MPEG4 Simple Profile Encoder v 2.00
on DM355

User’'s Guide

i3 Texas
INSTRUMENTS

Literature Number: SPRUF51
August 2010

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from Tl to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by TI as military-grade or "enhanced plastic.” Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics Www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/Iprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

www.ti.com/audio
www.ti.com/automotive
http://www.dlp.com/
www.ti.com/communications
www.ti.com/computers
http://www.ti.com/clocks
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
http://www.ti-rfid.com/
www.ti.com/space-avionics-defense
http://www.ti.com/lprf
www.ti.com/video
www.ti.com/wireless-apps

Preface

Read This First

About This Manual

Intended Audience

This document describes how to install and work with Texas Instruments’

(TI) MPEG4 Simple Profile Encoder implementation on the DM355
platform. It also provides a detailed Application Programming Interface
(API) reference and information on the sample application that
accompanies this component.

TI's codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

This document is intended for system engineers who want to integrate
TI's codecs with other software to build a multimedia system based on
the DM355 platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM), and IRES standard will be helpful.

How to Use This Manual

This document includes the following chapters:

O Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

O Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

O Chapter 3 - Sample Usage, describes the sample usage of the
codec.

O Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

O Appendix A- Revision History highlights the changes made to the
SPRUF51 codec specific user guide to make it SPRUF51A.

Read This First

Related Documentation From Texas Instruments

The following documents describe TI's DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these Tl documents,
visit the Texas Instruments website at www.ti.com.

O TMS320 DSP Algorithm Standard API Reference (SPRU360)
describes all the APlIs that are defined by the TMS320 DSP
Algorithm Interface Standard (also known as XDAIS) specification.

O Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (SPRA579) describes how to make algorithms
compliant with the TMS320 DSP Algorithm Standard which is part of
TI's eXpressDSP technology initiative.

O xDAIS-DM (Digital Media) User Guide (literature number SPRUECS)
O Using DMA with Framework Components for C64x+ (literature
number SPRAAG1).
Related Documentation
You can use the following documents to supplement this user guide:

O ISO/IEC 14496-2:2004, Information technology -- Coding of audio-
visual objects -- Part 2: Visual (Approved in 2004-05-24)

O H.263 ITU-T Standard — Video Coding for low bit rate communication

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations.

Abbreviation Description

API Application Programming Interface
CBR Constant Bit Rate

CSL Chip Support Library

CVBR Constrained Variable Bit Rate
DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN3 DMA Manager

EVM Evaluation Module

GOB Group of Blocks

GOV Group of VOP

http://www.ti.com/

Read This First

Abbreviation

Description

HEC Header Extension Code

HPI Half Pel Interpolation

IDMA3 DMA Resource specification and
negotiation protocol

IEC International Electrotechnical
Commission

ISO International Organization for
Standardization

ITU International Telecommunications Union

MJCP MPEG JPEG Co-Processor

MPEG Moving Pictures Experts Group

QCIF Quarter Common Intermediate Format

QP Quantization Parameter

QVGA Quarter Video Graphics Array

SP Simple Profile

VBR Variable Bit Rate

VBV Video rate Buffer Verifier

VICP Video and Imaging Co-Processor

VOL Video Object Layer

VOP Video Object Plane

VOS Video Object Sequence

umv Unrestricted Motion Vector

XDAIS eXpressDSP Algorithm Interface
Standard

XDM eXpressDSP Digital Media

Note:

MJCP and VICP refer to the same hardware co-processor blocks.

Read This First

Text Conventions

Product Support

Trademarks

vi

The following conventions are used in this document:
O Textinside back-quotes (*) represents pseudo-code.

O Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

When contacting Tl for support on this codec, quote the product name
(MPEG4 Simple Profile Encoder on DM355) and version number. The
version number of the codec is included in the title of the release notes
that accompanies this codec.

Code Composer Studio and eXpressDSP are trademarks of Texas
Instruments.

All trademarks are the property of their respective owners.

Contents

Y= T= 1o I I oV 3 T] PSP iii

ADOUL THIS MANUALeiiiiiiiie i e a e e e e e iii

Ta1 0T aTo [=To I 8T L= o o = iii

How to Use ThiS ManUalccooiiiiiiee e iii

Related Documentation From Texas INStrumMeNntS..........ccuuvvviviieeiiiiiiiiieeeee e iv

Related DOCUMENTALION.uuiii et e e e e e e e e e e e e e eeeeaaaaes iv

ADDIEVIALIONS ... iv

L= (R O 0 Y= 1T o Vi

PrOTUCT SUPPOIT ...ttt e e e e e e e e e e e e e enbene s Vi

LI = 10 1= 4 F= U Y
(070 01 1] 01 £ TR vii
o = iX
JLIE= 101 L= PP PPPPPROTPPPPRP Xi
110 o LU [£ o] o 1-1

1.1 Overview of XDAIS, XDM, and IREScceoiiiiiiiiiiiiieiiceee e 1-2

1.1.1 XDAIS OVEIVIEW ...iiiiiiieeee e e ettt e e e e e sttt e e e e e e s st ae e e e e e e s sennsbeeenaaeeesnnnnnes 1-2

1.1.2 XDM OVEIVIEW ..ceeeiiiiiiieeieee e e e e e ettt et e e e e s e sttt e e aeaeassantntaeeeeeaesssnnssbeeeaeaeessannnnes 1-2

1.1.3 IRES OVEIVIEBW ..ttt e e e e ettt e e e e e e e s nbnbeeeeaaa e e e aannnes 1-3

1.2 Overview of MPEG4 Simple Profile ENCOErccccuvviiiiiiiiiiiiiiiieceee e 1-5

1.3 Supported Services and FEALUIES.........c.uuuiiii i ciiieeices e 1-5

O IR 1 = [0 PP PPPPPPPRPPR 1-6
INSTAIALION OVEIVIBW ... e e e e e e e et e e e e e e e e e e bbb e e e e e e eeeesrraaaaes 2-1

2.1 System Requirements for NO-OS Standalone............ccccevevviieiiieeeeveeeiiiinin e, 2-2

P R o =T 0 = 1 TSR 2-2

A A S 1o | 11T 1= PR 2-2

2.2 System RequiremMents fOr LINUXccuiieiiriiiiiiiiiieee e e e e 2-2

2.2. 1 HAIOWAIE ...ttt e e e e ettt ettt e e e e e s et bbb e e e e e e e e e e nbrbeeeaaaeaaaans 2-2

2.2.2 SOMWAIE ..o ———————— 2-2

2.3 Installing the COMPONENL.........ccoii i e e 2-2

2.4 Building the Sample Test Application for EVM Standalone (NO-OS)................ 2-3

2.5 Running the Sample Test Application on EVM Standalone (NO-OS)............... 2-4

2.6 Building and Running the Sample Test Application on LinUX............cccccceeeeeee.. 2-5

2.7 Configuration FIlEScooioiiiiii e e 2-6

2.7.1 Generic Configuration Fileccuviiiiiee i 2-6

2.7.2 Encoder Configuration File...........coooiiiiiiiiiiiiie e 2-6

2.8 Uninstalling the COMPONENTuiiiiiiiiiiii e 2-8
SAMPIE USAQE.... ittt et e e e e e e e r e e e e e e e r e e e e 3-1

3.1 MPEGA4 Encoder Client Interfacing Constraintscccccevvvvevvieeiieveeeeeeeeeeeee, 3-2

3.2 Overview of the Test APPHCALIONcooiiiiiiiiiiiie e 3-3

3.2.1 Parameter SEIUPDcooiiiiiiii ittt e e eeeaeaes 3-4

3.2.2 Algorithm Instance Creation and Initialization...............cccvieeiiiiiiniiiiiiiieeeee 3-4

3.2.3 Process Call in Single INStance SCENAIIOuuveeeeeiiiiiiiiiieeee e ee e e e 3-5

3.2.4 Algorithm InsStance DeItioNc.uuvieeieeii i 3-5

3.3 Usage in Multiple INStanCe SCENAIIOccovieeiiiiiiiiie e 3-6

vii

3.3.1 Process Call with algActivate and algDeactivate.............cccccccvveeeeniecciiiiieeeeeeeens 3-6
3.4 Usage for MOtion VECIOr ACCESScevvviiiiiiiieiiieeieeeieeesueessssssssssssssessnrernrnnrrnrnn. 3-7
1 O B =2 {ox 1 o] o TP PPRRPP 3-7
3B U 1=V Yo = SRR 3-9
3.5 Accessing Reconstruction Buffer Data..............ccccceeeieiiiie 3-11
3.6 User Data INSEItIONcocuuiiiiiie e e e e e e e e 3-14
F Y I =) =T =T T = PSPPSR 4-1
4.1 Symbolic Constants and Enumerated Data TYPesS..........ccccvvriieeieeiiiiiiiiiieeeeeen. 4-2
R I - = 1 U o 0] = 4-7
421 Common XDM Data SIrUCIUIES.........uvviiiiiieeiiiiiiieiee et e e 4-7
4.2.2 IVIDEO_RAteCONIOIPIESELeiiiiiiiiiiiiiiee ettt 4-16
4.2.3 Usage of DynamicC Parametersccouiuiiieiiiiiie ettt 4-19
4.2.4 MPEG4 Encoder Data StrUCIUIESuuviiiiieeeeiiiiiiiiie e e ssiiieee e e e e s 4-21
4.3 Interface FUNCHIONSooic e e e e e e e e e 4-29
4.3 1 Cre@tion APIS ...ttt e e nnaae s 4-29
4.3.2 INILANZALON APl 4-32
e G B ©7o o1 o AN = PRSPPI 4-34
4.3.4 Data ProcessiNg APl ...t 4-37
4.3.5 TermiNation AP ... 4-41

viii

Figures

Figure 1-1.
Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.

IRES Interface Definition and Function Calling Sequence.ccccceeennn. 1-4
Component DIireCtory StrUCTUME.ooviiiiiiieiiis e e e e 2-3
Test Application Sample Implementation............cccoviiiiieiiiiii e 3-3
Motion Vector and SAD Buffer Organization.ccccco . 3-8
Reconstruction BUfer. ... 3-11
Reconstruction BUffer fOr LUM@........oooiiiiiiiiiiieeeiiiieeeee e 3-12
Reconstruction Buffer for Chroma.............cccc 3-12
Bit-stream Built With UserData Field.cccco 3-14

This page is intentionally left blank

Tables

Table 1-1. List of AbBreviations. ... iv
Table 2-1. CoOMPONENT DirECIOITES. ..ii it iiiieeecie e e e e e e e e e eeaanes 2-3
Table 4-1. List of Enumerated Data TYPES.uuuiiiiiiiiiiiiiiiieeee et 4-2

Table A-1. Revision History for MPEG4 Simple Profile Encoder (v02.00.00) on DM355A-1

Xi

This page is intentionally left blank

Xii

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS, XDM, and IRES. It also
provides an overview of TI's implementation of the MPEG4 Simple Profile
Encoder on the DM355 platform and its supported features.

Topic Page
1.1 Overview of XDAIS, XDM, and IRES 1-2
1.2 Overview of MPEG4 Simple Profile Encoder 1-3
1.3 Supported Services and Features 1-5
1.4 Limitations 1-6

11

Introduction

1.1 Overview of XDAIS, XDM, and IRES

TI's multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS). IRES is the interface for
management and utilization of special resource types such as hardware
accelerators, certain types of memory and DMA. This interface allows the
client application to query and provide the algorithm its requested
resources.

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. To
facilitate these functionalities, the IALG interface defines the following
APls:

Q algAlloc()
algInit ()
algActivate ()

algDeactivate ()

0O 0 0O O

algFree ()

The algalloc () API allows the algorithm to communicate its memory
requirements to the client application. The alginit () API allows the
algorithm to initialize the memory allocated by the client application. The
algFree () API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can process data in real-
time. The algactivate () API provides a naotification to the algorithm
instance that one or more algorithm processing methods are about to be
run zero or more times in succession. After the processing methods have
been run, the client application calls the algbeactivate () API prior to
reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs: algControl (),
algNumAlloc (), and algMoved (). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video encoder system, you can use any of the available video encoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with

1-2

Introduction

similar functionality use similar APls. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs
(for example, audio, video, image, and speech). The XDM standard defines
the following two APIs:

aQ control ()
Q process|()

The control () API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control () API replaces the algControl () API defined as part of the
IALG interface. The process () APl does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure shows the XDM interface to the client application.

Client Application

XDM Interface

XDAIS Interface (IALG)

Tr's Codec Algorithms

As shown in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TlI's
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any Tl algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEGA4 video encoder, then you can easily replace MPEG4 with
another XDM-compliant video encoder with minimal changes to the client
application.

For more details, see xDAIS-DM (Digital Media) User Guide (SPRUECS8D).

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements, and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an

1-3

Introduction

algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that
are requested. The framework calls the IRES interface functions, in
addition to the IALG functions, to perform IRES resource initialization,
activation, and deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

1) IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

2) RMAN - Generic IRES-based resource manager, which manages
and grants concrete IRES resources to algorithms and applications.
RMAN uses a new standard interface, the IRESMAN, to support run-
time registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by
the concrete IRES resource interface.

IRES interface definition and function calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAIS).

