This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

CCS/TMS320F28335: ADC conversions visualization

Part Number: TMS320F28335

Tool/software: Code Composer Studio

Hello TI friends. I´m starting with TMS320F28335, and I´m new with code composer. I have two questions:

1. I ran the sequential mode test example available in C200Ware, and I think is running well. How can I visualize the value of the ADCRESULT0 where I´m storing the ADCINA0 input analog voltage. Can I see it in binary? For translating this value to decimal, do I have to code this operation? or there is a function that I can use for this?. I appreciate your help.

2. I need a 1 mV resolution reading input volatges, but the adc is just 12 bits, so is not possible. Is there a possibility to improve the number of bits for the ADC conversión by using this f28335 device?

This is the code:

// Included Files
//
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File

//
// Defines for ADC start parameters
//
#if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT
//
// HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
//
#define ADC_MODCLK 0x3
#endif
#if (CPU_FRQ_100MHZ)
//
// HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
//
#define ADC_MODCLK 0x2
#endif

//
// ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
//
#define ADC_CKPS 0x1

#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 2048 // Sample buffer size

//
// Globals
//
Uint16 SampleTable[BUF_SIZE];

//
// Main
//
void main(void)
{
Uint16 i;

//
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
//
InitSysCtrl();

//
// Specific clock setting for this example
//
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;

//
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
//
// InitGpio(); // Skipped for this example

//
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
//
DINT;

//
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
//
InitPieCtrl();

//
// Disable CPU interrupts and clear all CPU interrupt flags
//
IER = 0x0000;
IFR = 0x0000;

//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
//
InitPieVectTable();

//
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
//
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC

//
// Specific ADC setup for this example:
//
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // 1 Cascaded mode
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCTRL1.bit.CONT_RUN = 1; // Setup continuous run

//
// Step 5. User specific code, enable interrupts:
//

//
// Clear SampleTable
//
for (i=0; i<BUF_SIZE; i++)
{
SampleTable[i] = 0;
}

//
// Start SEQ1
//
AdcRegs.ADCTRL2.all = 0x2000;

//
// Take ADC data and log the in SampleTable array
//
for(;;)
{
for (i=0; i<AVG; i++)
{
//
// Wait for interrupt
//
while (AdcRegs.ADCST.bit.INT_SEQ1== 0)
{

}
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;
SampleTable[i] =((AdcRegs.ADCRESULT0>>4) );
}
}
}

//
// End of File
//