H.264 High Profile Encoder
on DM365

User’s Guide /A

Literature Number: SPRUEU9
March 2009

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order
acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask
work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from Tl to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party
under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual
property of TI.

F e ST O
Reproduction of Tl information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

£ W
Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service
voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business
practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory
ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-
related requirements concerning their products and any use of Tl products in such safety-critical applications, notwithstanding
any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its
representatives against any damages arising out of the use of Tl pro}?uc&s Jp Sleh safetx:girtical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products
are specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet
military specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-
grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements

in connection with such use.
B T L

N -
Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl

products are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use
any non-designated productsLn automoti\{s applic\ationf, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
F rs T T ™ o

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dIp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/Iprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://www.dlp.com/
http://www.ti.com/broadband
http://dsp.ti.com/
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com/
http://www.ti.com/military
http://logic.ti.com/
http://www.ti.com/opticalnetwork
http://power.ti.com/
http://www.ti.com/security
http://microcontroller.ti.com/
http://www.ti.com/telephony
http://www.ti-rfid.com/
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

Preface

Read This First

About This Manual

Intended Audience

How to Use This

fexas Instruments’
he DM365 platform.
Interface (API)
reference and information on the sample applic: hat accompanies
this component.

This document describes how to install and work wi

TI's codec implementations are bas SP Digital Media
(XDM) and IRES standards. XD
eXpressDSP Algorithm Interfa

TI's codecs with othe
the DM365 platform.

u are fluent in the C language, have a
ital Signal Processing (DSP), digital
lications. Good knowledge of

and XDM standards, Frame work Components, and software
chifecture. It also provides an overview of the codec and lists its
ported features.

Chapter 2 — Installation Overview, describes how to install, build,
and run the codec.

U0 Chapter 3 — Sample Usage, describes the sample usage of the
codec.

O Chapter 4 — API Reference, describes the data structures and
interface functions used in the codec.

U Appendix A — Time-Stamp Insertion, describes insertion of frame
time-stamp through the Supplemental Enhancement Information
(SEI) Picture Timing message.

Read This First

Related Documentation From Texas Instruments

The following documents describe TI's DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these Tl documents,
visit the Texas Instruments website at www.ti.com.

U TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
defines a set of requirements for DSP algorithms that, if followed,
allow system integrators to quickly assemble production-quality
systems from one or more such algorithms.

U TMS320 DSP Algorithm Standard API Reference (SPRU360)
describes all the APIs that are defined by the TMS320 DSP

Algorithm Interoperability Standard (also know XDAIS)
specification.

0 Using IRES and RMAN Framework Co s.for C64x+
(literature number SPRAAI5) provide ew-of the IRES
interface, along with some concretg d resource
managers that illustrate the defini se of new

types of resources.

Related Documentation

Q ISO/IEC 14496-10: . H. F). ITU-T Recommendation

Abbreviations

The following a r?viation a
Table 1-1. List of Abbrelnatiens

e

AbbW/w

\sG°

used in this document.

Arbitrary Slice Ordering
AVC Advanced Video Coding

TI's simple RTOS for DSPs

Context Adaptive Variable Length Coding
Context Adaptive Binary Arithmetic Coding

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform
DDR Double Data Rate
DMA Direct Memory Access

FC Framework components

http://www.ti.com/

Read This First

Abbreviation Description

FMO Flexible Macro-block Ordering
HD 720 or 720p 1280x720 resolution in progressive scan
HDTV High Definition Television

HDVICP High Definition Video and Imaging Co-
processor sub-system

IDR Instantaneous Decoding Refresh

ITU-T International Telecommunication

IM Joint Menu
IVT Joint Video Team
MB Macro Block

Picture Adaptive Field Frame
Portable Media Player
Picture Parameter Set
Perceptual Rate Control
Real Time Operating System

Resource Manager

SEI Supplemental Enhancement Information
SPS Sequence Parameter Set

VGA Video Graphics Array

VICP Video and Imaging Co-Processor

XDAIS eXpressDSP Algorithm Interface Standard

Read This First

Text Conventions

Product Support

Trademarks

vi

Abbreviation Description
XDM eXpressDSP Digital Media
YUV Color space in luminance and

chrominance form

Note:

MJCP and VICP refer to the same hardware co-processor blocks.

quote the product name
sion number. The

on DM365) and v
! itle of the Release Notes

icludett-in_the

Contents

(R LET= (o I I LRSI T = AT ii
ADOUL THIS MANUAL ...covnieeiee e e e e e e e e s e e eaaas ili
11 (T 010 [=To I AY U Lo [T=T g (oL
HOW t0 USE ThiS MaNUALuiieeiiii it e e e e s e e
Related Documentation From Texas Instruments i

Related DOCUMENTALION.........uuiiiiiii et e e e e i
P o] T LAV = 1 (0] 1 S N S i
TEXE CONVENLIONS ..cviiiiiiiii e e e e e far e e sasessaseenbaeees
[(0o ¥ o A U o o o] A o S S S
I =0 (5] 4 1= 1 G . S
(OF0 Y 1 (=] 01 £ - S ii
Lo U= . A S S [
TADIES e R e e e i
[} A oo 1V o1 A o Y I
1.1 Software ArChItECIUIE ... ceee e s e e e e e e e e e e e e e eeneens
1.2 Overview of XDAIS, XDM, and kr&
1.2.1 XDAIS OVEerviewh...
1.2.2 XDM Overview
1.2.3 Framework Co
1.3 Overview of H.264
1.4 Supported Servi

2.1 System Requir
211 Hardware. s, o T s
2.1.2

2.2
2.3
24
2.5
2.6
2.7 Building and
2.8 ConfIQUration FilEScoiiiiiiiiiiii e 2-8
2.8.1 Generic Configuration Fileccuuiiiiiiiiii e 2-8
2.8.2 Encoder Configuration File...........cuuiiiiiiiiiiiieie e 2-9
2.8.3 Encoder Sample Base Param Settingccccvveeeeeeiiiiiiiiiiieee e sciinieee e e e e 2-12
2.9 Standards Conformance and User-Defined INpUtscccccceeeivieevviceiiiienennn, 2-13
2.10 Uninstalling the COMPONENtcooviiiiiiiiiiiiiiei e 2-13
STz 1 g1 01 L= o= Vo 1= 3-1
3.1 Overview of the Test APPHCALION..........cooiiiiiiiiiiii e 3-2
3.1 1 Parameter SEUUDcooiiiiiiie ettt e e aeeeaeaes 3-3
3.1.2 Algorithm Instance Creation and Initialization...............ccccvveeeeee e 3-3
.13 ProCeSS Call ..cceiiiiiiieeiiiiie ettt 3-4

vii

3.1.4 Algorithm InStance DeItioNc.uuuiiiiieeiie i 3-5

3.2 Handshaking Between Application and Algorithm...............cccccvvviiiiiiiiieeiiennne, 3-6
3.2.1 Resource Level INteraction ... 3-6
3.2.2 Handshaking Between Application and Algorithmsccccceiiiiiiiiiiiinns 3-7

3.3 Cache Management by ApPPlICAtION..........ooiuiiiiiiiiee e 3-9
3.3.1 Cache Usage By Codec AIgOrithmccociiiiiiie e 3-9
3.3.2 Cache Related Call Back Functions for Standalone............ccccccoviiireiniienennnnn 3-9
3.3.3 Cache and Memory Related Call Back Functions for Linuxcccccceveeeviinnns 3-9

3.4 Sample Test Application............ccooiviiiiiiiiii e, 3-11

N I L= 1T = Lo = PP 4-1

4.1 Symbolic Constants and Enumerated Data TYPesS..........occcveviviiieeiiiiiiiiiiieeeenn. 4-2
4.1.1 Common XDM Symbolic Constants and Enumerated Data Types 4-2
4.1.2 H264 Encoder Symbolic Constants and Enumerated Data’ Types.................... 4-7

4.2 Data StrUCLUIESccvvieiieie e
4.2.1 Common XDM Data Structures
4.2.2 H.264 Encoder Data Structures

4.3 Interface FUNCLIONS........c.oviiiiiieiieiee e
4.3.1 Creation APIS ...,

4.3.2 Initialization APl.......cccccooviviiiiiiieeiinen,
4.3.3 Control APl....cceeeiiiiieiiiie e
4.3.4 Data Processing API........ccccoeeeeenn.
4.3.5 Termination APlccccoviiiiiiiiiienenns

Time-Stamp Insertion

A.1 Descriptioncccceeevvvnnnnnnnnnnnd

viii

Figures

Figure 1-1. Software ArChitECIUIE.uuiiiiiiii e 1-2
Figure 1-2. Framework Component Interfacing StruCture.ccccoovcviiievieeeennnnnnnee. 1-5
Figure 1-3. IRES Interface Definition and Function-calling Sequence....................... 1-6
Figure 1-4. Block Diagram of H.264 ENCOAEr.uvviiiiiiiiiiiiiiiiiieeee i 1-9
Figure 2-1. Component Directory Structure for Standalone........«.. i, 2-3
Figure 2-2. Component Directory Structure for LinuX........ccc.o el 2-4

Figure 3-1. Test Application Sample Implementation...........& oS
Figure 3-2. Process Call with Host Release

Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.

This page is intentionally left blank

Tables

Table 1-1. List of AbBreviations.........cooovviiiie e iv
Table 2-1. Component Directories for Standalone............ccccooeeeiii 2-3
Table 2-2. Component Directories for LiNUX.ccccooeiii 2-5
Table 3-1. process () Implementation...........cccveveveeeiiiiiiiiiiieeeeeees 3-11

Table 4-1. List of Enumerated Data TYPESuuviviiieiiiiiiiiiiiieeeee e 4-2

)L

Xi

This page is intentionally left blank

ey
Q@

Xii

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS, XDM, and DM365
software architecture. It also provides an overview of Fls implementation
of the H.264 High Profile Encoder on the DM365 platf and its supported
features.

Topic /£i>

Page
1.1 Software Architecture 1-2
1.2 Overview of XDAIS, XDM, and Framework Component Tools 1-2
1.3 Overview of H.264 High Profile Encoder 1-7
1.4 Supported Services and Features 1-9

A\

1-1

Introduction

1.1 Software Architecture

DM365 codec provides XDM compliant API to the application for easy
integration and management. The details of the interface are provided in
the subsequent sections.

DM365 is a digital multi-media system on-chip primarily used for video
security, video conferencing, PMP and other related application.

DM365 codec are OS agonistic and interacts with the kernel through the
Framework Component (FC) APIs. FC acts as a software interface

between the OS and the codec. FC manages resources and memory by
interacting with kernel through predefined APIs.

Following diagram shows the software architect

Linux User
Space

Linux Kernel
Space

I's mdltimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS). IRES is a TMS320 DSP Algorithm
Standard (XxDAIS) interface for management and utilization of special
resource types such as hardware accelerators, certain types of memory
and DMA. RMAN is a generic Resource Manager that manages software
component’s logical resources based on their IRES interface configuration.
Both IRES and RMAN are Framework Component modules.

