This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TMS320F28054M-Q1: Material:TMS320F28054MPNQ

Part Number: TMS320F28054M-Q1

Phenomenon: When the program is running, the motor itself will emit an electric current sound. As the voltage increases (12V, 24V, 48V, 110V, 600V), the current sound increases.
The customer speculates that the phenomenon is caused by the Fast estimator (estimating the position of the motor rotor) and needs to be closed. The simultaneous opening of the Motion controller and Fast estimator resulted in the program writing the switches for the controller and estimator, without separate control
Summary: What the customer needs is an interface to find the estimator switch in the program, or parameters to eliminate sound

  • A customized board? Or TI EVM board?

    Which lab are you using?

    Any current current waveforms to show the issue?

    Any settings in the user.h? Please port the user.h if possible.

    Please provide more details that help us to understand your question.

  • 1.A customized board? Or TI EVM board?
            ->Either customized chips or development boards, or mass-produced chips

    2.Which lab are you using?
            -> 12b

    3.Any current current waveforms to show the issue?
            -> 

    • 1)0741.user.h

    Any settings in the user.h? Please port the user.h if possible.
            -> 

    #ifndef _USER_H_
    #define _USER_H_
    /* --COPYRIGHT--,BSD
    * Copyright (c) 2012, Texas Instruments Incorporated
    * All rights reserved.
    *
    * Redistribution and use in source and binary forms, with or without
    * modification, are permitted provided that the following conditions
    * are met:
    *
    * * Redistributions of source code must retain the above copyright
    * notice, this list of conditions and the following disclaimer.
    *
    * * Redistributions in binary form must reproduce the above copyright
    * notice, this list of conditions and the following disclaimer in the
    * documentation and/or other materials provided with the distribution.
    *
    * * Neither the name of Texas Instruments Incorporated nor the names of
    * its contributors may be used to endorse or promote products derived
    * from this software without specific prior written permission.
    *
    * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
    * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
    * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
    * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    * --/COPYRIGHT--*/

    //! \file solutions/instaspin_motion/boards/hvkit_rev1p1/f28x/f2805xM/src/user.h
    //! \brief Contains the public interface for user initialization data for the CTRL, HAL, and EST modules
    //!
    //! (C) Copyright 2012, Texas Instruments, Inc.


    // **************************************************************************
    // the includes

    // modules
    #include "sw/modules/types/src/types.h"
    #include "sw/modules/motor/src/32b/motor.h"
    #include "sw/modules/est/src/32b/est.h"
    #include "sw/modules/est/src/est_states.h"
    #include "sw/modules/est/src/est_Flux_states.h"
    #include "sw/modules/est/src/est_Ls_states.h"
    #include "sw/modules/est/src/est_Rs_states.h"
    #include "sw/modules/ctrl/src/32b/ctrl_obj.h"

    // platforms
    #include "sw/modules/fast/src/32b/userParams.h"

    //!
    //!
    //! \defgroup USER USER
    //!
    //@{


    #ifdef __cplusplus
    extern "C" {
    #endif

    // **************************************************************************
    // the defines


    //! \brief CURRENTS AND VOLTAGES
    // **************************************************************************
    //! \brief Defines the full scale frequency for IQ variable, Hz
    //! \brief All frequencies are converted into (pu) based on the ratio to this value
    //! \brief this value MUST be larger than the maximum speed that you are expecting from the motor
    #ifndef QEP
    #define USER_IQ_FULL_SCALE_FREQ_Hz (800.0) // 800 Example with buffer for 8-pole 6 KRPM motor to be run to 10 KRPM with field weakening; Hz =(RPM * Poles) / 120
    #else
    // #define USER_IQ_FULL_SCALE_FREQ_Hz (USER_MOTOR_NUM_POLE_PAIRS/0.008) // (4/0.008) = 500 Example with buffer for 8-pole 6 KRPM motor to be run to 6 KRPM; Hz = (RPM * Poles) / 120
    #define USER_IQ_FULL_SCALE_FREQ_Hz ((USER_MOTOR_MAX_SPEED_KRPM * 1000 * USER_MOTOR_NUM_POLE_PAIRS) * 1.5 / 60)
    #endif

