
Application Report
SPRA773 - August 2001

1

Developing a CCStudio 2.0 DSP/BIOS Application for
FLASH Booting on the TMS320C5402 DSK

Xiaozhen Zhang Software Development Systems

ABSTRACT

This application report describes the process of implementing a DSP/BIOS application in
FLASH ROM with Code Composer Studio IDE 2.0, and notes the specific issues
encountered during this process. The first half of the note will mainly be about creating a small
(less than 48K words) DSP/BIOS application; the second half of the note is about building
a secondary boot loader to support large applications. The reader will learn how to create a
secondary boot loader, link the program appropriately, and prepare the ROM image.
Examples are given for using FLASH ROM on the TMS320VC5402 DSK development board.

Contents

1 Introduction 2.

2 ROM Boot Overview 2.

3 Set Up the TMS320C5402 DSK 7.

4 Project Configuration for the Small ROM Approach 7.
4.1 Memory Configuration 7.
4.2 Build Options 9.

5 Build a Small FLASH ROM Application 9.
5.1 Build and Debug Your Project to Generate a .out File 10.
5.2 Create a Boot Table Using the TMS320C5000 Hex Conversion Utility 10.
5.3 The Bootable COFF Sections 11.
5.4 Program your FLASH 12.
5.5 The Small Application Flowchart 13.
5.6 The Limitations 13.

6 Build a Large FLASH ROM Application 14.
6.1 Understand the Boot Table 17.
6.2 A Sample Secondary Boot Loader 19.
6.3 The Large Application Flowchart 22.

7 Reinitialize the DSK FLASH 22.

8 Terminology 23.
8.1 The TMS320C5402 Built-in Boot Loader 23.
8.2 The Boot Table 23.
8.3 The Hex Conversion Utility 23.

9 References 23.

Trademarks are the property of their respective owners.

Code Composer Studio is a trademark of Texas Instruments.

SPRA773

2 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

List of Figures

Figure 1. Generic C5402 Boot Loading Sequence in Parallel Boot Mode 3.

Figure 2. Boot Loading in Parallel Boot Mode with the Secondary Boot Loader 5.

Figure 3. Page 0 Memory Map for the C5402 DSK with MP/MC=0 and OVLY=1 8.

Figure 4. Hex.cmd - Example hex500.exe Command File 11.

Figure 5. Flowchart for Building a Small FLASH ROM Application 13.

Figure 6. Boot Loading the Secondary Boot Loader 15.

Figure 7. Boot Loading of the User Application by the Secondary Boot Loader 16.

Figure 8. Flowchart for Building a Large FLASH ROM Application 22.

List of Tables

Table 1. C5402 DSK DPI Switch Settings for the Parallel Port 7.

Table 2. Sample Memory Configuration for dsk5402.cdb 9.

Table 3. The Bootable DSP/BIOS and Compiler Sections 12.

Table 4. General Structure of Boot Table for Source Program in 16-Bit Mode 18.

1 Introduction

Building a Code Composer Studio (CCStudio) 2.0 DSP/BIOS application for FLASH booting on
the TMS320VC5402 DSK (C5402 DSK) involves only a few simple steps:

1. Create and build a project using CCStudio 2.0 build.

2. Use hex500 utility to create a boot table from project.out.

3. Use the FLASH programmer to program the boot table onto the FLASH.

4. Use the boot loader to transfer user application from FLASH to RAM.

In the following pages, the steps of how to accomplish the above procedures will be described in
detail. For the terminology used in this application report, a list of related terms is provided in
Section 8.

2 ROM Boot Overview

The TMS320UC5402 and TMS320VC5402 (hereafter referred to as C5402) digital signal
processors have a built-in boot loader which resides in the device’s on-chip ROM. The function
of the boot loader is to transfer user code from an external source to the program memory upon
power up. This allows code to reside in slow non-volatile memory externally, and be transferred
to high-speed memory when executed.

SPRA773

3 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

C5402 Built–in
Boot Loader

DSK Reset

C5402 Built–in Boot Loader copies
user application code (in the form of
a boot table) from FLASH memories
under Data Space to SRAMs under
Program Space

User Application starts
execution at the program
entry point

The C5402 Built–in Boot
Loader can only read boot
tables residing between
04000h and 0FFFFh of the
Data Space

Figure 1. Generic C5402 Boot Loading Sequence in Parallel Boot Mode

Figure 1 illustrates the major steps involved in boot loading a small (less than 48K 16-bit words)
user application with the C5402 built-in boot loader. The following paragraphs will detail the key
assumption that went into Figure 1, the major components of the figure, and an analysis of the
limitations of the approach.