1.2.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This

1-2

Introduction

interaction allows the client application to allocate memory for the algorithm
and share memory between algorithms. It also allows the memory to be
moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

U algAlloc()
algInit ()
algActivate ()

algDeactivate ()

O 0O O O

algFree ()

The algalloc () API allows the algorithm to ¢

melhicate its memory
requirements to the client application. The a i

data in real-time. The algactitate) APLgravides a natification to the
gorthm processing methods is about

The IALG interface also

and algMove s ils hese APls, see TMS320 DSP

.263, or H.264) in your system. To enable easy
lient application, it is important that all codecs with

U process()

The control () API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control () API replaces the algControl () API defined as part of the
IALG interface. The process () API does the basic processing
(encode/decode) of data. This API represents a blocking call for the
encoder and the decoder, that is, with the usage of this API, the control is
returned to the calling application only after encode or decode of one unit
(frame) is completed. Since in case of DM365, the main encode or decode
is carried out by the hardware accelerators, the host processor from which

1-3

Introduction

the process () call is made can be used by the application in parallel with
the encode or the decode operation. To enable this, the framework
provides flexibility to the application to pend the encoder task when the
frame level computation is happening on coprocessor.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

Client Application /\

o

XDM Interface

XDAIS Interface (IALG)

TI's Codec Algorithms

ithm without,changing the client application code. For
ple f you have developedia client application usmg an XDM-
ideo

1.2.3 Framewo

following block diagram shows the FC components and their interfacing
structure.

1-4

Introduction

FC

[memutils][EDMA3] rman [hdvicpsync] [vicpsync]

Figure 1-2. Framework Component Interfacing Struc

1.2.3.1 IRES and RMAN

cooperafive preemption, in addition to the IALG-style non-cooperative
haring’ofScratch resources. Co-operative preemption allows activated
thms to yield to higher priority tasks sharing common scratch
sources. Framework components include the following modules and
inteffaces to support algorithms requesting IRES-based resources:

U IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

0 RMAN - Generic IRES-based resource manager, which manages and
grants concrete IRES resources to algorithms and applications. RMAN
uses a new standard interface, the IRESMAN, to support run-time
registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application

1-5

Introduction

framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function-calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAIS).

Algorithm Creation Stages Algorithm Real-Time Stages
algAlloc alglnit numResourceDescriptorg reinitResources
A algActivate
getResourceDescriptors / 7
4
y / activateAllResources |«
initResources +
“process”
R
Algorithm " x
Termination Stages r deactivateAllResources
Y
algFree <—IgerResourceDescrrpfors algDeactivate

2 1'.]‘
efinition nc} Functi(}\—c lling Sequence.

——

Figure 1-3. IRES Interfa
e,

1.2.3.2 HDVICP T

RES_HDVICP is an example of a very simple resource type
hich operates at the granularity of the entire processor and

intérnals of the resource based on the ID.

1.2.3.3 EDMA3

The IRES EDMA3 Resource Interface, IRES_EDMA3CHAN, allows
algorithms to request and receive handles representing EDMA3 resources

associated with a single EDMAS3 channel. This is a very low-level resource
definition.

1-6

Introduction

Note:

The existing xDAIS IDMA3 and IDMA2 interfaces can be used to request
logical DMA channels, but the IRES EDMA3CHAN interface provides
the ability to request resources with finer precision than with IDMA2 or
IDMAS.

1.2.3.4 VICP

The Imaging Co-processor provides an integrated platform for the imaging
hardware accelerators required to achieve the performance goals for the
targeted device.

1.2.3.5 HDVICP Sync

Synchronization is necessary in a coproges ystem. HDVICP sync

1.2.3.6 Memutils

it streams. Each profile specifies a subset of algorithmic
limits that all decoders conforming to that profile may support.

e important H.264 profiles and their special features are:

Q Baseline Profile:

o0 Only | and P type slices are present

o Only frame mode (progressive) picture types are present

0 Only CAVLC is supported

0 ASO/FMO and redundant slices for error concealment is supported
O High Profile:

o Onlyl, P, and B type slices are present

1-7

Introduction

1-8

o Frame and field picture modes (in progressive and interlaced modes)
picture types are present

Both CAVLC and CABAC are supported
ASO is not supported

Transform 8x8 is supported

o O O O

Sequence scaling list is supported.

The input to the encoder is a YUV sequence, which can be of format 420
with the chroma components interleaved in little endian. The output of the
encoder is an H.264 encoded bit-stream in the byte-stream syntax. The
byte-stream consists of a sequence of byte-stream NAL, unit syntax
structures. Each byte-stream NAL unit syntax structdre.contains one start
code prefix of size four bytes and value 0x00000001 followed by one NAL
unit syntax structure. The encoded frame data-s a group of slices, each is
encapsulated in NAL units. The slice consists of'the.following:

coded.

.264_Engoder defines in-loop filtering to avoid blocks across the 4x4 block
daries. It is the second most computational task of H.264 encoding
ocess after motion estimation. In-loop filtering is applied on all 4x4 edges
asa post-process and the operations depend upon the edge strength of
the particular edge.

H.264 Encoder applies entropy coding methods to use context based
adaptivity, which in turn improves the coding performance. All the macro
blocks, which belong to a slice, must be encoded in a raster scan order.
Baseline profile uses the Context Adaptive Variable Length Coding
(CAVLC). CAVLC is the stage where transformed and quantized
coefficients are entropy coded using context adaptive table switching
across different symbols. The syntax defined by the H.264 Encoder stores
the information at 4x4 block level.

Input
Picture

Introduction

The following figure depicts the working of the encoder.

o Coder

Control

T 0 ‘Control

[A > Data

—G><> > Transform/ | __ e ___
A— Scal / Ouant I

E Decoder | | .
: A — R SR »| Scaling and Inv.
: ! ' Transform Entropy
| : : y Codin
: ' ' e | ’
! ! ! N !
| ! ! v :
i : Deblocking '
i : Intra-frame Filter :
: : O— Prediction :P‘
i ; ! |
. . Reconstructed | | O.utput
' Motion- . i_Picture
! . Picture >
i Compensation !
e :F---%_-_—_ _________ 4 ' . Motion

v Data

Motion-

> Estimation

eXpressDSP Digital Media (XDM1.0 IVIDENC1) interface compliant
Compliant with H.264 High Profile up to level 3.1

Supports resolutions up to 720p(1280 x 720)

Supports progressive and interlaced encoding

a
a
a
O Supports YUV420 semi planer input format for the frames
a
a

Generates bit-stream compliant with H.264 standard

1-9

Introduction

0o 000 o0 0 o

a
a

a

a

Supports CAVLC and CABAC encoding

Supports 16x16, 8x16, 16x8 and 8x8 MB partitions

Supports sequence scaling matrix

Supports transform 8x8 and transform 4x4

Supports frame based encoding with frame size being multiples of 2
Supports rate control (CBR and VBR)

Supports Insertion of Buffering Period and Picture Timing
Supplemental Enhancement Information (SEI) and.Video Usability
Information (VUI)

Supports Unrestricted Motion Vectors (UMV

Supports TI's propr
search algorithms

Supports TI's proprietary motion estimation supported (Low power ME)

Supports all 16x16, 8x8 and 4x4 intra-prediction modes supported in I-
Frame'and INTRA16x16 DC is supported in P-frames

pports only single slice per frame

Supports only single motion vector per macroblock

This version of the encoder does not support the following features as per
the Baseline Profile feature set:

a
d
(]

1-10

Error Resilience features such as ASO/FMO and redundant slices
Adaptive Reference Picture Marking

Reference Picture List Reordering

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also pravides information on

building and running the sample test application. A

Topic N A \ii:ixx

Page
2.1 System Requirements for NO-OS Standalone 2-2
2.2 System Requirements for Linux 2-2
2.3 Installing the Component for NO-OS Standalone 2-3
2.4 Installing the Component for Linux 2-4
2.5 Building the Sample Test Application for EVM Standalone 2-5
2.6 Running the Sample Test Application on EVM Standalone 2-6
2.7 Building and Running the Sample Test Application on LINUX 2-7
2.8 Configuration Files 2-8
2.9 Standards Conformance and User-Defined Inputs 2-13

2-13

2.10 Uninstalling the Component

2-1

Installation Overview

2.1 System Requirements for NO-OS Standalone

2.1.1 Hardware

2.1.2 Software

2.2.1 Hardware

2.2.2 Software

2-2

This section describes the hardware and software requirements for the
normal functioning of the codec component in CSS. For details about the
version of the tools and software, see Release Note.

U DM365 EVM (Set the bits 2 and 3 of switch SW4 to high(1) position;
Set the bits 4 and 5 of SW5 to high(1) position)

U XDS560R JTAG

a is developed Code
Release-11)
u ett [8"'compiled, assembled,
ode generation tools
d

et the bits 2 and 3 of switch SW4 to low(0) position and
d 5 of switch SW5 to high(1) position)

O RS232 table and network cable

ollowing are the software requirements for the normal functioning of
the codec:

O Build Environment: This project is built using Linux with MVL ARM
tool chain.

U ARM Tool Chain: This project is compiled and linked using MVL ARM
tool chain.

Installation Overview

2.3 Installing the Component for NO-OS Standalone

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a directory called 210_V_H264AVC_E_01_00.
Figure 2-1. shows the sub-directories created in this directory.

= | clienk
=l |23 build
=) arm3za
I crnd
1) map
= |} test
| inc
I src
=) teskvecs
|[Z) config
| input
| output

_) reference

|) docs
| inc
I lib

Table 2-1 prow i irectories created in the

Table 2-1. Component Di

Sub-Directory \\//Jleﬁﬂc_r‘l_s__“_@n?v

\inc Contains XDM related header files which allow interface to the
codec library

\lib ntains the codec library file on host
\docs Contains user guide and release notes
\client\build\arm926 Contains the sample test application project (.pjt) file to be

used on host (ARM926) side

\client\build\arm926\cmd Contains command file for compilation of the code on host
side

\client\build\arm926\map Contains the memory map generated on compilation of the
code

\client\test\src Contains application C files

\client\test\inc Contains header files needed for the application code

\client\test\testvecs\input Contains input test vectors

2-3

Installation Overview

Sub-Directory Description
\client\test\testvecs\output Contains output generated by the codec
\client\test\testvecs\reference Contains read-only reference output to be used for verifying

against codec output

\client\test\testvecs\config Contains configuration parameter files

2.4 Installing the Component for Linux

hive. To install the
ard disk. The tar

The codec component is released as a compressed
codec, extract the contents of the tar file onto your
file extraction creates a directory called

DM365_h264enc_01 00_00_production. Fig
directories created in this directory.

|2 package
=) packages
Bt
= 12) sdo
=1) codecs
=) hztdenc
Sl
=1) client
= I build
=l) arm9zé
|20 cnd
[=1 1) test
|2 inc
|2 src
=1) testvecs
|2 config
|20 imput
| reference

2-2"shows the sub-

PN

ok

I inc
I lib
I e
|2 docs
I lib
|C) packange

Figure 2-2. Component Directory Structure for Linux.

