter to ensure the I and Q signals

are aligned properly. For instance, Figure 12 below shows the data format of the

DAC3484 in byte wide interface mode. The rising edge of DATACLK occurs at upper

eight bits of sample A and sample B (i.e. A[15:8] and B[15:8]), while the falling edge of

DATACLK occurs at lower eight bits of sample A and sample B (i.e. A[7:0] and B[7:0]).

The zero to one transition of ISTR/FRAME or SYNC signal is used to indicate the

beginning of sample A. If the FRAME or SYNC signal does not make the transition

correctly, the internal pattern could be swapped since the rising edge of DATACLK

could also occur at the beginning of sample B. Same concept also applies to DAC328x

and DAC317x family.

Figure 12. Byte Wide Data Transmission Format (copy from Figure 53 of SLAS749C)

For the DAC3482 in word wide mode, DAC34H84, and DAC34SH84, each sample is

located on the distinctive DATACLK edge as shown in Figure 13. Even if the

ISTR/FRAME or SYNC signal is not present, the samples will not be swapped in

position.

Figure 13. Word Wide Data Transmission Format (copy from Figure 51 of SLAS748)

In some applications where the FPGA or ASIC has limited IO pins, the control signal can

be eliminated by using the SIF_SYNC SPI register bit. The FIFO (and other parts of the

circuit such as NCO, QMCs, etc) can be synchronized by a zero to one transition of the

SPI register bit – SIF_SYNC. Figure 14 below shows the signal path for the SIF_SYNC.

A zero-to-one transition of the SIF_SYNC bit in CONFIG31 will be first registered by

the SPI bus in the SCLK domain. The signal is then re-sampled by the DATACLK to

synchronize the FIFO write pointer position. It is also re-sampled by the FIFO-OUT

Clock to synchronize the FIFO read pointer position.

0

1

2

3

4

5

6

7

DATACLK

SYNC

ISTR/FRAME

DATACLK

DT

DATACLK

syncsel_fifoin(3:0)

Write Pointer (WP)

Reset Position

FIFO-Out

Clock

fifo_offset(2:0)

DATACLK

DATACLK

Read Pointer (RP)

Reset Position

OSTR

(from LVPECL receiver)

DACCLK

syncsel_fifoout(3:0)

Rising_ISTR

Rising_SYNC

SIF_SYNC_R

FIFO-Out Clock

FIFO-Out Clock

SCLK

SIF_SYNC

SIF_SYNC_R

SIF_SYNC_R

PFD

(from PLL N Divider)

PLL_ENA

FIFO-Out Clock

0

1

1 2 4 8

1
2
4
8

0

DATACLK Domain DACCLK Domain

SPI (SCLK Domain)

Rising_ISTR

Rising_SYNC

Dt

Dt

Figure 14. Single Sync Mode Using SIF_SYNC

Since the SIF_SYNC signal is asynchronous to both the DATACLK and FIFO-OUT

Clock, not only it is possible that the read pointer position may vary from time-to-time

and device-to-device, the sample sequence loaded into the FIFO memory may also be

different. The example below (shown in Figure 15) demonstrates this idea.

WP0

DATACLK

SIF_SYNC

I0 Q0 I1 Q1 I2 Q2 I3 Q3

FIFO-Out

Clock

WP1

RP4 RP5

WP RESET

RP RESET

WP0

DATACLK

SIF_SYNC

I0 Q0 I1 Q1 I2 Q2 I3 Q3

FIFO-Out

Clock

WP1

RP4 RP5

WP RESET

RP RESET

SIF_SYNC is asynchronous to both the DATACLK and

DACCLK. It is possible that the sync event occurs before or

after the first sample with respect to other DAC devices.

DAC#1

Read Sequence Occurs on Time

DAC#3

Read Sequence Occurs Ahead by One Sample

Figure 15. Reset Time Difference of FIFO Read Pointer in SIF_SYNC Mode

The ideal DAC#1 (also shown in the previous section) has both write pointer and read

pointer reset at sample S0. In DAC#3, the SIF_SYNC source arrived one sample later.

The write pointer and read pointer reset to default at S1 instead of S0, and effectively,

DAC#3 load the same memory into the FIFO one sample earlier than DAC#1 (as shown

in Figure 16). Comparison between Figure 10 and Figure 16 indicates the sample time

difference.

S1

S2

S3

S4

S5

S6

S7

S8

W8

W1

W2

W3

W4

W5

W6

W7

R4

R5

R6

R7

R8

R9

R10

R11

S1

S2

S3

S4

XX

XX

XX

XX

W0

W1

W2

W3

W4

W5

W6

W7

R4

R5

R6

R7

R0

R1

R2

R3

Time instance #0

write sequence #0

Time instance #0

write sequence #0

read sequence #0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S2

S3

S4

S5

S6

S7

S8

Time instance #8

write sequence #8

Time instance #8

write sequence #8

read sequence #8

WP0

DATACLK

SIF_SYNC

I1 Q1 I2 Q2 I3 Q3 I4 Q4

FIFO-Out Clock

WP1

RP4 RP5

WP RESET

RP RESET

SIF_SYNC is asynchronous to both the DATACLK

and DACCLK. It is possible that the sync event occurs

before or after the first sample with respect to other

DAC devices.

Previous Events

Upcoming Events

Current Events

Figure 16. DAC#3 FIFO Write/Read Sequence

(Read Sequence Occurs Ahead by One Sample)

Primarily, this mode allows the user to save I/O pins in the FPGA or ASIC. With the

existing read pointer uncertainty and also the addition of write sequence uncertainty (due

to the asynchronous nature of SIF_SYNC to both the DATACLK and the DACCLK),

latency control remains a challenge and is not practical in this mode. If the system

requires multi-device synchronization, TI recommends the Dual Sync Sources mode.