Key Assumption:

Upon power-up, the C5402 boot loader automatically goes through a set of procedures to
determine the valid boot mode. The C5402 boot loader provides a variety of different ways to
download code to accommodate different system requirements. Boot loading on the C5402 DSK
is supported via the parallel boot mode in both 8-bit byte and 16-bit word. Please note that in
order to better illustrate the relationship between the boot loader and the user application code,
Figure 1 has intentionally left out the steps that the C5402 boot loader uses to determine the
appropriate boot mode. This figure assumes that a valid parallel mode condition is met.

Key Components:

• A special table (boot table) is used to store the user code and related header information in
hex format onto the external non-volatile memory, such as the FLASH memories on the
C5402 DSK.

• The boot table must be stored as a hex image on the FLASH memories because EPROMs
can not store object code directly.

• Since the output file created by CCStudio IDE 2.0 is in object code format, a hex conversion
utility must be used to build the boot table for the boot loader.

SPRA773

4 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

If the boot table has been created correctly by the user, the C5402 boot loader automatically
copies all sections in FLASH memory mapped under the Data Page to program memory. The
boot table should provide all the information necessary for the transfer. Header information gets
stripped away while the transfer is being done. Program starts execution from the entry point at
the end of the transfer.

Key Limitation:

This boot loading method has an important limitation that limits the size of the user application to
48K 16-bit words or smaller. The limitation that the application size must be smaller than 48K
words comes inherently from the parallel boot mode itself. In the parallel boot mode, the C5402
boot loader reads the boot table from the data space. The boot table can only be located at data
space addresses between 4000h and FFFFh. Since there is only one page of data memory on
the C5402, this limits the application size to be less than 48K words.

Demand for a Secondary Boot Loader:

The C5402 supports eight pages of program memories. For FLASH ROM application with size
larger than 48K words, it is certainly desirable to have a boot loader that can read boot tables
under the extended program space. Depending on the hardware, of course, this approach can
potentially increase the bootable application size to eight times bigger, or 384K words. Letting
that be the idea, create another boot loader, calling it the Secondary Boot Loader, that does
exactly what has been envisioned.

Figure 2 will illustrate the sequence of events following power-on with the Secondary Boot
Loader in place.

SPRA773

5 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

C5402 Build–in
Boot Loader

(residing in on–chip ROM)

DSK Reset

Secondary Boot Loader copies user application
code (in the form of boot tables) from FLASH
memories under Extended Program Space to
SRAMs under Program Space

User Application starts execution
at the program entry point

C5402 Build–in Boot Loader copies the Secondary
Boot Loader (in the form of a boot table) from
FLASH memories under Data Space to internal
DARAMs under Program Space

Secondary Boot
Loader executed

The C5402 Build–in Boot
Loader can only read boot
tables residing between
04000h and 0FFFFh of the
Data Space

The Secondary Boot
Loader is created to expand
the valid address range of
boot tables to Extended
Program Space

Figure 2. Boot Loading in Parallel Boot Mode with the Secondary Boot Loader

Key Components:

• Compared to Figure 1, Figure 2 now shows the secondary boot loader between the C5402
boot loader and the original user application. A ROM image (boot table) is first created for
the secondary boot loader and placed under the Data Page so that the C5402 built-in boot
loader is able to copy it into internal RAM and execute it. Remember, the secondary boot
loader itself is a user created code that must be executed through the C5402 built-in boot
loader.

• Another ROM image is created for the original user application. Since the original user
application is large, multiple boot tables must be created for it. The boot tables should be
placed under the extended program space for boot loading. The secondary boot loader
reads and copies the user application sections into their appropriate location in SRAM.

SPRA773

6 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

If the boot tables have been created correctly by the user, the C5402 boot loader automatically
copies the secondary boot loader in FLASH memory mapped under the Data Page to internal
RAM and executes it. The secondary boot loader then copies the ROM image for the user
application in FLASH memory mapped under the extended program space to SRAM. The boot
tables should provide all the information necessary for the transfer. Header information gets
stripped away while the transfer is being done. User application starts execution from the entry
point at the end of the transfer.

Key Limitation:

The maximum size of each boot table is limited to 32K words. The hex500 utility has a 16-bit
byte addressable space; the utility can only build boot tables that are less than or equal to 32K
16-bit words. Therefore, multiple boot tables need to be built for a single application if the size of
the application exceeds 32K 16-bit words.

To summarize the ideas that are introduced in this section:

When a DSP/BIOS application is booted from FLASH, depends on the size of the application,
one of the two following approaches would take place:

For small application (smaller than 48K words):

• Upon reset, the C5402 built-in boot loader will perform section copying to initialize program
memory as needed (copy user application from FLASH into RAM).