Table 2-1 provides a description of the sub-directories created in the
DM365_h264enc_01 00_00_production directory.

2-4

Installation Overview

Table 2-2. Component Directories for Linux.

Sub-Directory Description

\package Contains files related while building the package
\packagest\ti\sdo\codecs\h264enc\lib Contains the codec library files on host
\packages\ti\sdo\codecs\h264enc\docs Contains user guide and release notes

\packages\ti\sdo\codecs\h264enc\apps\clie ~ Contains the makefile to built sample test application
nt\build\arm926

\packages\ti\sdo\codecs\h264enc\apps\clie ~ Contains a template (.xdt) file to used to.generate linker
nt\build\arm926\cmd command file

\packages\ti\sdo\codecs\h264enc\apps\clie =~ Contains the memory map gener
nt\build\arm926\map code

compilation of the

\packages\ti\sdo\codecs\h264enc\apps\clie Contains application C fi
nt\test\src

\packages\ti\sdo\codecs\h264enc\apps\clie = Contains heade s needed f@
nt\test\inc

he application cote

\packages\ti\sdo\codecs\h264enc\apps\clie Contains input test vee
nt\test\testvecs\input

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\output

\packages\ti\sdo\codecs\h264enc\app.

nt\test\testvecs\reference al
\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\confi

g {-'.r'_‘—_h‘_‘_:‘:_‘_‘-‘-?

2.5 Buildin

Note:

Sample test application can be built either on QT Code Composer
Studio configuration ,on DM365 EVM standalone or DM365 EVM
LINUX. The build steps are same for both. The steps specified in this
section are explained assuming simulator configuration.

1) Verify that you have an installation of TI's Code Composer Studio
version 3.3.81.6 (Service Release-11) and code generation tools as
provided in the Release Note.

2) Verify the SDXDS560R JTAG driver installation version 30329A

2-5

Installation Overview

3)

4)
5)
6)

7
8)

9)

10) Verify if the codec DMA object library

2.6 Running

2)
3)

4)
5)

2-6

11) Ensure that you have installed.t

Check SW4 and SW5 switch positions of the DM365 EVM. Bit 2 and 3
of SW4 should be set to 1 and remaining should be set to 0.

Open Setup Code Composer Studio v3.3.
Select File > Import and browse for the .ccs file and add it.

Save the configuration and exit from setup Code Composer Studio.
PDM opens and displays both ARM926 and ARM968 processors.

Right click on ARM926 and connect.

Double-click ARM926 to launch Code Composer Studio IDE for the
host processor.

Verify if the codec object library h264venc _ti 26.lib exists in the

\lib sub-directory.

\lib sub-directory.

vetsion 3.3.81.6 with Service Release 11 and code generation tools as
provided in the Release Note.

Verify the SDXDS560R JTAG driver installation version 30329A.

Check SW4 and SW5 switch positions of the DM365 EVM. Bit 2 and 3
of SW4 should be set to 1 and remaining should be set to 0. All bits
should be set to 0 for SW5.

Open Setup Code Composer Studio version 3.3.

Select File > Import, browse for the .ccs file, and add it.

Installation Overview

6) Save the configuration and exit from setup Code Composer Studio.
PDM opens and displays both ARM926 and ARM968 processors.

7) Right click on ARM926 and connect.

8) Double-click ARM926 to launch Code Composer Studio IDE for the
host processor.

9) Add the GEL file and initialize it properly

10) Select File > Load Program in Host Code Composer Studio, browse
to the \client\build\arm926\out\ sub-directory, select the codec
executable created in step 14 in Section 2.5, and load it into Code
Composer Studio in preparation for execution.

11) Select Debug > Run in Host Code Compos dio to execute

encoder on host side.

12) Double-click ARM968 in PDM to lau poser Studio IDE

ol'is given to

2.7 Building.an

pactkages\ti\sdo\codecs\h264dec\lib.

erify that codec object library library h264vdec_ti_arm926.a exists in
the \packages\ti\sdo\codecs\h264decl\lib.

3) Ensure that you have installed the LSP, Montavista arm tool chain,
XDC, Framework Components releases with version numbers that are
mentioned in the release notes.

4) For installing framework component, unzip the content at some
location and set the path of the base folder in FC_INSTALL_DIR
environment variable

5) In the folder \packages\ti\sdo\codecs\h264dec\client\build\arm926,
change the paths in the file rules.make according to your setup.

2-7

Installation Overview

6) Open the command prompt at the sub-directory
\packages\ti\sdo\codecs\h264dec\client\build\arm926 and type the
command make. This generates an executable file h264vdec-r in the
same directory.

To run the executable generated from the above steps:

1) Load the kernel modules by typing the command ./loadmodules.sh
which initializes the CMEM pools.

2) Now branch to the directory where the executable is present and type
./h264venc-r in the command window to run.

2.8 Configuration Files
This codec is shipped along with:

a

a

Encoder.

2.8.1 Generic Configuration File

1 - for compliance checking, no output file is created

o0 0 - for writing the output to the output file
Q configisthe Encoder configuration file. For details, see Section 2.8.2.
U input is the input file name (use complete path).

O output/reference is the output file name (if X is 0) or reference file
name (if x is 1) (use complete path).

U recon is reconstructed YUV output file name (use complete path).

2-8

Installation Overview

A sample testvecs.cfg file is as shown:

For output dump mode:
0

- -\test\testvecs\config\testparams.cfg
- -\test\testvecs\input\input.yuv

- -\test\testvecs\output\output.264

- -\test\testvecs\output\recon.yuv

oo
por s

For reference bit-stream compliance test mode:
1

. -\test\testvecs\config\testparams.cfg

- -\test\testvecs\input\input.yuv

- -\test\testvecs\reference\reference.264
- -\test\testvecs\output\recon.yuv

s
s

2.8.2 Encoder Configuration File

The encoder configuration file, test|
parameters required for the enco
the \client\test\testvecs\config stib-

A sample Testparams.cfg file is as

Config File Format is as follows

<ParameterName> = <ParameterValue> # Comment

HHHHH AR R R R R
Parameters

HHHH R R R R R R R

ImageWidth = 1280 # Image width in Pels, must
be multiple of 16

ImageHeight = 720 # Image height in Pels, must

be multiple of 16

FrameRate = 30000 # Frame Rate per second*1000
(1-100)

BitRate = 4000000 # Bitrate(bps) #if ZERO=>> RC
is OFF

ChromaFormat = 9 # 9 => XDM_YUV_420P

InterlacedVideo = 0 # 0: Progressive, 1 :Interlaced
TimerScale = 60. # Timer Resolution for Picture
Timing
NumUnitsInTicks = 1 # Number of Timer units per

Tick

AspectRatioWidth = 1 # Aspect Ratio Width Scale

AspectRatioHeight = 1 # Aspect Ratio Height Scale

2-9

Installation Overview

2-10

PixelRange

EnableVUIParam

EnableBufSEI

ME_Type

RC_PRESET

ENC_PRESET
Parameters

=>Y- 0 to 255, Ch/Cr-0 to

255

=> Y-16 to 235, Chb/Cr-16

to 240

=> Enable VUl parameters,
=> Disable VUl Parameters

Enable Buffering Period

SEl Message,

Disable

ME search algorithm
0 => Normal,
1 => Low Power

=> Low Delay,
=> Storage,

2 Pass,

=> None,

=> user defined

s wWNPE
Il
\

3 => User Defined

HHHHH R R R R R R R R R R

Encoder Control

HHAHH AR R R R

Profile IDC (66=baseline,

vel

IDC (e.-g- 20 = level 2.0)

Period of I-Frames
Period of IDR Frames

Number of frames to
be coded

Size of each slice
in bits

1 => Enable MB
Partitions,

0=> Single MV for each
MB

0 => CBR,
1 => VBR,
2 = Fixed QP

ProfilelDC = 66

77=main, 88=extended, 100=highprofile)
Level IDC = 30 # Le

IntraPeriod = 30

IDRFramePeriod = 0

FramesToEncode = 10

SliceSizelnBits = 2000

EnMeMul tiPart =1

RateControl =0

MaxDe lay = 1000

Delay Parameter for
Rate Control in

Installation Overview

Milliseconds

QPInit = 28 # Initial QP for RC
(0-51)
QPISlice = 48 # Quant. param for 1
Slices (0-51)
QPSlice = 48 # Quant. param for non
- 1 slices (0-51)
MaxQP = 51 # Maximum value for QP
(0-51)
MiInQP =0 # Minimum value for QP
(0-51)
IntraThrQF =I5 # Intra Thresholding QF
(0-5)
AirRate = 20 # Number of Forced Intra
MBs
UnRestrictedWvV =1 #1: Enable O:Disable
EntropyCodingMode = 1 # Entropy Coding Mode
(0 = CAVLC, 1 = CABAC)
Transform8x8Flagintra = 1 # 0 = Disable, 1 = Enable
Transform8x8Flaglnter = 1 # 0 = Disable, 1 = Enable

Disable, 1 = Enable

SequenceScalingFlag = 0 # 0

PerceptualRC =1 # 1 => Enable Perceptual
QP modulation, 0 => Disable

EncoderQuality =1 # 0 => Standard Quality,
1 => High Quality

HH A R R
Loop filter parameters

HH R R R R R R A R T

LoopFilterDisable = 0 # Disable loop Filter in
slice header(O=Filter,1=No Filter, 2 = Disable
across Slice Boundaries)

To check the functionality of the codec for the inputs other than those
provided with the release, change the configuration file accordingly, and
follow the steps as described in Section 2.4.