1.4 Optimize FIFO location for Single Sync Source Mode

The default FIFO write pointer position of WP0 and read pointer position RP4 creates the

optimal FIFO setup. The read pointer position is placed in the middle of the FIFO to

absorb timing variations in either the write direction or the read direction shown in Figure

17. An example for the worst case timing variation in the write direction would be the

DATACLK and the data stopped completely while the read operation continues with the

DACCLK running. In the default setup, the FIFO could absorb at most three samples

before collision. The same principle can be applied to the worst case timing variation in

the read direction where the DACCLK and the read operation stop completely while the

write operation continues. In this case, the FIFO could also absorb three samples before

collision. Since the FIFO loops around, the optimal write pointer position is in the

beginning and the read pointer position is in the middle.
0

1

2

3

4

5

6

7

Read pointer stucked at RP4

3 memory depth available

before FIFO collision

Write pointer continues to run 0

1

2

3

4

5

6

7

Read pointer continues to run

3 memory depth available

before FIFO collision

Write pointer stucked at WP0

Figure 17. FIFO Memory Buffer for Both the Write and Read Direction

Since the Single Sync Source mode is not recommended for applications requiring

precise latency control, the following section only describes the optimal setup for system

with only single DAC device or multi-DAC devices system without the need for latency

synchronization. As mentioned in the previous section, the Single Sync Source mode

could cause the read pointer position to slip in either direction. For the SIF_SYNC

operation, both the write pointer position and read pointer position could slip in either

direction. Therefore, it is possible that the spacing between the read pointer position and

write pointer position is not optimal at start-up.

To help designers optimize the FIFO setup at start-up, the DAC families includes FIFO

alarms to indicate the pointer position delta. The three primary alarms are FIFO 2-away,

FIFO 1-away, and FIFO collision. FIFO 2-away indicates absolute read and write pointer

position difference (i.e. either write to read pointer position or read to write pointer

position) have two spaces. FIFO 1-away indicates the absolute pointer position difference

have one space. FIFO collision indicates that the FIFO pointers have collided and

requires re-synchronization. Figure 18 shows the possible conditions to trigger the alarms.

0

1

2

3

4

5

6

7

RP4

2-away alarms

(two possible positions)

WP2

WP6

0

1

2

3

4

5

6

7

RP4

1-away alarm

(two possible positions)

WP3

WP5

0

1

2

3

4

5

6

7

RP4

collision alarm

(one position only)

WP4

Figure 18. Possible Alarm Conditions (Assuming RP4 Occurs)

The alarm registers in the DAC family have a memory system and do not self-clear upon

system recovery. This is important for designer if the system diagnosis algorithm only

consisted of polling architecture (as oppose to both polling and interrupt service

routine****). If the alarms do self-clear upon system recovery, there are possibilities that

the polling interval missed the alarm, and the system will not be able to detect the alarm

and issue remedies for the error.

****the DAC family do have dedicated alarm signal output to trigger interrupt service

routine (ISR) if the system design requires such provision.

Upon system power up, the alarm registers could detect various alarms due to power up

transitions. For instance, the DACCLK could be running before the DATACLK, and the

FIFO alarms could trigger. Therefore, it is important to clear the alarm registers by

writing all zeros to the alarms registers before reading back the register. After the system

clocks and the DAC have settled, the system diagnosis algorithm should check the alarms

registers. If the FIFO alarms remain triggered, the read pointer position (programmed in

the FIFO offset register) can be adjusted accordingly to clear the alarms and optimize the

FIFO spacing.

Table 2 shows the typical FIFO alarm behavior of each read pointer position after the

initial start-up synchronization. The experiment consists of five independent tests of eight

different start-ups. For each start-up, the FIFO write pointer position is always reset to

WP0, and the FIFO read pointer position is programmed from RP0 to RP7. Therefore,

different FIFO alarms will trigger at each start-up.

Read Pointer Position Test #1 Test #2 Test #3 Test #4 Test #5

RP0 collision collision collision collision collison

RP1 1 1 1 1 1

RP2 2 2 2 2 2

RP3 no no no no no

RP4 no no no no no

RP5 no no no no no

RP6 2 2 2 2 2

RP7 1 1 1 1 1
Table 2. FIFO Alarm Distribution vs. FIFO Offset Location (Single Sync Source Mode – ISTR only)

When compared among the power up status with various FIFO offset position, the data

has shown the optimal “green” region where the least amount of FIFO alarms occurred.

The actual “green” region may shift due to the design of Single Sync Source mode,

DATACLK to DACCLK skew, sequence of DATACLK and DACCLK presence, and

PVT. If the optimal region of FIFO offset is found, the FIFO offset adjustment process

can quickly yield the best FIFO pointer position.

Table 3 shows the test result of Single Sync Source mode with SIF_SYNC. Note that the

SIF SYNC only mode has more variations of the alarm distribution due to the SIF_SYNC

being asynchronous to both the DATACLK and DACCLK.

Read Pointer Position Test #1 Test #2 Test #3 Test #4 Test #5

RP0 1 away 1 away 1 away 1 away collision

RP1 2 away 1 away 2 away 1 away 2 away

RP2 0 0 2 away 0 0

RP3 0 0 0 0 0

RP4 0 0 0 0 0

RP5 2 away 0 2 away 0 0

RP6 2 away 2 away 2 away 2 away 1 away

RP7 1 away 1 away 1 away 1 away 1 away
Table 3. FIFO Alarm Distribution vs. FIFO Offset Location (Single Sync Source Mode – SIF_SYNC

only)

The following software loop demonstrates the alarm checking algorithm and the

associated FIFO offset adjustment for optimal write and read pointer spacing. Each path

starts off with the default FIFO offset and the checking of the FIFO alarms. Depending

on the alarms detected, the FIFO offset is adjusted accordingly. After the adjustment, the

alarms are rechecked again to ensure the FIFO has the optimal spacing. Since the FIFO

pointers in this mode have uncertainties in the exact pointer position, the loop has

implemented additional error checking and FIFO offset corrections. Each path can be re-

used depending on the alarm status.