• DSP/BIOS startup procedures will initialize C variables in the .bss section with data
contained in the .cinit section, as well as perform general DSP/BIOS setup.

• The application will begin execution at the entry point, generally c_int00.

For large application (larger than 48K words):

• A secondary boot loader must be created to extend the capability of the TMS3205402
built-in boot loader.

• Upon reset, the C5402 boot loader will load and execute the secondary boot loader as
described above.

• The secondary boot loader will perform additional section copying into extended program
space that is not reachable by the TMS320C5402 built-in boot loader and to initialize
program and data memory as needed.

• DSP/BIOS startup procedures will initialize C variables in the .bss section with data
contained in the .cinit section, as well as perform general DSP/BIOS setup.

• The application will begin execution at the entry point, generally c_int00.

The first half of the application report will detail on how to build a small FLASH ROM application.
The second half of the report will describe how to create a secondary boot loader to build a large
FLASH ROM application. Please note that many of the aspects discussed in building a small
FLASH ROM application is also applicable for creating a large FLASH ROM application.
Therefore, only the difference will be described in the second half of the application report,
rather than trying to repeat describing the entire procedure.

Before starting, the C5402 DSK needs to be set up properly. The same board configuration is
used for both approaches.

SPRA773

7 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

3 Set Up the TMS320C5402 DSK

When using the C5402 DSK connected through the parallel port (the printer port), make sure the
DPI switch settings are as of the following:

Table 1. C5402 DSK DPI Switch Settings for the Parallel Port

DPI Switch # Settings

1 On (down)

2 On (down)

3 On (down)

4 On (down)

5 Off (up)

6 Off (up)

7 On (down)

8 On (down)

If your C5402 DSK is connected to the PC through XDS510, make sure that DPI Switch #1 is set
to Off (up) with everything else in the above table staying the same.

4 Project Configuration for the Small ROM Approach

Before building your project, there are a few basic settings to configure so that Code Composer
Studio IDE will generate code suitable for booting a small application from FLASH.

4.1 Memory Configuration

The DSP needs to be set in Microcomputer Mode (MP/MC=0), the default reset mode, in order
to see the boot code in the on-chip ROM of the Program space. In addition, OVLY bit is set to 1
to allow the mapping of the internal DARAMs into both program/data spaces.

Figure 3 shows the DSK memory map with MP/MC=0 and OVLY=1. Note that only Page 0
Program is shown due to the limited memory space applicable for this method.

SPRA773

8 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

Memory Hole

On–Chip
DARAM

Reserved

On–Chip DARAM
(16K x 16–bits)

Memory–Mapped
Registers

Scratch–Pad
RAM

Memory Hole

External

On–Chip ROM
(4K x 16–bits)

Reserved

Interrupts
(On–Chip)

Reserved
(DROM=1)
or External
(DROM=0)

External

ROM (DROM=1) or
External (DROM=0)

007F
0080

3FFF
4000

7FFF
8000

EFFF
F000

FEFF
FF00

FF7F
FF80

FFFF

Hex
0000

Hex
0000

005F
0060

007F
0080

3FFF
4000

EFFF
F000

7FFF
8000

FEFF
FF00

FFFF

Page 0 Program Data

MP/MC=0, OVLY=1

Figure 3. Page 0 Memory Map for the C5402 DSK with MP/MC=0 and OVLY=1

The C5402 has on-chip RAM between 0x0080 and 0x4000. The memory is mapped to external
memory for addresses above 0x4000. The C5402 DSK has a memory hole between 0x4000 and
0x8000 for both the Program Page and the Data Page. Therefore, when using the C5402 DSK
users should be cautious not to put valid data into this memory segment. In addition, it is
important to note that sections should not be linked into address ranges where no RAM is
actually present in the system. For example, no sections should be linked to address ranges
0xF000h-0xFFFFh, because this range of program space is occupied by the on-chip ROM and
cannot be written to by the boot loader.

The user must place all code and data sections below 0x4000 if the code is in the internal
RAM. The default configuration for MEM includes the following memory sections: USERREGS,
BIOSREGS, VECT, IDATA, IPROG, EDATA, EPROG. The default configuration in CCStudio IDE
2.0 needs to be modified for the DSK. Below is a sample memory configuration used for the
audio program in CCStudio 2.0 tutorial after such a modification.