2-11

Installation Overview

2.8.3 Encoder Sample Base Param Setting

The encoder can be run in IVIDENC1 base class setting. The extended
parameter variables of encoder will then assume default values. The
following list provides the typical values of IVIDENCL1 base class variables.

typedef struct IVIDENC1 Params {
XDAS_Int32 size;

XDAS_Int32 encodingPreset = XDM_HIGH_SPEED; // Value
=2

XDAS_Int32 rateControlPreset = IVIDEO STORAGE;
//value = 2

XDAS_Int32 maxHeight = 720;
XDAS_Int32 maxWidth = 1280;
XDAS_Int32 maxFrameRate = 30000;
XDAS_Int32 maxBitRate = 10000000;
XDAS_Int32 dataEndianness = XDM_BYTE;
XDAS_Int32 maxInterFramelnterval = 1;

XDAS_Int32 inputChromaFormat = XDM_YUV_420SP;
//value = 9

XDAS_Int32 inputContentType = IVIDEO PROGRESSIVE;

XDAS_Int32 reconChromaFormat XDM_YUV_420SP;
//value = 9;

} IVIDENC1_Params;

typedef struct IVIDENC1 DynamicParams {

XDAS_Int32 size; /**< (@sizeField */
XDAS_Int32 inputHeight; /**< Input frame height.
*/

XDAS_Int32 inputWidth; /**< Input frame width.
*/

XDAS_ Int32 refFrameRate = 30000;
XDAS_Int32 targetFrameRate = 3000;

XDAS_Int32 targetBitRate; < 10000000 /**< Target
bit rate in bits per second. */

XDAS_Int32 intraFramelnterval = 29;

XDAS_Int32 generateHeader = O;

2-12

Installation Overview

XDAS_Int32 captureWidth; // for demo, same as
inputWith

XDAS_Int32 forceFrame; = IVIDEO _NA FRAME
XDAS_Int32 interFramelnterval = 1;
XDAS_Int32 mbDataFlag = O;

} IVIDENC1 DynamicParams;

typedef struct IVIDENC1 InArgs {

XDAS_Int32 size; /**< @sizeField */
XDAS_Int32 inputlD; /* as per application*/
XDAS_Int32 topFieldFirstFlag = O;

} IVIDENC1_InArgs;

input file shipped alon
Section 2.6 or 2.7.

modethe application additionally displays FAIL message, if the bit-
does not match with reference bit-stream.

fter the encoding is complete, the application displays a summary of
total number of frames encoded. In reference bit-stream compliance
check mode, the application additionally displays PASS message, if
the bit-stream matches with the reference bit-stream.

If you have chosen the option to write to an output file (X is 0), you can
use any of the standard file comparison utility to compare the codec
output with the reference output and check for conformance.

2.10 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2-13

Installation Overview

This page is intentionally left blank

2-14

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic /\ Page

3.1 Overview of the Test Application 3-2
3.2 Handshaking Between Application and Algorithm 3-6
3.3 Cache Management by Application 3-9
3.4 Sample Test Application 3-11

\ad

3-1

Sample Usage

3.1 Overview of the Test Application

The test application exercises the IVIDENC1 base class of the H.264

Encoder library. The main test application files are h264encoderapp.c and

h264encoderapp.h. These files are available in the \client\test\src and
\client\test\inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test

application.
Test Application XDAIS-XDM Interface Codec Library
Es
£ &
s =
2
3 k5 algNumAllot) ———»
é 5 g alghllos) ——»
%E E alglnit() _—
algActivate =
% control() 3
g8 process{ >
controli) 3
algDeactivatel) -
s
=22
E—rﬂ = algNumAlloc) ——»
< Zo algFreejf ——»

Figure 3-1. Test Application Sample Implementation

3-2

The test application is divided into four logical blocks:
U Parameter setup

O Algorithm instance creation and initialization

U Process call
a

Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configlration parameters to
be set at initialization. For example, a video codecseqtiires parameters

1) Opens the generic configuratio

2) Opens the Encoder configurati

3) Setsthe IVIDENC
from the Testparam

efs of the TH264VENC Params structure
from the testparams.cfqg file.

3.1.2 Algorit

ory records it requires.

2) Yalghalloc () - To query the algorithm about the memory requirement
to be filled in the memory records.
3) algInit() - Toinitialize the algorithm with the memory structures

provided by the application.

A sample implementation of the create function that calls
algNumAlloc (), algAlloc(),and algInit () insequence is provided
in the ALG_create () function implemented in the alg_create.c file.

After successful creation of the algorithm instance, the test application
does DMA resource allocation for the algorithm.

3-3

Sample Usage

3.1.3 Process Call

Note:

DMANS3 function and IDMA3 interface is not implemented in DM365
codecs. Instead, it uses a DMA resource header file, which gives the
framework the flexibility to change DMA resource to codec.

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change d
calling the control () function with the xpm PPARAMS command.

2)

3)

gorithm can be controlled using
on 4.2.1.10). The inputs to the

4) en code a single frame of data.

Host
System
application

HDVICP
Tasks

% lT Interrupt between
HDVICP and Host
a@; Iw Process call frame n+1
H Transfer of

l ! tasks at Host

f

‘V

fv f
Host Video

]
\,/ Task

[Host system

I
MB level tasks for MB level tasks for tasks
frame n frame n+1 B HDVICP Busy

Figure 3-2. Process Call with Host Release

3-4

Note:

Q The process call returns control to the application after the initial
setup related tasks are completed.

Q Application can schedule a different task to use the Host resource
released free.

All service requests from HDVICP are handled through interrupts.

Application resumes the suspended process call after handling the
last service request for HDVICP.

Q Application can now complete concluding Wf the process
call.

the scope of the algActivate ()
functions. The algaActivate ()
activate and deactivate the algorith

1) control(

commands.

process () - To cal the 2 vith_apptepriate input/output buffer

e test application, after calling algbDeactivate (), the output
ither dumped to a file or compared with a reference file.
3.1.4 Algorithm Instanee Deletion

Once decoding/encoding is complete, the test application deletes the
current algorithm instance The following APIs are called in a sequence:

1) algNumAlloc () - To query the algorithm about the number of
memory records it used.

2) algFree () - To query the algorithm to get the memory record
information, which can be used by the application for freeing them up.

A sample implementation of the delete function that calls algNumAlloc ()
and algFree () in sequence is provided in the ALG delete () function
implemented in the alg_create.c file.

3-5

Sample Usage

3.2 Handshaking Between Application and Algorithm

3.2.1 Resource Level Interaction

Following diagram explains the resource level interaction of the application
with framework component and codecs. Application uses XDM for
interacting with codecs. Similarly, it uses RMAN to grant resources to the

codec.
| |
Application Framework component CODEC
|
()
Creation |
L) |
() I f \
Register .
Resource | I VICP b_uffers
L) memories, DMA
| channel
—_—— I information and
Assign details of
Resource < I iresfxns
implemented by
D | the codec.
I N J
(d /)
Control and Encoding
Process < /*‘-\ Decoding
| —
i & J
e R
FiSS Details of
Re_source and resource held by
Exit codec
_ ,

Codec
Deletion

Figure 3-3. Resource Level Interaction.

3-6

3.2.2 Handshaking Between Application and Algorithms

Application Side

_process()

Figure 3-4. Interaction Bethion a

Application provides the algorithm with its implementation of functions for

the video task to move to SEM-pend state, when the execution happens in

the co-processor. The algorithm calls these application functions to move
the video task to SEM-pend state.

Codec

#include <./ires_hdvicp.h>
void _MyCodeclSRFunction();
MYCODEC: : IVIDENC1: :process() {

... set up for frame encoder
HDVICPSYNC_start(handle,
HDVICPSYNC FIQ,
handle->hdvicpResourceHandles [0])

HDVICPSYNC wait (((H264VENC_TI_Obj

*)handle) ->hdvicpResourceHandles [0]) ;

/* Wait until ARM968 set interrupt */
// Release of HOST

. End of frame processing

3

void H264VENC_TI_isrfunction
(I1ALG_Handle handle)

{ H264venc_TIIl_Obj *h264venc = (void
*)handle;

Framework Provided
HDVICP Callback APIs

int _doneSemaphore;
HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

instalINonBiosISR(handle,
hdvicpHandle, ISRFunction);
3

tVICP_register();

h
| VICP_done();
VICP_unregister();

shares Host resource among multiple

is with the FC resource manager — outside the

Q Coded implementation is OS independent.

hdvicpHandle)

ctjons to be implemented by the application are:

ICPSYNC_start(1ALG_Handle handle,
DVICPSYNC InterruptType intType,

IRES_HDVICP_Handle

This function is called by the algorithm to register the interrupt with the
OS. This function also configures the Framework Component interrupt

synchronization routine.

2) HDVICPSYNC wait (IRES_HDVICP_Handle hdvicpHandle)

This function is a FC call back function use to pend on a semaphore.

Whenever the codec has completed the work on Host processor (after
transfer of frame level encode/decode to HDVICP) and needs to relive
the CPU for other tasks, it calls this function.

3-7

Sample Usage

This function of FC implements a semaphore which goes into pend
state and then the OS switches the task to another non-codec task.

Interrupts from ARM968 to Host ARM926 is used to inform when the
frame processing is done. HDVICP sends interrupt which maps to INT
No 10 (KALINT9 Video MJcP) of ARM926 INTC. After receiving this
interrupt, the semaphore on which the codec task was waiting gets
released and the execution resumes after the HDVICPSYNC wait ()
function.

The following figure explains the interrupt interaction between
application and codec.

HOST ARM926

Framework calls

Encoder Init

»
»

4

process

Framework Calls Encode frame

A 4

e Codec lib calls

HDVICPSYNC_start to register
the ISR with framework

e Codec library int
interrupt to HDV!
processing

e Codec calls framework /ﬁ

Wframe processing
. e end send interrupt to Host

hat it has finished

ernally sends
ICP to start

v

il

HDVICPSYNC_wait()*uses+o make,
the codec task sleep A

|}

™

b=

Different task running -
Inform Host through interrupt

\
]

e Perding*qver
o Exit HRVICRSYNC aitj)/l

This interrupt

should be serviced

N

of frame proces

back to framework

1
1
:
1
! by framework
1
1
1
1

sing and returns

1
1
1
1
1
1
1
1
1
Codec task wakes up to finish end :
1
1
1
1
1
1
1
1

Figure 3-5. Interrupt Between Codec and Application.

3-8

3.3 Cache Management by Application

3.3.1 Cache Usage By Codec Algorithm

3.3.2 Cache Related Call Back Functions for Standalone

1
I
I
Application Side |
:
I

_process ()

Figure 3-6.

3.3.3 Cache and Memo

The codec source code and data, which runs on Host ARM926 can be
placed in DDR. The host of DM365 has MMU and cache that the
application can enable for better performance. Since the codec also uses
DMA, there can be inherent cache coherency problems when application
turns on the cache.

To resolve the cache coherency issues, codec |ibrary uses cache

call back functions dummy. DM365 is the HDVICP
call back functions for this use.

Codec

#include <./ires_hdvicp.h>

void _MyCodecISRFunction();
MYCODEC: : IVIDEN 1::process(Q) {
/* Frame level processing */

Host_DCache_Flush();
/* Now DMA data to ARM968 */

DMAQ);
/*... Other frame processing */

DVICP Callback APIs

void Host_DCache_ Flush(void
.y *hdvicpHandle)

ARM926_CleanFlush_Dcache();
}

Interaction Between Codec and Application.

lated Call Back Functions for Linux

solve the cache coherency and virtual to physical address issues, FC
provides memory util library. These following functions can be used by
codecs to resolve the cache coherency issues in Linux:

U cacheInvalidate
U cacheWb

U cachewWbInv
a

getPhysicalAddr

3-9

Sample Usage

3.33.1

3.3.3.2

3.3.3.3

3.3.34

3-10

cachelnvalidate

cacheWb

cacheWblnv

getPhysicalAddr

In cache invalidation process, the entries of the cache are deleted. This
API invalidates a range of cache.