Figure 19. FIFO Offset Adjustment Algorithm

The ultimate goal for FIFO position optimizing in Single Sync Source mode is to adjust

the read pointer such that it has enough space from the write pointer in either direction of

the FIFO space movement. This will be the best approach for system with only single

DAC device or multi-DAC devices system without the need for latency control.

1.5 Dual Sync Sources Mode

The Dual Sync Sources mode is the recommended mode of operation for those

applications that require precise control of the output timing and latency. In Dual Sync

Sources mode, the FIFO write and read pointers are synchronized independently by two

sources. The FIFO write pointer is reset using the LVDS ISTR/FRAME or SYNC signal,

and the FIFO read pointer is reset using the OSTR signal (either from external LVPECL

source or the on-chip PLL’s internal PFD frequency). The OSTR signal can control the

latency (or phase) of the output for either a single chip or multiple chips. Multiple DAC

devices can be fully synchronized in this mode.

0

1

2

3

4

5

6

7

DATACLK

SYNC

ISTR/FRAME

DATACLK

DT

DATACLK

syncsel_fifoin(3:0)

Write Pointer (WP)

Reset Position

FIFO-Out

Clock

fifo_offset(2:0)

DATACLK

DATACLK

Read Pointer (RP)

Reset Position

OSTR

(from LVPECL receiver)

DACCLK

syncsel_fifoout(3:0)

Rising_ISTR

Rising_SYNC

Rising_ISTR

Rising_SYNC

SIF_SYNC_R

FIFO-Out Clock

FIFO-Out Clock

SCLK

SIF_SYNC

SIF_SYNC_R

SIF_SYNC_R

PFD

(from PLL N Divider)

PLL_ENA

FIFO-Out Clock

0

1

1 2 4 8

1
2
4
8

0

DATACLK Domain DACCLK Domain

SPI (SCLK Domain)

Dt

Dt

Figure 20. Dual Sync Sources Mode

The ISTR or SYNC signal should come from the data source and has the same timing

relationship as the DATACLK, and the OSTR signal comes from the clock source and

has the same timing relationship as DACCLK. This implementation does not need to re-

sample the reset signal in two different clock domains, thus eliminating the possibility of

meta-stability during reset signal handoff.

Figure 21. Typical Dual Sync Sources System Setup (Figure 60 of SLAS749).

The two key principles in achieving the multi-device synchronization are the

following:

1. The data is loaded into the FIFO in the same order and same FIFO location for all

the DAC devices. The ISTR/FRAME or SYNC signal needs to be aligned with

the first sample properly in order to load the data in the correct sequence.

2. All the DAC devices read same FIFO location at the same time to achieve the

same latency. In order to meet this condition, the OSTR and DACCLK signals

must have the same delay among the DAC devices in order to reset the FIFO read

pointer at the same time.

The following example demonstrates this idea. Shown in Figure 22, the system

contains two data sources and two DAC devices. Each data path to the DAC

device has different time delay due to shift in data source timing over PVT and

PCB trace variations. Path #1 has less delay than Path #2. To keep the analysis

simple, this example utilizes DAC input with double data rate format, which

latches one channel data on the rising edge of DATACLK and another channel

data on the falling edge of DATACLK (i.e. DAC3482 Word Wide Input Format

or the DAC34H84 Input Format). The time difference between the paths is two

DATACLK cycles, or two samples in double data rate (DDR) fashion, which is

shown in Figure 23.

Data

Source

#1

Data

Source

#2

DAC

Device

#1

DAC

Device

#2

Path #1 = DT1

Path #2 = DT2

In this example:

· DT1 is less than DT2

· The difference in time delay is due to shift in data

source timing over PVT and PCB trace variation.

· DT2 - DT1 = two DATACLK cycles or two

samples in DDR fashion. For example, DAC3482

Word Wide Input Format or DAC34H84 Input

Format

Figure 22. Multi-Device Synchronization Example:

Path#2 Has Additional Two Sample Delay when Compared to Path#1

B0A0 A1 B1 B2A2 A3 B3 B4A4 A5 B5 B6A6 A7 B7

XX X X B0A0 A1 B1 B2A2 A3 B3 B4A4 A5 B5

Path #1

Path #2

DATACLK #1

ISTR #1

DATA #1

DATACLK #2

ISTR #2

DATA #2

{

{
Time

Figure 23. Multi-Device Synchronization Example:

Data Sequence vs. Time between Path#1 and Path#2

The rising edge of ISTR signal has two purposes: to indicate the first sample of

the data sequence, and to reset the FIFO write pointer position to default WP0.

This indication allows the data of different data paths to be loaded in the same

sequence regardless of the data path delay. At this point, this implementation

allows the system to meet the first requirement of multi-device synchronization.

To continue the demonstration, Figure 24 shows FIFO write process of the system.

Three snap-shots of the FIFO are demonstrated. The first snap-shot shows the

time instance #2 where Path#1 is loading sample S2, while Path#2 is loading the

initial sample, S0. The second and third snap-shots show the subsequent FIFO

states three and six samples later, respectively.

The first and second snap-shots have demonstrated that the data sequences of the

two paths are loaded into the FIFO in the same order. Once the FIFOs of the two

paths have been fully loaded, the same data sample can be released from the FIFO

at the same time. The synchronization of the FIFO release time is based on the

OSTR signal. Per the second requirement of multi-device synchronization, the

system implementation must guarantee that the OSTR and DACCLK timing are

the same for all the DAC devices in the system. Once this requirement is met, all

the DAC devices can read the same data sequence at the same time. Since the rest

of the digital logics after the FIFO operate in the DACCLK domain, the DAC

devices in the system can achieve the same latency.