    //! \brief Defines full scale value for the IQ30 variable of Voltage inside the system
    //! \brief All voltages are converted into (pu) based on the ratio to this value
    //! \brief WARNING: this value MUST meet the following condition: USER_IQ_FULL_SCALE_VOLTAGE_V > 0.5 * USER_MOTOR_MAX_CURRENT * USER_MOTOR_Ls_d * USER_VOLTAGE_FILTER_POLE_rps,
    //! \brief WARNING: otherwise the value can saturate and roll-over, causing an inaccurate value
    //! \brief WARNING: this value is OFTEN greater than the maximum measured ADC value, especially with high Bemf motors operating at higher than rated speeds
    //! \brief WARNING: if you know the value of your Bemf constant, and you know you are operating at a multiple speed due to field weakening, be sure to set this value higher than the expected Bemf voltage
    //! \brief It is recommended to start with a value ~3x greater than the USER_ADC_FULL_SCALE_VOLTAGE_V and increase to 4-5x if scenarios where a Bemf calculation may exceed these limits
    //! \brief This value is also used to calculate the minimum flux value: USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7
    #define USER_IQ_FULL_SCALE_VOLTAGE_V (330.0)

    //! \brief Defines the maximum voltage at the input to the AD converter
    //! \brief The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh)
    //! \brief Hardware dependent, this should be based on the voltage sensing and scaling to the ADC input
    #define USER_ADC_FULL_SCALE_VOLTAGE_V (333.3) /* 200k + 2k */

    //! \brief Defines the voltage scale factor for the system
    //! \brief Compile time calculation for scale factor (ratio) used throughout the system
    #define USER_VOLTAGE_SF ((float_t)((USER_ADC_FULL_SCALE_VOLTAGE_V)/(USER_IQ_FULL_SCALE_VOLTAGE_V)))

    //! \brief Defines the full scale current for the IQ variables, A
    //! \brief All currents are converted into (pu) based on the ratio to this value
    //! \brief WARNING: this value MUST be larger than the maximum current readings that you are expecting from the motor or the reading will roll over to 0, creating a control issue
    #define USER_IQ_FULL_SCALE_CURRENT_A (USER_ADC_FULL_SCALE_CURRENT_A * 0.5) //

    //! \brief Defines the maximum current at the AD converter
    //! \brief The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh)
    //! \brief Hardware dependent, this should be based on the current sensing and scaling to the ADC input
    #define USER_ADC_FULL_SCALE_CURRENT_A (110.0) // 3m 10k

    //! \brief Defines the current scale factor for the system
    //! \brief Compile time calculation for scale factor (ratio) used throughout the system
    #define USER_CURRENT_SF ((float_t)((USER_ADC_FULL_SCALE_CURRENT_A)/(USER_IQ_FULL_SCALE_CURRENT_A)))

    //! \brief Defines the number of current sensors used
    //! \brief Defined by the hardware capability present
    //! \brief May be (2) or (3)
    #define USER_NUM_CURRENT_SENSORS (3) // 3 Preferred setting for best performance across full speed range, allows for 100% duty cycle

    //! \brief Defines the number of voltage (phase) sensors
    //! \brief Must be (3)
    #define USER_NUM_VOLTAGE_SENSORS (3) // 3 Required

    //! \brief ADC current offsets for A, B, and C phases
    //! \brief One-time hardware dependent, though the calibration can be done at run-time as well
    //! \brief After initial board calibration these values should be updated for your specific hardware so they are available after compile in the binary to be loaded to the controller
    #define I_A_offset (0.9889127016)
    #define I_B_offset (0.9892736077)
    #define I_C_offset (0.9981902838)

    //! \brief ADC voltage offsets for A, B, and C phases
    //! \brief One-time hardware dependent, though the calibration can be done at run-time as well
    //! \brief After initial board calibration these values should be updated for your specific hardware so they are available after compile in the binary to be loaded to the controller
    #define V_A_offset (0.3306381106)
    #define V_B_offset (0.3306101561)
    #define V_C_offset (0.3335448503)