SPRA773

9 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

Table 2. Sample Memory Configuration for dsk5402.cdb

name page origin length

USERREGS PAGE 1 00000060 0000001C

BIOSREGS PAGE 1 0000007C 00000004

VECT PAGE 0 00003F80 00000080

IDATA PAGE 1 00000080 00001F80

IPROG PAGE 0 00002000 00001F80

EDATA PAGE 1 00008000 00008000

EPROG PAGE 0 00008000 00007000

NOTE: External Memory (EDATA, EPROG) can either be FLASH or SRAM depending on the
setting of control register bit FLASHENB. If FLASHENB = 1 (power-on default), this will be
FLASH (seven-wait states); if FLASHENB = 0, this will be SRAM (one-wait state).

4.2 Build Options

In the Code Composer Studio menu bar, select Project -> Build Options

• Click on the Compiler tab. For Processor Version, type in 548. This compiles the project
using the -v548 compiler option. This option marks the object files produced by the
assembler specifically for the devices with enhanced boot loader functions such as the
C5402. The hex conversion utility uses this information to generate the correct format for the
boot table. If this option is not included during assembly, the hex conversion utility may
produce a version of the boot table intended for earlier TMS320CC54x devices without
generating warnings or errors.

• Click on the Linker tab. For Autoinit Model, select Run-time Autoinitialization. This linker
option autoinitializes variables at run time.

• Click on the Linker tab. Specify a map filename so that the linker will generate a map file.
This file will contain linking information that is necessary to understand section placement
and to write your boot code.

5 Build a Small FLASH ROM Application

Code Composer Studio comes with several utilities that can help you to write your application
into FLASH. For both the C54x and TMS320C6x architectures, a hex conversion utility and a
flash programmer are provided. To write an application to a 5402 DSK, follow this procedure.

TMS320C54x, TMS320C6x, and C54x are trademarks of Texas Instruments.

SPRA773

10 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

5.1 Build and Debug Your Project to Generate a .out File

Before creating the ROM image for the application, build, load, and run the code under
CCStudio IDE to make sure that the program works.

5.2 Create a Boot Table Using the TMS320C5000 Hex Conversion Utility

To use the features of the C5402 boot loader, generate a boot table, which contains all of the
data the boot loader needs. The boot table (a ROM image) is generated by the TMS320C5000
hex conversion utility tool.

This utility operates using command files. After obtaining the .out file from Section 5.1, in the
command file, specify the input .out file, the format for the output .hex file, the type and size of
FLASH for your board, and what sections to be placed in FLASH. Choose the appropriate
options for the desired boot mode and run the hex conversion utility to convert the COFF file
produced by the linker into a boot table. An example hex command file for a 5402 DSK is shown
in Figure 4.

To invoke the Hex Conversion Utility, type in the command line:
hex500 hex.cmd

When the Hex Conversion Utility is invoked with the example command file of Figure 4, it
creates a Motorola-S1 format hex file called audio.hex, which can be used to run the audio
example on the CCStudio 2.0 Tutorial from the C5402 DSK. All of the initialized sections from
the input file are placed in the boot table, and the entry point is set to address 0x3705 in this
particular example. After building your project, you will have a map file generated by the linker
that will contain important section link information. Examine the .map file to find out about the
entry point which is generally shown at the very top of the .map file. The entry point
address in Figure 4 is just an example, the actual number depends on your application.

In addition, each block of the boot table data corresponds to an initialized section in the COFF
file. Initialized sections include; .text, .const, and .cinit. Uninitialized sections are for example
.bss and .sysmem. You will also need to examine the .map file to find out more information
about each section. All uninitialized sections put in the hex.cmd will be ignored by the hex500
utility.

TMS320C5000 is a trademark of Texas Instruments.

SPRA773

11 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

/* hex.cmd */
audio.out /* Input COFF file */
–m1 /* Select Motorola–S1 */
–map audiohex.map /* Name hex utility map file */
–o audio.hex /* Name hex output file */
–memwidth 16 /* Set EPROM system memory width */
–romwidth 16 /* Set physical ROM width */
–bootorg PARALLEL /* Specify the source of the boot loader table as the

parallel port */
–e 0x3705 /* Entry point for the boot table; this number needs

to be edited by observing the .map file */
–swwsr 0x7fff /* Software Wait State Register Value for PARALLEL/

WARM boot mode */
–bscr 0x8806 /* Bank–Switch Control Register Value for PARALLEL/

WARM boot mode */
ROMS
{
 PAGE 0: FLASH: origin = 0x8000, len = 0x8000
}
SECTIONS
{
 .hwi_vec boot
 .hwi boot
 .bios boot
 .gblinit boot
 .trcdata boot
 .sysinit boot
 .const boot
 .text boot
 .cinit boot
 .pinit boot
 .switch boot
 .csldata boot
 .rtdx_text boot
}

Figure 4. Hex.cmd - Example hex500.exe Command File

5.3 The Bootable COFF Sections

As a quick guide to what sections need to be specified for boot in hex.cmd, Table 3 contains the
initialized sections that need to be booted from the FLASH.

