Lab 9: Using C6455 SRIO

Lab 9: Using C6455 SRIO

DSP_0: DSK

MASTER_WRITE_BUFF
0x90 0000

MASTER_READ_BUFF
0x90 0100

X
RX

SRIO

Link O

Lab9 — SRIO Direct I/0O

DSP_1: Mezzanine

Lab’s Objective

RX
TX

SRIO

SLAVE_BUFF
0x90 0000

1. Analyze code example

2. View data transfer between DSPs

srio master.c > writes 1 SRIO packet (256 bytes) to the slave device
> After write , it sends doorbell O to the slave device

> In this file, read the note about the reason for the delay between write
and read back completion

> After the delay, master reads 1 SRIO packet (256 bytes) from the
slave device

> After read completion, it sends doorbell 1 to the slave device

srio_slave.c > Loop forever wand wait for Master device to send doorbell interrupts.
> Doorbell interrupts cause slave’s ISR to response

Lab Overview:

The goal of this lab is for you to be familiarized with the process of using the Serial Rapid Input
Output (SRIO) for C6455. You will learn to use Direct 10 to access the SRIO. To gain this basic

knowledge you will:

» Observe and analyze the master-slave example

» Observe the Direct 10 programming method used with CSL and SRIO

» Run some tests

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

Lab 9 Procedure

Lab 9 Procedure

Part 1 — Running the Code

You will be running code on the DSK and on the Mezzanine card. It does not matter which
one is the master device and which one is the slave device. In the lab procedure, we pick
CPU_0 (the DSK) as the master and the CPU_1 (the Mezzanine card) as the slave. This is
intended so that in the future, we will port this code example to the audio project we used in
previous labs.

1. Connect C6455 DSK to the Mezzanine EVM card (with power disconnected).
» QuitCCS
» Remove power from the DSK
» Connect the Mezzanine card.
>

Plug back in the power connection to the DSK.

Note: if the Mezzanine card does not work properly, make sure the card is seated firmly in the
socket. If it is, you may need to pull it out slightly to get it to work. We’ve seen this happen on
multiple boards. Spectrum Digital is aware of the issue and is working to resolve this.

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

Lab 9 Procedure

2. Set up the Parallel Debug Manager
e Start the CCS Setup utility using its desktop icon.

Be aware there are two CCS icons, one for setup, and the other to start the CCS
application. You want the Setup CCSStudio v3.2 icon.

When you open CC_Setup, you should see a screen similar to this:

£ Code Composer Studio Setup

Bile Edit View Help

Family Platform | Endia... C6455 DSK L

systerm Configu | available Factory Boards |C’455 v||dsk v||_" v|
o L A

= R [mmcsessosk C6455 dsk * Configuration File
B C5455 DSK CB455 dsk * Locgt_l_%néqt R
ERCA455 DSK with Mezzanine C6455 dsk = Astudio_vs.idn
ER:CA455 DSK with Mezzanine CA455 dsk * Pre-Configured Board D

One Spectrum Digita 2

R e R T

E@ Factory Boards |ﬂ Custom Boards] M Create Board]

|Save&uuit|_ [ccodd | | |:|

JCrag a device driver to the left to add a board to the system.

-~

e Clear any old system configurations.

If there are any boards/simulators listed under My System under System Configuration,
click the Remove All button to clear the configuration.

e Use the filters to select the correct Factory Board.

To the right of Available Factory Boards, you will see 3 filters (Family, Platform and
Endianness). Use the drop down boxes and make the selections shown to select the
correct board.

T Code Composer Studio Setup E'E'E'
File Edit View Help

‘ System Configuration Available Factory Boards F?mily e !Endia... C6455 . -
lcess: w[lesk ~flar =] | DSK with
g Iﬂmﬂm B Ce455 DSK CE455 dsk e Mezzanine
|- M@ DSK&455_with_Mezzanine 5455 DSK C5455 dsk =
= AR TcePick 8455 dsk *‘ Configuration Fil
=¥ Partls BH C5455 DSK with Mezzanine C5455 dsk H CACCStudio,
m cpu_0
=% IcePickMezz Pre-Configured E
=R Port1sMezz One Spectrul
B cou_1 (| TMsazocealv
E® Factory Boards |ﬂ Custom Boards] w Create Board] < S
Save & Quit | | [Rer cchdd | | [odiy Properis |

Drag a device driver to the left to add a board to the system.

e Add the proper factory board.

Click on the “C6455 DSK with Mezzanine” and select << Add. This board should
now show up under My System.

e Select Save and Quit.

e When prompted to start CCS, click Yes (or click on the CCS 3.2 icon to launch CCS
with Parallel Debug Manager).