    //! \brief CLOCKS & TIMERS
    // **************************************************************************
    //! \brief Defines the system clock frequency, MHz
    #if (CRYSTAL_OSC_FREQ_MHz == 8)
    #define USER_SYSTEM_FREQ_MHz (56.0)
    #else
    #define USER_SYSTEM_FREQ_MHz (60.0)
    #endif

    //! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz
    //! \brief PWM frequency can be set directly here up to 30 KHz safely (60 KHz MAX in some cases)
    //! \brief For higher PWM frequencies (60 KHz+ typical for low inductance, high current ripple motors) it is recommended to use the ePWM hardware
    //! \brief and adjustable ADC SOC to decimate the ADC conversion done interrupt to the control system, or to use the software Que example.
    //! \brief Otherwise you risk missing interrupts and disrupting the timing of the control state machine
    #define USER_PWM_FREQ_kHz (15.0) //30.0 Example, 8.0 - 30.0 KHz typical; 45-80 KHz may be required for very low inductance, high speed motors

    //! \brief Defines the maximum Voltage vector (Vs) magnitude allowed. This value sets the maximum magnitude for the output of the
    //! \brief Id and Iq PI current controllers. The Id and Iq current controller outputs are Vd and Vq.
    //! \brief The relationship between Vs, Vd, and Vq is: Vs = sqrt(Vd^2 + Vq^2). In this FOC controller, the
    //! \brief Vd value is set equal to USER_MAX_VS_MAG*USER_VD_MAG_FACTOR. Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2).
    //! \brief Set USER_MAX_VS_MAG = 0.5 for a pure sinewave with a peak at SQRT(3)/2 = 86.6% duty cycle. No current reconstruction is needed for this scenario.
    //! \brief Set USER_MAX_VS_MAG = 1/SQRT(3) = 0.5774 for a pure sinewave with a peak at 100% duty cycle. Current reconstruction will be needed for this scenario (Lab10a-x).
    //! \brief Set USER_MAX_VS_MAG = 2/3 = 0.6666 to create a trapezoidal voltage waveform. Current reconstruction will be needed for this scenario (Lab10a-x).
    //! \brief For space vector over-modulation, see lab 10 for details on system requirements that will allow the SVM generator to go all the way to trapezoidal.
    #define USER_MAX_VS_MAG_PU (MATH_TWO_OVER_THREE) // Set to 0.5 if a current reconstruction technique is not used. Look at the module svgen_current in lab10a-x for more info.


    //! \brief Defines the Pulse Width Modulation (PWM) period, usec
    //! \brief Compile time calculation
    #define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)

    //! \brief Defines the Interrupt Service Routine (ISR) frequency, Hz
    //!
    #define USER_ISR_FREQ_Hz ((float_t)USER_PWM_FREQ_kHz * 1000.0 / (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)

    //! \brief Defines the Interrupt Service Routine (ISR) period, usec
    //!
    #define USER_ISR_PERIOD_usec (USER_PWM_PERIOD_usec * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)


    //! \brief DECIMATION
    // **************************************************************************
    //! \brief Defines the number of pwm clock ticks per isr clock tick
    //! Note: Valid values are 1, 2 or 3 only
    #define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)

    //! \brief Defines the number of isr ticks (hardware) per controller clock tick (software)
    //! \brief Controller clock tick (CTRL) is the main clock used for all timing in the software
    //! \brief Typically the PWM Frequency triggers (can be decimated by the ePWM hardware for less overhead) an ADC SOC
    //! \brief ADC SOC triggers an ADC Conversion Done
    //! \brief ADC Conversion Done triggers ISR
    //! \brief This relates the hardware ISR rate to the software controller rate
    //! \brief Typcially want to consider some form of decimation (ePWM hardware, CURRENT or EST) over 16KHz ISR to insure interrupt completes and leaves time for background tasks
    #define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1) // 2 Example, controller clock rate (CTRL) runs at PWM / 2; ex 30 KHz PWM, 15 KHz control

    //! \brief Defines the number of controller clock ticks per current controller clock tick
    //! \brief Relationship of controller clock rate to current controller (FOC) rate
    #define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1) // 1 Typical, Forward FOC current controller (Iq/Id/IPARK/SVPWM) runs at same rate as CTRL.

