#ifndef _USER_H_ #define _USER_H_ /* --COPYRIGHT--,BSD * Copyright (c) 2012, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * --/COPYRIGHT--*/ //! \file solutions/instaspin_foc/boards/drv8312kit_revD/f28x/f2802xF/src/user.h //! \brief Contains the public interface for user initialization data for the CTRL, HAL, and EST modules //! //! (C) Copyright 2012, Texas Instruments, Inc. // ************************************************************************** // the includes // modules #include "sw/modules/types/src/types.h" #include "sw/modules/motor/src/32b/motor.h" #include "sw/modules/est/src/32b/est.h" #include "sw/modules/est/src/est_states.h" #include "sw/modules/est/src/est_Flux_states.h" #include "sw/modules/est/src/est_Ls_states.h" #include "sw/modules/est/src/est_Rs_states.h" #include "sw/modules/ctrl/src/32b/ctrl_obj.h" // platforms #include "sw/modules/fast/src/32b/userParams.h" //! //! //! \defgroup USER USER //! //@{ #ifdef __cplusplus extern "C" { #endif // ************************************************************************** // the defines //! \brief CURRENTS AND VOLTAGES // ************************************************************************** //! \brief Defines the full scale frequency for IQ variable, Hz //! \brief All frequencies are converted into (pu) based on the ratio to this value //! \brief this value MUST be larger than the maximum speed that you are expecting from the motor #define USER_IQ_FULL_SCALE_FREQ_Hz (600.0) // 800 Example with buffer for 8-pole 6 KRPM motor to be run to 10 KRPM with field weakening; Hz =(RPM * Poles) / 120 //! \brief Defines full scale value for the IQ30 variable of Voltage inside the system //! \brief All voltages are converted into (pu) based on the ratio to this value //! \brief WARNING: this value MUST meet the following condition: USER_IQ_FULL_SCALE_VOLTAGE_V > 0.5 * USER_MOTOR_MAX_CURRENT * USER_MOTOR_Ls_d * USER_VOLTAGE_FILTER_POLE_rps, //! \brief WARNING: otherwise the value can saturate and roll-over, causing an inaccurate value //! \brief WARNING: this value is OFTEN greater than the maximum measured ADC value, especially with high Bemf motors operating at higher than rated speeds //! \brief WARNING: if you know the value of your Bemf constant, and you know you are operating at a multiple speed due to field weakening, be sure to set this value higher than the expected Bemf voltage //! \brief It is recommended to start with a value ~3x greater than the USER_ADC_FULL_SCALE_VOLTAGE_V and increase to 4-5x if scenarios where a Bemf calculation may exceed these limits //! \brief This value is also used to calculate the minimum flux value: USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7 #define USER_IQ_FULL_SCALE_VOLTAGE_V (22.0) // 24.0 Example for drv8312_revd typical usage and the Anaheim motor //! \brief Defines the maximum voltage at the input to the AD converter //! \brief The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh) //! \brief Hardware dependent, this should be based on the voltage sensing and scaling to the ADC input #define USER_ADC_FULL_SCALE_VOLTAGE_V (66.32) // 66.32 drv8312_revd voltage scaling //! \brief Defines the voltage scale factor for the system //! \brief Compile time calculation for scale factor (ratio) used throughout the system #define USER_VOLTAGE_SF ((float_t)((USER_ADC_FULL_SCALE_VOLTAGE_V)/(USER_IQ_FULL_SCALE_VOLTAGE_V))) //! \brief Defines the full scale current for the IQ variables, A //! \brief All currents are converted into (pu) based on the ratio to this value //! \brief WARNING: this value MUST be larger than the maximum current readings that you are expecting from the motor or the reading will roll over to 0, creating a control issue #define USER_IQ_FULL_SCALE_CURRENT_A (10.0) // 10.0 Example for drv8312_revd typical usage //! \brief Defines the maximum current at the AD converter //! \brief The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh) //! \brief Hardware dependent, this should be based on the current sensing and scaling to the ADC input #define USER_ADC_FULL_SCALE_CURRENT_A (17.30) // 17.30 drv8312_revd current scaling //! \brief Defines the current scale factor for the system //! \brief Compile time calculation for scale factor (ratio) used throughout the system #define USER_CURRENT_SF ((float_t)((USER_ADC_FULL_SCALE_CURRENT_A)/(USER_IQ_FULL_SCALE_CURRENT_A))) //! \brief Defines