Void MEMUTILS cacheInv (Ptr addr, Int sizeInBytes)

This API writes back cache to the cache source when it is necessary.

Void MEMUTILS cacheWb (Ptr addr, Int sizelInBytes)

This API writes back cache to the cache source
deletes the cache contents.

it is necessary and

Void MEMUTILS cacheWbInv (Ptr eInBytes)

This API obtains the physical add

Void* MEMUTILS getPhysicalAdd addr))

3.4 Sample Test Application

The test application exercises the 1VIDENC1 base class of the H.264
Encoder.

Table 3-1. process () Implementation

/* Main Function acting as a client for Video encode Call*/
/* Acquiring and intializing the resources needed to run the
encoder */

iresStatus (IRES_Status) RMAN_init();

iresStatus (IRES_Status) RMAN_register(&IRESMAN_EDMA3CHAN,
(IRESMAN_Params *)&configParams);

[Encoder creation ---——-——————————— */
handle = H264VENC_create(&fxns, ¶ms)

/*Getting instance of algorithms that implements IALG and
IRES functions*/
iErrorFlag = RMAN_assignResources((I1ALG_Handle)handle,
&H264VENC_TI1_IRES, /* IRES_Fxns* */
1 /* scratchld */);
/* Get Buffer information */
iErrorFlag = H264VENC_control (
handle, // Instance Handle
XDM_GETSTATUS, // Command
&dynamicparams, // Pointer to Dynamicparam structure
&status // Pointer to the status structure
/*SET BASIC INPUT PARAMETERS */
iErrorFlag = H264VENC_control (
handle, // Instance Handle
XDM_GETSTATUS, // Command
&dynamicparams, // Pointer to Dynamicparam structure
&status // Pointer to the status structure
):
/* Based on the Num of buffers requested by the algorithm,
the application will allocate for the same here
*/
AllocateH26410Buffers(
status, // status structure
&inobj, // Pointer to Input Buffer Descriptor
&outobj) // Pointer to Output Buffer Descriptor

/*Set Dynamic input parameters */
iErrorFlag = H264VENC_control(
handle, // Instance Handle
XDM_GETSTATUS, // Command
&dynamicparams, // Pointer to Dynamicparam structure
&status // Pointer to the status structure

):

/* for Loop for encode Call for a given no of frames */
For(;;)

/* Read the input frame in the Application Input Buffer */
ReadlnputData (inFile);

/* Start the process : To start Encoding a frame */
/* This will always follow a H264VENC_encode_end call */

3-11

Sample Usage

3-12

) 2 */
iErrorFlag = H264VENC_encode (
handle, // Instance Handle - Input
&inobj, // Input Buffers - Input
&outobj, // Output Buffers - Output
&inargs, // Input Parameters - Input

&outargs // Output Parameters - Output
/* Get the statatus of the Encoder using control */
H264VENC_control (
handle, // Instance Handle
XDM_GETSTATUS, // Command - GET STATUS
&dynamicparams, // Input
&status // Output

):

/* end of Do-While loop - which Encodes frames */
/* Free Input and output buffers */
FreeH26410Buffers(

&inobj, // Pointer to Input Buffer Descriptor
&outobj // Pointer to Output Buffer Descriptor);
/* Free assigned resources */
RMAN_freeResources((1ALG_Handle) (handle),

&H264VENC_TI1_IRES, /* IRES_Fxns* */

/* Delete the encoder Object handle*/
H264VENC_delete(handle);
/* Unregister protocal*/
RMAN_unregister (&I1RESMAN_EDMA3CHAN) ;
RMAN_exit(Q);

Note:

This sam t
control codexlt

Chapter 4

APl Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic /\ Page

4.1 Symbolic Constants and Enumerated Data Types 4-2
4.2 Data Structures 4-8
4.3 Interface Functions 4-31

L

4-1

API Reference

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

4.1.1 Common XDM Symbolic Constants and Enumerated Data Types

Table 4-1. List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name

Description or,Evaluation

PN

IVIDEO_FrameType IVIDEO_I_FRAME
IVIDEO_P_FRAME

IVIDEO_B_FRAME
IVIDEO_IDR_FRAME
IVIDEO_I1

RAME

IVIDEO_IP_FRA

IIDEO_PP_FRAME

1VIDEO_PB_FRAME

1VIDEO_BI_FRAME

1VIDEO_BP_FRAME

4-2

Intra codedfr

pterlaced frame, first field is an |
amé, second field is a P frame.

Interlaced frame, first field is an |
frame, second field is a B frame.
Not supported in this version of
H.264 Encoder.

Interlaced frame, first field is a P
frame, second field is an | frame.
Not supported in this version of
H.264 Encoder.

Interlaced frame, both fields are P
frames.

Interlaced frame, first field is a P
frame, second field is a B frame.
Not supported in this version of
H.264 Encoder.

Interlaced frame, first field is a B
frame, second field is an | frame.
Not supported in this version of
H.264 Encoder.

Interlaced frame, first field is a B
frame, second field is a P frame.
Not supported in this version of
H.264 Encoder.

Group or Enumeration Class

Symbolic Constant Name

Description or Evaluation

IVIDEO_ContentType

IVIDEO_RateCon

I1VIDEO_SkipMode

1VIDEO_BB_FRAME

IVIDEO_MBAFF_1_FRAME

IVIDEO_MBAFF_P_FRAME

1VIDEO_MBAFF_B_FRAME

IVIDEO_MBAFF_IDR_FRAM

IDEO_STORAGE

1VIDEO_USER_DEFINED

1VIDEO_TWOPASS

1VIDEO_RATECONTROLPRES
ET_DEFAULT

1VIDEO_FRAME_ENCODED

Interlaced frame, both fields are B
frames.

Not supported in this version of
H.264 Encoder.

Intra coded MBAFF frame.
Not supported in this version of
H.264 Encoder.

Forward inter coded MBAFF frame.
Not supported in this version of

ported in this version of
ncoder.

Contenktype is not applicable.
Encoder assumes
IVIDEO PROGRESSIVE.

Progressive video content.
This is the default value.

Interlaced video content.

No rate control is used

Constant Bit-Rate (CBR) control for
video conferencing.

This is the default value.

Variable Bit-Rate (VBR) control for
local storage and recording.

User defined configuration using
advanced parameters (extended
parameters).

Two pass rate control for non real
time applications.

Not supported in this version of
H.264 Encoder.

Setto IVIDEO LOW_DELAY

Input content encoded

4-3

API Reference

Group or Enumeration Class Symbolic Constant Name Description or Evaluation
1VIDEO_FRAME_SKIPPED Input content skipped, that is, not
encoded

IVIDEO_SKIPMODE_DEFAUL Default value is set to
T IVIDEO FRAME ENCODE

XDM_DataFormat XDM_BYTE Big endian stream.
This is the default value.

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
H.264 Encoder.

XDM_LE_32

XDM_ChromaFormat XDM_CHROMA _NA

XDM_YUV_420P

XDM_YUV_422

YUV 4:2:2 interleaved (big endian).
Not supported in this version of
H.264 Encoder.

YUV 4:2:2 interleaved (little endian).
Not supported in this version of
H.264 Encoder.

YUV 4:4:4 planar.
Not supported in this version of
H.264 Encoder.

M_YUV_411P YUV 4:1:1 planar.
Not supported in this version of
H.264 Encoder.

XDM_GRAY Gray format.
Not supported in this version of
H.264 Encoder.

XDM_RGB RGB color format.
Not supported in this version of
H.264 Encoder.

XDM_YUV_420SP YUV 420 semiplaner (Luma 1st

plane, * CbCr interleaved 2nd
plane)

4-4

Group or Enumeration Class Symbolic Constant Name

Description or Evaluation

XDM_ARGB8888
XDM_RGB555
XDM_RGB565
XDM_YUV_4441LE

XDM_Cmd1d XDM_GETSTATUS

XDM_SETPARAMS

XDM_RESET

XDM_SETDEFAULT

XDM_FLUSH

GETBUFI

XDM_EncodingP

DM_HIGH_QUALITY

XDM_HIGH_SPEED
XDM_USER_DEFINED
XDM_EncMode

XDM_ENCODE_AU

XDM_GENERATE_HEADER

Alpha plane

RGB 555 color format

RGB 556 color format

YUV 4:4:4 interleaved (little endian)

Query algorithm instance to fill
Status structure

Set run-time-tdynamic parameters
through the DynamicParams

Query the algorithm version.
Not supported in this version of
H.264 Encoder.

Query algorithm instance regarding
the properties of input and output
buffers.

Default setting of the algorithm
specific creation time parameters.
This uses XDM HIGH QUALITY
settings.

Set algorithm specific creation time
parameters for high quality (default
setting).

Set algorithm specific creation time
parameters for high speed.

User defined configuration using
advanced parameters.

Encode entire access unit. This is
the default value.

Encode only header.

4-5

API Reference

Group or Enumeration Class

Symbolic Constant Name

Description or Evaluation

XDM_ErrorBit

XDM_APPLIEDCONCEALMENT

XDM_INSUFFICIENTDATA

XDM_CORRUPTEDDATA

XDM_CORRUPTEDHEADER

XDM_UNSUPPORTED INPUT

XDM_UNSUPPORTEDPARAN,

XDM_FATALERRO

Bit 9
QO 1- Applied concealment
a O0-lIgnore

Bit 10

Q 1 - Insufficient data
a 0-lIgnore

Bit 11

Q 1 - Data problem/corruption
a O0-lIgnore

Bit 12

1 — Unsupported input
parameter or configuration
— Ignore

Qa — Fatal error (stop encoding)
0 — Recoverable error

4-6

4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant Name

Description or Evaluation

IH264VENC_Level

IH264VENC_LEVEL_10

IH264VENC_LEVEL_1b

IH264VENC_LEVEL_11

IH264VENC_LEVEL_12

IH264VENC_LEVEL_13

IH264VENC_LEVEL_20

IH264VENC_LEW

IH264VENC_LEVEL

Level 1.0 identifier for H.264
Encoder

Level 1.b identifier for H.264
Encoder

Level 1.1 jd

el 2.2 identifier for H.264
Encoder

Level 3.0 identifier for H.264
Encoder

Level 3.1 identifier for H.264
Encoder

4-7

API Reference

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures
This section includes the following common XDM data structures:
XDM_ BufDesc
XDM1_BufDesc
XDM_SingleBufDesc
XDM1_SingleBufDesc
XDM_AlgBufInfo
IVIDEO BufDesc
IVIDEOl1 BufDescIn

IVIDENC1 Fxns

IVIDENC1 Paramg

IVIDENC1 DynamidgpPa

0O 00O 00O 000 0O D0 0O O

4-8

4.2.1.1 XDM_BufDesc

| Description

This structure defines the buffer descriptor for input and output buffers.
| Fields
Field Data type Input/ Description

Output

**pbufs XDAS_Int8 Input Pointer to the vector containing er addresses
numBufs XDAS_Int32 Input Number of buffers
*bufSizes XDAS_Int32 Input Size of each buffer i

4.2.1.2 XDM_AIgBufinfo

| Description
This structure defines the buffer inform
buffers. This structur
with the XDM GETBUF
| Fields
Field
minNumInBufs D
minNumOutBufs XDA Number of output buffers

minInBufSize[XDM_MAX A Output Size in bytes required for each input buffer
_10_BUFFE
minOutBufSize[XDM_MA XDAS Int32 Output Size in bytes required for each output buffer
X_10_BUFFERS]

R
Nefe:

For H.264 High Profile Encoder, the buffer details are:

a Number of input buffer required is 2 for YUV 420P with chroma
interleaved.