    //! \brief Defines the number of controller clock ticks per estimator clock tick
    //! \brief Relationship of controller clock rate to estimator (FAST) rate
    //! \brief Depends on needed dynamic performance, FAST provides very good results as low as 1 KHz while more dynamic or high speed applications may require up to 15 KHz
    #define USER_NUM_CTRL_TICKS_PER_EST_TICK (1) // 1 Typical, FAST estimator runs at same rate as CTRL;

    //! \brief Defines the number of controller clock ticks per speed controller clock tick
    //! \brief Relationship of controller clock rate to speed loop rate
    #define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (15) // 15 Typical to match PWM, ex: 15KHz PWM, controller, and current loop, 1KHz speed loop

    //! \brief Defines the number of controller clock ticks per trajectory clock tick
    //! \brief Relationship of controller clock rate to trajectory loop rate
    //! \brief Typically the same as the speed rate
    #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (15) // 15 Typical to match PWM, ex: 10KHz controller & current loop, 1KHz speed loop, 1 KHz Trajectory

    //! \brief Defines the controller frequency, Hz
    //! \brief Compile time calculation
    #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/USER_NUM_ISR_TICKS_PER_CTRL_TICK)

    //! \brief Defines the estimator frequency, Hz
    //! \brief Compile time calculation
    #define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK)

    //! \brief Defines the trajectory frequency, Hz
    //! \brief Compile time calculation
    #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)

    //! \brief Defines the controller execution period, usec
    //! \brief Compile time calculation
    #define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec * USER_NUM_ISR_TICKS_PER_CTRL_TICK)

    //! \brief Defines the controller execution period, sec
    //! \brief Compile time calculation
    #define USER_CTRL_PERIOD_sec ((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0)


    //! \brief LIMITS
    // **************************************************************************
    //! \brief Defines the maximum negative current to be applied in Id reference
    //! \brief Used in field weakening only, this is a safety setting (e.g. to protect against demagnetization)
    //! \brief User must also be aware that overall current magnitude [sqrt(Id^2 + Iq^2)] should be kept below any machine design specifications
    #define USER_MAX_NEGATIVE_ID_REF_CURRENT_A (-0.5 * USER_MOTOR_MAX_CURRENT) // -0.5 * USER_MOTOR_MAX_CURRENT Example, adjust to meet safety needs of your motor

    //! \brief Defines the low speed limit for the flux integrator, pu
    //! \brief This is the speed range (CW/CCW) at which the ForceAngle object is active, but only if Enabled
    //! \brief Outside of this speed - or if Disabled - the ForcAngle will NEVER be active and the angle is provided by FAST only
    #define USER_ZEROSPEEDLIMIT (0.5 / USER_IQ_FULL_SCALE_FREQ_Hz) // 0.002 pu, 1-5 Hz typical; Hz = USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz

    //! \brief Defines the force angle frequency, Hz
    //! \brief Frequency of stator vector rotation used by the ForceAngle object
    //! \brief Can be positive or negative
    #define USER_FORCE_ANGLE_FREQ_Hz (2.0 * USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz) // 1.0 Typical force angle start-up speed

    //! \brief Defines the maximum current slope for Id trajectory during PowerWarp
    //! \brief For Induction motors only, controls how fast Id input can change under PowerWarp control
    #define USER_MAX_CURRENT_SLOPE_POWERWARP (0.3*USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz) // 0.3*RES_EST_CURRENT / IQ_FULL_SCALE_CURRENT / TRAJ_FREQ Typical to produce 1-sec rampup/down

    //! \brief Defines the starting maximum acceleration AND deceleration for the speed profiles, Hz/s
    //! \brief Updated in run-time through user functions
    //! \brief Inverter, motor, inertia, and load will limit actual acceleration capability
    #define USER_MAX_ACCEL_Hzps (20.0) // 20.0 Default

    //! \brief Defines maximum acceleration for the estimation speed profiles, Hz/s
    //! \brief Only used during Motor ID (commission)
    #define USER_MAX_ACCEL_EST_Hzps (2.0) // 2.0 Default, don't change