Algorithm Creation Stages Algorithm Real-Time Stages

algAlloc

alglnit numResourceDescriptorg reinitResources

[algActivate
getResourceDescriptors /

!
y / activateAllResources |
initResources +

’7 “process”
!

Termination Stages deactivateAllResources

x

Algorithm
y

algFree <—IgetResourceDescrr'pfors

¥
algDeactivate

Figure 1-1. IRES Interface Definition and Function Calling Sequence.

1-4

Introduction

For more details, see Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAIS).

1.2 Overview of MPEG4 Simple Profile Encoder

MPEG4 is the ISO/IEC recommended standard for video compression.

See ISO/IEC 14496-2:2004, Information technology -- Coding of audio-
visual objects -- Part 2: Visual (Approved in 2004-05-24) for details on
MPEG4 encoding process.

From this point onwards, all references to MPEG4 Encoder means MPEG4
Simple Profile Encoder only.

1.3 Supported Services and Features

This user guide accompanies TI's implementation of MPEG4 Encoder on
the DM355 platform.

This version of the codec has the following supported features of the
standard:

Q

eXpressDSP Digital Media (XDM 1.0 IVIDENC1) interface and IRES
compliant

Compliant with the MPEG4 simple profile levels 0, 1, 2, 3. In addition, it
can encode 720P (1280x720),SXVGA (1280x960) and 1080P
(1920x1080) formats.

Supports YUV 4:2:2 interleaved data as an input

Supports YUV 4:2:0 semi-planar (NV12 format, that is, Y planar Cb Cr
interleaved) data as an input

Supports image width as multiple of 16 and height as multiple of 16
Supports Half Pel Interpolation (HPI) for motion estimation

Supports one motion vector encoding for motion estimation (1MV/MB)
with (-32, +31) half pel search range

Supports 21H (low quality, high performance) or 8421H (medium
quality, medium performance) or 44421H (high quality, medium
performance) or 84221H (High quality, low performance) based on
meAlgo API parameter.

Supports DC prediction

Supports AC prediction when rate control is disabled, that is, fixed Qp
mode

Supports generation of streams with Resync Marker (RM)
Supports MPEG2 Step 2 TM5 rate control algorithm

Supports Variable Bit Rate (IVIDEO STORAGE), Constant Bit Rate
(IVIDEO LOW DELAY), Fixed Qp (IVIDEO NONE) and Constrained
Variable BitRate (CVBR) (see section 4.2.2)

1-5

Introduction

1.4 Limitations

1-6

Supports Intra — Inter decision at 16x16 level (for better speed) or 8x8
block level (for better quality) level based on intraAlgo API parameter

Supports Bonus Skip MB logic (for better quality) or non-Bonus Skip
MB logic (for better performance) based on skipMBAlgo API
parameter

Supports Unrestricted Motion Vectors (UMV)

Supports access of motion vectors and SAD through MV access API.
The application should pass the buffer required to write the SAD and
motion vector generated. This should be passed as an output buffer
parameter. MV access API always provides the motion vectors for the
best matching MB

Supports the VOL header generation at frame-level. The application
has to pass the buffer required to write the VOL header generated. The
encoding process is by-passed and frame count is unaltered when the
Header generation APl is called.

Supports modification of target bit-rate and frame rate

Supports setting of separate Quantization Parameter (Qp) for I-frames
and P-frames

Supports changing the size of video packets at create time

Supports area encode. The application can provide width, height, sub
window width, and sub window height to the algorithm for encoding.
The sub-window width and sub-window height should be multiple of 16.

Supports rotation (90, 180 and 270 degrees) integrated with the
Encoder up to a resolution of 720x576.

Supports changing the encoding parameters at run-time (dynamic
configurability)

Supports frame level reentrancy

Supports multi-instance of MPEG4 Encoder and single/multi instance
of MPEG4 Encoder with other DM355 codecs

Supports insertion of user data by application (see section 3.6)

This encoder does not support the following:

Q

a

Q

Does not support 4 MV
Does not support AC prediction for varying Qp

Does not support ME range beyond -32 and +31. Only ME Range = 31
and ME Range = 7 are supported

Does not support DP, RVLC and HEC

Introduction

Does not support input width/height, sub-window width/height, rate
control algorithm, VBV size, or rotation as dynamically configurable
parameters

Does not support arbitrary width and height

0 Supports image width as multiple of 16 and height as multiple of 8
0 Does not support image width below 160 (without UMV)

0 Does not support image width below 192 (with UMV)

Does not support rotation with width more than 720 or height more
than 576 (for instance, 720p (1280x720) or SXVGA (1280x960))

Does not support area encode feature with horizontal and vertical
offsets

Does not support image width more than 1920 and image height more
than 1920

1-7

Introduction

This page is intentionally left blank

1-8

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information

on building and running the sample test application.

Topic Page
2.1 System Requirements for NO-OS Standalone 2-2
2.2 System Requirements for Linux 2-2
2.3 Installing the Component 2-2
2.4 Building the Sample Test Application for EVM Standalone (NO- 2-3
0S)

2.5 Running the Sample Test Application on EVM Standalone (NO- 2-4
0S)

2.6 Building and Running the Sample Test Application on Linux 2-5
2.7 Configuration Files 2-6
2.8 Uninstalling the Component 2-8

2-1

Installation Overview

2.1 System Requirements for NO-OS Standalone

2.1.1 Hardware

2.1.2 Software

This section describes the hardware and software requirements for the
normal functioning of the codec component in Code Composer Studio. For
details about the version of the tools and software, see Release Note.

o DM355 EVM (Set the bits 2 and 3 of switch SW4 to high(1) position;
Set the bits 4 and 5 of SW5 to high(1) position)

0 XDS560R JTAG

The following are the software requirements for the normal functioning of
the codec:

O Development Environment: This project is developed using Code
Composer Studio version 3.3.81.6 (Service Release-11)

O Code Generation Tools: This project is compiled, assembled,
archived, and linked using the TI ARM code generation tools

o DM355 functional simulator

2.2 System Requirements for Linux

2.2.1 Hardware

2.2.2 Software

This section describes the hardware and software requirements for the
normal functioning of the codec component.

This codec has been tested as an executable on DM355 EVM.

The following are the software requirements for the normal functioning of
the codec:

O Linux: Monta Vista Linux 5.0

O Code Generation Tools: This project is compiled, assembled, and
linked using the arm_v5t_le-gcc compiler.

2.3 Installing the Component

2-2

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file to your local hard disk. The zip file
extraction creates a top-level directory called 210_V_MPEG4_E_02_00,
under which another directory named mpeg4_encoder is created.

Figure 2-1 shows the sub-directories created in the mpeg4_encoder
directory.

Installation Overview

=l |2 mpeg4_encoder
= [Client
+ [Build
= |} Test
|20 Inc
+) arc
+ |) Testvecs
| Docs
| Inc
I Lib

Figure 2-1. Component Directory Structure.

Table 2-1 provides a description of the sub-directories created in the
mpeg4_encoder directory.

Table 2-1. Component Directories.

Sub-Directory Description

mpeg4_encoder/Client/Build This folder is available only in NO-OS Standalone release
package. Not required for Linux release package.
Contains make file, cmd file and configuration file to build the
NO-OS standalone test application.

mpeg4_encoder/Docs Contains user guide, datasheet, and release notes

mpeg4_encoder/Client/Test/Src Contains test application C files, makefile, and configuration
file. Executable will be built in this folder.

mpeg4_encoder/Client/Test/Inc Contains header files needed for the application code
mpeg4_encoder/Client/Test/TestVecs Contains test vectors, configuration files
mpeg4_encoder/Inc Contains the interface file for MPEG4 Encoder
mpeg4_encoder/Lib Contains MPEG Encoder and other support libraries

2.4 Building the Sample Test Application for EVM Standalone (NO-OS)

The sample test application that accompanies this codec component will
run in TI's Code Composer Studio development environment. To build the
sample test application, follow these steps:

1) Verify that you have an installation of TI's Code Composer Studio
version 3.3.81.6 (Service Release-11) and code generation tools as
provided in the Release Note.

2) Verify if the codec object library mp4vencAlg.lib exists in the \Lib sub-
directory.

3) Ensure that you have installed the XDC and Framework components
releases with version numbers that are mentioned in the release notes.

2-3

Installation Overview

4) For installing framework component, unzip the content at some
location and set the path of the base folder in FC_INSTALL _DIR
environment variable

5) Ensure that the installed XDC directory is in the general search PATH.

6) Open the MS-DOS command prompt at the directory \Client\Build\ sub-
directory of the release folder.

7) Type the command “gmake —f mp4vencTestApp.mak” at the prompt
and this generates an executable file, mp4vencApp.out in the
\Client\Build\Out sub-directory.

2.5 Running the Sample Test Application on EVM Standalone (NO-0OS)

The sample test application that accompanies this codec component will
run in TI's Code Composer Studio development environment. To run the
sample test application in Code Composer Studio simulator, follow these
steps:

1) Verify that you have an installation of TI's Code Composer Studio
version 3.3.81.6 with Service Release 11 and code generation tools as
provided in the Release Note.

2) Verify the SDXDS560R JTAG driver installation version 30329A.

3) Check SW4 and SW5 switch positions of the DM355 EVM. Bit 2 and 3
of SW4 should be set to 1 and remaining should be set to 0. All bits
should be set to 0 for SW5.

4) Open Setup Code Composer Studio version 3.3.
5) Select File > Import, browse for the .ccs file, and add it.

6) Save the configuration and exit from setup Code Composer Studio.
PDM opens and displays both ARM926 and ARM968 processors.

7) Right click on ARM926 and connect.

8) Double-click ARM926 to launch Code Composer Studio IDE for the
host processor.

9) Add the GEL file and initialize it properly

10) Select File > Load Program in Host Code Composer Studio, browse
to the \Client\Build\Out\ sub-directory, select the codec executable
created in Section 2.4, and load it into Code Composer Studio in
preparation for execution.

11) Select Debug > Run in Host Code Composer Studio to execute
encoder on host side.

The sample test application takes the input files stored in the
\Client\Test\Testvecs\Input sub-directory, runs the codec, and stores
the output in \Client\Test\Testvecs\Output sub-directory.

For each encoded frame, the application displays a message indicating
the frame number and the bytes generated.

2-4

Installation Overview

After the encoding is complete, the application displays a summary of
total number of frames encoded.

12) Halt the coprocessor from Code Composer Studio IDE.

2.6 Building and Running the Sample Test Application on Linux

The sample test application that accompanies this codec component will
take YUV input files and dumps encoded output files as specified in the
configuration file. To build and run the sample test application, follow these

steps:

1) Verify that you have installed Framework Component (FC), XDC, and
LSP. For information about the version, see Release Note.

2) Verify that libmp4venc.a library is present in mpeg4_encoder/Lib
directory.

3) Change directory to mpeg4_encoder/Client/Test/Src and type make
clean followed by a make command. This will use the makefile in that
directory to build the test executable mp4enc into the
mpeg4_encoder/Client/Test/Src directory.

Note:

The ARM tool chain, arm_v5t_le-gcc (ARM gcc), compiler path needs to
be set in your environment path before building the MPEG4 encoder
executable.

To run mp4enc executable on DM355 EVM board, follow these steps:

4)

5)

Set up the DM355 EVM Board. For information about setting up the
DM355 environment, see the DM355 Getting Started Guide available
in the doc directory in DVSDK release package.

Run the MPEG4 Encoder executable:

a) Ensure that complete Client folder is in target file system

b) Copy the kernel modules cmemk.ko, edmak.ko and irgk.ko to the
target directory. These modules are provided with the release
package in kernel_modules directory.

c) Copy loadmodules.sh provided with release package at
kernel_modules to the target directory.

d) Load the kernel modules by executing folliwng command.
$./loadmodules.sh

Change the directory to Client/Test/Src folder and execute
following command to run the MPEG4 encoder executable

$./mpdenc-r
This will run the MPEG4 Encoder with base parameters.

To run the MPEG4 Encoder with extended parameters, change the
config file in Testvecs.cfg to Testparams.cfg (TestVecs/Config/) and
execute:

2-5

Installation Overview

$./mp4enc-r -ext

2.7 Configuration Files

This codec is shipped along with:

O Generic configuration file (Testvecs.cfg) — specifies input and output
files for the sample test application.

O Encoder configuration file (Testparams.cfg) — specifies the
configuration parameters used by the test application to configure the
Encoder.

2.7.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg, for determining the input and output files for
running the codec. The Testvecs.cfg file is available in the
[/Client/Test/TestVecs/Config/profile sub-directory.

The format of the Testvecs.cfg file is:

X

Config

Input
Output/Reference
where:

O X may be set as:

0 0 - for output dumping
O configisthe Encoder configuration file. For details, see Section 2.7.2.
O Input is the input file name (use complete path).
O output is the output file name.

A sample Testvecs.cfq file is as shown.

0

. ./TestVecs/Config/Testparams.cfg
../TestVecs/Input/colorful_toys cif 5frms_420SP.yuv
. ./TestVecs/Output/colorful_toys cif 5frms.bits

2.7.2 Encoder Configuration File

The encoder configuration file, Testparams.cfg contains the configuration
parameters required for the encoder. A sample Testparams.cfq file is
available in the /Client/Test/TestVecs/Config/profile sub-directory.