SPRA773

12 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

Table 3. The Bootable DSP/BIOS and Compiler Sections

Section Name Section Type Memory Type Description / Notes

.hwi_vec Code Program Interrupt table

.hwi Code Program Dispatch code for interrupt service routines

.bios Code Program DSP/BIOS code

.gblinit Initialized Data Program Init tables, used only during startup

.trcdata Initialized Data Program Trace mask section

.sysinit Code Program Init code, run only during startup

.text Code Program Program code

.cinit, .pinit Initialized Data Program C variable and function initialization tables

.switch Initialized Data Program Switch statement jump tables

.rtdx_text Code Program Code sections for the RTDX module

.const Initialized Data Data Constants

.csldata Initialized Data Data Chip support library

WARNING:
The C5402 Built-in Boot Loader copies all sections of the boot table (whether the
section is a program section or a data section) into Program Memory. Therefore,
this requires that .const and .csldata sections must be loaded into a memory region
where Program Memory overlays the Data Memory.

5.4 Program your FLASH

After generating a .hex file, use a FLASH programming utility to write the hex image to the
board’s FLASH. Flashburn is a new FLASH programmer that is very easy to use and is capable
of programming the entire FLASH memories available on the board at specified logical address.
Flashburn is not part of the standard CCStudio 2.0 package, but is available through the
CCStudio 2.0 Update Advisor.

• Make sure Code Composer Studio IDE is not running when executing the flash programming
utility.

• If you are using the C5402 DSK, make sure the jumper setting is set for HPI boot.

Boot Jumper Settings:

– HPI boot: JP2 pin 2 and 3 connected.

– Flash boot: remove jumper (or connect pin 1&2).

• Invoke the Flashburn utility and program your FLASH.

• In a few seconds, your application will be in FLASH and ready to run.

SPRA773

13 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

• Then remove the HPI BOOT jumper setting to enable FLASH boot. Press the reset button,
the program should boot from FLASH and start running.

5.5 The Small Application Flowchart

Figure 5 is a block diagram summarizing the flow for building a small FLASH ROM application
on the C5402 DSK.

Set up the DSK

Build a CCS2.0
User Application

Create a boot table (ROM image)
for the User Application by
running hex conversion utility

hex500 hex.cmd

Use the flash programmer FLASHBURN to
program User Applications (in the form of a
boot table) onto FLASH memories under
Data Space

usercode.out

usercode.hex

Assemble using
–v548
assembler option

debug

Figure 5. Flowchart for Building a Small FLASH ROM Application

5.6 The Limitations

Parallel boot mode reads the desired boot table from data space via the external parallel
interface (external memory interface) and transfers the code to program space. The 5402 built-in
boot loader gets the source address from either I/O port 0FFFFh or data memory address
0FFFFh. Since the source address read from either of these locations is 16 bits wide, the boot
table can only reside in any valid external address range within the data space of C5402
memory map.

• The valid addresses for external data memory on the C5402 are between 04000h and
0FFFFh (48K 16-bit words).

SPRA773

14 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

• With the memory hole on the C5402 DSK, this restricts the valid addresses to be between
08000h and 0FFFFh (32K 16-bit words).

6 Build a Large FLASH ROM Application

If the size of your application is larger than the limits imposed by the C5402 built-in boot loader,
you will need to create a secondary boot loader to allow FLASH booting from other memory
regions besides those under the data space. The C5402 supports eight extended program
spaces; utilizing the extended program spaces for storing the large boot table seems a natural
thing to do.

The steps for this approach includes the following:

• Write a secondary boot loader.

• Build a boot table for the secondary boot loader in FLASH memory under Data Space.

• Organize your target memory.

• Provide a PROTECTED memory section in on-chip RAM for the secondary boot loader.

• Build another boot table for your actual application.

• Map the user application boot table to FLASH memory under extended Program Space.

This approach allows the secondary boot loader to be automatically copied into the internal RAM
by the C5402 built-in boot loader and to be executed. The secondary boot loader would reach
into the extended program space and copy user applications from FLASH into on-chip DARAM
or external SRAM.

The above idea can be most easily illustrated in the following two diagrams.