    //! \brief Defines the maximum current slope for Id trajectory during estimation
    #define USER_MAX_CURRENT_SLOPE (USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz) // USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz Default, don't change

    //! \brief Defines the fraction of IdRated to use during rated flux estimation
    //!
    #define USER_IDRATED_FRACTION_FOR_RATED_FLUX (1.0) // 1.0 Default, don't change

    //! \brief Defines the fraction of IdRated to use during inductance estimation
    //!
    #define USER_IDRATED_FRACTION_FOR_L_IDENT (1.0) // 1.0 Default, don't change

    //! \brief Defines the IdRated delta to use during estimation
    //!
    #define USER_IDRATED_DELTA (0.00002)

    //! \brief Defines the fraction of SpeedMax to use during inductance estimation
    //!
    #define USER_SPEEDMAX_FRACTION_FOR_L_IDENT (1.0) // 1.0 Default, don't change

    //! \brief Defines flux fraction to use during inductance identification
    //!
    #define USER_FLUX_FRACTION (1.0) // 1.0 Default, don't change

    //! \brief Defines the PowerWarp gain for computing Id reference
    //! \brief Induction motors only
    #define USER_POWERWARP_GAIN (1.0) // 1.0 Default, don't change

    //! \brief Defines the R/L estimation frequency, Hz
    //! \brief User higher values for low inductance motors and lower values for higher inductance
    //! \brief motors. The values can range from 100 to 300 Hz.
    #define USER_R_OVER_L_EST_FREQ_Hz (100) // 100 Default


    //! \brief POLES
    // **************************************************************************
    //! \brief Defines the analog voltage filter pole location, Hz
    //! \brief Must match the hardware filter for Vph
    #define USER_VOLTAGE_FILTER_POLE_Hz (365.332937552)

    //! \brief Defines the analog voltage filter pole location, rad/s
    //! \brief Compile time calculation from Hz to rad/s
    #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI * USER_VOLTAGE_FILTER_POLE_Hz)

    //! \brief Defines the software pole location for the voltage and current offset estimation, rad/s
    //! \brief Should not be changed from default of (20.0)
    #define USER_OFFSET_POLE_rps (20.0) // 20.0 Default, do not change

    //! \brief Defines the software pole location for the flux estimation, rad/s
    //! \brief Should not be changed from default of (100.0)
    #define USER_FLUX_POLE_rps (100.0) // 100.0 Default, do not change

    //! \brief Defines the software pole location for the direction filter, rad/s
    #define USER_DIRECTION_POLE_rps (6.0) // 6.0 Default, do not change

    //! \brief Defines the software pole location for the speed control filter, rad/s
    #define USER_SPEED_POLE_rps (100.0) // 100.0 Default, do not change

    //! \brief Defines the software pole location for the DC bus filter, rad/s
    #define USER_DCBUS_POLE_rps (100.0) // 100.0 Default, do not change

    //! \brief Defines the convergence factor for the estimator
    //! \brief Do not change from default for FAST
    #define USER_EST_KAPPAQ (1.5) // 1.5 Default, do not change

    // **************************************************************************
    // end the defines


    //! \brief USER MOTOR & ID SETTINGS
    // **************************************************************************

    //! \brief Defines the default bandwidth for SpinTAC Control
    //! \brief This value should be determined by putting SpinTAC Control through a tuning process
    //! \brief If a Bandwidth Scale value has been previously identified
    //! \brief multiply it by 20 to convert into Bandwidth
    #define USER_SYSTEM_BANDWIDTH (0.0)

    //! \brief Define each motor with a unique name and ID number
    // BLDC & SMPM motors
    #define EMB_MOTOR1 101
    #define EMB_MOTOR2 102
    #define EMB_MOTOR3 103