To simplify the analysis, the FIFO read process is not presented until the third

snap-shot of the FIFO. In actual system implementation, the FIFO write and read

sequence is synchronized during the DAC initialization stage, and the

TXENABLE of the DAC is held LOW to disable the DAC output. In this process,

the FIFO memory can be flushed out without the DAC outputting transient

waveforms, which may damage subsequent signal chain devices. Once the FIFO

is initialized properly with the proper samples loaded, the TXENABLE can be

pulled HIGH to enable the DAC output for transmission.

Ultimately, the FIFO absorbs the input path delay difference to allow equal

latency after the FIFO. This example has input path delay difference of two

samples, which is within the FIFO depth. If the input path delay is greater than the

FIFO depth, then the FIFO cannot absorb the delay difference, and latency

alignment cannot be achieved.

W8

W1

W2

W3

W4

W5

W6

W7

W0

W1

W2

W3

W4

W5

W6

W7

Time instance #0

write sequence #0

Time instance #1

write sequence #1

S0

S1

S2

S3

S4

S5

S6

S7

S8

S1

S2

S3

S4

S5

S6

S7

W0

W1

W2

W3

W4

W5

W6

W7

W0

W1

W2

W3

W4

W5

W6

W7

S0

S1

S2

S3

S4

S5

S6

S7

S0

S1

S2

S3

S4

S5

S6

S7

Time instance #5

write sequence #5

Time instance #2

write sequence #2

W8

W1

W2

W3

W4

W5

W6

W7

S8

S1

S2

S3

S4

S5

S6

S7

W8

W1

W2

W3

W4

W5

W6

W7

S8

S1

S2

S3

S4

S5

S6

S7

Time instance #8

write sequence #8

W8

W1

W2

W3

W4

W5

W6

W7

W0

W1

W2

W3

W4

W5

W6

W7

Time instance #2

write sequence #0
S0

S1

S2

S3

S4

S5

S6

S7

S8

S1

S2

S3

S4

S5

S6

S7

W0

W1

W2

W3

W4

W5

W6

W7

W0

W1

W2

W3

W4

W5

W6

W7

S0

S1

S2

S3

S4

S5

S6

S7

S0

S1

S2

S3

S4

S5

S6

S7

Time instance #5

write sequence #3

W8

W1

W2

W3

W4

W5

W6

W7

S8

S1

S2

S3

S4

S5

S6

S7

W0

W1

W2

W3

W4

W5

W6

W7

S0

S1

S2

S3

S4

S5

S6

S7

Time instance #8

write sequence #6

Three Samples

Afterwards

Three Samples

Afterwards

Samples in the FIFO are simultaneously

released. The release time is synchronized

by OSTR signal to the FIFO read pointer.

Previous Events

Upcoming Events

Current Events

Path #1 Path #2

Figure 24. Multi-Device Synchronization Example: FIFO State Snap-shots

Beside data, control signals such as SYNC and ISTR, are treated as data and can

be read from the FIFO at the same time instance. An example is shown in Figure

25, where the rising edge of SYNC pulse is registered at the same time sample S4

is latched. When all the DAC devices in the system release RP4 in the FIFO, the

SYNC pulse stamp will also be released. This stamp will be registered by the

appropriate digital logics (based on DAC programming) and used for logic

synchronization. This is useful for synchronizing internal digital logics such as

NCO and QMC. These circuits can process the signal amplitude and phase. By

setting these circuits to look for the synchronized control signals, multiple devices

can adjust the signal amplitude and phase at the same precise moment.

B0A0 A1 B1 B2A2 A3 B3 B4A4 A5 B5 B6A6 A7 B7

XX X X B0A0 A1 B1 B2A2 A3 B3 B4A4 A5 B5

Path #2

DATACLK #1

ISTR #1

DATA #1

DATACLK #2

ISTR #2

DATA #2{
Time

SYNC#2

Path #1 {
SYNC#1

Rising edge of SYNC pulse is

registered and loaded into FIFO

write pointer WP4. It will be

read at the same time among all

the DAC devices to allow

synchronization of digital logics.

Figure 25. Multi-Device Synchronization Example: SYNC Pulse Loading for Logic Synchronization

For the DAC348x family configured as external clock mode, the external clock

synthesizer and distribution circuits such as the LMK04800 family and the

CDCE62005 will need to ensure the OSTR and DACCLK signals going to each

DAC348x device have zero skew. The timing diagram is shown in Figure 26

Figure 26. Timing Diagram for LVPECL Synchronization Signals of DAC3484 (Figure 61 of

SLAS749)

For the DAC348x family with PLL mode enabled, multiple DAC348x device on-

chip PLLs must be synchronized in order to have zero skew OSTR and DACCLK

signals. As shown in Figure 27, the on-chip PLL is synchronized by the rising

edge of LVDS SYNC signal going to the N-divider circuit. The idea is that if the

reference frequencies of the PLLs are aligned in time, then the OSTR and

DACCLK signals will also be aligned.

DACCLKP

N

Divider

PFD &

CP

DACCLKN

Internal Loop Filter

External Loop Filter

VCO

Prescaler

M

Divider

DACCLK_internal

REFCLK

OSTR (PLL generated)

SYNCP

SYNCN

PLL_SYNC

PLL_ENA

(Config24)

0

1

PLL_ENA

(Config24)

1

0

OSTRP

OSTRN

OSTR_internal

DAC348x Input

Figure 27. DAC348x On-Chip PLL DACCLK and OSTR Generation

One important note about the OSTR signal in PLL mode is that the OSTR is the

PFD frequency after the N-divider. Therefore, the reference clock (REFCLK), N-

divider, and M-divider must be configured to meet the OSTR frequency requirement

and also the PLL lock requirement.

