Hi,
I am using the provided msp430fr59xx_adc12_11.c code shown below. I am getting readings that are lower than expected. The code says it uses AVCC in the comment section, but then in the code it looks like Vref+ = VREF but I don't see where they turned on the reference so I am not sure what the reference is here. Can someone help?
Here are my readings:
1.65V input => 0xD69
1.0V input => 0x807
.5V input => 0x403
This appears to be tracking a 2V reference but I can't seem to see where this would be set. I did run other code provided by TI and it always looks like the output read is lower than the analog input provided.
#include <msp430.h>
int main(void)
{
WDTCTL = WDTPW | WDTHOLD; // Stop WDT
// Configure GPIOs to it's lowest power state
P1OUT = 0; // All P1.x reset
P1DIR = 0xFF; // All P1.x outputs
P2OUT = 0; // All P2.x reset
P2DIR = 0xFF; // All P2.x outputs
P3OUT = 0; // All P3.x reset
P3DIR = 0xFF; // All P3.x outputs
P4OUT = 0; // All P4.x reset
P4DIR = 0xFF; // All P4.x outputs
PJOUT = 0; // All PJ.x reset
PJDIR = 0xFFFF; // All PJ.x outputs
// Set up XT1
PJSEL0 = BIT4 | BIT5; // For XT1
P1SEL0 |= BIT2; // configure P1.2/A2 for ADC function
P1SEL1 |= BIT2; //
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings
PM5CTL0 &= ~LOCKLPM5;
// Clock System Setup
CSCTL0_H = CSKEY >> 8; // Unlock CS registers
CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz
CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers
CSCTL4 &= ~LFXTOFF;
do
{
CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag
SFRIFG1 &= ~OFIFG;
} while (SFRIFG1 & OFIFG); // Test oscillator fault flag
ADC12CTL0 = ADC12SHT0_0 | ADC12ON; // Sampling time, S&H=4, ADC12 on
// Use TA0.1 to trigger, and repeated-single-channel
ADC12CTL1 = ADC12SHP | ADC12SHS_1 | ADC12CONSEQ_2;
// A2 ADC input select; Vref+ = VREF
ADC12MCTL0 = ADC12INCH_2 | ADC12VRSEL_1 | ADC12EOS;
ADC12IER0 |= ADC12IE0; // Enable ADC interrupt
ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion
// Configure Timer0_A3 to periodically trigger the ADC12
TA0CCR0 = 2048-1; // PWM Period
TA0CCTL1 = OUTMOD_3; // TACCR1 set/reset
TA0CCR1 = 2047; // TACCR1 PWM Duty Cycle
TA0CTL = TASSEL__ACLK | MC__UP; // ACLK, up mode
__bis_SR_register(LPM3_bits | GIE); // Enter LPM3, enable interrupts
return 0;
}
// ADC12 interrupt service routine
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=ADC12_VECTOR
__interrupt void ADC12ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_VECTOR))) ADC12ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(ADC12IV, ADC12IV_ADC12RDYIFG))
{
case ADC12IV_NONE: break; // Vector 0: No interrupt
case ADC12IV_ADC12OVIFG: break; // Vector 2: ADC12MEMx Overflow
case ADC12IV_ADC12TOVIFG: break; // Vector 4: Conversion time overflow
case ADC12IV_ADC12HIIFG: break; // Vector 6: ADC12BHI
case ADC12IV_ADC12LOIFG: break; // Vector 8: ADC12BLO
case ADC12IV_ADC12INIFG: break; // Vector 10: ADC12BIN
case ADC12IV_ADC12IFG0: // Vector 12: ADC12MEM0 Interrupt
if (ADC12MEM0 >= 0x7ff) // ADC12MEM0 = A1 > 0.5AVcc?
P1OUT |= BIT0; // P1.0 = 1
else
P1OUT &= ~BIT0; // P1.0 = 0
break;
case ADC12IV_ADC12IFG1: break; // Vector 14: ADC12MEM1
case ADC12IV_ADC12IFG2: break; // Vector 16: ADC12MEM2
case ADC12IV_ADC12IFG3: break; // Vector 18: ADC12MEM3
case ADC12IV_ADC12IFG4: break; // Vector 20: ADC12MEM4
case ADC12IV_ADC12IFG5: break; // Vector 22: ADC12MEM5
case ADC12IV_ADC12IFG6: break; // Vector 24: ADC12MEM6
case ADC12IV_ADC12IFG7: break; // Vector 26: ADC12MEM7
case ADC12IV_ADC12IFG8: break; // Vector 28: ADC12MEM8
case ADC12IV_ADC12IFG9: break; // Vector 30: ADC12MEM9
case ADC12IV_ADC12IFG10: break; // Vector 32: ADC12MEM10
case ADC12IV_ADC12IFG11: break; // Vector 34: ADC12MEM11
case ADC12IV_ADC12IFG12: break; // Vector 36: ADC12MEM12
case ADC12IV_ADC12IFG13: break; // Vector 38: ADC12MEM13
case ADC12IV_ADC12IFG14: break; // Vector 40: ADC12MEM14
case ADC12IV_ADC12IFG15: break; // Vector 42: ADC12MEM15
case ADC12IV_ADC12IFG16: break; // Vector 44: ADC12MEM16
case ADC12IV_ADC12IFG17: break; // Vector 46: ADC12MEM17
case ADC12IV_ADC12IFG18: break; // Vector 48: ADC12MEM18
case ADC12IV_ADC12IFG19: break; // Vector 50: ADC12MEM19
case ADC12IV_ADC12IFG20: break; // Vector 52: ADC12MEM20
case ADC12IV_ADC12IFG21: break; // Vector 54: ADC12MEM21
case ADC12IV_ADC12IFG22: break; // Vector 56: ADC12MEM22
case ADC12IV_ADC12IFG23: break; // Vector 58: ADC12MEM23
case ADC12IV_ADC12IFG24: break; // Vector 60: ADC12MEM24
case ADC12IV_ADC12IFG25: break; // Vector 62: ADC12MEM25
case ADC12IV_ADC12IFG26: break; // Vector 64: ADC12MEM26
case ADC12IV_ADC12IFG27: break; // Vector 66: ADC12MEM27
case ADC12IV_ADC12IFG28: break; // Vector 68: ADC12MEM28
case ADC12IV_ADC12IFG29: break; // Vector 70: ADC12MEM29
case ADC12IV_ADC12IFG30: break; // Vector 72: ADC12MEM30
case ADC12IV_ADC12IFG31: break; // Vector 74: ADC12MEM31
case ADC12IV_ADC12RDYIFG: break; // Vector 76: ADC12RDY
default: break;
}
}