SPRA773

15 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

5402 Built–in
Boot Loader

On–Chip DARAM
(16Kx16–bits)

Data

007F
0080

3FFF
4000

7FFF
8000

Boot Table
for the

Secondary
Boot Loader

FLASH
(FLASHENB=0)

007F
0080

3FFF
4000

7FFF
8000

FLASH
(FLASHENB=0)

On–Chip DARAM

Memory Hole
for the

5402 DSK

Memory Hole
for the

5402 DSK

Page 0 Program

FFFF

On–Chip ROM
(5402 Boot Loader code)

FFFF

EFFF
F000

FEFF
FF00

MP/MC=0, OVLY=1

Hex

0000

Hex

0000

Reserved

Interrupts (On–Chip)
FF7F
FF80

Reserved
MMRs

Scratch–Pad RAM

005F
0060

Secondary Boot
Loader code

Figure 6. Boot Loading the Secondary Boot Loader

In Figure 6, a boot table for the secondary boot loader has been built and programmed onto the
FLASH ROM that is mapped under the Data Page. Upon reset, the C5402 built-in boot loader
reads the boot table headers, sets the corresponding registers, and copies the sections of the
secondary boot loader into on-chip DARAM. At the completion of the boot loading, program
execution starts at the entry point of the secondary boot code.

SPRA773

16 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

Figure 7 illustrates the secondary boot loader in action.

User Code

Secondary
Boot Loader

Page 0 Program

Boot Table 1
for User

Application

Boot Table 2
for User

Application

User Code

Page 1 Program Page N Program

Secondary Boot
Loader code

0 0080

0 3FFF

FLASH FLASH

1 8000

1 FFFF

Lower
32K

External

Lower
32K

External

N 8000

N FFFF

Memory Hole

0 8000

0 FFFF

Bootloadercode0 0080

0 3FFF
Memory Hole

0 8000

0 FFFF

User Code

SRAM
SRAM

Lower
32K

External

0 EFFF

N 8000

N FFFF

Page 0 Program Page N Program

MP/MC=0, OVLY=1

(FLASHENB=1)

(FLASHENB=0)

0 0000 N 0000

0 0000 1 0000 N 0000

Figure 7. Boot Loading of the User Application by the Secondary Boot Loader

Setting the OVLY bit overlays the internal RAM to the lower 32K of all extended program
spaces. A good programming practice for the C54x is to keep programs that reside in the
extended program space in the upper 32K so that interrupts can be properly serviced even when
the programs are running out of the extended program spaces. This tradition would be followed
here. With the lower 32K memory overlaid to the internal RAM, only the FLASH memory that is
mapped under the upper 32K memory space of the extended program space can be used for
FLASH boot.

In Figure 7, several boot tables are built for the large user application and programmed onto the
FLASH ROM which are mapped under the extended program space. The maximum size of each
boot table is limited to 32K words. This limitation comes in two parts: First, only 32K memory
space is available for boot loading for each program page of the extended program space, as
already discussed in the previous paragraph. Second, the hex500 utility has a 16-bit byte
addressable space; the utility can only build boot tables that are less than or equal to 32K 16-bit
words.

SPRA773

17 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

It is an easy task to create multiple boot tables for a single user application. You only need to
create several hex command files for the hex500 utility, and in each hex command file, specify
only the bootable sections for the boot table.

Going back to Figure 7, the FLASHENB selects between FLASH and SRAM for the external
memory. When FLASHENB=1 (power-on default), FLASH memories are mapped under the
external memory space; when FLASHENB=0, SRAMs are mapped under the external memory
space.

The secondary boot loader, which is running out of the on-chip DARAM on Page 0 Program
Page, reads the headers for the user application boot table on FLASH, sets the appropriate
registers, and copies the sections into their destinations on the on-chip DARAM or external
SRAM.

Two things are important to note here:

• If user sections are to be loaded onto the on-chip DARAMs, make sure that you set a
PROTECTED memory region for your secondary boot loader code so that your user
application will not overwrite your secondary boot loader. This memory segment can then be
used as data memory after boot loading is done.

• If user sections are to be loaded onto the external SRAMs, please note that FLASHENB bit
sets the mapping of external memories of all pages to either FLASH or SRAM, but not both.
Therefore, the secondary boot loader must enable FLASH for source code reading and then
enable SRAM for writing the user code to their destinations.

6.1 Understand the Boot Table

To be able to build the secondary boot loader, it is first necessary to understand the boot table
structure. The boot table format is simple. Typically, there is a header record which contains the
width of the table and possibly some values for various control registers. Each subsequent block
has a header which contains the size and destination address of the block followed by data for
the block. Multiple blocks can be entered with a termination block following the last block.
Finally, the table can have a footer containing more control register values. Table 4 below
illustrates the boot table format for source program data stream in 16-bit mode.