1.6 Optimal FIFO position setup for Dual Sync Sources mode

In Dual Sync Sources mode, the FIFO read pointers of multiple DAC devices can start at

the same location at the same exact time instance given that the OSTR and DACCLK

signals among all the devices have the same delay. At the data input side, as long as the

load sequences of each DAC devices are the same, the FIFO’s memory depth can absorb

some variations at the data input side. The FIFO has limited length and has to absorb

timing variations from both input and output pointer side. Therefore, it is important that

the FIFO position starts in an optimal position.

In the previous example of Path#1 and Path#2, both paths have to have the same read

pointer position in order to have the same latency. However, the write side of Path#1 has

less delay than Path#2, and Path#1 will load data into the FIFO earlier than Path#2.

Therefore, Path#1 has narrower FIFO write to read pointer position gap than Path#2.

The FIFO offset adjustment procedure is shown in Figure 28. The green arrow shows the

write to read pointer gap, while the red arrow shows the read to write pointer gap. When

the pointer gap is narrower, the chance of FIFO collision is higher. Counting from the

write pointer to read pointer, Path#1 with read pointer position of 4 only has one memory

gap. If somehow the DATACLK or DACCLK has interruption or the skew has changed,

for instance, the clock generator started to shift the delay of the OSTR and DACCLK

signals over PVT, the FIFO read pointer could reset earlier and cause collision.

0

1

2

FIFO read pointer set at space #5

FIFO read pointer set at space #5

FIFO write pointer

FIFO write pointer

2x gaps

4x gaps

4x gaps

2x gaps

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

FIFO read pointer set at space #4

FIFO write pointer

1x gap

5x gaps

3x gaps

3x gaps

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

FIFO write pointer

FIFO read pointer set at space #4

Path #1

Path #2

Before After

Figure 28. FIFO Offset Adjustment for Dual Sync Sources Mode

By changing FIFO read pointer position from RP4 to RP5, the write pointer to read

pointer gap (shown in green) has increased from one to two in Path#1. The read pointer

to write pointer gap (shown in red) has decreased from five gaps to four gaps, but it is the

best option without disturbing the setup for Path#2. If the read pointer position is

increased further, then Path#2 will not have enough read pointer to write pointer gap. If

either the DATACLK or DACCLK is disturbed, the FIFO does not have much buffer and

collides with higher probability. As mentioned in the previous section, designers should

check the FIFO alarms upon start-up to ensure each device has optimal FIFO position.

2 Digital Logic Synchronization

Besides the FIFO, other digital logics such as clock divider, data formatter, mixers, and

quadrature modulator correction features, require initialization during start-up to ensure

proper operation. Each of the digital blocks is described in this section.

2.1 FIFO and data formatter (configured and synchronized upon initial start-

up):

The FIFO synchronization method would depend on the end application requirement.

Depending on the Single Sync Source mode or Dual Sync Sources mode configuration,

the syncsel_fifoin(3:0) and the syncsel_fifoout(3:0) in Config32 register can be

programmed accordingly.

For the DAC3482 and DAC3484, the data interface options can be either 16-bit word

wide interface or 8-bit byte wide interface. The FIFO includes a data formatter to format

the FIFO memory accordingly. The synchronization source can be selected by

syncsel_dataformatter(1:0) in Config31, with the option including the FRAME or SYNC.

As mentioned previously, the rising edge of FRAME or SYNC can be used to establish

data boundary to ensure the data are interpreted correctly.

The data formatter is not needed for the DAC34H84 and DAC34SH84 since the 32-bit

interface forces the A and C channels always latched on the rising edge of DATACLK

and B and D channels always latched on the falling edge of DATACLK.

The DAC3482 word wide interface operates in the similar fashion and some users may

choose to use SIF_SYNC to synchronize the FIFO. In this case, the

syncsel_dataformatter(1:0) in Config31 can be set to “10” or “11” option for no sync

options.

2.2 Clock Divider (configured and synchronized upon initial start-up):

DivADACCLK (FS)

clkdiv_sync_ena

(Config0)

DivB

DivC

syncsel_fifoin(3:0)

(Config32)

SYNC
1
2
4
8

0

ISTR

SIF_SYNC

clkdiv_sync_sel

(Config31)

0

1

OSTR

reset

Figure 29. Simplified Clock Divider Block Diagram

The purpose of the clock divider is to provide divided-down clocks. Figure 29 above

shows the simplified clock divider structure. The source of the clock divider comes from

the DACCLK, and the clock divider can be reset by the OSTR signal or the FIFO input

pointer reset source.

The clock divider needs to be synchronized at start-up along with the FIFO and data

formatter (if needed). The clock divider synchronization source will be the same as the

FIFO output pointer synchronization source. In Single Sync Source mode, the clock

divider will be synchronized by ISTR, SYNC, or SIF_SYNC. In Dual Sync Sources

mode, the clock divider will be synchronized by the OSTR signal (either externally

provided to the DAC348x or internally generated by the PLL PFD).

2.3 Double Buffered Registers (adjusted during system operation).

FIR filters and coarse mixers have pre-set algorithm values. Once these circuits are

enabled at start-up along with start-up synchronization routine (i.e. FIFO and clock

divider synchronization), additional synchronization is not required. Since the NCO and

QMC logics have programmable algorithms, the circuits require additional

synchronization of the double-buffered register. A double-buffered register is designed to

prevent instantaneous change to logic behavior when the desired logic behavior requires

more than one serial port interface (SPI) configuration. For instance, the NCO register

requires two 16-bit frequency information and one 16-bit phase information. The SPI

register is 16-bit per register, and if the NCO logic changes instantaneously for every SPI

write transaction, the output frequency may change three times over the programming

period before settling to the final output frequency. The same principle applies to QMC

gain/phase adjustment and QMC offset adjustment circuits. The double-buffered registers

prevent unintentional gain, phase, and/or offset corrections during the programming of

the register.

SYNC
1
2
4
8

OSTR

Auto-Sync

SIF_SYNC

Double-Buffered Register

synchronization source selection. The

synchronization source can be more

than one as long as potential

synchronization conflict is avoided.