Number of output buffer required is 1.
The input buffer sizes (in bytes) for worst case HD 720 format are:

For YUV 420P:
Y buffer = 1280 * 720
UV buffer = 1280 * 360

4-9

API Reference

The above input buffer size calculation is done assuming that the
capture width is same as image width. For details on capture width,
see Section 4.2.1.10.

For interlaced sequence, encoder ignores the input field buffers if they
are stored in interleaved or non-interleaved format. But, it expects the
start pointer of top or bottom field be given to it during the process call
of the top or bottom fields, respectively. The pitch to move to the next
line of the field is conveyed using captureWidth of DynamicParams.

Q There is no restriction on output buffer size except that it should be
enough to store one frame of encoded data.The output buffer size
returned by the XDM GETBUFINFO command asstmes that the worst
case output buffer size is (frameHeight*fr

These are the maximum buffer sizes, but yot can-reconfigure
depending on the format of the bit-stream’ /“\

4.2.1.3 XDM1_BufDesc
| Description

This structure defines the buffer criptar'forinput and output buffers in
XDM 1.0 IVIDENCL.

| Fields
m

. V
Field Data type Input/

Output
ﬁ P

numBufs mber of buffers

descs[XDM_MAX_1
0_BUFFERS]

r y of buffer descriptors.

| Description

re defines the single buffer descriptor for input and output
XDM 1.0 IVIDENC1.

| Fields
Field Data type Input/ Description
Output
*buf XDAS_Int8 Input Pointer to a buffer address
bufSize XDAS_Int32 Input Size of the buffer in bytes

4-10

4.2.15 XDM1_SingleBufDesc

| Description
This structure defines the single buffer descriptor for input and output
buffers in XDM 1.0 IVIDENCL1.
| Fields
Field Data type Input/ Description
Output
*buf XDAS_Int8 Input
bufSize XDAS_Int32 Input
accessMask XDAS_Int32 Input the algorithm
through
at does
en bits
re4s not suppbrted in this
4.2.1.6 IVIDEO_BufDesc
| Description v
This structute defines the huffer-descriptor for input and output buffers.
| Fields /_3)
Field M Inpu Description
Output
ratiilii.-.
numBufs 32 Input Number of buffers
width DAS_Int32 Input Padded width of the video data
*bufs[XDM_M AS_Int8 Input Pointer to the vector containing buffer
FERS] addresses
bufSizes[XDM_MAX_ XDAS_Int32 Input Size of each buffer in bytes
BUFFERS]
numBufs XDAS_Int32 Input Number of buffers

4-11

API Reference

4.2.1.7 IVIDEO1_BufDescIn

| Description
This structure defines the buffer descriptor for input video buffers.

| Fields

Field Data type Input/ Description

Output

numBufs XDAS_Int32 Input Number of buffers in bufDesc[]

frameWidth XDAS_Int32 Input

frameHeight XDAS_Int32 Input

framePitch XDAS_Int32 Input

bufDesc[XDM_MAX_10_B XDM1_Singl Input
UFFERS] eBufDesc

4.2.1.8 IVIDENC1_Fxns

| Description
This struictu ntains pointers, to all the XDAIS and XDM interface
functions
| Fields
Field ta tirpe put/ Description
\ Output
o
ialg I1ALG_FxRs Input Structure containing pointers to all the XDAIS
interface functions.
For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).
*process XDAS_Int32 Input Pointer to the process () function.
*control XDAS_Int32 Input Pointer to the control () function.

4-12

4.2.1.9 [IVIDENC1_Params

| Description
This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.
| Fields
Field Data type Input/ Description
Output /\>
size XDAS_Int32 Input Size of the basic gf extended (if being used)
encodingPreset XDAS_Int32 Input
rateControlPreset XDAS_Int32
entimaration-for details,
Default value = IVIDEO_STORAGE.
maxHeight Maximum video height to be supported in

maxWidth

pixels.
Default value = 720

Maximum video width to be supported in
pixels.
Default value = 1280.

Maximum frame rate in fps * 1000 to be
supported.
Default value = 30000.

maxBitRate PAS_Int32 Input Maximum bit-rate to be supported in bits per
second.
Default value = 10000000.
dataEndianness XDAS_Int32 Input Endianness of input data. See
XDM_DataFormat enumeration for details.
Default value = XDM_BYTE.
maxInterFramelnterv XDAS_Int32 Input Distance from I-frame to P-frame:
al Q 1-IfnoB-frames

O 2-Toinsert one B-frame

This parameter is not supported as B-frames

are not supported. Set value = 1

4-13

API Reference

Field

Data type Input/ Description
Output

inputChromaFormat

inputContentType

reconChromaFormat

XDAS_Int32 Input Input chroma format. See
XDM_ChromaFormat and
IH264VENC_ChromaFormat enumeration
for details.

Set value as = XDM_YUV_420SP. Other
values are not supported.

XDAS_Int32 Input Input content type. See
IVIDEO_ ContentType enumeration for
details.
Default value = 1VI

O_‘PROGRESSIVE.

XDAS_Int32 Input Chroma format
buffers.
Set value

Note:

rameSizeinMbs values.

For example, consider you have to check if the following values are
supported for level 2.0:

O maxHeight =480
O maxWidth =720

The supported maxFrameSizeinMbs value for level 2.0 as per Table A.1
— Level Limits is 396.

Compute the expression as:

maxFrameSizeinMbs >= (480%*720) / 256

4-14

The value of maxFrameSizeinMbs is 1350 and hence the condition is
not true. Therefore, the above values of maxHeight and maxwidth are
not supported for level 2.0.

The maximum value for maxFrameRate and maxBitRate is 30 (30000)
and 10000000 respectively.

Use the following expression to check the supported maxFrameRate
values for each level:

maxFrameRate <= maxMbsPerSecond/ FrameSizeinMbs;

See Table A.1 — Level Limits in ISO/IEC 14496-10 fq
values of maxMbsPerSecond.

he supported

Use the following expression to calculate Fras

match the limit supported by encoder, the“encoder creation will fail.

Since the actual hei width are i

operation with dynamj a rs, the leyel-based checking is done
during the control opekatign. 5

4.2.1.10 IVIDENC1 _DynamicPara

| Description ;

Field Data type Input/ Description
Output

size M " INnt32 Input Size of the basic or extended (if being used) data
structure in bytes.

Default value is size of
IVIDENC1_DynamicParams structure.

| Fields

4-15

API

Reference

Field

Data type Input/

Output

Description

4-16

inputHeight XDAS_INnt32 Input

inputWidth

refFrameRate Int32

XDAS_

Input

Height of input frame in pixels. Input height can
be changed before start of encoding within the
limits of maximum height set in creation phase.
inputHeight must be multiple of two.
Minimum height supported is 96. Irrespective of
interlaced or progressive content, input height
should be given as frame height.

Note:

efault value = 720.

Width of input frame in pixels. Input width can be
changed before the start of encoding within the
limits of maximum width set in creation phase.
inputWidth must be multiples of two.
Minimum width supported is 128.

Note: When the input width is a non-multiple of
16, the encoder expects the application to pad
the input frame to the nearest multiple of 16 to
the right of the frame. In this case, application
should set inputWidth to actual width but
should provide the padded input YUV data buffer
to encoder. The encoder then puts the difference
of the actual width and padded width as crop
information in the bit-stream.

Default value = 1280

Reference or input frame rate in fps * 1000. For
example, if the frame rate is 30, set this field to
30000.

This parameter is not supported. Should be set
equal to targetFrameRate.

Field Data type Input/ Description

Output

targetFrameRate XDAS_Int32 Input Target frame rate in fps * 1000. For example, if
the frame rate is 30, set this field to 30000.
Default value = 25000. Frame rate should be in
multiple of 0.5 fps

targetBitRate XDAS_Int32 Input Target bit-rate in bits per second. For example, if
the bit-rate is 2 Mbps, set this field to 2000000.
Default value = 10000000.

intraFramelnter XDAS_Int32 Input Interval between two consecutive intra frames.

val

generateHeader XDAS_Int32 Input

captureWidth XDAS_Int32 Input

page width - If capture width is
encoded image width, then
capture width is ignored and encoded image
width is used as pitch.

>= encoded image width - capture width is
sed as pitch.

or interlaced content, captureWidth should
be equal to the pitch/stride value needed to move
to the next row of pixel in the same field.
forceFrgm XDAS: 1

32 ut Force the current (immediate) frame to be

encoded as a specific frame type.
Only the following values are supported

a IVIDEO_NA_FRAME - No forcing of any
specific frame type for the frame.

Q IVIDEO_1_FRAME - Force the frame to be
encoded as | frame.

Q IVIDEO_IDR_FRAME - Force the frame to
be encoded as an IDR frame.

Default value = IVIDEO_NA_ FRAME.

interFramelnter XDAS_Int32 Input Number of B frames between two reference

val frames; that is, the number of B frames between
two P frames or I/P frames.
This parameter is not supported. It should be set
to 0.

4-17

API Reference

Field Data type Input/ Description
Output
mbDataFlag XDAS_Int32 Input Flag to indicate that the algorithm should use MB

data supplied in additional buffer within inBufs.
This parameter is not supported. It should be set
to 0.

4-18

Note:

The following are the limitations on the parameters of
IVIDENC1 DynamicParams data structure:

Q inputHeight <= maxHeight
inputWidth <= maxWidth

Q refFrameRate <= maxFrameRa;

Q targetFrameRate <= maxErameRate

Q targetFrameRate sho

Q The value of the refF Rate arid ~targetFrameRate
should be the same.

a

a ust be multiples of two.

argetFrameRate
d level limits. For an

multiple of 16 at the bottom/right of the frame. In this
lication sets the inputHeight/inputWidth to the

YWV data buffer to the encoder.

en inputWidth is non-multiple of 16, the encoder expects
apture width as padded width(nearest multiple of 16). If the
capture width is 0 or less than padded width, then the capture
width is assumed to be the padded width. In all other cases, the
capture width provided through input parameter is used for input
frame processing.

Q The encoder flag errors for incorrect values of inputWidth,
inputHeight, targetBitRate, and targetFrameRate. For
other parameters, the encoder will issue a warning and continue
encoding with default parameters.