SPRA773

18 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

Table 4. General Structure of Boot Table for Source Program in 16-Bit Mode

Word Contents

1 10AAh (memory width of the source program is 16 bits)

2 Value to set in Register SWWSR

3 Value to set in Register BSCR

4 XPC value of the entry point (least significant 7 bits are used as A23-A16)

5 Entry point (PC) (16 bits are used as A15-A0)

6 Block size of the first section to load

7 XPC value of the destination address of the first section (7 bits)

8 Destination address (PC) of the first section (16 bits)

9 First word of the first section of the source program

. .

. Last word of the first section of the source program

R Block size of the second section to load

R+1 XPC value of the destination address of the second section (7 bits)

. Destination address (PC) of the second section (16 bits)

. First word of the second section of the source program

. .

. Last word of the second section of the source program

. .

. Block size of the last section to load

. XPC value of the destination address of the last section (7 bits)

. Destination address (PC) of the last section (16 bits)

. First word of the last section of the source program

. .

. Last word of the last section of the source program

n 0000h – indicates the end of source program

SPRA773

19 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

6.2 A Sample Secondary Boot Loader
* Xiaozhen Zhang *
* May 30, 2001 *

.sect ”.myboot”

.mmregs

.version 548

.global myboot

.global endboot

.global bootend

.asg ar0, xentry ; XPC of entry point

.asg ar1, entry ; entry point

.asg ar2, flashpage ; page number in flash (A22–A16)

.asg ar3, flashaddr ; address in flash (A15–A0)

.asg ar4, srampage ; XPC of entry point/page # in sram (A22–A16)

.asg ar5, sramaddr ; entry point/address in sram (A15–A0)
myboot:

ssbx intm ; disable interrupts
stm #0FFFFh, @ifr ; clear IFR flag
ld #0, dp
rsbx cpl ; turns off the compiler mode
rsbx sxm ; disables sign extension mode
rsbx ovm ; clears overflow mode bit
orm #060h, @pmst ; ovly=1, mpmc=1
ld #0, arp ; setting the status bit to reset value
rsbx c16 ; setting the status bit to reset value
rsbx cmpt ; setting the status bit to reset value
rsbx frct ; setting the status bit to reset value
stm #07fffh, swwsr ; 7 wait states for P_, D_, and I_ spaces
stm #08806h, bscr ; bank switch control reg value for Parallel/

Warm boot
portr 04, *(ar7) ; read the current value of CNTL2 Register
ld *(ar7), b
or #0x0020, b ; set FLASHENB=1
stlm b, ar7
portw *(ar7), 04h ; select Flash for external memory
stm #1, flashpage ; set program page # to 1
stm #8000h, flashaddr ; boottable starts at 1:8000
addm #1, *(flashaddr) ; skip checking for 16–bit boot.
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(swwsr) ; read desired value of SWWSR & store
addm #1, *(flashaddr) ; update the boottable pointer
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(ar6) ; read desired value of BSCR
ld *(ar6), a
and #0FFFEh, a ; ensure EXIO bit is off
stlm a, @bscr ; store in BSCR
addm #1, *(flashaddr) ; update the boottable pointer
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(xentry)

SPRA773

20 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

addm #1, *(flashaddr) ; update the bootable pointer
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(entry)
addm #1, *(flashaddr) ; update the boottable pointer

loop: ld *(flashpage), 16, a
add *(flashaddr), a
reada *(ar6) ; read the size of the section

ld *(ar6), a ; load the size of section to A
bcd endboot, aeq ; section size=0 indicate boot end
sub #1, a, b ; brc = section size – 1
stlm b, brc ; update BRC
addm #1, *(flashaddr) ; update the bootable pointer
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(srampage) ; get the XPC of dest. (A22–A16) & store in

srampage
addm #1, *(flashaddr) ; update the boottable pointer
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(sramaddr) ; get the PC of dest. (A15–A0) & store in sra-

maddr
addm #1, *(flashaddr) ; update the boottable pointer
rptb copy–1
ld *(flashpage), 16, a
add *(flashaddr), a
reada *(ar6) ; read object data
portr 04, *(ar7) ; read the current value of CNTL2 Register
ld *(ar7), b
and #0xffdf, b ; Set FLASHENB=0
stlm b, ar7
portw *(ar7), 04h ; select SRAM for external memory
ld *(srampage), 16, a
add *(sramaddr), a ; load the destination address
writa *(ar6) ; write object data to destination
addm #1, *(flashaddr) ; update the flash (source) pointer
addm #1, *(sramaddr) ; increment the destination address
portr 04, *(ar7) ; read the current value of CNTL2 Register
ld *(ar7), b
or #0x0020, b ; set FLASHENB=1
stlm b, ar7
portw *(ar7), 04h ; select Flash for external memory

copy:
b loop

endboot:
portr 04, *(ar7) ; read the current value of CNTL2 Register
ld *(ar7), b
and #0xffdf, b ; Set FLASHENB=0
stlm b, ar7
portw *(ar7), 04h ; select SRAM for external memory