A sample Testparams.cfg file is as shown.

New Input File Format is as follows
<ParameterName> = <ParameterValue> # Comment

2-6

Installation Overview

#

HHHH R
Parameters

HHHH R R

ImageHeight = 288 # Image height in Pels, must be
multiple of 16
ImageWidth = 352 # Image width in Pels, must be

multiple of 16

FrameRate = 30000 # Frame Rate per second*1000
Bitrate = 737280 # Bitrate(bps)
This parameter is ignored for
1VIDEO_NONE
ChromaFormat =4 # 4 =

XDM_YUV_422I1LE, 9=> YUV_420 SemiPlanar
Others not supported
RCAlgo =0 # 0: VBR 1: CBR 2: fixedQp

subWindowHeight = 288 # Height of the Subwindow, must be
multiple of 16

subWindowWidth = 352 # Width of the Subwindow, must be
multiple of 16

IntraPeriod = 30 # Period of I-Frames (N-1) P frames

(Non-negative)
intraAlgo =1 # INTRAZINTER Decision Algorithm.
0: IMP4VENC_INTRA_INTER_DECISION_LQ HP
1: IMP4VENC_INTRA INTER DECISION HQ LP
numMBRows =5 # Number of MB rows in a Packet.
Maximum value is "‘subWindowHeight/16"

initQ =0 # Initial Q (at picture head).
O:automatically determined,
1-31:force initial Q

rcQ_MAX = 31 # Q MAX value (1-31)

rcQ_MIN =2 # Q MIN value (1-31)

rateFix =0 # Reserved

rateFixRange =0 # Reserved

rotation =0 # Rotation (anticlockwise)

0: No Rotation,
90: 90 degree,
180: 180 degree,
270: 270 degree
meAlgo =1 # Motion estimation algorithm
IMP4VENC_ME_MQ_MP
IMP4VENC_ME_HQ_MP
IMPAVENC_ME_HQ LP
IMPAVENC_ME_LQ _HP
IMPAVENC_SKIP_MB_LQ HP
IMP4VENC_SKIP_MB_HQ_LP
: IMP4VENC_UMV_LQ HP
IMPAVENC_UMV_HQ _ LP
VBV_size = 100 # Video rate Buffer verifier size in 16 kb.
Number depending on the resolution of
video frame, typically equal to (No. of MB’s
per frame x110 x FrameRate) /(16000 * 1000)

SkipMBAlgo =0 #

umv =0 #

PORFRPOWNEKFRO

Any field in the IVIDENC1 Params Structure (see Section 4.2.1.6) can be
set in the Testparams.cfg file using the syntax shown previously. If you
specify additional fields in the Testparams.cfg file, ensure to modify the test
application appropriately to handle these fields.

2-7

Installation Overview

O If initQis not specified through an extended parameter, the default
value is calculated by codec. vBV_size should be of the order of (No.
of MBs per framex110x FrameRate) /(16000 * 1000) for better quality.

O The best quality is achieved with the following parameter settings:

{

intraAlgo = IMP4VENC_INTRA_ INTER_DECISION_HQ LP
MeAlgo = IMP4VENC_ME_HQ LP

SKkipMBAIGO = IMP4VENC_SKIP_MB_HQ LP

UMV = IMP4VENC_UMV_HQ LP

s

O The best performance is achieved with the following parameter

settings:
{
intraAlgo = IMP4VENC_INTRA INTER DECISION LQ HP
MeAlgo = IMP4VENC_ME_LQ HP
SkipMBAIgO = IMP4VENC_SKIP_MB_LQ HP
umMv = IMP4VENC_UMV_LQ HP
}

Q Typical bit-rates for different resolutions are as follows:

Resolution Width x Height Typical Bit-rate

(Kbps)

QCIF 176X144 128
QVGA 320X240 256
CIF 352X288 512
VGA 640X480 2000
D1 720X480 3000
4CIF 704X576 4000
720p 1280X720 8000
SXVGA 1280X960 10000

2.8 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

2-8

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page
3.1 MPEG4 Encoder Client Interfacing Constraints 3-2
3.2 Overview of the Test Application 3-3
3.3 Usage in Multiple Instance Scenario 3-6
3.4 Usage for Motion Vector Access 3-7
3.5 Accessing Reconstruction Buffer Data 3-11

3-1

Sample Usage

3.1 MPEG4 Encoder Client Interfacing Constraints

3-2

The following constraints should be considered while implementing the
client for the MPEG4 encoder library in this release:

1)

2)

3)

4)

5)

6)

7

8)

DMA requirements of MPEG4 Encoder: Current implementation of the
MPEG4 encoder uses the following number of TCCs and PaRamSets
for its DMA resource requirements.

TCC Requirement PaRamSet Requirement
28 TCCs (TCC #63 All paramsets associated with TCCs and 38
compulsory) additional paramsets.

Channel mapping to queue and EDMA shadow region setting is done
by codec.

If there are multiple instances of a codec and/or different codec
combinations, the application can use the same group of channels and
PaRAM entries across multiple codecs. The AlgActivate and
AlgDeactivate calls made by client application and implemented by
the codecs, perform context save/restore to allow multiple instances of
same codec and/or different codec combinations.

As all codecs use the same hardware resources, only one process call
per codec should be invoked at a time (frame level reentrancy). The
process call needs to be wrapped within activate and deactivate calls
for context switch. See XDM specification on activate/deactivate.

If multiple codecs are running with frame level reentrancy, the client
application has to perform time multiplexing of process calls of different
codecs to meet the desired timing requirements between video/image
frames.

The ARM and DDR clock must be set to the required rate for running
single or multiple codecs.

The codec combinations feasibility is limited by processing time
(computational hardware cycles) and DDR bandwidth.

Codec atomicity is supported at frame level processing only. The
process call has to run until completion before another process call can
be invoked.

Sample Usage

3.2 Overview of the Test Application

The test application exercises the IMPAVENC_Params extended class of
the MPEG4 Encoder library.. The main test application files are
mpeg4EncTestApp.c and TestAppEncoder.h. These files are available in
the /Client/Test/Src and /Client/Test/Inc sub-directories, respectively.

The following figure depicts the sequence of APIs exercised in the sample
test application.

['Test Application XDAIS-XDM Interface Codec Library |

F
& &

s . algNumAlloc) —

g "E : alghlloc) —»

o= . : -

E 28 e algInit{) —

585 RMAN_init) ———

I ER RMAN_register) ——————»

RMAN_assignResourcesi) —n

[algActivate -.= g
g controlj >
&8 process{ >
cantroll) *

alyDeactivate() -

= — RMAN_freeResourcesil——»

- r ;

£ 28 ——— RMAN_unmgister() ——

=24 RMAN exit) ——

algNuméalloc) —————»

algFree — !

2 .

Figure 3-1. Test Application Sample Implementation.
The test application is divided into four logical blocks:
Q Parameter setup
a Algorithm instance creation and initialization
O Process call

O Algorithm instance deletion

3-3

Sample Usage

3.2.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Encoder configuration files.

In this logical block, the test application performs the following:

1) Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, Encoder configuration file name
(Testparams.cfg), input file name, and output/reference file name.

2) Opens the Encoder configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.7.

3) Sets the IVIDENC1 Params Structure based on the values it reads
from the Testparams.cfg file.

4) Reads the input bit-stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.2.2 Algorithm Instance Creation and Initialization

In this logical block, ALG create () is called by the test application and
accepts the various initialization parameters and returns an algorithm
instance pointer. The following APIs implemented by the codec are called
in sequence by ALG create():

1) algNumAlloc () - To query the algorithm about the number of memory
records it requires.

2) algAlloc () - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit () - Toinitialize the algorithm with the memory structures
provided by the application.

After successful creation of algorithm instance, the test application does
DMA and VICP resource allocation for the algorithm. This requires
initialization of RMAN and grant of VICP and DMA resources. This is
implemented by calling RMAN interface functions in following sequence.

1) RMAN init: To initialize the RMAN module.

2) RMAN register: To register the VICP protocol/resource manager with
generic resource manager.

3) RMAN assignresources: TO register resources to the algorithm as
requested VICP protocol/resource manager.

3-4

Sample Usage

3.2.3 Process Call in Single Instance Scenario

After algorithm instance creation and initialization, the test application
performs the following:

1) Calls algactivate (), which initializes the encoder state and some
hardware memories and registers.

2) Sets the input and output buffer descriptors required for the
process () function call.

3) Callsthe process () function to encode a single frame of data. The
inputs to the process function are input and output buffer descriptors,
the pointer to the IVIDENC1 InArgs and IVIDENC1 OutArgs
structures. process () function should be called multiple times to
encode multiple frames.

4) Call algbeactivate (), which performs releasing of hardware
resources and saving of encoder instance values.

5) process () is made a blocking call, but an internal OS specific layer
enables the process to be pending on a semaphore while hardware
performs a complete MPEG4 encode.

6) Other specific details of the process () function remain the same.

Note:

algActivate () is a mandatory call before first process () call, as it
does hardware initialization.

3.2.4 Algorithm Instance Deletion

After successful execution of algorithm the test application frees up the
DMA and VICP resource allocated for algorithm. This is implemented by
calling RMAN interface functions in following sequence:

1) RMAN freeResources(): To free the resources allocated to the
algorithm before process call.

2) RMAN unregister():To unregister VICP protocol/resource
manager with the generic resource manager.

3) RMAN exit():To delete the generic IRES RMAN and release the
memory.

After this, the test application must delete the current algorithm instance.
The following APIs are called in sequence:

1) algNumAlloc () - To query the algorithm about the number of memory
records it used.

2) algFree () - To query the algorithm to get the memory record
information and then free them up for the application

A sample implementation of the delete function that calls algNumalloc ()
and algFree () in sequence is provided in the ALG delete () function
implemented in the alg_create.c file.

3-5

Sample Usage

3.3 Usage in Multiple Instance Scenario

For client applications that support multiple instances of MPEG4 encoder,
initialization and process calls are altered. One of the main issues in
converting a single instance encoder to a multiple instance encoder is
resource arbitration and data integrity of shared resources between various
codec instances. Resources that are shared between instances and need
to be protected include:

o DMA channels and PaRamSets
O MPEG4 Hardware Co-Processors and their memory areas

To protect one instance of the MPEG4 encoder from overwriting into these
shared resources when the other instance is actually using it, the
application needs to implement mutex in the test applications. You can
implement custom resource sharing mutex and call algorithm APIs after
acquiring the corresponding mutex. Since all codecs (JPEG
encoder/decoder and MPEG-4 encoder/decoder) use the same hardware
resources, only one codec instance can run at a time.

Here are some of the APl combinations that need to be protected with
single mutex:

O control () call of one instance sets post-processing function
properties by setting the command length, and so on, when the other
instance is active or has already set its post processing properties.

O process () call of one instance tries to use the same hardware
resources [co-processor and DMA] when the other instance is active in
its process () call.

If multiple instances of the MPEG4 encoder are used in parallel, the
hardware must be reset between every process call and algorithm memory
to be restored. This is achieved by calling algactivate () and
algDeactivate () before and after process () calls.

Thus, the Process call section as explained previously changes to include
both algActivate () and algDeactivate () as mandatory calls of the
algorithm.

3.3.1 Process Call with algActivate and algDeactivate

3-6

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the input and output buffer descriptors required for the
process () function call.

2) Calls algactivate (), which initializes the encoder state and some
hardware memories and registers.

3) Calls the process () function to encode a single frame of data. The
inputs to the process function are input and output buffer descriptors,
and the pointer to the IVIDENC1 InArgs and IVIDENC1 OutArgs
structures.

Sample Usage

4) Calls algbeactivate (), which releases hardware resources and
saves the decoder instance values.

5) Other specific details of the process() function remain the same.

Note:

In a multiple instance scenario, algActivate () and algDeactivate ()
are mandatory function calls before and after process () respectively.

3.4 Usage for Motion Vector Access

3.4.1 Description

For client applications that support motion vector access, the initialization
and process calls are same as explained in section 3.2.

The Motion Vector Access API is part of the XDM process () call that the
application uses to encode a frame. A run-time parameter MvDataEnable
is provided as a part of dynamic parameters, which can be set or reset at a
frame level at run-time. Setting this flag to 1 indicates that the motion
vectors access is needed. When this parameter is set to 1, the process ()
call returns the motion vector data in the buffer provided by the application.

For every macro block, the data returned is 8 bytes, a signed horizontal
displacement component (signed 16-bit integer) and a vertical
displacement component (signed 16-bit integer) and unsigned SAD, as
shown:

Motion vector horizontal displacement

(HD) Signed 16 - bit integer

Motion vector vertical displacement

(VD) Signed 16 - bit integer

SAD Unsigned 32 - bit integer

Note:

The current version of the MPEG4 encoder stores the SAD (Sum of
Absolute Differences) in place of SSE.

The API returns the motion vector data in a single buffer with these three
values interleaved in contiguous memory as shown in the following figure.

3-7

Sample Usage

HD

VD

SAD

HD

VD

SAD

HD

VD

SAD

HD

VD

SAD

HD

VD

SAD

HD

VD

SAD

MB(0.0)

MB (0.1)

MB (0, num_mb_cols -1)

MB (1.0}

MB (num_mb_rows -1, num_mb_cols -2)

MB (num_mb_rows -1, num_mb_cols -1)

Figure 3-2. Motion Vector and SAD Buffer Organization.