the number of current sensors used //! \brief Defined by the hardware capability present //! \brief May be (2) or (3) #define USER_NUM_CURRENT_SENSORS (3) // 3 Preferred setting for best performance across full speed range, allows for 100% duty cycle //! \brief Defines the number of voltage (phase) sensors //! \brief Must be (3) #define USER_NUM_VOLTAGE_SENSORS (3) // 3 Required //! \brief ADC current offsets for A, B, and C phases //! \brief One-time hardware dependent, though the calibration can be done at run-time as well //! \brief After initial board calibration these values should be updated for your specific hardware so they are available after compile in the binary to be loaded to the controller #define I_A_offset (-0.869157374) #define I_B_offset (-0.863976419) #define I_C_offset (-0.865477204) //! \brief ADC voltage offsets for A, B, and C phases //! \brief One-time hardware dependent, though the calibration can be done at run-time as well //! \brief After initial board calibration these values should be updated for your specific hardware so they are available after compile in the binary to be loaded to the controller #define V_A_offset (2.00761110) #define V_B_offset (0.691368520) #define V_C_offset (0.690536439) //! \brief CLOCKS & TIMERS // ************************************************************************** //! \brief Defines the system clock frequency, MHz #define USER_SYSTEM_FREQ_MHz (60.0) //! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz //! \brief PWM frequency can be set directly here up to 30 KHz safely (60 KHz MAX in some cases) //! \brief For higher PWM frequencies (60 KHz+ typical for low inductance, high current ripple motors) it is recommended to use the ePWM hardware //! \brief and adjustable ADC SOC to decimate the ADC conversion done interrupt to the control system, or to use the software Que example. //! \brief Otherwise you risk missing interrupts and disrupting the timing of the control state machine #define USER_PWM_FREQ_kHz (60.0) //30.0 Example, 8.0 - 30.0 KHz typical; 45-80 KHz may be required for very low inductance, high speed motors //! \brief Defines the maximum Voltage vector (Vs) magnitude allowed. This value sets the maximum magnitude for the output of the //! \brief Id and Iq PI current controllers. The Id and Iq current controller outputs are Vd and Vq. //! \brief The relationship between Vs, Vd, and Vq is: Vs = sqrt(Vd^2 + Vq^2). In this FOC controller, the //! \brief Vd value is set equal to USER_MAX_VS_MAG*USER_VD_MAG_FACTOR. Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2). //! \brief Set USER_MAX_VS_MAG = 0.5 for a pure sinewave with a peak at SQRT(3)/2 = 86.6% duty cycle. No current reconstruction is needed for this scenario. //! \brief Set USER_MAX_VS_MAG = 1/SQRT(3) = 0.5774 for a pure sinewave with a peak at 100% duty cycle. Current reconstruction will be needed for this scenario (Lab10a-x). //! \brief Set USER_MAX_VS_MAG = 2/3 = 0.6666 to create a trapezoidal voltage waveform. Current reconstruction will be needed for this scenario (Lab10a-x). //! \brief For space vector over-modulation, see lab 10 for details on system requirements that will allow the SVM generator to go all the way to trapezoidal. #define USER_MAX_VS_MAG_PU (0.5) // Set to 0.5 if a current reconstruction technique is not used. Look at the module svgen_current in lab10a-x for more info. //! \brief Defines the address of estimator handle //! #define USER_EST_HANDLE_ADDRESS (0x600) //! \brief Defines the direct voltage (Vd) scale factor //! #define USER_VD_SF (0.95) //! \brief Defines the Pulse Width Modulation (PWM) period, usec //! \brief Compile time calculation #define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz) //! \brief Defines the Interrupt Service Routine (ISR) frequency, Hz //! #define USER_ISR_FREQ_Hz ((float_t)USER_PWM_FREQ_kHz * 1000.0 / (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK) //! \brief Defines the Interrupt Service Routine (ISR) period, usec //! #define USER_ISR_PERIOD_usec (USER_PWM_PERIOD_usec * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK) //! \brief DECIMATION // ************************************************************************** //! \brief Defines the number of pwm clock ticks per isr clock tick //! Note: Valid values are 1, 2 or 3 only #define USER_NUM_PWM_TICKS_PER_ISR_TICK (3) //! \brief Defines the number of isr