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9-19

Lab 9 Procedure

3. Connect the boards and open CCS windows for each CPU.

Select:

Debug — Connect
This should connect both boards (no red circle with slash on cpu_0 and cpu_1).
Select:

Open — cpu_0

This will open a CCS window pointing to cpu_0 (i.e. the DSK). Now open cpu_1 as well (the
CPU on the Mezzanine card). Now you have two CCS windows open — one for each CPU:

» cpu_0: DSK
» cpu_1: Mezzanine card
Open master project for cpu_0 (DSK).

Make sure you have the active CCS window for cpu_0 on your screen. For cpu_0, open the
project srio_master.pjt under the directory path:

C\ I W64x+\ | abs\ SRI O _Mast er Sl ave_DI O nmast er

Open slave project for cpu_1 (Mezzanine).

Now, switch to the CCS window for cpu_1. Open the project srio_slave.pjt under the
directory path:

C.\ I Ws4x+\ | abs\ SRI O Mast er Sl ave DI O sl ave

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

Lab 9 Procedure

6. Scan through and analyze the source files

In master.pijt, there are 3 source files. In slave.pjt, there are 2 source files. Note that the
SetUp_Srio.c is the same exact source file for both projects. These files are stored under:

C\iwe4dx+\ | abs\ SRI O _Master Sl ave_DI O src
The code flow under main() in srio_master.c is as follows:
» Master writes 1 SRIO packet (256 bytes) to the slave device
» After write completion, it sends doorbell 0 to the slave device
» After the delay, master reads 1 SRIO packet (256 bytes) from the slave device
» After read completion, it sends doorbell 1 to the slave device
The main code has 2 loops. The inner loop runs 10 times to send 10 SRIO packets then stops.

The outer loop waits for a user input. You can trigger this command via any means that you
can think off. In this lab, we will use the GEL command which is shown in the steps below.

Note: For SRIO, you want to optimize it by architecting your system to do only writes, never
reads. For example, rather than trying to read a buffer from another device through SRI0O, you
would instead do a write to let that device know to write that buffer to you. The reason for this is
that you get CPU stalls while waiting for each read to complete whereas having the other device
write the data into your memory allows the CPU to keep crunching along and then you can get an
interrupt at the end of the transfer.

The code flow in srio_slave.c is as follows:
» Loop forever and wait for the Master device to send a doorbell interrupt.

Look into the slave ISR to see how the doorbells are handled.

Note: This is the portion of the code that you will need to modify to handle doorbell messaging. If
you did not have the master do the read, then you can use doorbells to signal the slave to write the
data back to the master device.

7. Build, Load, & Run.
First, build the code on slave side (cpu_1), then run it.
Second, build code on the master side (cpu_0), then run it.
Observe the messages in the stdout for both master & slave CCS windows.

C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO) 9-21

Lab 9 Procedure

8. Re-run the test

Load GEL file for master (cpu_0) project:

File > Load GEL ...

C.\iwe4dx+\ 1 abs\ SRI O Master Sl ave DI O src\ Control . GEL
Run GEL command:

GEL - Next Run Dialog — Set_NextRun.
Enter a 1 then click on the Execute button.

You should see another set of 10 runs. Click Done.

9. Open Memory Windows

In the master project, open a Memory window address at 0x90 0000. This is the location of
MASTER_WRITE_BUFF (pSri oDat a = 0x90 0000). Look in the header file, srio_Lab.h,
and see the definition of MASTER_WRITE_BUFF. Also, look in srio_master.c (line 22) and
you can see the pointer (*pSrioData) set to MASTER_WRITE_BUFF.

In the slave project, open a Memory window address at 0x90 0000 (SLAVE_BUFF) .

Re-size the memory windows of both CCS windows so that you can see both memory
windows (master and slave) at the same time.

10. View the data transfer

To see the data transfer, we need to set a breakpoint in both projects. First, if the master and
slave are running, halt both processors. The animate key (instead of run) will run to a
breakpoint in the slave code, then halt and display the results in the memory window, then it
will run again.

Set a breakpoint in srio_master.c at line 40 (while loop). Set a breakpoint in srio_slave.c on
line 100 (while loop).

Click on the slave’s (cpu_1) animation button (just underneath the Halt button).

Run the master (cpu_0). If needed, click on Set_NextRun Execute to continue with the
transfer.

To observe how the data transfers from the master’s CPU memory to slave’s CPU memory,
use the GEL command in the master code to re-run the loop.

ST

You’re Done

9-22 C645x/C642x Integration Workshop - Using Serial Rapid I/O (SRIO)