3-8

Sample Usage

3.4.2 Usage

The following sequence should be followed for motion vector access:

1)

2)

3)

In the dynamic parameters, set the flag to access MV data:

/* This structure defines the run-time parameters for
MP4VEnc object */

MP4VENC DynamicParams ext dynamicParams;

/* Enable MV access */

ext dynamicParams ->mvDataEnable = 1;

/* Control call to set the dynamic parameters */
control (.., XDM SETPARAMS, ..)

Allocate output buffers and define the output buffer descriptors:
/* Output Buffer Descriptor variables */

XDM BufDesc outputBufDesc;

/* Get the input and output buffer requirements for the
codec */

control (.., XDM GETBUFINFO, extn dynamicParams, ..);

If MV access is enabled in step 1, this call will return the buffer
informatin as minNumOutBufs=2, along with the minimal buffer sizes.

/* Initialize the output buffer descriptor */

outputBufDesc.numBufs =
status.videncStatus.bufInfo.minNumOutBufs;

/* Stream Buffer */

outputBufDesc.bufs[0] = streamDataPtr; //pointer
to mpeg4 bit stream

outputBufDesc.bufSizes[0] =
status.videncStatus.bufInfo.minOutBufSize [0] ;

/* MV Buffer */

outputBufDesc.bufs [1] = mvDtataPtr; //pointer to
MV data

outputBufDesc.bufSizes[1] =
status.videncStatus.bufInfo.minOutBufSizel[1];

Call the frame encode API:
/* Process call to encode 1 frame */

process (.. ;.. , outputBufDesc, ..);

After this call, the buffer outputBufDesc.bufs [1] will have the
Motion vector data. This API will return the size of the MV array in
outArgs.mvDataSize

3-9

Sample Usage

3-10

As shown in Figure 3-2, the API uses a single buffer to store the motion
vector data. The buffer will have the three values (HD, VD, SAD)
interleaved in contiguous memory.

Define a structure as shown.

struct motion mbdata

{
short MVx;
short MVy;
unsigned int SAD;
[
motion mbdata *mbMV data = outputBufDesc.bufs[1];
num mb rows = frameRows / 16;
num mb cols = frameCols / 16;
for (1 = 0; 1 < num mb rows; i++)
{
for (j = 0; jJ < num mb cols; j++)
{
HD for mb(i, j) = mbMV data ->MVx;

VD for mb(i, 3J)

mbMV data ->MVy;

SAD for mb(i,])

mbMV data ->SSE;

mbMV data ++;

}

Note:
Q The motion vectors are with fullpel (integer pel) resolution.

O SSE = (Ref(i,j) — Src(i,j)) 2, where Ref is the macro block of the
reference region and Src is the macro block of the source image.

a Current version of the MPEG4 encoder stores the SAD (Sum of
Absolute differences) in place of SSE.

Q The motion vectors seen in the encoded stream are based on the
best coding decision, which is a combination of the motion
estimation and mode decisions. The MV buffer returns the results of
the motion estimation in fullpel resolution (lowest SAD), which may
be different from the motion vectors seen in the bit-stream:

= Some macro blocks in a P-frame may be coded as Intra
macro blocks based on the post motion estimation
decisions. In this case, the motion vectors computed in the

motion estimation stage (assuming that this macro block is

Sample Usage

3.5

inter) will be returned.

Some macro blocks in a P-frame may be ‘Not Coded’, that
is, Skipped. In this case, motion vectors of (0,0) and SAD
corresponding to (0,0) motion vector are returned.

For I-frames, motion vectors are not returned and
outArgs.mvDataSize = 0.

Accessing Reconstruction Buffer Data

The structure of reconstruction buffer used in the MPEG4 encoder is
shown in the following figure. The reconstructed data is not stored in YUV
420P format. Luma data is stored continuously in
outArgs.reconBufs.bufDesc[0].buf buffer, while chroma data is
stored in outArgs.reconBufs.bufDesc[1].buf as interleaved Cb and

Cr format.
. JE bytes
tm8 | m8 | M Me
——— 0.0 | @: 1| 0.2} (@,mj
mﬂf'} =] MBA me | Me ME
O ssoves)| g c2) (1,m)
MB - - — >
e
Ma, of 0.4 ," 4
Mbs in B , 4
Column | &% / ’,
L] rs s
™ / #
gis. st MB]
e P 7/ in,a} {nymj
v Lo AT
Z*1E%16 > < 4 d Reconstructed frame
Lol -y
en| 7
,’ . The MB is constructed by intra/inter prediction
e i aotae s :
(1,1} process by b-IMX
P 2. Constructed data is transferred to SDRAM
2.1) (External Mem) in sequential order like left figure.
L}
.
Me
in,1) rDummy block
L]

Figure 3-3. Reconstruction Buffer.

The MBs stored in the reconstruction buffer are actually column MBs in
display frame. Also the MB data are stored continuously in reconstruction
buffer (that is, 256 bytes/MB of luma of entire frame and then follows
128bytes/MB of chroma data).

Therefore, to access first MB of the frame, the offset will be 16*16 for luma
and 16*8 for chroma. Similarly, to access the second MB (in actual display
frame), offset of ((No of MBs in column + 2) * 256 + 256) is added to the
base reconstruction buffer pointer for luma.

3-11

Sample Usage

Following figures provides the format of the recon buffer taking SXVGA as

an example.
256bytes
Buffer head -> tisagean
Ox100 MEB{00) ”,' N‘\‘
0x100*%(2) 1 MB column l':‘
Ox100*(82*N) Spacer
0x100%(50) | Ox100%(62*N+ 1)\ R
Spacer T Ox100%(62*N+2) d
Ox100*%(62) o Nth MB column

Ox100*(62+1)[waja.) | OX100%(62*N+60
PR 2nd MB column
Ox100*(62+60) 5
Spacar : <
0%100%{62%2) | spacer ; 0%100%(62%79) [soecer
Ox100%(62*%2+1) wEn 2] E 0x100*%(62%79+1) MB(0, 73}
(E2 ! Ox100%(62%79+2
0x100%(62*2+2) 3rd MB column | () | 80th MB column
0x100%(62*%2+60) O 100%(62*79+60)
Figure 3-4. Reconstruction Buffer for Luma.
128bytes
Buffer head -> eaan,
d ." -) N -
OxB80 MEB(00) ”r' L“"\..
0xB0*(2) 1# MB column ; L':‘
0x80%(62*N) [soacer
0x80*(60) | 0xBO%(62*N+1) [UmEnn
Spacar ' OxBO*(B2*N+2) 5
0xB0*(62) [enomer : _ Nth MB column
0x80%(62+1) ['iaia) | OxBO*(62*N+60)
R Jnd MB column |
DxB0*(62+60) 5 i
OxB0%(62*%2) [spacer . 0x80%(62%79) [soecer
DxB0*(62#*2+1) wE 2 i O0xBO*(62*79+1) MB(0,75)
(G2 ! OxBO¥(62%79+2
OxBO0*(62*2+2) 3rd MB column il)] 80th MB column
0xBO*(62%2+60) | OxBO*(62*79+60)
*

Figure 3-5. Reconstruction Buffer for Chroma.

A sample application code is provided as shown to extract luma and
chroma data from the recon buffer and dump into output file in the planar

YUV420 format.

3-12

Sample Usage

mbSizeY = extn_params.subWindowHeight >> 4;
mbSizeX = extn_params.subWindowWidth >> 4;
dummy_ptr_lum (unsigned char *)(outArgs.reconBufs.bufDesc[0].buf + 16*16);
dummy_ptr_chr (unsigned char *)(outArgs.reconBufs.bufDesc[1]-buf + 16*8);

/*

outArgs.reconBufs.bufDesc[0].buf -> Base address for the luma recon buffer
outArgs.reconBufs.bufDesc[1].buf -> Base address for the chroma recon
buffer

temp_buffer_bk is the base pointer address for the output buffer for YUV420
planar

allocated with the memory of (width * height * 1.5)

*/

lumaOffset = 16*16*(mbSizeY+2);
chrOffset = lumaOffset /2;
for(i=0; i<(extn_params.subWindowWidth>>4) ;i++)

{
for(J=0; j<mbSizeY;j++)

. temp_buffer= temp_buffer_bk + (extn_params.subWindowWidth*16*j) +
< 16);t(-:-mp_lum = dummy_ptr_lum + (lumaOffset *i) + (256*j);

. temp_buffer_cb = temp_buffer_cb_bk+(extn_params.subWindowWidth*4*j) +
(f* ' temp_buffer_cr = temp_buffer_cr_bk+(extn_params.subWindowWidth*4*j) +
(e temp_chr =(dummy_ptr_chr + (chrOffset *i)) + (128*j);

/* Extract Luma*/
for(k=0;k<16;k++)

{
Ffor(1=0; 1<16; 1++)
{

3

/* Extract Chroma*/
for(k=0;k<8;k++)

temp_buffer[k*extn_params.subWindowWidth+1] = temp_lum[k*16+1];

{
for(1=0;1<8; 1++)

temp_buffer_cb[k*(extn_params.subWindowWidth >> 1) + I]
temp_chr[k*16+2*1];
temp_buffer_cr[k*(extn_params.subWindowWidth >> 1) + I]
temp_chr[k*16+(2*1)+1];
}

}

}
by
fwrite(temp_buffer_bk, 1, ((extn_params.subWindowWidth *
extn_params.subWindowHeight *3)>>1), fReconBuffer);

3-13

Sample Usage

3.6 User Data Insertion

MPEG4 Encoder provides the APIs to insert the User Data in encoded bit-
stream. This can be used to incorporate useful information in the bit-
stream. This User Data is inserted frame by frame.

The following figure shows how the bit-stream is built with the UserData

field.
VOS » VO » VOL - I-VOP
» VOS » VO » VOL - P-VOP
» VOS » VO » VOL - P-VOP >

Figure 3-6. Bit-stream Built With UserData Field.

To support this feature, the following protocol is used between the codec
and test application.

1) Codec will make space for user data insertion.

2) The start code insertion will be done by codec and specific user data
will be inserted by the application. Codec will not insert the actual user
data in the bit-stream.

3) Application will use 1nargs to pass information about:
0 User data isfis not

0 Size of the data

4) Codec will use cutargs to pass the offset in the output bit-stream
where the user data should be inserted

5) The user data size sent to codec does not include the user data start
code.

Application needs to set the following parameters of IMP4VENC InArgs
structure (in extended mode) before calling the process function.

Parameter Name Type Value (Range)

insertUserData Bool Q 0 =Do not insert user data
QO 1 =Insert user data

lenghtUserData UINT32 a >0 (bytes): When
insertUserData=1
Q =0: When insertUserData =0

Error cases
O >0but insertUserData =0,
codec will assume that no user data

3-14

Sample Usage

Parameter Name Type Value (Range)

needs to be inserted

O =0but insertUserData =1,
codec will assume that no user data
needs to be inserted

After encoding process, codec will return the following parameters in
IMP4VENC OutArgs structure (in extended mode), which can be used by
testApp to insert the user data.

Parameter Name Type Value (Range)

offsetUserData INT32 a >=0 (bytes), Valid offset value
when insertUserData =1
a =-1, Value set by codec when
insertUserData =0, no space
for user data insertion

The offset (bytes) is with respect to the
output buffer where the encoded
frame is dumped after the

process () call. Application should
move to this offset and place the user
data of lengthUserData.

3-15

Sample Usage

This page is intentionally left blank

3-16

Chapter 4

API| Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page
4.1 Symbolic Constants and Enumerated Data Types 4-2
4.2 Data Structures 4-7
4.3 Interface Functions 4-29

4-1

API| Reference

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

Table 4-1. List of Enumerated Data Types.

Group or Symbolic Constant Name
Enumeration Class

Value

Description or Evaluation

IVIDEO _FrameType IVIDEO_I_FRAME

IVIDEO_P_FRAME

IVIDEO_B_FRAME

1VIDEO_IDR_FRAME

IVIDEO_I1_FRAME

1VIDEO_IP_FRAME

IVIDEO_IB_FRAME

IVIDEO_PI1_FRAME

1VIDEO_PP_FRAME

1VIDEO_PB_FRAME

4-2

Intra coded frame

Forward inter coded frame

Bi-directional inter coded frame. Not
supported in this version of the
MPEG4 Encoder.

Intra coded frame that can be used for
refreshing video content. Not
supported in this version of the
MPEG4 Encoder.

Interlaced Frame, both fields are |
frames. Not supported in this version
of the MPEG4 Encoder.

Interlaced Frame, first field is an |
frame, second field is a P frame. Not
supported in this version of the
MPEG4 Encoder.

Interlaced Frame, first field is an |
frame, second field is a B frame. Not
supported in this version of the
MPEG4 Encoder.

Interlaced Frame, first field is a P
frame, second field is a | frame. Not
supported in this version of the
MPEG4 Encoder.

Interlaced Frame, both fields are P
frames. Not supported in this version
of the MPEG4 Encoder.

Interlaced Frame, first field is a P
frame, second field is a B frame. Not
supported in this version of the
MPEG4 Encoder.