Circuit Algorithm

programmable values

DAC348x

Double-Buffered Registers

Figure 30. Double-Buffered Registers

For flexibility, the double-buffered register can have one or more synchronization sources,

and the user should plan out the synchronization method. The sources can be SIF_SYNC,

SYNC, OSTR, or auto-sync. For the synchronization using the SIF_SYNC, SYNC, and

OSTR, the corresponding zero to one transition of the signal will create a synchronization

event. For auto-sync selection, the synchronization will occur only when specific

registers are written, and the register may not necessary be the last sequence of registers.

Therefore, users will need to design their start-up sequence to write to auto-sync register

specifically to synchronize the double buffered circuit. The table below shows the double

buffered synchronization source select register for each digital block and the

corresponding auto-sync register, and the detailed description of synchronization sources

can be found on Table 4 and Table 5.

Digital Blocks Double-Buffered Synchronization Source Selection Auto-Sync Register

QMC Gain/Phase AB Channels Config30 Config16

QMC Gain/Phase CD Channels Config30 Config17

QMC Offset AB Channels Config30 Config8

QMC Offset CD Channels Config30 Config10

NCO Mixer AB Channels Config31 Config18

NCO Mixer CD Channels Config31 Config19

Table 4. DAC348x Double-Buffered Registers and the Associated Auto-Sync Registers

Synchronization Source Selection Synchronization Source Description

8 SIF_SYNC 0->1 Transition of the SIF_SYNC bit in Config31, bit2

4 SYNC 0->1 Transition on the LVDS SYNC. FIFO must be enabled

2 OSTR 0->1 Transition on the OSTR signal (either externally provided on the LVPECL OSTRp/n source or internally generated PFD)

1 Auto-Sync from Register Write writing to the auto-sync register

Table 5. DAC348x Doube-Buffered Synchronization Sources Description

Programmable digital logics such as NCO and QMC circuits allow the system to change

the DAC output values as the DAC is running. The output adjustments require the

double-buffered synchronization sources as mentioned above, and these sources can be

the same sources for the FIFO, data formatter, and the clock divider synchronization

sources. Accidental reset to the FIFO, data formatter, and the clock divider may cause

unexpected output behavior. Therefore, it is important for users to avoid this type of

conflicts in system design.

For instance, when the LVDS SYNC or external LVPECL OSTR signal is used to

synchronize the double-buffered registers, the occurrence of the zero to one signal

transition must match the clock timing (i.e. DATACLK for SYNC and DACCLK for

OSTR) and must not disrupt the FIFO flow. The design of the signal transition must

occur at the beginning of the eight sample spaces.

If the programming of the double-buffered logics could affect the FIFO, data formatter,

or clock divider operation, a good design practice is to disable FIFO, data formatter, and

clock divider synchronization when the same synchronization sources are shared. After

the initial synchronization of the FIFO, data formatter, and clock divider, these circuits

can be programmed to not pay attention to the synchronization sources.

Finally, the easiest way is to plan out the synchronization signal such that the

synchronization sources for the double-buffered registers are different than the FIFO, the

data formatter, and the clock divider. For instance, the auto-sync register write feature is

a dedicate synchronization source for the double-buffered registers.

2.4 NCO Accumulator (adjusted during system operation)

The NCO accumulator is used to generate the desired sine and cosine term from a look-

up table. After loading the frequency and phase information into the NCO double

buffered registers, the NCO accumulator requires a reset to ensure that a correct, known

state is initialized. The NCO block diagram is shown in Figure 31.

Figure 31. NCO Block Diagram (Figure 73, SLAS749)

The following table shows the synchronization sources for the NCO accumulator.
Synchronization Source Selection Synchronization Source Description

8 SIF_SYNC 0->1 Transition of the SIF_SYNC bit in Config31, bit2

4 SYNC 0->1 Transition on the LVDS SYNC. FIFO must be enabled

2 OSTR 0->1 Transition on the OSTR signal (either externally provided on the LVPECL OSTRp/n source or internally generated PFD)

1 ISTR 0->1 Transition on the LVDS SYNC. FIFO must be enabled

Table 6. Synchronization Sources for NCO Accumulator

Per register Config21 of the DAC348x, the sources can be SIF_SYNC, SYNC, OSTR, or

ISTR. If the end application does not require specific timing or phase synchronization,

the zero-to-one transition of the SIF_SYNC bit is the easiest to implement and sufficient

for most of the general purpose NCO accumulator initialization. While the ISTR, SYNC,

and/or OSTR can be used for accumulator reset, the primary intention of these

synchronization methods is to ensure the NCOs of multiple DAC devices reset at the

same instance of time to achieve output phase alignment.

As mentioned in section 1.5, the ISTR and/or SYNC are treated as data in the FIFO. If

the ISTR and/or SYNC data are loaded to the devices of the same system in the correct

sequence, then the signal data will be read at the same time instance. The signal data will

reset the NCO accumulator at the same time instance, thus achieving synchronization.

When the OSTR option is selected, the synchronization signal is either the external

OSTR signal or the internally generated OSTR signal from the on-chip PLL N-divider.

As part of the multi-device synchronization requirement, the OSTR signals to the

multiple devices must be time aligned. Therefore, the NCO accumulators of multiple

devices will also be aligned.

Synchronizing the NCO accumulator may pose some issues due to the repeating nature of

some synchronization sources and the looping structure of the NCO accumulator. When

the synchronization signal is repetitive (i.e. ISTR and OSTR signals used in Dual Sync

Sources mode), then the NCO frequency must be some integer multiple of the

synchronization frequency. As shown in Figure 32, if the periodic synchronization signal

does not allow the complete cycling of the NCO accumulator, the output of the NCO will

be distorted.

NCO Accumulator

Synchronization Signal

restarts the accumulator

Synchronization Signal

restarts the accumulator

NCO Accumulator

The NCO frequency is integer multiple of

synchronization signal. The NCO can cycle

through completely before the next reset.