SPRA773

21 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

ld *(xentry), 16, a
add *(entry), a
fbacc a ; branch to the entry point

bootend:
.end

SPRA773

22 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

6.3 The Large Application Flowchart

Figure 8 is a block diagram summarizing the flow for building a large FLASH ROM application
on the C5402 DSK.

Set up the DSK

Build a CCS2.0
User Application

Create multiple boot tables (ROM
image) for the User Application by

running hex conversion utility
hex500 hex1. cmd
hex500 hex2. cmd

Use the flash programmer FLASHBURN to
program User Applications (in the form of
boot tables) onto FLASH memories under
Extended Program Space

usercode .out

usercode1.hex
usercode2.hex

Assemble
with–v548
option

Create a Secondary
Boot Loader

myboot . asm

Create a boot table
for the Secondary

Boot Loader

Use FLASHBURN to program the
Secondary Boot Loader (in the
form of a boot table) onto FLASH
memories under Data Space

myboot .out

myboot .hex

debug

Figure 8. Flowchart for Building a Large FLASH ROM Application

7 Reinitialize the DSK FLASH
If your attempts to program the FLASH have not been successful, your board might be in an
undefined state where the CCStudio IDE cannot communicate. Under such a circumstance, you
should use your flash programming utility to program the flash.hex example back onto the
FLASH. This will bring the board back to a known state when resetting the DSP.

The flash.hex program is located in “C:\ti\c5400\dsk\examples\dsp\flash”.

SPRA773

23 Developing a CCStudio 2.0 DSP/BIOS Application for FLASH Booting on the TMS320C5402 DSK

8 Terminology

8.1 The TMS320C5402 Built-in Boot Loader

The TMS320UC5402 and TMS320VC5402 (hereafter referred to as C5402) digital signal
processors (DSPs) have built-in boot loader residing in the device’s on-chip ROM. The ROM is
4K words in size and is located at the 0xF000-0xFFFF address range in program space when
the MP/MC input pin is sampled low at reset or if the MP/MC status bit of the Processor Mode
Status (PMST) Register is set to zero. The C5402 built-in boot loader (C5402 boot loader)
occupies 1K of the on-chip ROM with a base address of 0xF800.

The function of the boot loader is to transfer user code from an external source to the program
memory at power up. This allows code to reside in slow, non-volatile memory externally, and be
transferred to high-speed memory to be executed.

The C5402 boot loader sets up the CPU status registers before initiating the boot load.
Interrupts are globally disabled (INTM = 1) and the internal dual-access RAMs (DARAMs) are
mapped into the program/data spaces (OVLY = 1). The DARAM is mapped into program space
to enable the boot loading of code by using minimal on-chip memory resources. Seven wait
states are initialized for the entire program and data spaces. The boot loader does not change
the reset condition of the bank switching control register (BSCR) prior to loading a boot table.

To accommodate different system requirements, the C5402 offers a variety of different boot
modes. Parallel boot mode reads the desired boot table from data space via the external parallel
interface (external memory interface) and transfers the code to program space. ROM booting on
the C5402 DSK utilizes the 16-bit Parallel Boot Mode, which is one of the eight boot modes
supported by the C5402 boot loader.

8.2 The Boot Table

The input for a boot loader is the boot table (also known as a source program). The boot table
contains records that instruct the on-chip loader to copy blocks of data contained in the table to
specified destination addresses. Some boot tables also contain values for initializing various
processor control registers. The boot table can be stored in memory or read in through a device
peripheral. In the case of the C5402 DSK, the boot table will be stored in the FLASH on board.

8.3 The Hex Conversion Utility

A program which accepts COFF object files and converts them into one of several standard
ASCII hexadecimal formats suitable for loading into an EPROM programmer. Hex500 is the
command that invokes the hex conversion utility.

9 References
1. TMS320UC5402 and TMS320VC5402 Boot loader (SPRA618).
2. Developing a DSP/BIOS Application for ROM on the TMS320C6000 Platform with CCS

(SPRA743).
3. TMS320C54x Assembly Language Tools User’s Guide (SPRU102).
4. Code Composer Studio IDE 2.0 online help.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