API| Reference

Group or
Enumeration Class

Symbolic Constant Name

Value

Description or Evaluation

IVIDEO_ContentTyp
e

1VIDEO_RateContro
IPreset

1VIDEO_BI1_FRAME

1VIDEO_BP_FRAME

1VIDEO_BB_FRAME

IVIDEO_MBAFF_1_FRAME

IVIDEO_MBAFF_P_FRAME

IVIDEO_MBAFF_B_FRAME

1VIDEO_MBAFF_IDR_FRAME

1VIDEO_FRAMETYPE_DEFAU
LT

IVIDEO_CONTENTTYPE_NA

1VIDEO_PROGRESSIVE

1VIDEO_INTERLACED

IVIDEO_LOW_DELAY

10

11

12

13

14

15

16

-1

Interlaced Frame, first field is a B
frame, second field is an | frame. Not
supported in this version of the
MPEG4 Encoder.

Interlaced Frame, first field is a B
frame, second field is a P frame. Not
supported in this version of the
MPEG4 Encoder.

Interlaced Frame, both fields are B
frames. Not supported in this version
of the MPEG4 Encoder.

Intra coded MBAFF frame. Not
supported in this version of the
MPEG4 Encoder.

Forward inter coded MBAFF frame.
Not supported in this version of the
MPEG4 Encoder.

Bi-directional inter coded MBAFF
frame. Not supported in this version of
the MPEG4 Encoder.

Intra coded MBAFF frame that can be
used for refreshing video content. Not
supported in this version of the
MPEG4 Encoder.

Default set to IVIDEO_I FRAME

Content type is not applicable. Not
supported in this version of the
MPEG4 Encoder.

Progressive video content. Default
value.

Interlaced video content.
Not supported in this version of the
MPEG4 Encoder.

Constant Bit Rate (CBR) control for
video conferencing. (that is, CBR with
frames dropped based on VBV buffer
occupancy)

4-3

API| Reference

Group or Symbolic Constant Name Value Description or Evaluation
Enumeration Class
1VIDEO_STORAGE 2 Variable Bit Rate control for local
storage (DVD) recording. Default
value (similar to
IVIDEO LOW_DELAY but no frame
skips)
(See section 4.2.2)
IVIDEO_TWOPASS 3 Two pass rate control for non real time
applications.
Not supported in this version of the
MPEG4 Encoder.
1VIDEO_NONE 4 No rate control algorithm (Fixed Qp
values)
1VIDEO_USER_DEFINED 5 User defined through extended
parameters. Not supported in this
version of the MPEG4 Encoder.
IVIDEO_RATECONTROLPRES 1 Setto IVIDEO LOW _DELAY
ET_DEFAULT
1VIDEO_SkipMode 1VIDEO_FRAME_ENCODED 0 Input content encoded
1VIDEO_FRAME_SKIPPED 1 Input content skipped, that is, not
encoded
IVIDEO_SKIPMODE_DEFAUL 0 Default value set to
T IVIDEO FRAME ENCODE
XDM_DataFormat XDM_BYTE 1 Big endian stream
XDM_LE_16 2 16-bit little endian stream. Not
supported in this version of the
MPEG4 Encoder.
XDM_LE_32 3 32-bit little endian stream. Not
supported in this version of the
MPEG4 Encoder.
XDM_ChromaFormat XDM_CHROMA_NA -1 Chroma format not applicable. Not
supported in this version of the
MPEG4 Encoder.
XDM_YUV_420P 1 YUV 4:2:0 planar
XDM_YUV_422P 2 YUV 4:2:2 planar. Not supported in

4-4

this version of the MPEG4 Encoder.

API| Reference

Group or Symbolic Constant Name Value Description or Evaluation
Enumeration Class
XDM_YUV_4221BE 3 YUV 4:2:2 interleaved (big endian).
Not supported in this version of the
MPEG4 Encoder.
XDM_YUV_4221LE 4 YUV 4:2:2 interleaved (little endian)
XDM_YUV_444P 5 YUV 4:4:4 planar. Not supported in
this version of the MPEG4 Encoder.
XDM_YUV_411P 6 YUV 4:1:1 planar. Not supported in
this version of the MPEG4 Encoder.
XDM_GRAY 7 Gray format. Not supported in this
version of the MPEG4 Encoder.
XDM_RGB 8 RGB color format. Not supported in
this version of the MPEG4 Encoder.
XDM_YUV_420SP 9 YUV 4:2:0 semi planar (Yplane, Cb Cr
plane)
XDM_CmdId XDM_GETSTATUS 0 Query algorithm instance to fill
Status structure
XDM_SETPARAMS 1 Set run-time dynamic parameters
through the DynamicParams
structure
XDM_RESET 2 Reset the algorithm.
XDM_SETDEFAULT 3 Initialize all fields in Params structure
to default values specified in the
library
XDM_FLUSH 4 Handle end of stream conditions. This
command forces algorithm instance to
output data without additional input.
XDM_GETBUFINFO 5 Query algorithm instance regarding
the properties of input and output
buffers
XDM_GETVERSION 6 Query the algorithm's version. Not
supported in this version of the
MPEG4 Encoder
XDM_EncodingPrese XDM_DEFAULT 0 Default setting of the algorithm

t

specific creation time parameters.

This uses XDM_HIGH QUALITY
ceftinng

4-5

API| Reference

Group or
Enumeration Class

Symbolic Constant Name

Value

Description or Evaluation

XDM_EncMode

XDM_ErrorBit

4-6

XDM_HIGH_QUALITY

XDM_HIGH_SPEED

XDM_USER_DEF INED

XDM_ENCODE_AU

XDM_GENERATE_HEADER

XDM_APPL 1EDCONCEALME

NT

XDM_INSUFFICIENTDATA

XDM_CORRUPTEDDATA

XDM_CORRUPTEDHEADER

XDM_UNSUPPORTEDINPUT

XDM_UNSUPPORTEDPARAM

XDM_FATALERROR

10

11

12

14

Set algorithm specific creation time
parameters for high quality (default
settina).

Set algorithm specific creation time
parameters for high speed.

User defined configuration using
advanced parameters. This uses
XDM HIGH QUALITY settings in
case of non extended params.

Encode entire access unit, including
the headers. Default value.

Encode only header.

Bit 9
Q 1: Applied concealment
a O0:Ignore

Bit 10
QO 1:Insufficient data
Q O:Ignore

Bit 11
Q 1 : Data problem/corruption
a O0:Ignore

Bit 12
QO 1:Header problem/corruption
a O0:lIgnore

Bit 13

Q 1:Unsupported
feature/parameter in input

O O:lanore

Bit 14

Q 1:Unsupported input
parameter or configuration

Q O:lIgnore

Bit 15
Q 1: Fatal error (stop encoding)
Q O0: Recoverable error

API Reference

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

4211 XDM1_BufDesc

This section includes the following common XDM data structures:

Q

Q

I I I e N E e =

XDM1_ BufDesc
XDM1_SingleBufDesc
XDM1 AlgBufInfo
IVIDEOl1 BufDescIn
IVIDENC1 Fxns

IVIDENC1 Params
IVIDENC1 DynamicParams
IVIDENC1 InArgs
IVIDENC1 Status

IVIDENC1 OutArgs

| Description
This structure defines the buffer descriptor for input and output buffers in
XDM 1.0.
|| Fields
Field Data Type Input/ Description
Output
numBufs XDAS_Int32 Input Number of buffers
descs[XDM_MAX XDM1_Singl Input Array of buffer descriptors
_10_BUFFERS] eBufDesc

4-7

API Reference

4.2.1.2 XDM1_SingleBufDesc

| Description
This structure defines the single buffer descriptor for input and output
buffers in XDM1.0
|| Fields
Field Data Type Input/ Description
Output
*buf XDAS_Int8 Input Pointer to a buffer address
bufSize XDAS_Int32 Input Size of buf in 8-bit bytes
accessMask XDAS_Int32 Input Mask filled by the algorithm, declaring how the

buffer was accessed by the algorithm process

4.2.1.3 XDM1_AlgBufinfo

| Description
This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control () function
with the XDM GETBUFINFO command.
|| Fields
Field Data Type Input/ Description
Output
minNumInBufs XDAS_Int32 Output Number of input buffers
minNumOutBufs XDAS_Int32 Output Number of output buffers
minInBufSize[XDM_ XDAS_Int32 Output Size in bytes required for each input buffer
MAX_10_BUFFERS]
minOutBufSize[XDM XDAS_Int32 Output Size in bytes required for each output buffer

_MAX_10_BUFFERS]

4-8

API Reference

4.2.1.4 |IVIDEO1_BufDesc

| Description
This structure defines the buffer descriptor for input video buffers.
|| Fields
Field Data Type Input/ Description
Output

numBufs XDAS_Int32 Input Number of buffers in bufDesc []
frameWidth XDAS_Int32 Input Width of the video frame
frameHeight XDAS_Int32 Input Height of the video frame
framePitch XDAS_Int32 Input Frame pitch used to store the frame.

Not Supported in this version of

MPEG4 encoder
bufDesc[XDM_MAX_10_BUFFERS] XDM1_Singl Input Picture buffers

eBufDesc

4.2.1.5 IVIDENC1_Fxns

| Description
This structure contains pointers to all the XDAIS and XDM interface
functions.
| Fields
Field Data Type Input/ Description
Output
ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.
For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).
*process XDAS_Int32 Input Pointer to the process () function.
*control XDAS_Int32 Input Pointer to the control () function.

4-9

API Reference

4.2.1.6 IVIDENC1_Params

| Description
This structure defines the creation parameters for an algorithm instance
object.
|| Fields
Field Data Type Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.
encodingPreset XDAS_Int32 Input Encoding preset. See

4-10

XDM_EncodingPreset enumeration for
details. Only the following values are
supported:

Q XDM HIGH_QUALITY (1):ForVery
High Quality and Low Performance.
This is same as XDM_DEFAULT (O0).

Q XDM_HIGH_SPEED(2): For Moderate
Quality and Moderate Performance.

O XDM_USER_DEFINED(3): For using
the user-defined extended parameters.

The default is XDM HIGH QUALITY.

In addition to this, the encoder supports the

following enumerations:

a IMP4A4VENC_HIGH_QUALITY_MODE
RATE_PERFORMANCE (256): For
High Quality and Moderate
Performance.

a IMP4A4VENC_HIGHEST_QUALITY_L
OWEST_PERFORMANCE (257): For
Highest Quality and Lowest
Performance.

o IMP4VENC_LOW_QUALITY_HIGHE
ST_PERFORMANCE (258): For
Normal Quality and Highest
Performance.

Note: encodingPreset must be set to

XDM_USER_DEFINED, if you need to set

quality/performance tools through extended

parameters.

API Reference

Field

Data Type

Input/
Output

Description

rateControlPreset

maxHeight

maxWidth

maxFrameRate

maxBitRate

dataEndianness

maxInterFrameInterval

inputChromaFormat

inputContentType

XDAS_Int32

XDAS Int32

XDAS_Int32

XDAS Int32

XDAS Int32

XDAS_Int32

XDAS Int32

XDAS_Int32

XDAS Int32

Input

Input

Input

Input

Input

Input

Input

Input

Input

Rate control preset: See
IVIDEO_RateControlPreset
enumeration for details.

Only IVIDEO_LOW_DELAY,

IVIDEO STORAGE and IVIDEO NONE are

supported.

The defaultis IVIDEO LOW_DELAY.

The relevant extended parameters should be

set to use any of these rate controls. (See

section 4.2.2)

Apart from this, following additional rate

control algorithm is supported

0O IMP4VENC CVBR LBR1: Advanced
CVBR algorithm suitable for low bit-rate.
Does not allow frame skips.

O IMP4VENC CVBR_LBR2: Advanced
CVBR algorithm suitable for low bit-rate.
Allows frame skips.

Q IMP4VENC_CVBR: Advanced CVBR
algorithm

Height of the input stream in pixels.
Default: 960
Supported Value: 64 to 1920

Width of the input stream in pixels.
Default: 1280
Supported Value: 160 to 1920.

Frame rate in fps * 1000.
Default: 30000
Supported Value: 1000 to 30000000

Maximum Bit-rate to be used for encoding in
bits per second. Maximum supported value
is 51000000.

Endianness of input data. See
XDM_DataFormat enumeration for details.
Only XDM_BYTE is supported in this version.

Distance from I-frame to P-frame.
Default : 1
Supported Value: 0, 1

Input chroma format. See
XDM_ChromaFormat enumeration for
details. Only XDM_YUV_422ILE (4) and
XDM_YUV_4208P (9) are supported in
this version. The default is
XDM_YUV_422ILE.

Input content type. See

IVIDEO_ ContentType enumeration for
details. Only IVIDEO PROGRESSIVE is
supported in this version. The default is
IVIDEO PROGRESSIVE.

4-11

API Reference

Field

Data Type Input/
Output

Description

reconChromaFormat

XDAS_ Int32 Input

Chroma formats for the reconstruction
buffers. Reconstruction buffer chroma format
is neither exactly YUV 4:2:0 P nor 4:2:0 SP.
See section 3.5, for more details.