The NCO frequency is not integer multiple of synchronization

signal. The NCO cannot cycle through completely before the

next reset. Output waveforms are distorted.

Figure 32. NCO Accumulator Operation with Repetitive Synchronization Signals

The requirements for the NCO accumulator synchronization signals:

• Single Pulse Signal
There is no requirement for NCO frequency to be evenly divisible by FDAC if a

single pulse OSTR signal is used to reset the FIFO and NCO during initialization.

• Periodic Signal:

The periodic synchronization signals are used in Dual Sync Sources mode where

the ISTR (or SYNC) and OSTR are used to synchronized the FIFO write and read

pointers. In this case, the synchronization signal frequency must meet both the

FIFO block requirement and the NCO accumulator requirement.

– FIFO: Refer to the DAC348x family device datasheet for FIFO

synchronization requirements.

– NCO accumulator: The synchronization signal frequency must be integer

divisible by the NCO frequency. This allows the NCO counter to complete

the cycle at least once without interruption.

– To meet both requirements, the synchronization signal frequency must be

the least common multiple (LCM) of both the FIFO block requirement and

NCO accumulator requirement.

– The example below shows the DAC34H84 NCO using the OSTR signal

when the DAC34H84 is in Dual Sync Sources mode.

8ioninterpolatnm

F

F

mF
 8ioninterpolatn

F
F

 LCM. find integer toan is
F

Fm
given

)
F

mF
 8,ioninterpolatLCM(n

F
F

integeran is mgiven

F

mF

F

m

F
F

integeran isn given
8ioninterpolatn

F
F

NCO

NCO

DAC

DAC
NCO_SYNCOSTR_FIFO_

NCO

DAC

NCO

DAC

DAC
NCO_SYNCOSTR_FIFO_

NCO

DAC

DACNCO
YNCOSTR_NCO_S

DAC
OSTR_FIFO






















Table 7 below summarizes the synchronization needed for the DAC348x device logics.

Circuits FIFO Data Formatter Clock Divider NCO Accumulator NCO Double Buffered QMC Gain/Phase QMC Offset

ISTR/FRAME ISTR/FRAME ISTR/FRAME SIF_SYNC SIF_SYNC SIF_SYNC SIF_SYNC

SYNC SYNC SYNC SYNC SYNC SYNC SYNC

SIF_SYNC SIF SYNC OSTR OSTR OSTR OSTR

OSTR OSTR ISTR Auto-sync from register write Auto-sync from register write Auto-sync from register write

Sync Sources

Table 7. DAC348x Device Logics Synchronization Sources

3. Start-up Sequence

The section goes over the recommended start-up sequence for the DAC348x family. The

important steps are to synchronize the FIFO, clock divider, and the data formatter (if

needed) as the first step. The programmable logics such as QMC and NCO can be

synchronized afterwards as the DAC is running. Designers must be careful to avoid

accidental synchronizations to unintended logics in order to prevent unexpected output

behavior. An example start-up sequence is listed at the end of this application note.

1. Ensure the TXENABLE or TXENA pin are low. This disables any potential data

transmission to the output.

2. Supply voltages to DACVDD, DIGVDD, CLKVDD, VFUSE, AVDD, IOVDD, and

PLLAVDD. These supplies can be powered up simultaneously or in any order. There are

no specific requirements on the ramp rate for the supplies.

3. Provide all LVPECL inputs: DACCLKP/N and the optional OSTRP/N. These inputs can

also be provided after the SIF register programming.

4. Toggle the RESETB pin for a minimum 25 ns active low pulse width.

5. Program the SIF registers.

6. FIFO configuration needed for synchronization:

a. Program syncsel_fifoin(3:0) (config32, bit<15:12>) to select the FIFO input

pointer sync source.

b. Program syncsel_fifoout(3:0) (config32, bit<11:8>) to select the FIFO output

pointer sync source.

c. Program syncsel_dataformatter(1:0) (config31, bit<3:2>) to select the FIFO Data

Formatter sync source.

7. Clock divider configuration needed for synchronization:

a. Program clkdiv_sync_sel (config32, bit<0>) to select the clock divider sync

source.

b. Program clkdiv_sync_ena (config0, bit<2>) to “1” to enable clock divider sync.

8. Provide all LVDS inputs (DAB[15:0]P/N, DCD[15:0]P/N, DATACLKP/N, ISTRP/N,

SYNCP/N and PARITYP/N) simultaneously. Synchronize the FIFO and clock divider by

providing the pulse or periodic signals needed. For example, provide a pulse on the

ISTRP/N LVDS pair and the pulse on the OSTRP/N LVPECL pair in Dual Sync Source

Mode.

9. FIFO and clock divider configurations after all the sync signals have provided the initial

sync pulses needed for synchronization:

a. The clock divider operates in the DACCLK domain and provides the divided-

down clocks for the digital circuits inside the DAC. Therefore, for Single Sync

Source Mode where the clock divider sync source is either ISTRP/N or

SYNCP/N, clock divider syncing must be disabled after DAC34H84 initialization

and before the data transmission by setting clkdiv_sync_ena (config0, bit 2) to

“0”. Enabling the clock divider syncing at all time for Single Sync Source Mode is

not recommended due to the possible phase ambiguity between the DATACLK

and DACCLK clock domains

b. For Dual Sync Source Mode, where the clock divider sync source is from the

OSTR signal (either from external OSTRP/N or internal PLL N divider output), the

clock divider syncing may be enabled at all time.

c. Optionally, disable FIFO syncing by setting syncsel_fifoin(4:0) and

syncsel_fifoout(4:0) to “0000” after the FIFO input and output pointers are

initialized.

10. Enable transmit of data by asserting the TXENABLE/TXENA pin or set sif_txenable to

“1”.