    #define USER_MOTOR EMB_MOTOR1

    #if (USER_MOTOR == EMB_MOTOR1) // Name must match the motor #define

    #define USER_MOTOR_TYPE MOTOR_Type_Pm
    #define USER_MOTOR_NUM_POLE_PAIRS (8)
    #define USER_MOTOR_Rr (NULL)
    #define USER_MOTOR_Rs (0.699750304)//(0.725775301)
    #define USER_MOTOR_Ls_d (0.005122542)//(0.005419016)
    #define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)
    #define USER_MOTOR_RATED_FLUX (1.055357337)//(1.058166146)
    #define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
    #define USER_MOTOR_RES_EST_CURRENT (4.5)
    #define USER_MOTOR_IND_EST_CURRENT (-4.5)
    #define USER_MOTOR_MAX_CURRENT (50.0)
    #define USER_MOTOR_FLUX_EST_FREQ_Hz (20)
    #define USER_MOTOR_ENCODER_LINES (1024.0)
    #define USER_MOTOR_MAX_SPEED_KRPM (1.0)
    #define USER_SYSTEM_INERTIA (0.4)
    #define USER_SYSTEM_FRICTION (1.497169137)
    #define USER_OFFSET_CALC (0.6) // calc time in seconds
    #define USER_RS_STATE_STEP1 (1.0)
    #define USER_RS_STATE_STEP2 (0.2)
    #define USER_RS_STATE_STEP3 (0.6)
    #define USER_RS_STATE_STEP_ALL (USER_RS_STATE_STEP1 + USER_RS_STATE_STEP2 + USER_RS_STATE_STEP3)
    #define USER_DEFAULT_SPEED_KRPM (0.5)
    #define USER_ENCODER_REVERSE_DIR (QEP_Swap_Not_Swapped) // ת λ ô Ӧ Ƕ
    #define USER_MOTOR_Q_PULL_LENGTH_MM (2.0) // ǰ Ż λ ã ֵͳһΪ ֵ ο Ƹ˺ ˮƽλ Ϊ
    #define USER_MOTOR_Q_PUSH_LENGTH_MM (59.0) // ǰ Ż 쳤λ
    #define USER_MOTOR_Z_PULL_LENGTH_MM (2.0) // к Ż λ ã ֵͳһΪ ֵ ο Ƹ˺ ˮƽλ Ϊ
    #define USER_MOTOR_Z_PUSH_LENGTH_MM (59.0) // к Ż 쳤λ


    #elif (USER_MOTOR == EMB_MOTOR2)

    #define USER_MOTOR_TYPE MOTOR_Type_Pm
    #define USER_MOTOR_NUM_POLE_PAIRS (8)
    #define USER_MOTOR_Rr (NULL)
    #define USER_MOTOR_Rs (0.042)
    #define USER_MOTOR_Ls_d (0.00014)
    #define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)
    #define USER_MOTOR_RATED_FLUX (0.084366381)
    #define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
    #define USER_MOTOR_RES_EST_CURRENT (10.0)
    #define USER_MOTOR_IND_EST_CURRENT (-10.0)
    #define USER_MOTOR_MAX_CURRENT (100.0)
    #define USER_MOTOR_FLUX_EST_FREQ_Hz (20)
    #define USER_MOTOR_ENCODER_LINES (1024.0)
    #define USER_MOTOR_MAX_SPEED_KRPM (2.0)
    #define USER_SYSTEM_INERTIA (0.616290271)
    #define USER_SYSTEM_FRICTION (1.633763611)
    #define USER_OFFSET_CALC (0.6) // calc time in seconds
    #define USER_RS_STATE_STEP1 (1.0)
    #define USER_RS_STATE_STEP2 (0.2)
    #define USER_RS_STATE_STEP3 (0.6)
    #define USER_RS_STATE_STEP_ALL (USER_RS_STATE_STEP1 + USER_RS_STATE_STEP2 + USER_RS_STATE_STEP3)
    #define USER_IPD_DUTY (0.08)
    #define USER_DEFAULT_SPEED_KRPM (USER_MOTOR_MAX_SPEED_KRPM - 0.2)
    #define USER_ENCODER_REVERSE_DIR (QEP_Swap_Not_Swapped) // ת λ ô Ӧ Ƕ
    #define USER_MOTOR_Q_PULL_LENGTH_MM (2.0) // ǰ Ż λ ã ֵͳһΪ ֵ ο Ƹ˺ ˮƽλ Ϊ
    #define USER_MOTOR_Q_PUSH_LENGTH_MM (59.0) // ǰ Ż 쳤λ
    #define USER_MOTOR_Z_PULL_LENGTH_MM (2.0) // к Ż λ ã ֵͳһΪ ֵ ο Ƹ˺ ˮƽλ Ϊ
    #define USER_MOTOR_Z_PUSH_LENGTH_MM (59.0) // к Ż 쳤λ