4.2.1.7 IVIDENC1 DynamicParams

| Description

|| Fields

This structure defines the run-time parameters for an algorithm instance

object.

Field

Data Type Input/
Output

Description

inputHeight

inputWidth

refFrameRate

targetFrameRate

targetBitRate

4-12

XDAS_Int32 Input

XDAS_INnt32 Input

XDAS_Int32 Input

XDAS_Int32 Input

XDAS_Int32 Input

XDAS_Int32 Input

Size of the basic or extended (if being used) data
structure in bytes.

Height of input frame in pixels. Must be multiple
of 16.

Default: 480

Supported Value: 64 to 1920

Note: Though supported value is upto 1920,
codec does not give error until 2048. This is to
support encoding of (up to) 1080p even if video
is captured at higher resolution (height upto
2048)

Width of input frame in pixels. Must be multiple of
16.

Default: 720

Supported Value: 160 to 1920 (with UMV OFF)
and 192 to 1920 (with UMV ON)

Note: Though supported value is upto 1920,
codec does not give error until 2048. This is to
support encoding of (up to) 1080p even if video
is captured at higher resolution (height upto
2048) .

Reference or input frame rate in fps. Not
supported in this version of the encoder.

Target frame rate in fps * 1000.
Default: 30000

Supported Value : 1000 to 30000000
(See section 4.2.3)

Target bit-rate in bits per second. For example, if
the bit-rate is 2 Mbps, set this field to 2097152.
(see section 4.2.3). Maximum supported value is
51000000.

API| Reference

Field Data Type Input/ Description
Output
intraFramelnterval XDAS_ Int32 Input The number of frames between two | frames.
Default: 30

Supported Value : 1 to 100

O 1:Nointer frames (all intra frames)

Q n:n-1frames coded as p-frames between
every two I-frames
(see section 4.2.3)

generateHeader XDAS_Int32 Input Encode entire access unit or only header. The
following values are supported:
QO XDM _ENCODE AU (0):Encode entire
access unit, including the headers. (Default)
O XDM GENERATE HEADER (1):Encode
only header.

captureWidth XDAS_Int32 Input If the field is set to:
Q 0: Encoded image width is used as pitch.
O Any non-zero value, capture width is used
as pitch (if capture width is greater than
image width).
Not supported in this version of the encoder.

forceFrame XDAS_Int32 Input Force the current (immediate) frame to be
encoded as a specific frame type.
Only IVIDEO I FRAME and
IVIDEO NA FRAME is supported.
(see section 4.2.3)

interFramelnterval XDAS_Int32 Input Number of B frames between two reference
frames; that is, the number of B frames between
two P frames or I/P frames. Since B frame is not
supported, only value of 0 (default) and 1 is
supported for this parameter.

mbDataFlag XDAS_Int32 Input Flag to indicate that the algorithm should use MB
data supplied in additional buffer within inBufs.
Not supported in this version of the encoder.

4.2.1.8 IVIDENC1_InArgs

| Description
This structure defines the run-time input arguments for an algorithm
instance object.
|| Fields
Field Data Type Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
inputiD XDAS_Int32 Input Identifier to attach with the corresponding encoded

bit-stream frames.

4-13

API Reference

Field Data Type Input/ Description
Output

Note: This is useful when frames require buffering
(that is, B frames), and to support buffer
management. When there is no re-ordering,
IVIDENC1 OutArgs::outputID will be the
same as this input ID field.
Zero (0) is not a supported inputID. This value is
reserved for cases when there is no output buffer
provided.

topFieldFirs XDAS_Int32 Input Flag to indicate the field order in interlaced content.

tFlag Note: Valid values are XDAS TRUE and
XDAS_ FALSE.
Not supported in this version of encoder.

4.2.1.9 IVIDENC1_Status

| Description

This structure defines parameters that describe the status of an algorithm
instance object.
|| Fields
Field Data Type Input/ Description
Output
size XDAS Int32 Input Size of the basic or extended (if being used)
data structure in bytes.
extendedError XDAS Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.
data XDM1_SingleBuf Input Buffer descriptor for data passing. Not
Desc supported in this version.
bufInfo XDM AlgBufInfo Output Input and output buffer information. See

XDM_ AlgBufInfo data structure for
details.

4-14

API| Reference

4.2.1.10 IVIDENC1_OutArgs
| Description
This structure defines the run-time output arguments for an algorithm
instance object.
|| Fields
Field Data Type Input/ Description
Output

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit
enumeration for details.

bytesGenerated XDAS_Int32 Output The number of bytes generated after each
process/encode call

encodedFrameTy XDAS_Int32 Output Frame types for video. See

pe IVIDEO_ FrameType enumeration for details.
Only IVIDEO I FRAME, IVIDEO P _FRAME
are supported in this version.

inputFrameSkip XDAS_Int32 Output Frame skipping modes for video. See
IVIDEO_SkipMode enumeration for details.

outputlD XDAS_Int32 Output Identifier to attach with the corresponding
encoded bit-stream frames.

encodedBuf XDM1_SingleBufD Output Not supported in this version.

esc
reconBufs 1VIDEO1_BufDesc Output Pointer to reconstruction buffer descriptor. See

section 3.5, for more details.

4-15

API| Reference

4.2.2

4221

4-16

IVIDEO_RateControlPreset

MPEG4 encoder supports the following types of rate control algorithms:

Q

O

[S T A

IVIDEO STORAGE (VBR)
IVIDEO LOW DELAY(CBR)
IVIDEO NONE (fixed Qp)
IMP4VENC CVBR LBR1
IMP4VENC CVBR LBR2

IMP4VENC CVBR

The behavior of rate control algorithm is decided by the following
parameters (see IMP4VENC Params and IMP4VENC DynamicParams
structure for details):

Q

o 0000000 O

initQ

rcQMax

rcQMin

intraFrameQp
interFrameQp

vbvSize
IFrameBitRateBiasFactor
PFrameBitRateBiasFactor
peakBufWindow
minBitRate

maxBitRate

targetBitRate

IVIDEO_STORAGE (VBR)

Q

If IVIDEO RateControlPreset iS setto IVIDEO STORAGE, it selects
the Variable Bit rate.

The parameter initQ decides the starting quantization parameter for |
frames. Qp will change at MB level.

The achieved bit-rate may not necessarily be close to the specified bit-
rate, as frame skip is not allowed.

The vbvsize parameter is ignored for VBR.

API| Reference

4.2.2.2 IVIDEO_LOW_DELAY(CBR)

Q

If IVIDEO RateControlPreset iS Setto IVIDEO LOW DELAY, it
selects the Constrained Bit rate (CBR).

The parameters initQ decides the starting quantization parameter for
| frame. Qp will change at MB level.

The vbvsize parameter is considered for CBR.

A typical value for vbvsize can be obtained from the following
equation:

vbvsize= BitRate / ((FrameRate/ 1000) * 16000).

CBR models the encoder decoder coupled bit buffer memory modeling.
The encoder is assumed to fill the bits in the buffer and decoder is
assumed to drain out the bits from the same buffer. The size of this
buffer is the size of vbvsize parameter. The encoder maps the buffer
into which it is writing bits, by mapping it through VBV position variable.
Once the buffer gets filled, the encoder is forced to skip the frame,
thereby preventing the possible corruption of encoded bit buffer.

The initial VBV position is set as 50% and this corresponds to the initial
buffer fullness assumed at the decoder side. The VBV position is
updated based on the logic mentioned below. If the VBV position
reaches VBV size, it implies that encoded bits buffer is full and frame is
skipped. This decreases the VBV position as decoder drains out the
bits continuously.

VBV _pos = (0.5 x vbvSizex 16000)
DrainRate = (BitRate/FrameRate)

After every frame encoding, VBV position is up dated, and skip
decision is made as follows.

SkipFrame = 0;

VBV _pos += (No of Bits encoded - DrainRate)

If (VBV _pos > (VBV_size * 16000))
SkipFrame = 1;

}

The dynamically varied bitRate and frameRate is considered in VBV
modeling, without reinitializing the VBV buffer.

The amount of variation in the achieved bit-rate is proportional to the
VBYV buffer size. Very less VBV size will yield less variation in the
achieved bit-rate (compared to target bit-rate) but will have more
number of frames skipped.

4223 Fixed Qp (IVIDEO_NONE)

Q

a

If IVIDEO RateControlPreset iS Setto IVIDEO NONE, it selects the
no rate control mode.

The parameters intraFrameQp and interFrameQp decides the
guantization parameter for | and P frames, respectively. op will not
change at MB level.

4-17

API| Reference

Q

All the Macroblocks of | frame are coded with intraFrameQp and all
Macroblocks of P frame are coded with interFrameQp.

The bitRate parameter is ignored, so achieved bit-rate may not be
same as the specified bit-rate.

If you set intraFrameQp and interFrameQp parameters as
XDM_DEFAULT (that is, zero), these parameters will be calculated by
codec.

The vbvSize is ignored.

4224 IMP4VENC_CVBR_LBR1

Q

If IVIDEO RateControlPreset iS Setto IMPAVENC CVBR_LBRI, it
selects the Constrained Low Bit rate (LBR1).

The behavior of this algorithm is similar to that of Variable Bit Rate
(VBR). In addition it provides control (to user) to bias the bits allocation
to | & P frame using following parameters.

IFrameBitRateBiasFactor: Bits allocated to | frame will be biased
by a factor of (IFrameBitRateBiasFactor/256)

PFrameBitRateBiasFactor: Bits allocated to P frame will be biased
by a factor of (PFrameBitRateBiasFactor/256)

1. Default values to these parameters are 256 and 256 for “No Bias”
case.

2. Changing these values for Positive bias(>256) or negative bias
(<256) will have impact on achieved bitrate.

3. Recommended settings for these parameters are 512 and 256
respectively for very low bitrate.

This algorithm does not allow the frame skips. Hence there might be
deviation between achieved bitrate and target bitrate incase
targetbitrate is not achieved even with lowest quality (Qp =31).

4225 IMP4VENC_CVBR_LBR2

Q

If IVIDEO RateControlPreset iS Setto IMP4VENC CVBR LBR2, it
selects the Constrained Low Bit rate (LBR2).

The behavior of this algorithm is similar to that of
IMP4VENC CVBR_LBR1 except that it allows the “frame skipping” to
meet the target bitrate.

4226 IMP4VENC_CVBR

Q

4-18

If IVIDEO RateControlPreset iS Setto IMP4VENC CVBR, it selects
the Constrained Variable Bit rate (CVBR).

Keeps reasonable video quality when video scene is complicated by
setting up appropriate upper bitrate limit (maxBitRate) within the peak
buffer window (peakBufWindow).

API Reference

O Reduces actual bitrate consumption down to optional minimum bitrate
(minBitRate) to achieve specified average bitrate when video scene is
easy.

O Avoids frame skips.

;':Q 2 P »| Peak buffer window v seconds - pperbitRate liit
i 10 Average bitRate
g 8 . I \
T~

A o

2

0

0 5 10 15 20 25
Tine [sec)

4.2.3 Usage of Dynamic Parameters
4.2.3.1 IntraFramelnterval

When intraFrameInterval iS changed at run-time by SETPARAMS, the
immediate next frame will be forced to | frame and a new GOP will start.
The new intraFrameInterval will be effective from the immediate next
frame (which is forced to be an | frame).

Following diagram explains the usage, when intraFrameInterval = 30
at create time and has been changed to 10 (through SETPARAMS API) after
encoding 48 frames.

[| frame

- P frame

| & d one second duration

[| GOP
| | | | | | | | |
0 30 48 58 68 78 88 98 108

4.2.3.2 TargetBitRate

When targetBitRate is changed at run-time by SETPARAMS, the
immediate next frame will be forced to | frame and a new GOP will start.

4-19

API Reference

4.2.3.3

4.2.3.4

4-20

The new bit-rate will be effective from the immediate next frame (which is
forced to be an | frame).

Following diagram explains the usage, targetBitRate has been changed
(through seTPARAMS API) after encoding 48 frames.

[| frame
- P frame
| & e one second duration
|-=mmmmmmmm | GOP
| | | | |
0 30 48 New bitRate 78 108
Note:
vbv_buffer size is nota dynamic parameter. Even if the bitRate
changes, this will remain same as set during algorithm creation.
TargetFrameRate
When targetFrameRate is changed at run-time by SETPARAMS, the
immediate next second starting frame will be force to | frame and a new
GOP will start. The new frame rate will be effective from next second.
| frame
- P frame
| & e one second duration
|-=mmmmmmmm | GOP
| | | |
0 30 45 48 60 70 80 90 105
| € >|< DD | D D | D
forceFrame

Force the current (immediate) frame to be encoded as a specific frame
type. Only IVIDEO I FRAME is supported. Force the immediate frame to
be an | frame. Next | frame will be after the intraFrameInterval from
current frame.