EXAMPLE START-UP ROUTINE

Device Configuration:

fDATA = 737.28MSPS

Interpolation = 2x

Input data = baseband data

fOUT = 122.88MHz

PLL = Enabled

Full Mixer = Enabled

NCO = Enabled

Dual Sync Sources Mode

PLL Configuration:

fREFCLK = 737.28MHz at the DACCLKP/N LVPECL pins

fDACCLK = fDATA x Interpolation = 1474.56MHz

fVCO = 2 x fDACCLK = 2949.12MHz (keep fVCO between 2.7GHz to 3.3GHz)

PFD = fOSTR = 46.08MHz

N = 16, M = 32, P = 2, single charge pump

PLL_VCO(5:0) = “011100” (28)

NCO Configuration:

fNCO = 122.88MHz

fNCO_CLK = 1474.56MHz

freq = fNCO x 2^32 / 1228.8

 = 357913941

 = 0x15555555

phaseaddAB(31:0) and/or phaseaddCD(31:0) = 0x15555555

NCO synchronization method = rising edge of LVDS SYNC

Step Read/Write Address Value Description

1 N/A N/A N/A Set TXENA Low

2 N/A N/A N/A Power Up the device

3 N/A N/A N/A Apply LVPECL DACCLKP/N for PLL

reference clock

4 N/A N/A N/A Toggle RESETB pin

5 Write 0x00 0xF19F

QMC offset and correction enabled,

2x int, FIFO enabled, Alarm enabled,

clock divider sync enabled, inverse

sinc filter enabled.

6 Write 0x01 0x040E Single parity enabled, FIFO alarms

enabled (2 away, 1 away, and

collision).

7 Write 0x02 0x7052 Output shut-off when DACCLK gone,

DATACLK gone, and FIFO collision.

Mixer block with NCO enabled, twos

complement.

8 Write 0x03 0xA000 Output current set to 20mAFS with

internal reference and 1.28kohm RBIAS

resistor.

9 Write 0x07 0xD8FF Un-mask FIFO collision, DACCLK-gone,

and DATACLK-gone alarms to the Alarm

output.

10 Write 0x08 N/A Program the desired channel A QMC

offset value. (Causes Auto-Sync for

QMC AB-Channels Offset Block)

11 Write 0x09 N/A Program the desired FIFO offset

value and channel B QMC offset

value.

12 Write 0x0A N/A Program the desired channel C QMC

offset value. (Causes Auto-Sync for

QMC CD-Channels Offset Block)

13 Write 0x0B N/A Program the desired channel D QMC

offset value.

14 Write 0x0C N/A Program the desired channel A QMC

gain value.

15 Write 0x0D N/A Coarse mixer mode not used. Program

the desired channel B QMC gain

value.

16 Write 0x0E N/A Program the desired channel B QMC

gain value.

17 Write 0x0F N/A Program the desired channel C QMC

gain value.

18 Write 0x10 N/A Program the desired channel AB QMC

phase value. (Causes Auto-Sync QMC

AB-Channels Correction Block)

19 Write 0x11 N/A Program the desired channel CD QMC

phase value. (Causes Auto-Sync for

the QMC CD-Channels Correction

Block)

20 Write 0x12 N/A Program the desired channel AB NCO

phase offset value. (Causes Auto-

Sync for Channel AB NCO Mixer)

21 Write 0x13 N/A Program the desired channel CD NCO

phase offset value. (Causes Auto-

Sync for Channel CD NCO Mixer)

22 Write 0x14 0x5555 Program the desired channel AB NCO

frequency value

23 Write 0x15 0x1555 Program the desired channel AB NCO

frequency value

24 Write 0x16 0x5555 Program the desired channel CD NCO

frequency value

25 Write 0x17 0x1555 Program the desired channel CD NCO

frequency value

26 Write 0x18 0x2C50 PLL enabled, PLL N-dividers sync

enabled, single charge pump,

prescaler = 2.

27 Write 0x19 0x20F4 M = 32, N = 16, PLL VCO bias tune =

“01”

28 Write 0x1A 0x7010 PLL VCO coarse tune = 28

29 Write 0x1B 0x0800 Internal reference

30 Write 0x1E 0x9999 QMC offset AB, QMC offset CD, QMC

correction AB, and QMC correction CD

can be synced by sif_sync or auto-

sync from register write

31 Write 0x1F 0x4440 Mixer AB and CD values synced by

SYNCP/N. NCO accumulator synced by

SYNCP/N. FIFO data formatter synced

by ISTRP/N.

32 Write 0x20 0x2400 FIFO Input Pointer Sync Source =

ISTR

FIFO Output Pointer Sync Source =

OSTR (from PLL N-divider output)

Clock Divider Sync Source = OSTR

33 N/A N/A N/A Provide all the LVDS DATA and

DATACLK

Provide rising edge FRAMEP/N and

rising edge SYNCP/N to sync the FIFO

input pointer and PLL N-dividers.

34 Read 0x18 N/A Read back pll_lfvolt(2:0). If the

value is not optimal, adjust

pll_vco(5:0) in 0x1A.

35 Write 0x05 0x0000 Clear all alarms in 0x05.

36 Read 0x05 N/A Read back all alarms in 0x05. Check

for PLL lock, FIFO collision,

DACCLK-gone, DATACLK-gone, etc. Fix

the error appropriately. Repeat step

34 and 35 as necessary.

37 Write 0x1F 0x4442 Sync all the QMC blocks using

sif_sync. These blocks can also be

synced via auto-sync through

appropriate register writes.

38 Write 0x00 0xF19B Disable clock divider sync.

39 Write 0x1F 0x4448 Disable FIFO data formatter sync.

Set sif_sync to “0” for the next

sif_sync event.

40 Write 0x20 0x0000 Disable FIFO input and output

pointer sync.

41 Write 0x18 0x2450 Disable PLL N-dividers sync.

42 N/A N/A N/A Set TXENA high. Enable data

transmission.