ticks (hardware) per controller clock tick (software) //! \brief Controller clock tick (CTRL) is the main clock used for all timing in the software //! \brief Typically the PWM Frequency triggers (can be decimated by the ePWM hardware for less overhead) an ADC SOC //! \brief ADC SOC triggers an ADC Conversion Done //! \brief ADC Conversion Done triggers ISR //! \brief This relates the hardware ISR rate to the software controller rate //! \brief Typcially want to consider some form of decimation (ePWM hardware, CURRENT or EST) over 16KHz ISR to insure interrupt completes and leaves time for background tasks #define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1) // 2 Example, controller clock rate (CTRL) runs at PWM / 2; ex 30 KHz PWM, 15 KHz control //! \brief Defines the number of controller clock ticks per current controller clock tick //! \brief Relationship of controller clock rate to current controller (FOC) rate #define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1) // 1 Typical, Forward FOC current controller (Iq/Id/IPARK/SVPWM) runs at same rate as CTRL. //! \brief Defines the number of controller clock ticks per estimator clock tick //! \brief Relationship of controller clock rate to estimator (FAST) rate //! \brief Depends on needed dynamic performance, FAST provides very good results as low as 1 KHz while more dynamic or high speed applications may require up to 15 KHz #define USER_NUM_CTRL_TICKS_PER_EST_TICK (1) // 1 Typical, FAST estimator runs at same rate as CTRL; //! \brief Defines the number of controller clock ticks per speed controller clock tick //! \brief Relationship of controller clock rate to speed loop rate #define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (15) // 15 Typical to match PWM, ex: 15KHz PWM, controller, and current loop, 1KHz speed loop //! \brief Defines the number of controller clock ticks per trajectory clock tick //! \brief Relationship of controller clock rate to trajectory loop rate //! \brief Typically the same as the speed rate #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (15) // 15 Typical to match PWM, ex: 10KHz controller & current loop, 1KHz speed loop, 1 KHz Trajectory //! \brief Defines the controller frequency, Hz //! \brief Compile time calculation #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK) //! \brief Defines the estimator frequency, Hz //! \brief Compile time calculation #define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK) //! \brief Defines the trajectory frequency, Hz //! \brief Compile time calculation #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK) //! \brief Defines the controller execution period, usec //! \brief Compile time calculation #define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec * USER_NUM_ISR_TICKS_PER_CTRL_TICK) //! \brief Defines the controller execution period, sec //! \brief Compile time calculation #define USER_CTRL_PERIOD_sec ((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0) //! \brief LIMITS // ************************************************************************** //! \brief Defines the maximum negative current to be applied in Id reference //! \brief Used in field weakening only, this is a safety setting (e.g. to protect against demagnetization) //! \brief User must also be aware that overall current magnitude [sqrt(Id^2 + Iq^2)] should be kept below any machine design specifications #define USER_MAX_NEGATIVE_ID_REF_CURRENT_A (-0.5 * USER_MOTOR_MAX_CURRENT) // -0.5 * USER_MOTOR_MAX_CURRENT Example, adjust to meet safety needs of your motor //! \brief Defines the low speed limit for the flux integrator, pu //! \brief This is the speed range (CW/CCW) at which the ForceAngle object is active, but only if Enabled //! \brief Outside of this speed - or if Disabled - the ForcAngle will NEVER be active and the angle is provided by FAST only #define USER_ZEROSPEEDLIMIT (0.5 / USER_IQ_FULL_SCALE_FREQ_Hz) // 0.002 pu, 1-5 Hz typical; Hz = USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz //! \brief Defines the force angle frequency, Hz //! \brief Frequency of stator vector rotation used by the ForceAngle object //! \brief Can be positive or negative #define USER_FORCE_ANGLE_FREQ_Hz (2.0 * USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz) // 1.0 Typical force angle start-up speed //! \brief Defines the maximum current slope for Id trajectory during