API Reference

4.2.4 MPEG4 Encoder Data Structures

This section includes the following MPEG4 Encoder specific extended data
structures:

a
Q
a
a
Q
a

IMP4VENC Params
IMP4VENC DynamicParams
IMP4VENC InArgs
IMP4VENC_status
IMPAVENC OutArgs

IMP4VENC_ERROR

4.2.4.1 |IMP4VENC_Params

| Description
This structure defines the creation parameters and any other
implementation specific parameters for the MPEG4 Encoder instance
object. The base parameters are defined in the XDM data structure,
IVIDENC1 Params.
|| Fields
Field Data Type Input/ Description
Output
videnc_ params IVIDENC1 Par Input See IVIDENC1 Params data
ams structure for details.
subWindowHeight XDAS Int32 Input Height of the sub window must be
multiple of 8 (codec does not have
validity check and application needs to
ensure that this validation is
performed). It should be less than or
equal to maxHeight specified in
IVIDENC1_ params.
Supported Value: 64 to 1920
Note: User should set this parameter
same as actual inputHeight, if
subWindow feature is not used.
subWindowWidth XDAS_Int32 Input Width of the Subwindow, must be

multiple of 16. Must be less than or
equal to maxWidth specified in
IVIDENC1_ params.

Supported Value: 160 to 1920 (with
UMV OFF) and 192 to 1920 (with UMV
ON)

Note: User should set this parameter
same as actual inputWidth, if
subWindow feature is not used.

4-21

API| Reference

Field

Data Type

Input/
Output

Description

rotation

vbvSize

svhMode

IFrameBitRateBiasFac
tor

PFrameBitRateBiasFac
tor

peakBufWindow

minBitRate

XDAS_Int32

XDAS Int32

XDAS Int32

XDAS_Int32

XDAS_Int32

XDAS Int32

XDAS_Int32

Input

Input

Input

Input

Input

Input

Input

Rotation (anti-clockwise):

O 0: No Rotation (Default)
Q 90: 90 degree

O 180: 180 degree

Q 270: 270 degree

Other values are not supported.

Video buffer verifier size in 16 kb.
Default: O (codec will internally
calculate the value)

Note: This parameter’s value is based
on the resolution of the video.

Q 0: encode in mpeg4 mode
Q 1: encode in mpeg4 with short
video header mode

This parameter controls the biasing of
bits allocated to | frame.

Range : 1 to 1024

Default: 256, i.e. No bias

Note: This parameter must be set to a
valid value if rateControlPreset
is set to IMP4AVENC CVBR LBR1 or
IMP4VENC CVBR_LBR2

This parameter controls the biasing of
bits allocated to P frame.

Range : 1 to 1024

Default: 256, i.e. No bias

Note: This parameter must be set to a
valid value if rateControlPreset
is set to IMPAVENC CVBR LBR1 or
IMP4VENC CVBR_LBR2

Time duration (in sec) during which
actual bitrate of encoding stream can
reach the max bitrate limit

Default: 2

Note: This parameter must be set to a
valid value if rateControlPreset is
set to IMP4VENC CVBR

Minimum bit rate, bits per second.
Default: to set this to same as
targetBitRate.

Note: This parameter must be set to a
valid value if rateControlPreset is
setto IMP4VENC_CVBR

4.2.4.2 IMP4VENC_DynamicParams

| Description

This structure defines the run-time parameters and any other
implementation specific parameters for an MPEG4 Encoder instance

4-22

API Reference

object. The base dynamic parameters are defined in the XDM data

structure, IVIDENC1 DynamicParams..

|| Fields
Field Data Type Input/ Description
Output
videncDynamicparams IVIDENC1 Dynami Input See
cParams IVIDENC1 DynamicParams data
structure for details
intraAlgo XDAS Int32 Input INTRA/INTER Decision Algorithm.

O IMP4VENC INTRA INTER D
ECISION _LQ HP (0):forlow
quality and high performance
(Default)

O IMP4VENC INTRA INTER D
ECISION _HQ LP (1):for
high quality and low
performance

numMBRows XDAS Int32 Input Number of MB rows in a Packet.

Q Maximum value =
subWindowHeight/16. This
indicates the packet size
(Default).

O Minimum value = 1.

initQ XDAS Int32 Input Initial Q (at picture head).

O 0: automatically determined
(Default)

Q 1-31: Force initial Q. This is for |
frame quantization.

This should have a value between

rcQMax and rcQmin, if not set to

0.

rcQMax XDAS Int32 Input Q MAX value
O Maximum value = 31 (Default)
Q Minimum value =1

rcQMin XDAS Int32 Input Q MIN value

O Maximum value =31

Q Minimum value = 1 (Default)

intraFrameQp XDAS Int32 Input | Frame Qp

O O: automatically determined
(Default)

Q 1-31: Force | Frame Qp.
This should have a value between

rcQMax and rcQmin, if not set to
0.

4-23

API Reference

Field Data Type Input/ Description
Output
interFrameQp XDAS Int32 Input P Frame Qp
O O: automatically determined
(Default)
Q 1-31: Force P Frame Qp.
This should have a value between
rcQMax and rcQmin, if not set to
0.
rateFix XDAS Int32 Input Reserved.
Codec ignores the value of this
parameter.
rateFixRange XDAS Int32 Input Reserved.
Codec ignores the value of this
parameter.
meAlgo XDAS Int32 Input Motion estimation algorithm
O IMP4VENC ME MQ MP (0):
For moderate quality and
moderate performance.
O IMP4VENC ME HQ MP (1):
For high quality and moderate
performance.
O IMP4VENC ME HQ LP (2):
For highest quality and lowest
performance. (Default)
O IMP4VENC ME LQ HP (3):
For normal quality and highest
performance.
skipMBAlgo XDAS Int32 Input P Skip MB algorithm
O IMP4VENC SKIP MB LQ HP
(0) : Non-Bonus Skip MB,for
low quality and high
performance (Default)
O IMP4VENC SKIP MB HQ LP
(1) : Bonus SKIP MB , for high
quality and low performance.
unrestrictedMVv XDAS_Int32 Input Unrestricted motion vector
O IMP4VENC UMV _LQ HP (0):
disable (Default)
O IMP4VENC UMV HQ LP(1):
enable
Note: If UMV is enabled, the
minimum input stream width
supported is 192.
mvDataEnable XDAS_Int32 Input Q 0: Disable motion vector access

(Default)
Q 1: Enable motion vector access

4-24

API Reference

4.2.4.3 IMP4VENC_InArgs

| Description
This structure defines the input argument parameters and any other
implementation specific parameters for the MPEG4 Encoder instance
object. The base input parameters are defined in XDM data structure,
IVIDENC1 InArgs.
|| Fields
Field Data Type Input/ Description
Output
videnc InArgs IVIDENC1 I Input See IVIDENC1 InArgs data structure for details.
nArgs
subWindowHozOfst XDAS Int32 Input Horizontal Offset of the Subwindow from the input
image. Not supported in this version
subWindowVerOfst XDAS Int32 Input Vertical Offset of the Subwindow from the input
image. Not supported in this version
insertUserData Bool Input Q 0= Do notinsert user data (Default)
Q 1 =Insertuser data
lenghtUserData UINT32 Input Q >0 (bytes). when insertUserData =1

aQ =0, when insertUserData =0

Error cases

Q >0but insertUserData =0, codec will
assume that no user data needs to be inserted

O =0but insertUserData =1, codec will
assume that no user data needs to be inserted

4.2.44 |IMP4VENC_Status

| Description
This structure defines parameters that describe the status of the MPEG4
Encoder and any other implementation specific parameters. The base
status parameters are defined in the XDM data structure,
IVIDENC1 Status.
| Fields
Field Data Type Input/ Description
Output
videnc_status IVIDENC1_Status Output See IVIDENC1 Status data

structure for details.

4-25

API Reference

4245 |IMP4VENC_OutArgs

| Description
This structure defines the output arguments for the MPEG4 Encoder
instance object. The base output parameters are defined in XDM data
structure, IVIDENC1 OutArgs.
|| Fields
Field Data Type Input/ Description
Output
videnc_OutArgs IVIDENC1 OutArg Output See IVIDENC1 OutArgs data structure for
s details.
mvDataSize XDAS Int32 Output Size of the motion vector array.
offsetUserData XDAS_Int32 Output Q >=0 (bytes), Valid offset value when

insertUserData=1
O =-1, Value set by codec when
insertUserData = 0, no space for
user data insertion
The offset (bytes) is with respect to the output
buffer where the encoded frame is dumped
after the process () call. Application should
move to this offset and put the user data of
lengthUserData.

4-26

API| Reference

4246 IMP4VENC_ERROR
| Description
This enum structure defines the error bit for each of the creation-time and
run-time parameters for error reporting purposes.
|| Fields
Group or Symbolic Constant Name Value Description or Evaluation
Enumeration
Class
IMP4VENC_ERR IMP4VENC_INVALID_IMAGE 1 Invalid image width
OR WIDTH
IMP4VENC__INVALID_IMAGE 2 Invalid image height
HEIGHT Ignore
IMP4VENC_INVALID_ENCOD 3 Invalid encoding preset
INGPRESET
IMP4VENC_INVALID_RATEC 4 Invalid Rate control preset
ONTROLPRESET
IMP4VENC__INVALID_MAXIN 5 Invalid maximum inter frame interval (if
TERFRMINTERVAL value is other than 1)
IMP4VENC_ INVALID_INPUT 6 Invalid input content type
CONTENTTYPE
IMP4VENC_INVALID_RECON 7 Invalid Recon chroma format
CHROMAFORMAT
IMP4VENC_INVALID_ROTAT 8 Invalid value of rotation
10N
IMP4VENC_INVALID_FRAME 9 Invalid value of frame rate
RATE
IMP4VENC__INVALID_BITRA 10 Invalid value for bit-rate
TE
IMP4VENC_INVALID_INTRA 11 Invalid value of intra frame interval
FRAMEINTERVAL
IMP4VENC_INVALID_INTER 12 Invalid value of inter frame interval
FRAMEINTERVAL
IMP4VENC_INVALID_INTRA 13 Invalid value of intra algo
ALGO
IMP4VENC_ INVALID_NUMMB 14 Invalid value of number of MB rows
ROWS
IMP4VENC__INVALID_INITQ 15 Invalid initial quantization value for | frame

4-27

API| Reference

Group or Symbolic Constant Name Value Description or Evaluation
Enumeration
Class
IMP4VENC__INVALID_RCQMA 16 Invalid value of rcMAX parameter
X
IMP4VENC_ INVALID_RCQMI 17 Invalid value of rcMIN parameter
N
IMP4VENC_INVALID_RATEF 18 Invalid value of rate fix parameter
X
IMP4VENC__INVALID_RATEF 19 Invalid value of rate fix range parameter
I XRANGE
IMP4VENC_ INVALID_VBVSI 20 Invalid value of virtual buffer verifier
ZE parameter
IMP4VENC__INVALID_MEALG 21 Invalid value of ME algo parameter
0
IMP4VENC_ INVALID_SKIPM 22 Invalid value of skip MB algo parameter
BALGO
IMP4VENC__INVALID_UMV 23 Invalid value of UMV parameter
IMP4VENC__INVALID_SVH 24 Invalid value of SVH parameter
IMP4VENC_INVALID_FORCE 25 Invalid value for forceFrame parameter
FRAME
IMP4VENC_INVALID_GENER 26 Invalid value of generate header parameter
ATEHEADER
IMP4VENC__INVALID_MVDAT 27 Invalid value of motion vector access
AENABLE parameter
IMP4VENC_INVALID_INTRA 28 Invalid Intra Frame Qp
FRAMEQP
IMP4VENC_INVALID_INTER 29 Invalid Inter Frame Qp

FRAMEQP

4-28

API Reference

4.3 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the MPEG4 Encoder. The APIs are logically grouped into the following
categories:

QO Creation —algNumAlloc(), algAlloc (), dmaGetChannelCnt (),
dmaGetChannels ()

Q Initialization —algInit (), dmaInit ()

aQ Control — control ()

O Data processing —algActivate(), process (), algDeactivate ()
Q Termination —algFree ()

You must call these APIs in the following sequence:
1) algNumAlloc ()

2) algalloc()

3) algInit()

4) control ()

5) algActivate()

6) process()

7) algDeactivate ()

8) algFree()

control () can be called any time after calling the alginit () API.

algNumAlloc (), algAlloc (), algInit (), algActivate(),
algDeactivate (), and algFree () are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

4.3.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

Note:

See MPEG4 Encoder Data Sheet for more details on External Data
Memory requirement.

4-29

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-30

algNumAlloc () — determine the number of buffers that an algorithm
requires

XDAS Int32 algNumAlloc (Void) ;
Void
XDAS Int32; /* number of buffers required */

algNumAlloc () returns the number of buffers that the algalloc ()
method requires. This operation allows you to allocate sufficient space to
call the algalloc () method.

algNumAlloc () may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc () APl is optional.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algAlloc ()

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algAlloc () — determine the attributes of all buffers that an algorithm
requires

XDAS Int32 algAlloc(const IALG Params *params, IALG Fxns
**parentFxns, IALG_MemRec memTab[]) ;

IALG Params *params; /* algorithm specific attributes */

IALG Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */

XDAS Int32 /* number of buffers required */

algAlloc () returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algaAlloc () is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc () must assume default creation parameters and must not fail.

