

RM48HDK July 2013 © Frank Bormann
Revision 3.3 © Texas Instruments Inc.

RM48L952 HDK Lab3_2

DCAN1 Transmit and Receive; no interrupts

1. Project Dependencies

 Code Composer Studio Version 5.4.0:

 ARM Code Generation Tools Version 5.0.5:

 HalCoGen – Version 3.05.02:

Project Objective

Page - 2 RM48HDK - Lab3_2

2. Project Objective

 CAN Transmit at CAN data rate: 100 kBit/s.

o Identifier 0x12000000, DCAN1 Message-box 1, Byte Message

o 1 Byte message; incremental pattern every 100 milliseconds

 CAN Receive: Identifier 0x10000000 DCAN1 Message-box 2;

o if a meesage has been received, bits 0-2 of the 1
st
 message byte

are displayed at LED’s at NHET1-25, 1-18 and 1-29.

3. Hardware Setup

No special setup required. Connect the RM48HDK with a USB cable to your computer

and plug in the external +5V or +12V power supply unit. The four blue LEDs

DS2...DS5 “Power” should be “ON”. Connect DCAN1 (Jumper J2) with “CAN1H”,

“CAN1L” and “GND” to a CAN system. Use a CAN – Analyzer to monitor the CAN –

Traffic.

4. HalCoGen Project Design

4.1. Create a new project

 File  New  Project:

 HalCoGen Project Design

RM48HDK - Lab3_2 Page - 3

 In the “Driver Enable” Menu, enable just the GIO and CAN1 driver.

 In the CAN1 – Module set Bit Rate to 100 kBit/s and the Sample Point Ref-

erence to 80%:

 Enable also the “Extended Identifier Extension” at the end of this window:

 Prepare the DCAN1 Message Box 1 as transmit mailbox with identifier

0x1200000 and DLC = 1 Byte:

 Prepare the DCAN1 Message Box 2 as receive mailbox with identifier

0x10000000, DLC = 1 and Mask = 0x1FFFFFFF:

 File  Generate Code

CCS Project Design

Page - 4 RM48HDK - Lab3_2

5. CCS Project Design

5.1. Create a CCS Project

 For the CCS project we have to use the identical path as we used in HalCoGen:

 File  New  CCS Project:

5.2. Edit the project

 Right Click at the project “Lab3_2” and select “Properties”:

o In the “Build”, “ARM Compiler”, “Include Options” add a new

#include search path:

${PROJECT_ROOT}/include

 CCS Project Design

RM48HDK - Lab3_2 Page - 5

5.3. Build the Project

Project  Rebuild Active Project (Alt + Shift + P)

Monitor the build procedure of the tools in the output window. The final message should

give you “0 Errors, 0 Warnings, 0 Remarks”.

5.4. Load the code into the target

The code will be programmed into the RM48 internal FLASH memory. To avoid unnec-

essary long programming times, we should set the configuration to erase and re-program

FLASH sections only, if required:

 Project  Properties  CCS Debug  Target  RM48L950 FLASH
Settings  Necessary Sectors Only (For Program Load)

Now load the machine code into the device. Click:

 Run  Debug (F11)

A blue arrow should now point to the end of function “main()” in file “sys_main.c”. This

is an indication that the machine code has been downloaded properly into the

RM48L950.

Code Implementation

Page - 6 RM48HDK - Lab3_2

6. Code Implementation

6.1. Modify file “sys_main.c”

Now that we have a working project framework, we can start to develop our own code

for Lab3_2.

 switch back to the “CCS-Edit” -Perspective and edit the file “sys_main.c”.

Between the two comment lines shown below, add the following include lines:

/* USER CODE BEGIN (1) */

#include "gio.h"

#include "het.h"

#include "can.h"

/* USER CODE END */

After the label “/* USER CODE BEGIN(2) */” add the following code:

unsigned char rx_message[8];

void delay(void)

{

 volatile unsigned int delayval = 1000000; // appr. 100 ms

 while(delayval--)

 {

 if(canIsRxMessageArrived(canREG1,canMESSAGE_BOX2))

 {

 canGetData(canREG1,canMESSAGE_BOX2,rx_message);

 if(rx_message[0] & 1) gioSetBit(hetPORT1, 25,1);

 else gioSetBit(hetPORT1, 25,0);

 if(rx_message[0] & 2)gioSetBit(hetPORT1, 18,1);

 else gioSetBit(hetPORT1, 18,0);

 if(rx_message[0] & 4) gioSetBit(hetPORT1, 29,1);

 else gioSetBit(hetPORT1, 29 ,0);

 }

 }

}

After the label “/* USER CODE BEGIN(3) */” add the following code:

/* USER CODE BEGIN (3) */

unsigned char tx_data = 0;
gioSetDirection(hetPORT1, 0xFFFFFFFF);
canInit();
while(1)
{
 if(canIsTxMessagePending(canREG1,canMESSAGE_BOX1)==0)
 // msgbox empty?
 {
 canTransmit(canREG1,canMESSAGE_BOX1,&tx_data);
 tx_data++;
 }
 delay();
}
/* USER CODE END */

 Code Implementation

RM48HDK - Lab3_2 Page - 7

6.2. Rebuild Project

Project  Rebuild All (Ctrl + B)

If the new build is successful a message window will pop-up:

7. Run the Code

 Now perform a Run (F8)!

 A test option would be to use a low cost CAN – Analyser, e.g. the USB-

CANmodul from Systec Electronic (www.systec-electronic.com).

A common technique for physical CAN cables is based on DB9 connectors, according to

CiA DS 102 (www.can-cia.org):

Pin Nr. Signal Description

1 - Reserved

2 CAN_L CAN Bus Signal (dominant low)

3 CAN_GND CAN ground

4 - Reserved

5 CAN_SHLD Optional shield

6 GND Optional CAN ground

7 CAN_H CAN Bus Signal (dominant high)

8 - Reserved

9 CAN_V+ Optional external voltage supply Vcc

At minimum we need CANL (pin 2), CANH (pin 7) and CAN_GND (pin3).

The picture below is a screenshot of a CAN - Anaylzer:

http://www.systec-electronic.com/
http://www.can-cia.org/

Code Implementation

Page - 8 RM48HDK - Lab3_2

8. Test Result

You will need a 2
nd

 RM48HDK board.

This 2
nd

 board must periodically transmit a 1 byte message with identifier 0x10000000 at a

CAN data – rate of 100 kBit/s. Use Lab3_1 for this part and change the ID to 0x10000000.

The device under test (the board used for Lab3_2) should receive this message and display

the last 3 bit of byte 1 at the 3 LEDs HET1:25,1:18 and 1:29.

If the message is repeadedy received with different payloads, e.g. an incremental value, the 3

LEDs should reflect this.