PowerWarp //! \brief For Induction motors only, controls how fast Id input can change under PowerWarp control #define USER_MAX_CURRENT_SLOPE_POWERWARP (0.3*USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz) // 0.3*RES_EST_CURRENT / IQ_FULL_SCALE_CURRENT / TRAJ_FREQ Typical to produce 1-sec rampup/down //! \brief Defines the starting maximum acceleration AND deceleration for the speed profiles, Hz/s //! \brief Updated in run-time through user functions //! \brief Inverter, motor, inertia, and load will limit actual acceleration capability #define USER_MAX_ACCEL_Hzps (20.0) // 20.0 Default //! \brief Defines maximum acceleration for the estimation speed profiles, Hz/s //! \brief Only used during Motor ID (commission) #define USER_MAX_ACCEL_EST_Hzps (10.0) // 5.0 Default, don't change //! \brief Defines the maximum current slope for Id trajectory during estimation #define USER_MAX_CURRENT_SLOPE (USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz) // USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz Default, don't change //! \brief Defines the fraction of IdRated to use during rated flux estimation //! #define USER_IDRATED_FRACTION_FOR_RATED_FLUX (1.0) // 1.0 Default, don't change //! \brief Defines the fraction of IdRated to use during inductance estimation //! #define USER_IDRATED_FRACTION_FOR_L_IDENT (1.0) // 1.0 Default, don't change //! \brief Defines the IdRated delta to use during estimation //! #define USER_IDRATED_DELTA (0.00002) //! \brief Defines the fraction of SpeedMax to use during inductance estimation //! #define USER_SPEEDMAX_FRACTION_FOR_L_IDENT (1.0) // 1.0 Default, don't change //! \brief Defines flux fraction to use during inductance identification //! #define USER_FLUX_FRACTION (1.0) // 1.0 Default, don't change //! \brief Defines the PowerWarp gain for computing Id reference //! \brief Induction motors only #define USER_POWERWARP_GAIN (1.0) // 1.0 Default, don't change //! \brief Defines the R/L estimation frequency, Hz //! \brief User higher values for low inductance motors and lower values for higher inductance //! \brief motors. The values can range from 100 to 300 Hz. #define USER_R_OVER_L_EST_FREQ_Hz (300) // 300 Default //! \brief POLES // ************************************************************************** //! \brief Defines the analog voltage filter pole location, Hz //! \brief Must match the hardware filter for Vph #define USER_VOLTAGE_FILTER_POLE_Hz (714.14) // 714.14, value for drv8312_revd hardware //! \brief Defines the analog voltage filter pole location, rad/s //! \brief Compile time calculation from Hz to rad/s #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI * USER_VOLTAGE_FILTER_POLE_Hz) //! \brief Defines the software pole location for the voltage and current offset estimation, rad/s //! \brief Should not be changed from default of (20.0) #define USER_OFFSET_POLE_rps (20.0) // 20.0 Default, do not change //! \brief Defines the software pole location for the flux estimation, rad/s //! \brief Should not be changed from default of (100.0) #define USER_FLUX_POLE_rps (100.0) // 100.0 Default, do not change //! \brief Defines the software pole location for the direction filter, rad/s #define USER_DIRECTION_POLE_rps (6.0) // 6.0 Default, do not change //! \brief Defines the software pole location for the speed control filter, rad/s #define USER_SPEED_POLE_rps (100.0) // 100.0 Default, do not change //! \brief Defines the software pole location for the DC bus filter, rad/s #define USER_DCBUS_POLE_rps (100.0) // 100.0 Default, do not change //! \brief Defines the convergence factor for the estimator //! \brief Do not change from default for FAST #define USER_EST_KAPPAQ (1.5) // 1.5 Default, do not change // ************************************************************************** // end the defines //! \brief USER MOTOR & ID SETTINGS // ************************************************************************** //! \brief Define each motor with a unique name and ID number // BLDC & SMPM motors #define Estun_EMJ_04APB22 101 #define My_motor 102 #define teknic_2310P 108 // IPM motors // If user provides separate Ls-d, Ls-q // else treat as SPM with user or identified average Ls #define Belt_Drive_Washer_IPM 201 // ACIM motors #define Marathon_5K33GN2A 301 //! \brief Uncomment the motor which should be included at compile //! \brief These motor ID settings and