The second argument to algAlloc () is an output parameter.

algAlloc () may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof (IALG MemRec) where, nbufs is the number of buffers
returned by algNumAlloc () and IALG MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab [] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algNumAlloc (), algFree()

4-31

API| Reference

4.3.2 Initialization API

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-32

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params structure (see Data
Structures section for details).

algInit () —initialize an algorithm instance

XDAS Int32 algInit (IALG Handle handle, IALG MemRec
memTab [], IALG Handle parent, IALG Params *params) ;

IALG Handle handle; /* algorithm instance handle*/
IALG memRec memTab[]; /* array of allocated buffers */
IALG Handle parent; /* handle to the parent instance */

IALG Params *params; /* algorithm initialization
parameters */

IALG _EOK; /* status indicating success */

IALG _EFAIL; /* status indicating failure */

algInit () performs all initialization necessary to complete the run-time
creation of an algorithm instance object. After a successful return from
algInit (), the instance object is ready to be used to process data.

The first argument to algInit () is a handle to an algorithm instance. This
value is initialized to the base field of memTab [0] .

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc () .

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algAlloc (), algMoved()

The following sample code is an example of initializing Params structure
and creating an encoder instance with base parameters.

API| Reference

I1VIDDEC2_Params params;

// Set the create time base parameters
params.size = sizeof(1VIDDEC2_ Params);
params.maxHeight = 480;

params.maxWidth = 720;

params.maxFrameRate = FRAMERATE;
params.maxBitRate = BITRATE;
params.dataEndianness = XDM_BYTE;
params.maxInterFramelnterval = XDM_DEFAULT;
params. inputChromaFormat = XDM_YUV_422ILE;
params. inputContentType = IVIDEO_PROGRESSIVE;
params.reconChromaFormat = XDM_DEFAULT;

handle = (IALG_Handle) ALG _create((IALG_Fxns *)&
MP4VENC_TI1_IMP4VENC, (IALG _Handle) NULL, (IALG_Params
*) ¶ms)

The following sample code is an example of initializing Params structure
and creating an instance with extended parameters.

VIDENC1_Params params;
IMP4VENC_Params extParams;

// Set the create time base parameters
params.size = sizeof(IMP4VENC_Params);
params.encodingPreset = XDM_USER_DEFINED;
params.rateControlPreset = 1VIDEO_STORAGE;
params.maxHeight = 480;

params.maxWidth = 720;

params.maxFrameRate = FRAMERATE;
params.maxBitRate = BITRATE;
params.dataEndianness = XDM_BYTE;
params.maxInterFramelnterval = XDM_DEFAULT;
params. inputChromaFormat = XDM_YUV_422ILE;
params. inputContentType = IVIDEO_PROGRESSIVE;
params.reconChromaFormat = XDM_DEFAULT;

// Set the create time extended parameters
extParams.videncParams = params;
extParams.subWindowHeight = 480;
extParams.subWindowWidth = 720;
extParams.rotation = XDM_DEFAULT;

extParams.vbvSize
extParams.svhMode

10000;
0]

4-33

API| Reference

4.3.3 Control API

| Name

| Synopsis

| Arguments

| Return Value

| Description

4-34

handle = (IALG_Handle) ALG_create((I1ALG_Fxns *)&
MP4VENC_TI_IMP4VENC, (IALG_Handle) NULL, (IALG_Params
*) & extParams)

Control API is used before a call to process() to enquire about the number
and size of I/O buffers, or to set the dynamic params, or get status of
encoding.

control () — change run-time parameters and query the status

XDAS Int32 (*control) (IVIDENC1 Handle handle,
IVIDENC1 Cmd id, IVIDENC1 DynamicParams *params,
IVIDENC1_ Status *status);

IVIDENC1 Handle handle; /* algorithm instance handle */

IVIDENC1 Cmd id; /* algorithm specific control commands*/

IVIDENC1 DynamicParams *params /* algorithm run-time
parameters */

IVIDENC1 Status *status /* algorithm instance status
parameters */

IALG EOK; /* status indicating success */

IALG EFAIL; /* status indicating failure */

This function changes the run-time parameters of an algorithm instance
and queries the algorithm’s status. control () must only be called after a

successful call to algInit () and must never be called after a call to
algFree() .

The first argument to control () is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IVIDENC1 DynamicParams and IVIDENC1 Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size

field, the algorithm uses either basic or extended parameters.

API| Reference

| Preconditions

| Post conditions

| Example

| See Also

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

O control () can only be called after a successful return from
algInit () and algActivate () .

Q If algorithm uses DMA resources, control () can only be called after
a successful return from DMAN3 init () .

O handle must be a valid handle for the algorithm'’s instance object.

The following conditions are true immediately after returning from this
function.

Q If the control operation is successful, the return value from this
operation is equal to IALG EOK; otherwise it is equal to either
IALG EFAIL or an algorithm specific return value.

Q If the control command is not recognized, the return value from this
operation is not equal to IALG EOK.

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

algInit (), algActivate (), process()

The following code provides an example for initializing the base dynamic
parameters for a 720x480 stream.

4-35

API| Reference

4-36

VIDENC1_DynamicParams dynParams;
IVIDENC1_Status status;

// Set the dynamic base parameters
dynParams.size = sizeof(VIDENC1 DynamicParams);
dynParams. inputHeight = 480;

dynParams. inputWidth = 720;
dynParams.refFrameRate = FRAMERATE;
dynParams.targetFrameRate = FRAMERATE;
dynParams.targetBitRate = BITRATE;
dynParams. intraFramelnterval = 30;
dynParams.generateHeader = XDM_DEFAULT;
dynParams.captureWidth = XDM_DEFAULT;
dynParams.forceFrame = -1;

dynParams. interFramelnterval = XDM_DEFAULT;
dynParams.mbDataFlag = XDM_DEFAULT;

/* Set Dynamic Params */

retVal = ividEncfxns->control ((1VIDENC1_Handle)handle,

XDM_SETPARAMS, (IVIDENC1 DynamicParams *)& dynParams,
(1VIDENC1_Status *)é&status);

The following code gives an example for initializing the extended dynamic
parameters for a 720x480 stream with out motion vector access.

API| Reference

VIDENC1_DynamicParamsdynParams;
IVIDENC1_Status status;
IMP4VENC_DynamicParams extDynParams;

// Set the dynamic base parameters
dynParams.size = sizeof(IMP4VENC_Params);
dynParams. inputHeight = 480;

dynParams. inputWidth = 720;
dynParams.refFrameRate = FRAMERATE;
dynParams. targetFrameRate = FRAMERATE;
dynParams.targetBitRate = BITRATE;
dynParams. intraFramelnterval = 30;
dynParams.generateHeader = XDM_DEFAULT;
dynParams.captureWidth = XDM_DEFAULT;
dynParams.forceFrame = -1;

dynParams. interFramelnterval = XDM_DEFAULT;
dynParams.mbDataFlag = XDM_DEFAULT;

// Set the extended dynamic parameters
extDynParams.videncDynamicParams = dynParams;

2;
Sk

extDynParams.
extDynParams.
extDynParams.
extDynParams.
extDynParams.

intraAlgo
numMBRows
initQ = 3;
rcQMax = 31;
rcQMin = 1;

extDynParams

retvVal =

extDynParams.
extDynParams.
extDynParams.
extDynParams.

extDynParams.

extDynParams.

extDynParams.
/* Set Dynamic Params */
ividEncfxns->control ((1VIDENC1_Handle)handle,
XDM_SETPARAMS, (IVIDENC1 DynamicParams *)& extDynParams,

intraFrameQP
interFrameQP
rateFix = 0;
rateFixRange

1
o

meAlgo = 1;

.skipMBAIgo = XDM_DEFAULT;

unrestrictedMV = XDM_DEFAULT;

mvDataEnable = XDM_DEFAULT;

(IVIDENC1_Status *)é&status);

4.3.4 Data Processing API

Data processing APl is used for processing the input data.

4-37

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-38

algActivate () —initialize scratch memory buffers prior to processing.
Void algActivate (IALG Handle handle) ;

IALG Handle handle; /* algorithm instance handle */
Void

algActivate () initializes any of the instance’s scratch buffers using the
persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate () is an algorithm instance
handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing
methods.

For more details, see TMS320 DSP Algorithm Standard APl Reference.
(literature number SPRU360).

algDeactivate ()

The following sample code gives an example of process call.

retVal = ividEncfxns->process ((IVIDENC1 Handle) handle,

(IVIDEO1 BufDescIn *)
&inputBufDesc, (XDM BufDesc *)
&outputBufDesc,

(IVIDENC1 InArgs *) &inArgs,
(IVIDENC1 OutArgs *)
&outArgs) ;

API Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| Preconditions

process () — basic encoding/decoding call

XDAS Int32 (*process) (IVIDENC1l Handle handle, XDM1l BufDesc
*inBufs, XDM1 BufDesc *outBufs, IVIDENC1l InArgs *inargs,
IVIDENC1_ OutArgs *outargs) ;

IVIDENC1 Handle handle; /* algorithm instance handle */

XDM1 BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM1 BufDesc *outBufs; /* algorithm output buffer
descriptor */

IVIDENC1 InArgs *inargs /* algorithm run-time input arguments

*/

IVIDENC1 OutArgs *outargs /* algorithm run-time output
arguments */

IALG EOK; /* status indicating success */

IALG EFAIL; /* status indicating failure */

This function does the basic encoding/decoding. The first argument to
process () is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XbM_BufDesc data structure
for details).

The fourth argument is a pointer to the IVIDENC1 InArgs data structure
that defines the run-time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDENC1 OutArgs data structure
that defines the run-time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and outArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the size field,
the algorithm uses either basic or extended parameters.

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

O process() can only be called after a successful return from
algInit () and algActivate () .

4-39

API| Reference

| Post conditions

| Example

| See Also

4-40

If algorithm uses DMA resources, process () can only be called after
a successful return from DMAN3 init ().

handle must be a valid handle for the algorithm’s instance object.
Buffer descriptor for input and output buffers must be valid.

Input buffers must have valid input data.

The following conditions are true immediately after returning from this
function.

Q

If the process operation is successful, the return value from this
operation is equal to IALG EOK; otherwise it is equal to either
IALG EFAIL or an algorithm specific return value.

After successful return from process () function, algbeactivate ()
can be called.

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

algInit (), algDeactivate(), control ()
Note:
a Avideo encoder or decoder cannot be preempted by any other

a

a

video encoder or decoder instance. That is, you cannot perform task
switching while encode/decode of a particular frame is in progress.
Pre-emption can happen only at frame boundaries and after
algDeactivate () is called.

The input data can be either in 8-bit YUV 4:2:0 or 8-bit 4:2:2 format.
The encoder output is MPEG-4 encoded bit-stream.

For more details on motion vector access API, see section 3.4.

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algDeactivate () —save all persistent data to non-scratch memory

Void algDeactivate (IALG Handle handle) ;

IALG Handle handle; /* algorithm instance handle */

Void

algDeactivate () saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate () is an algorithm
instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algactivate () and
processing.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algActivate ()

4.3.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

4-41

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-42

algFree () — determine the addresses of all memory buffers used by the
algorithm

XDAS Int32 algFree (IALG Handle handle, IALG MemRec
memTab []) ;

IALG Handle handle; /* handle to the algorithm instance */

IALG MemRec memTab[]; /* output array of memory records */

XDAS Int32; /* Number of buffers used by the algorithm */

algFree () determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree () is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

algAlloc()

Appendix A

Revision History

This revision history highlights the changes made to the SPRUF51 codec
specific data sheet to make it SPRUF51A.

Table A-1. Revision History for MPEG4 Simple Profile Encoder (v02.00.00) on DM355

Section Changes

Global Q There are no changes in the user guide for this release of MPEG 4
Simple Profile Encoder on DM355

A-1

	MPEG4 Simple Profile Encoder v 2.00 on DM355
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Overview of XDAIS, XDM, and IRES
	1.1.1 XDAIS Overview
	1.1.2 XDM Overview
	1.1.3 IRES Overview

	1.2 Overview of MPEG4 Simple Profile Encoder
	1.3 Supported Services and Features
	1.4 Limitations

	Installation Overview
	2.1 System Requirements for NO-OS Standalone
	2.1.1 Hardware
	2.1.2 Software

	2.2 System Requirements for Linux
	2.2.1 Hardware
	2.2.2 Software

	2.3 Installing the Component
	2.4 Building the Sample Test Application for EVM Standalone (NO-OS)
	2.5 Running the Sample Test Application on EVM Standalone (NO-OS)
	2.6 Building and Running the Sample Test Application on Linux
	2.7 Configuration Files
	2.7.1 Generic Configuration File
	2.7.2 Encoder Configuration File

	2.8 Uninstalling the Component

	Sample Usage
	3.1 MPEG4 Encoder Client Interfacing Constraints
	3.2 Overview of the Test Application
	3.2.1 Parameter Setup
	3.2.2 Algorithm Instance Creation and Initialization
	3.2.3 Process Call in Single Instance Scenario
	3.2.4 Algorithm Instance Deletion

	3.3 Usage in Multiple Instance Scenario
	3.3.1 Process Call with algActivate and algDeactivate

	3.4 Usage for Motion Vector Access
	3.4.1 Description
	3.4.2 Usage

	3.5 Accessing Reconstruction Buffer Data
	3.6 User Data Insertion

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.2 IVIDEO_RateControlPreset
	4.2.3 Usage of Dynamic Parameters
	4.2.4 MPEG4 Encoder Data Structures

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

	Revision History