    #elif (USER_MOTOR == EMB_MOTOR3)

    #define USER_MOTOR_TYPE MOTOR_Type_Pm
    #define USER_MOTOR_NUM_POLE_PAIRS (8)
    #define USER_MOTOR_Rr (NULL)
    #define USER_MOTOR_Rs (0.042)
    #define USER_MOTOR_Ls_d (0.00014)
    #define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)
    #define USER_MOTOR_RATED_FLUX (0.084366381)
    #define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
    #define USER_MOTOR_RES_EST_CURRENT (3.0)
    #define USER_MOTOR_IND_EST_CURRENT (-3.0)
    #define USER_MOTOR_MAX_CURRENT (30.0)
    #define USER_MOTOR_FLUX_EST_FREQ_Hz (20)
    #define USER_MOTOR_ENCODER_LINES (1024.0)
    #define USER_MOTOR_MAX_SPEED_KRPM (2.0)
    #define USER_SYSTEM_INERTIA (0.616290271)
    #define USER_SYSTEM_FRICTION (1.633763611)
    #define USER_OFFSET_CALC (0.6) // calc time in seconds
    #define USER_RS_STATE_STEP1 (1.0)
    #define USER_RS_STATE_STEP2 (0.2)
    #define USER_RS_STATE_STEP3 (0.6)
    #define USER_RS_STATE_STEP_ALL (USER_RS_STATE_STEP1 + USER_RS_STATE_STEP2 + USER_RS_STATE_STEP3)
    #define USER_IPD_DUTY (0.08)
    #define USER_DEFAULT_SPEED_KRPM (USER_MOTOR_MAX_SPEED_KRPM - 0.3)
    #define USER_ENCODER_REVERSE_DIR (QEP_Swap_Not_Swapped) // ת λ ô Ӧ Ƕ
    #define USER_MOTOR_Q_PULL_LENGTH_MM (2.0) // ǰ Ż λ ã ֵͳһΪ ֵ ο Ƹ˺ ˮƽλ Ϊ
    #define USER_MOTOR_Q_PUSH_LENGTH_MM (59.0) // ǰ Ż 쳤λ
    #define USER_MOTOR_Z_PULL_LENGTH_MM (2.0) // к Ż λ ã ֵͳһΪ ֵ ο Ƹ˺ ˮƽλ Ϊ
    #define USER_MOTOR_Z_PUSH_LENGTH_MM (59.0) // к Ż 쳤λ


    #else
    #error No motor type specified
    #endif

    #ifndef USER_MOTOR
    #error Motor is not defined in user.h
    #endif

    #ifndef USER_MOTOR_TYPE
    #error The motor type is not defined in user.h
    #endif

    #ifndef USER_MOTOR_NUM_POLE_PAIRS
    #error Number of motor pole pairs is not defined in user.h
    #endif

    #ifndef USER_MOTOR_Rr
    #error The rotor resistance is not defined in user.h
    #endif

    #ifndef USER_MOTOR_Rs
    #error The stator resistance is not defined in user.h
    #endif

    #ifndef USER_MOTOR_Ls_d
    #error The direct stator inductance is not defined in user.h
    #endif

    #ifndef USER_MOTOR_Ls_q
    #error The quadrature stator inductance is not defined in user.h
    #endif

    #ifndef USER_MOTOR_RATED_FLUX
    #error The rated flux of motor is not defined in user.h
    #endif

    #ifndef USER_MOTOR_MAGNETIZING_CURRENT
    #error The magnetizing current is not defined in user.h
    #endif

    #ifndef USER_MOTOR_RES_EST_CURRENT
    #error The resistance estimation current is not defined in user.h
    #endif

    #ifndef USER_MOTOR_IND_EST_CURRENT
    #error The inductance estimation current is not defined in user.h
    #endif