motor parameters are then available to be used by the control system //! \brief Once your ideal settings and parameters are identified update the motor section here so it is available in the binary code //#define USER_MOTOR Estun_EMJ_04APB22 #define USER_MOTOR My_motor //#define USER_MOTOR My_Motor //#define USER_MOTOR Belt_Drive_Washer_IPM //#define USER_MOTOR Marathon_5K33GN2A //#define USER_MOTOR teknic_2310P #if (USER_MOTOR == Estun_EMJ_04APB22) // Name must match the motor #define #define USER_MOTOR_TYPE MOTOR_Type_Pm // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI) #define USER_MOTOR_NUM_POLE_PAIRS (4) // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only #define USER_MOTOR_Rr (NULL) // Induction motors only, else NULL #define USER_MOTOR_Rs (2.303403) // Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float) #define USER_MOTOR_Ls_d (0.008464367) // For PM, Identified average stator inductance (Henry, float) #define USER_MOTOR_Ls_q (0.008464367) // For PM, Identified average stator inductance (Henry, float) #define USER_MOTOR_RATED_FLUX (0.38) // Identified TOTAL flux linkage between the rotor and the stator (V/Hz) #define USER_MOTOR_MAGNETIZING_CURRENT (NULL) // Induction motors only, else NULL #define USER_MOTOR_RES_EST_CURRENT (0.3) // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current #define USER_MOTOR_IND_EST_CURRENT (-0.3) // During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to enable rotation #define USER_MOTOR_MAX_CURRENT (3.82) // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller #define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) // During Motor ID, maximum commanded speed (Hz, float), ~10% rated #elif (USER_MOTOR == My_motor) #define USER_MOTOR_TYPE MOTOR_Type_Pm #define USER_MOTOR_NUM_POLE_PAIRS (1) #define USER_MOTOR_Rr (NULL) #define USER_MOTOR_Rs (0.5355010032) #define USER_MOTOR_Ls_d (0.0001393029) #define USER_MOTOR_Ls_q (0.0001393029) #define USER_MOTOR_RATED_FLUX (0.010713812) #define USER_MOTOR_MAGNETIZING_CURRENT (NULL) #define USER_MOTOR_RES_EST_CURRENT (0.2) #define USER_MOTOR_IND_EST_CURRENT (-0.2) #define USER_MOTOR_MAX_CURRENT (2.0) #define USER_MOTOR_FLUX_EST_FREQ_Hz (80.0)//80 #elif (USER_MOTOR == Belt_Drive_Washer_IPM) #define USER_MOTOR_TYPE MOTOR_Type_Pm #define USER_MOTOR_NUM_POLE_PAIRS (4) #define USER_MOTOR_Rr (NULL) #define USER_MOTOR_Rs (2.832002) #define USER_MOTOR_Ls_d (0.0115) #define USER_MOTOR_Ls_q (0.0135) #define USER_MOTOR_RATED_FLUX (0.5022156) #define USER_MOTOR_MAGNETIZING_CURRENT (NULL) #define USER_MOTOR_RES_EST_CURRENT (1.0) #define USER_MOTOR_IND_EST_CURRENT (-1.0) #define USER_MOTOR_MAX_CURRENT (4.0) #define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) #elif (USER_MOTOR == Marathon_5K33GN2A) // Name must match the motor #define #define USER_MOTOR_TYPE MOTOR_Type_Induction // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI) #define USER_MOTOR_NUM_POLE_PAIRS (2) // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only #define USER_MOTOR_Rr (5.508003) // Identified phase to neutral in a Y equivalent circuit (Ohms, float) #define USER_MOTOR_Rs (10.71121) // Identified phase to neutral in a Y equivalent circuit (Ohms, float) #define USER_MOTOR_Ls_d (0.05296588) // For Induction, Identified average stator inductance (Henry, float) #define USER_MOTOR_Ls_q (0.05296588) // For Induction, Identified average stator inductance (Henry, float) #define USER_MOTOR_RATED_FLUX (0.8165*220.0/60.0) // sqrt(2/3)* Rated V (line-line) / Rated Freq (Hz) #define USER_MOTOR_MAGNETIZING_CURRENT (1.378) // Identified magnetizing current for induction motors, else NULL #define USER_MOTOR_RES_EST_CURRENT (0.5) // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current #define USER_MOTOR_IND_EST_CURRENT (NULL) // not used for induction #define USER_MOTOR_MAX_CURRENT (2.0) // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller #define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0) // During Motor ID, maximum commanded speed (Hz, float). Should always use 5 Hz for Induction. #else #error No motor type specified #endif #ifndef USER_MOTOR #error Motor is not defined in user.h #endif #ifndef USER_MOTOR_TYPE #error The motor type is not defined in user.h #endif #ifndef USER_MOTOR_NUM_POLE_PAIRS #error Number of motor pole pairs is not defined in user.h #endif #ifndef USER_MOTOR_Rr #error The rotor resistance is