Q intraFramelnterval is used to signal the | frame interval in
H.264. There is one more field in extended dynamic params
called idrFramelnterval, which specifies the IDR frame
interval for H.264. With each IDR frame, SPS and PPS is sent.
The first frame of the sequence is always an IDR frame

4.2.1.11 IVIDENC1_InArgs

| Description
This structure defines the run-time input arguments for an algorithm
instance object.
| Fields
Field Data type Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended(if being used) data
structure in bytes.
inputiD XDAS_Int32 Input Identifier to attach with the*corresponding

topFieldFirstFlag XDAS_Int32 Inpu

r. This field is only applicable for interlaced
tent and not progressive. Currently, supported
is XDAS_TRUE.

| Description

s parameters that describe the status of an algorithm

| Fields
Field M e Input/ Description
Output

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

data XDM1_SingleBuf Input Buffer descriptor for data passing

Desc

bufinfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

4-19

API Reference

4.2.1.13 IVIDENC1_OutArgs

| Description
This structure defines the run-time output arguments for an algorithm
instance object.
| Fields
Field Data type Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended.(if being used)
data structure in bytes.
extendedError XDAS_Int32 Output Extended error code. See*XDM_ ErrorBit
bytesGenerated XDAS_Int32 Output
encodedFrameType XDAS_Int32 Output

inputFrameSkip XDAS_Int32 :
DEO_SkipMode enumeration for details.
outputlD XDAS Ougput ID corresponding to the encoder buffer.
Thi§ can also be used to free the corresponding
image buffer for further use by the client
application code.

In this encoder, outputlD is set to
IVIDENC1_InArgs::inputlD.
encodedBuf, Output The encoder fills the buffer with the encoded bit-
stream. In case of sequences with only | and P
frames, these values are identical to outBufs
passed in IVIDENC1_Fxns: :process()
The encodedBuf.bufSize field returned
corresponds to the actual valid bytes available in
the buffer.

The bit-stream is in encoded order.

The outputld and encodedBuf together
provide information related to the corresponding
encoded image buffer.

reconBufs IVIDEO1_BufDes Output Pointer to reconstruction buffer descriptor.
c

4-20

4.2.2 H.264 Encoder Data Structures

This section includes the following H.264 Encoder specific extended data
structures:

IH264VENC Params

IH264VENC DynamicParams

W]
]
U IH264VENC_InArgs
U IH264VENC Status
]

IH264VENC OutArgs

U IH264VENC_Fxns

4221 |H264VENC_Params

| Description
This structure defines the creatig ahd any other
implementation specific paramete 6724 Encoder instance object.
The creation parameters are defined DM data structure,
IVIDENC1 Params.
| Fields \
Field Data type In UV escripti
/_\ Output
i N Y
videncParams IVIDENC1_Param Input See IVIDENC1 Params data structure for

details.

The size parameter in videncParams is
set to size of IH264VENC_Params
structure by default while using extended
parameters.

profileld Profile identification for the encoder.

The current version supports High Profile.
The value must be set to 66(Base line
profile), 77(main profile), 100(high profile).
Default value = 100.

levelldc Level identification for the encoder. See
IH264VENC_Level enumeration for
details.

Default value = 1H264VENC_LEVEL_31.

aspectRatioX XDAS_Int32 Input X scale for Aspect Ratio.
The value should be greater than 0 and co-
prime with AspectRatioY.
Default value = 1

aspectRatioY XDAS_Int32 Input Y scale for Aspect Ratio
The value should be greater than 0 and co-
prime with AspectRatioX.
Default value = 1.

4-21

API Reference

Field

Data type Input/ Description
Output

pixelRange

meAlgo

timeScale

numUnitsiInTicks

enableVUlparams

entropyMode

transform8x
traFrame

transform8x8Flagln
terFrame

SequenceScalingFla
g

4-22

XDAS_Int32 Input The range for the luma and chroma pixel
values
O 0 - Restricted Range
Q 1 - Full Range (0-255)
Default value = 1

XDAS_Int32 Input The type of Motion Estimation Search
Algorithm
O 0 - Normal Search
O 1 - Low Power Search with vertical
GMV
Default value = 0
This feature is 0

present when encoder
QUALITY or

XDAS_Int32 Input ime fure Timing

XDAS_Int32 i Resolution constituting the

Flag for Enable VUI Parameters
O 0 - Disable VUI Parameters
O 1 - Enable VUI Parameters
Default value = 0.

Flag for Entropy Coding Mode
a 0-CAVLC

a 1-CABAC

Default value = 1.

2 Input Flag for 8x8 Transform for | frame
Q 0 - Disable
Q 1-Enable
Default value = 1.

Input Flag for 8x8 Transform for P frame
Q O0-Disable
Q 1-Enable
Default value = 0.

XDAS_Int32 Input Flag for use of Sequence Scaling Matrix
Q O0- Disable
aQ 1-Auto

a 2-Low

O 3 - Moderate
Q 4 -High
Default value = 1.

Field Data type Input/ Description

Output

resetHDVICPeveryFr XDAS_Int32 Input Flag to reset HDVICP at the start of every
ame frame being encoded. This is useful for

multi-channel and multi-format encoding.

Q 1-ON

Q O0-OFF

Default value = 1.
disableHDVICPevery XDAS_Int32 Input Flag to disable HDVICP at the start of every
Frame frame being encoded. This is useful for

power saving.

Q 1-ON

Q O0-OFF

Default value =
encQuality XDAS_Int32 Input ality encoding

unrestrictedvVv XDAS_Int32 Input

4-23

API Reference

4.2.2.2 [H264VENC_DynamicParams

| Description
This structure defines the run-time parameters and any other
implementation specific parameters for a H.264 Encoder instance object.
The run-time parameters are defined in the XDM data structure,
IVIDENC1 DynamicParams.

| Fields

Field Data type Input/ Description

Output />

videncDynamicParams IVIDENC1_DynamicPar Input
ams

intraFrameQP XDAS_Int32 antization Parameter (QP) of I-

ames in fixed QP mode. Valid

value is 0 to 51. It is useful only
hen:

rateControlPreset of

VIDENC1 Params is equal

to IVIDEO_NONE.

Q" RcAlgo = 2 (Fixed QP)

O targetBitRate=0

Default value = 28

interPFrameQP Quantization Parameter (QP) of P-

frames in fixed QP mode. Valid

value is 0 to 51. It is useful only
when:

O rateControlPreset of
IVIDENC1 Params is equal
to IVIDEO_NONE.

O RcAlgo =2 (Fixed QP)

O targetBitRate=0

Default value = 28

Initial Quantization (QP) for the first
frame. Valid value is 0 to 51. The
parameter is applicable only when
rate-control is enabled. Should be
set based on the target bit-rate.
Default value = 28

rcQMax XDAS_Int32 Input Maximum value of Quantization
Parameter (QP) to be used while
encoding. Valid value is 0 to 51. The
value for recQMax should not be
less than rcQMin. The parameter is
applicable only when rate-control is
enabled.
Default value = 45

4-24

Field Data type Input/ Description
Output

rcQMin XDAS_Int32 Input Minimum value of Quantization
Parameter (QP) to be used while
encoding. Valid value is 0 to 51. The
value for rcQMin should not be
greater than rcQMax. The
parameter is applicable only when
rate-control is enabled.
Default value = 0.

airRate XDAS_Int32 Input Parameter for forced Intra MB

number of forced Intra
ach frame.

XDM HIGH QUAR or
encQuality =1

sliceSize XDAS_Int32
0 — Single Slice per Frame

>0 — Multiple Slices with the
size of each slice <= sliceSize

encQuality =1

Minimum slice size supported is

1024 bits.

IfDisableldc D put Option for Loop Filter Disable

Q 0 - Loop Filter Enable

Q 1- Loop Filter Disable

Q 2 - Disable Filter across slice
boundaries

Default value = 0

rcAlgo XDAS I'nt32 Input Option for type of Rate Control
Algorithm
a 0-CBR
O 1-VBR
Q 2-Fixed QP
All the supported RC algorithms do
not support quantization scale
variation within the I-frames either at
row level or at MB level.
Default value = 1

4-25

API Reference

Field Data type Input/
Output

Description

maxDelay XDAS_Int32 Input

intraSliceNum XDAS_Int32 Input

meMultiPart XDAS_4#nt32
enableBufSE XDAS I'nt32 Input
enablePicTimSEI XDAS_Int32 Input

4-26

Maximum acceptable delay in
milliseconds for rate control. This
value should be greater than 100ms.
Currently, there is a maximum limit
for this parameter but application
can use up to 10000 ms.

Typical value is 1000 ms.

By default, this is set to 2000 ms at
the time of encoder object creation.

e slice to be coded as
pdate Slice.

AtraSliceNum, no forced intra
lice occurs.
s feature is only present when

M BIGH QUALITY or
cBuality =1

Flag to enable multiple partitions of
macro-blocks

Q 0 - Single partition

Q 1 - Multiple partitions
Maximum of 8x8 partitions coded
Default value = 0.

This feature is only present when
encoder preset is

XDM_HIGH QUALITY or
encQuality =1

Flag for enabling Buffering Period

SEI message
Q O0-Disable
Q 1-Enable

Default value =0

Flag for enabling Picture Timing SEI

message
Q O0-Disable
O 1-Enable

This parameter is disabled if
EnableBufSEI is disabled.
Default value = 0

Field Data type Input/ Description
Output

intraThrQF XDAS_Int32 Input Quiality factor for intra thresholding

process. The encoder does the

intra-prediction estimation process

selectively for MBs in P-frame based

on the threshold derived using the

quality factor.

Q Valid values : 0 - 5.

Q O - Intra prediction estimation is
avoided for most of the MBs in
the P-frame.

perceptualRC XDAS_Int32

idrFramelnterval XDAS_Int32 erval between two consecutive

IDR frames.

Q O: first frame will be IDR coded

a 1: Nointer frames, all IDR
frames

O 2: Consecutive IDRP IDR P

Q 3:IDRPPIDRPPIDR..or
IDRPBIDRPBIDRPB

SN oo
i

lePicTimSEI values are used only when enableBufSEl is set

Q rcAlgo values are used only when IVIDENC1_Params -
>RateControlPreset = IVIDEO USER_DEFINED.

Q rcQMax, rcQMin, initQ, and maxDelay values are used only when
the encoder does not run in fixed QP mode.

Q Generally idrFramelnterval will be larger than
intraFramelnterval. For example, idrFramelnterval = 300
and intraFramelnterval = 30. This means that at every 30"
frame, there will be an | frame. But at every 300" frame, an IDR
frame will be placed instead of | frame. IDR frame is used for
syncronization.

4-27

API Reference

Q When CABAC is enabled, there are chances that the slice size may
overshoot as slice gets terminated to the nearest row boundaries
only.

4.2.2.3 [H264VENC_InArgs

| Description
This structure defines the run-time input arguments for H.264 Encoder
instance object.

| Fields

Field Data type

videnclInArgs IVIDENC1_InArgs

timeStamp XDAS_Int32 stamp value of the frame to

ced in bit stream. This should
be“integral multiple of
imerResolution/ (Frame rate
). Initial time stamp value (for
e) should be 0.