    #ifndef USER_MOTOR_MAX_CURRENT
    #error The maximum current is not defined in user.h
    #endif

    #ifndef USER_MOTOR_FLUX_EST_FREQ_Hz
    #error The flux estimation frequency is not defined in user.h
    #endif

    // **************************************************************************
    // the functions


    //! \brief Sets the user parameter values
    //! \param[in] pUserParams The pointer to the user param structure
    extern void USER_setParams(USER_Params *pUserParams);


    //! \brief Checks for errors in the user parameter values
    //! \param[in] pUserParams The pointer to the user param structure
    extern void USER_checkForErrors(USER_Params *pUserParams);


    //! \brief Gets the error code in the user parameters
    //! \param[in] pUserParams The pointer to the user param structure
    //! \return The error code
    extern USER_ErrorCode_e USER_getErrorCode(USER_Params *pUserParams);


    //! \brief Sets the error code in the user parameters
    //! \param[in] pUserParams The pointer to the user param structure
    //! \param[in] errorCode The error code
    extern void USER_setErrorCode(USER_Params *pUserParams,const USER_ErrorCode_e errorCode);


    //! \brief Recalculates Inductances with the correct Q Format
    //! \param[in] handle The controller (CTRL) handle
    extern void USER_softwareUpdate1p6(CTRL_Handle handle);


    //! \brief Updates Id and Iq PI gains
    //! \param[in] handle The controller (CTRL) handle
    extern void USER_calcPIgains(CTRL_Handle handle);


    //! \brief Computes the scale factor needed to convert from torque created by Ld, Lq, Id and Iq, from per unit to Nm
    //! \return The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm, in IQ24 format
    extern _iq USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf(void);


    //! \brief Computes the scale factor needed to convert from torque created by flux and Iq, from per unit to Nm
    //! \return The scale factor to convert torque from Flux * Iq from per unit to Nm, in IQ24 format
    extern _iq USER_computeTorque_Flux_Iq_pu_to_Nm_sf(void);


    //! \brief Computes the scale factor needed to convert from per unit to Wb
    //! \return The scale factor to convert from flux per unit to flux in Wb, in IQ24 format
    extern _iq USER_computeFlux_pu_to_Wb_sf(void);


    //! \brief Computes the scale factor needed to convert from per unit to V/Hz
    //! \return The scale factor to convert from flux per unit to flux in V/Hz, in IQ24 format
    extern _iq USER_computeFlux_pu_to_VpHz_sf(void);


    //! \brief Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter
    //! \param[in] handle The controller (CTRL) handle
    //! \param[in] sf The scale factor to convert flux from per unit to Wb or V/Hz
    //! \return The flux in Wb or V/Hz depending on the scale factor sent as parameter, in IQ24 format
    extern _iq USER_computeFlux(CTRL_Handle handle, const _iq sf);


    //! \brief Computes Torque in Nm
    //! \param[in] handle The controller (CTRL) handle
    //! \param[in] torque_Flux_sf The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm
    //! \param[in] torque_Ls_sf The scale factor to convert torque from Flux * Iq from per unit to Nm
    //! \return The torque in Nm, in IQ24 format
    extern _iq USER_computeTorque_Nm(CTRL_Handle handle, const _iq torque_Flux_sf, const _iq torque_Ls_sf);


    //! \brief Computes Torque in lbin
    //! \param[in] handle The controller (CTRL) handle
    //! \param[in] torque_Flux_sf The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to lbin
    //! \param[in] torque_Ls_sf The scale factor to convert torque from Flux * Iq from per unit to lbin
    //! \return The torque in lbin, in IQ24 format
    extern _iq USER_computeTorque_lbin(CTRL_Handle handle, const _iq torque_Flux_sf, const _iq torque_Ls_sf);


    #ifdef __cplusplus
    }
    #endif // extern "C"

    //@} // ingroup
    #endif // end of _USER_H_ definition

    Please provide more details that help us to understand your question.

  • Did you try to run the lab02b and lab12a to identify the motor electrical parameters and inertia first?

    And use lab01b and lab01c to verify the current and voltage sensing signals as well?