not defined in user.h #endif #ifndef USER_MOTOR_Rs #error The stator resistance is not defined in user.h #endif #ifndef USER_MOTOR_Ls_d #error The direct stator inductance is not defined in user.h #endif #ifndef USER_MOTOR_Ls_q #error The quadrature stator inductance is not defined in user.h #endif #ifndef USER_MOTOR_RATED_FLUX #error The rated flux of motor is not defined in user.h #endif #ifndef USER_MOTOR_MAGNETIZING_CURRENT #error The magnetizing current is not defined in user.h #endif #ifndef USER_MOTOR_RES_EST_CURRENT #error The resistance estimation current is not defined in user.h #endif #ifndef USER_MOTOR_IND_EST_CURRENT #error The inductance estimation current is not defined in user.h #endif #ifndef USER_MOTOR_MAX_CURRENT #error The maximum current is not defined in user.h #endif #ifndef USER_MOTOR_FLUX_EST_FREQ_Hz #error The flux estimation frequency is not defined in user.h #endif // ************************************************************************** // the functions //! \brief Sets the user parameter values //! \param[in] pUserParams The pointer to the user param structure extern void USER_setParams(USER_Params *pUserParams); //! \brief Checks for errors in the user parameter values //! \param[in] pUserParams The pointer to the user param structure extern void USER_checkForErrors(USER_Params *pUserParams); //! \brief Gets the error code in the user parameters //! \param[in] pUserParams The pointer to the user param structure //! \return The error code extern USER_ErrorCode_e USER_getErrorCode(USER_Params *pUserParams); //! \brief Sets the error code in the user parameters //! \param[in] pUserParams The pointer to the user param structure //! \param[in] errorCode The error code extern void USER_setErrorCode(USER_Params *pUserParams,const USER_ErrorCode_e errorCode); //! \brief Recalculates Inductances with the correct Q Format //! \param[in] handle The controller (CTRL) handle extern void USER_softwareUpdate1p6(CTRL_Handle handle); //! \brief Updates Id and Iq PI gains //! \param[in] handle The controller (CTRL) handle extern void USER_calcPIgains(CTRL_Handle handle); //! \brief Computes the scale factor needed to convert from torque created by Ld, Lq, Id and Iq, from per unit to Nm //! \return The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm, in IQ24 format extern _iq USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf(void); //! \brief Computes the scale factor needed to convert from torque created by flux and Iq, from per unit to Nm //! \return The scale factor to convert torque from Flux * Iq from per unit to Nm, in IQ24 format extern _iq USER_computeTorque_Flux_Iq_pu_to_Nm_sf(void); //! \brief Computes the scale factor needed to convert from per unit to Wb //! \return The scale factor to convert from flux per unit to flux in Wb, in IQ24 format extern _iq USER_computeFlux_pu_to_Wb_sf(void); //! \brief Computes the scale factor needed to convert from per unit to V/Hz //! \return The scale factor to convert from flux per unit to flux in V/Hz, in IQ24 format extern _iq USER_computeFlux_pu_to_VpHz_sf(void); //! \brief Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter //! \param[in] handle The controller (CTRL) handle //! \param[in] sf The scale factor to convert flux from per unit to Wb or V/Hz //! \return The flux in Wb or V/Hz depending on the scale factor sent as parameter, in IQ24 format extern _iq USER_computeFlux(CTRL_Handle handle, const _iq sf); //! \brief Computes Torque in Nm //! \param[in] handle The controller (CTRL) handle //! \param[in] torque_Flux_sf The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm //! \param[in] torque_Ls_sf The scale factor to convert torque from Flux * Iq from per unit to Nm //! \return The torque in Nm, in IQ24 format extern _iq USER_computeTorque_Nm(CTRL_Handle handle, const _iq torque_Flux_sf, const _iq torque_Ls_sf); //! \brief Computes Torque in lbin //! \param[in] handle The controller (CTRL) handle //! \param[in] torque_Flux_sf The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to lbin //! \param[in] torque_Ls_sf The scale factor to convert torque from Flux * Iq from per unit to lbin //! \return The torque in lbin, in IQ24 format extern _iq USER_computeTorque_lbin(CTRL_Handle handle, const _iq torque_Flux_sf, const _iq torque_Ls_sf); #ifdef __cplusplus } #endif // extern "C" //@} // ingroup #endif // end of _USER_H_ definition