It-is calculated as Frame
amber * TimerResolution/
=rame rate in fps).

See Appendix A for more details.

put This field is reserved

nput This field is reserved

insertUserData XDAS :I
lenghtUserData XDAS™ .'

Note: w

TimeStamp is included only when 1H264VENC_DynamicParams-
>EnabkePRicTimSEl is setto 1.

4-28

4.2.2.4 [|H264VENC_Status

| Description
This structure defines parameters that describe the status of the H.264
Encoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDENC1 Status.
| Fields
Field Data type Input/ Description
Output
videncStatus IVIDENC1_Status Input/Output See IVIDENCl s data structure for

details.

4.2.25 [H264VENC_OutArgs

| Description
This structure defines the run-time utput ar nts for the H.264 Encoder
instance object.

| Fields

Field Data type Input
Outpu

videncOutArgs 1VIDENC1_OutAr _‘-\butput Se IVIDENC1 OutArgs data structure for

numPackets XDAS_ umber of packets/slices in the encoded

Output Pointer to buffer for writing individual packet size

in bytes.

packetSize D

Application should allocate the buffer with the size
of (100 * 4) bytes and send the pointer to the
encoder. 100 is the maximum number of packets
supported.

Only sizes of valid packets indicated by
numPackets will be filled by the encoder and
the remaining values in the buffer are invalid.

offsetUserDat XDAS_Int32 Output This field is reserved
a

4-29

API Reference

4.2.2.6 [IH264VENC_Fxns

| Description
This structure defines all of the operations for the H.264 Encoder instance
object.

| Fields

Field Data type Input/ Description

Output

videnc IVIDENC1_Fxns Output See IVIDENCl_Wa structure for
details.

4-30

4.3

Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the H.264 Encoder. The APIs are logically grouped into the following
categories:

Creation — algNumAlloc (), algAlloc ()
Initialization — algInit ()

Data processing —algActivate (), process lgDeactivate ()

a
a
U Control — control ()
a
a

Termination — algFree ()

You must call these APIs in the following s
1) algNumAlloc ()

2) alghlloc()

3) algInit()

4) algActivate()

5) process ()

6) algDeactivate (

7) algFree ()
control () after cafling the alginit () API.

algInit (), algActivate(),
e () are standard XDAIS APIs. This

4-31

API Reference

4.3.1 Creation APIs

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-32

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

algNumAlloc () — determine the number of buffers that an algorithm
requires

XDAS Int32 algNumAlloc (Void) ;

Void

XDAS Int32; /* number of buffers

algNumAlloc () may be called at any time-and can be called repeatedly
: he same result. The

standard API Reference

(literature number SPRUS60Q

algAl¥o

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algAlloc () — determine the attributes of all buffers that an algorithm
requires

XDAS Int32 algAlloc(const IALG Params *params, IALG Fxns
**parentFxns, IALG MemRec memTab[]) ;

IALG Params *params; /* algorithm specific attributes */

IALG Fxns **parentFxns;/* output parent algorithm
functions */

IALG MemRec memTab[]; /* output array o ory records */

XDAS Int32 /* number of buffers reg

a memory space of size
) where, nbufs is the number of buffers

requirements of an-algorithm.
For morg details, see TMS320 DSP Algorithm Standard API Reference
(literatyre gumber SPRU360).

mAlloc (), algFree()

4-33

API Reference

4.3.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

| Name
algInit () —initialize an algorithm instance
| Synopsis
XDAS Int32 algInit (IALG Handle handle, IALG MemRec
memTab [], IALG Handle parent, IALG Params jparams) ;
| Arguments

| Return Value

| Description

| See Also

4-34

IALG Handle handle; /* algorithm instadnceé handle*/
IALG_memRec memTab[]; /* array of &al] & buffers =*/
IALG Handle parent; /* handle pO 1 stance */

IALG Params *params; /* alg
parameters */

IALG _EOK; /* status indicatIwm @gtess */

IALG EFAIL; /* stdtus ailure */

e of memory records that describe the base
alignment, type, and memory space of all buffers allocated
minstance. The number of initialized records is identical to

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algAlloc(), algMoved()

4.3.3 Control API

| Name

| Synopsis

| Arguments

| Return Value

| Description

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters
are defined in the bynamicParams data structure (see Data Structures
section for details).

control () — change run-time parameters and query the status

XDAS Int32 (*control) (IVIDENC1 Handle ‘
IVIDENC1 Cmd id, IVIDENC1 DynamicParame params,
IVIDENC1 Status *status) ;

IVIDENC1 Handle handle; /* algo i andle */

IVIDENC1 Cmd id; /* algorithm

IVIDENC1 DynamicParams *p3
parameters */

IVIDENC1 Status *status /*alga fim instance status

parameters */
IALG_EOK; /* status
e parameters of an algorithm instance

. control () mustonly be called after a
d must never be called after a call to

d fourth arguments are pointers to the
_DynamicParams and IVIDENC1 Status data structures

Note:

The control API can be called with base or extended DynamicParams,
and Status data structure. If you are using extended data structures,
the third and fourth arguments must be pointers to the extended
DynamicParams and Status data structures respectively. Also, ensure
that the size field is set to the size of the extended data structure.
Depending on the value set for the size field, the algorithm uses either
basic or extended parameters.

4-35

API Reference

| Preconditions

| Postconditions

| Example

| See Also

4-36

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

O control () can only be called after a successful return from
algInit () and algActivate ().

U handle must be a valid handle for the algorithm'’s instance object.

The following conditions are true immediately after returning from this
function.

U If the control operation is successful, the ret lue from this
operation is equal to IALG EOK; otherwise- gual to either

See test application file, h264enco /dilable in the \client\test\src
sub-directory.

algInit (), algActi

4.3.4 Data Processing API

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

Data processing APl is used for processing the input data.

algActivate () —initialize scratch memory buffers prior to processing.

Void algActivate (IALG Handle handle) ;

IALG Handle handle; /* algorithm instance handle */

Void

algDeactivate ()

4-37

API Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

4-38

process () — basic encoding/decoding call

XDAS Int32 (*process) (IVIDENC1 Handle handle,
IVIDEOl BufDescIn *inBufs, XDM_BufDesc *outBufs,
IVIDENC1_ InArgs *inargs, IVIDENC1 OutArgs *outargs) ;

IVIDENC1 Handle handle; /* algorithm instance handle */

IVIDEOl BufDescIn *inBufs; /* algorithm input buffer
descriptor */

XDM BufDesc *outBufs; /* algorithm outpu
*/

fer descriptor

IVIDENC1 InArgs *inargs /* algorithm g
*/

A call to function initiat
frame.

that defifesg the run-time output arguments for an algorithm instance object.

In case of interlaced content, process call has to be invoked for each field.

te:

The process () API can be called with base or extended 1nargs and
OutArgs data structures. If you are using extended data structures, the
fourth and fifth arguments must be pointers to the extended Inargs and
OoutArgs data structures respectively. Also, ensure that the size field is
set to the size of the extended data structure. Depending on the value
set for the size field, the algorithm uses either basic or extended
parameters.

| Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

O process () can only be called after a successful return from
algInit () and algActivate().

U handle must be a valid handle for the algorithm’s instance object.

O Buffer descriptor for input and output buffers must be valid.

O Input buffers must have valid input data.
| Postconditions

| Example

sub-directory.
| See Also

algInit (), algDeactnyva

cannot be pre-empted by any other
instance. That is, you cannot perform task

is either in 8-bit YUV 4:2:0. The encoder output is
4iencoded bit stream.

H.

4-39

API Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4.3.5 Termination API

4-40

algDeactivate () — save all persistent data to non-scratch memory

Void algDeactivate (IALG Handle handle) ;

IALG Handle handle; /* algorithm instance handle */

Void

The first (and only) argument to algDeact
instance handle. This handle is used by

(literature number SPRU360).

algActivate ()

Terminatio i inate the atgorithm instance and free up the

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algFree () — determine the addresses of all memory buffers used by the
algorithm

XDAS Int32 algFree (IALG Handle handle, IALG MemRec
memTab []) ;

IALG Handle handle; /* handle to the algorithm instance */

IALG MemRec memTab[]; /* output array of miemory records */

XDAS Int32; /* Number of buffers used by“the algorithm */

records that describe the base
address, size, alignme y space of all buffers previously

allocated for the algorj

4-41

API Reference

This page is intentionally left blank

ey
Q@

4-42

Appendix A

Time-Stamp Insertion

Al

Description

integer such that (k * f) and (k/n) are

£

I
w
o

Let k = 2

TimeScale = 2 * 30 = 60
NumUnitInTicks = 1
units per frame = 2

TimeStamp = 0, 2, 4, 6, 8..

A-1

Time-Stamp Insertion

Example 2.
f = 25
k=2

TimeScale = 2 * 25 = 50

1]
N

NumUnitsInTicks

1]
[y

units_per_frame

TimeStamp = 0, 1, 2, 3, 4..
Example 3.

f = 15

k = 1000

TimeScale = 1000 * 15 =

NumUnitsInTicks = 1000
units_per frame = 1

TimeStamp

]
e
=
[\S]
w

Example 4.

£ 0.5

k = 200

TimeScalge

A-2

	H.264 High Profile Encoder on DM365
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Software Architecture
	1.2 Overview of XDAIS, XDM, and Framework Component Tools
	1.2.1 XDAIS Overview
	1.2.2 XDM Overview
	1.2.3 Framework Component

	1.3 Overview of H.264 High Profile Encoder
	1.4 Supported Services and Features

	Installation Overview
	2.1 System Requirements for NO-OS Standalone
	2.1.1 Hardware
	2.1.2 Software

	2.2 System Requirements for Linux
	2.2.1 Hardware
	2.2.2 Software

	2.3 Installing the Component for NO-OS Standalone
	2.4 Installing the Component for Linux
	2.5 Building the Sample Test Application for EVM Standalone
	2.6 Running the Sample Test Application on EVM Standalone
	2.7 Building and Running the Sample Test Application on LINUX
	2.8 Configuration Files
	2.8.1 Generic Configuration File
	2.8.2 Encoder Configuration File
	2.8.3 Encoder Sample Base Param Setting

	2.9 Standards Conformance and User-Defined Inputs
	2.10 Uninstalling the Component

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	3.2 Handshaking Between Application and Algorithm
	3.2.1 Resource Level Interaction
	3.2.2 Handshaking Between Application and Algorithms

	3.3 Cache Management by Application
	3.3.1 Cache Usage By Codec Algorithm
	3.3.2 Cache Related Call Back Functions for Standalone
	3.3.3 Cache and Memory Related Call Back Functions for Linux

	3.4 Sample Test Application

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.1.1 Common XDM Symbolic Constants and Enumerated Data Types
	4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types

	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 H.264 Encoder Data Structures

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

	Time-Stamp Insertion
	A.1 Description

