This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

bq27200 dts bindings

Other Parts Discussed in Thread: BQ27200

Hi e2e team,

We are planning to use bq27200 IC for our project in i.Mx6 platform to monitor our 4000 mAh Li-ion batttery. We intend to buy by next week.

I would like to ask you the below queries regarding this,


We are using linux 3.10.53 kernel and got the driver for bq27200. I have enabled the driver in kernel config file

attached the dirver here

3542.bq27x00_battery.c
/*
 * BQ27x00 battery driver
 *
 * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
 * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
 * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
 * Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com>
 *
 * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
 *
 * This package is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 */

/*
 * Datasheets:
 * http://focus.ti.com/docs/prod/folders/print/bq27000.html
 * http://focus.ti.com/docs/prod/folders/print/bq27500.html
 * http://www.ti.com/product/bq27425-g1
 */

#include <linux/module.h>
#include <linux/param.h>
#include <linux/jiffies.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/idr.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <asm/unaligned.h>

#include <linux/power/bq27x00_battery.h>

#define DRIVER_VERSION			"1.2.0"

#define BQ27x00_REG_TEMP		0x06
#define BQ27x00_REG_VOLT		0x08
#define BQ27x00_REG_AI			0x14
#define BQ27x00_REG_FLAGS		0x0A
#define BQ27x00_REG_TTE			0x16
#define BQ27x00_REG_TTF			0x18
#define BQ27x00_REG_TTECP		0x26
#define BQ27x00_REG_NAC			0x0C /* Nominal available capacity */
#define BQ27x00_REG_LMD			0x12 /* Last measured discharge */
#define BQ27x00_REG_CYCT		0x2A /* Cycle count total */
#define BQ27x00_REG_AE			0x22 /* Available energy */
#define BQ27x00_POWER_AVG		0x24

#define BQ27000_REG_RSOC		0x0B /* Relative State-of-Charge */
#define BQ27000_REG_ILMD		0x76 /* Initial last measured discharge */
#define BQ27000_FLAG_EDVF		BIT(0) /* Final End-of-Discharge-Voltage flag */
#define BQ27000_FLAG_EDV1		BIT(1) /* First End-of-Discharge-Voltage flag */
#define BQ27000_FLAG_CI			BIT(4) /* Capacity Inaccurate flag */
#define BQ27000_FLAG_FC			BIT(5)
#define BQ27000_FLAG_CHGS		BIT(7) /* Charge state flag */

#define BQ27500_REG_SOC			0x2C
#define BQ27500_REG_DCAP		0x3C /* Design capacity */
#define BQ27500_FLAG_DSC		BIT(0)
#define BQ27500_FLAG_SOCF		BIT(1) /* State-of-Charge threshold final */
#define BQ27500_FLAG_SOC1		BIT(2) /* State-of-Charge threshold 1 */
#define BQ27500_FLAG_FC			BIT(9)
#define BQ27500_FLAG_OTC		BIT(15)

/* bq27425 register addresses are same as bq27x00 addresses minus 4 */
#define BQ27425_REG_OFFSET		0x04
#define BQ27425_REG_SOC			0x18 /* Register address plus offset */

#define BQ27000_RS			20 /* Resistor sense */
#define BQ27x00_POWER_CONSTANT		(256 * 29200 / 1000)

struct bq27x00_device_info;
struct bq27x00_access_methods {
	int (*read)(struct bq27x00_device_info *di, u8 reg, bool single);
};

enum bq27x00_chip { BQ27000, BQ27500, BQ27425};

struct bq27x00_reg_cache {
	int temperature;
	int time_to_empty;
	int time_to_empty_avg;
	int time_to_full;
	int charge_full;
	int cycle_count;
	int capacity;
	int energy;
	int flags;
	int power_avg;
	int health;
};

struct bq27x00_device_info {
	struct device 		*dev;
	int			id;
	enum bq27x00_chip	chip;

	struct bq27x00_reg_cache cache;
	int charge_design_full;

	unsigned long last_update;
	struct delayed_work work;

	struct power_supply	bat;

	struct bq27x00_access_methods bus;

	struct mutex lock;
};

static enum power_supply_property bq27x00_battery_props[] = {
	POWER_SUPPLY_PROP_STATUS,
	POWER_SUPPLY_PROP_PRESENT,
	POWER_SUPPLY_PROP_VOLTAGE_NOW,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
	POWER_SUPPLY_PROP_TEMP,
	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
	POWER_SUPPLY_PROP_TECHNOLOGY,
	POWER_SUPPLY_PROP_CHARGE_FULL,
	POWER_SUPPLY_PROP_CHARGE_NOW,
	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
	POWER_SUPPLY_PROP_CYCLE_COUNT,
	POWER_SUPPLY_PROP_ENERGY_NOW,
	POWER_SUPPLY_PROP_POWER_AVG,
	POWER_SUPPLY_PROP_HEALTH,
};

static enum power_supply_property bq27425_battery_props[] = {
	POWER_SUPPLY_PROP_STATUS,
	POWER_SUPPLY_PROP_PRESENT,
	POWER_SUPPLY_PROP_VOLTAGE_NOW,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
	POWER_SUPPLY_PROP_TEMP,
	POWER_SUPPLY_PROP_TECHNOLOGY,
	POWER_SUPPLY_PROP_CHARGE_FULL,
	POWER_SUPPLY_PROP_CHARGE_NOW,
	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
};

static unsigned int poll_interval = 360;
module_param(poll_interval, uint, 0644);
MODULE_PARM_DESC(poll_interval, "battery poll interval in seconds - " \
				"0 disables polling");

/*
 * Common code for BQ27x00 devices
 */

static inline int bq27x00_read(struct bq27x00_device_info *di, u8 reg,
		bool single)
{
	if (di->chip == BQ27425)
		return di->bus.read(di, reg - BQ27425_REG_OFFSET, single);
	return di->bus.read(di, reg, single);
}

/*
 * Higher versions of the chip like BQ27425 and BQ27500
 * differ from BQ27000 and BQ27200 in calculation of certain
 * parameters. Hence we need to check for the chip type.
 */
static bool bq27xxx_is_chip_version_higher(struct bq27x00_device_info *di)
{
	if (di->chip == BQ27425 || di->chip == BQ27500)
		return true;
	return false;
}

/*
 * Return the battery Relative State-of-Charge
 * Or < 0 if something fails.
 */
static int bq27x00_battery_read_rsoc(struct bq27x00_device_info *di)
{
	int rsoc;

	if (di->chip == BQ27500)
		rsoc = bq27x00_read(di, BQ27500_REG_SOC, false);
	else if (di->chip == BQ27425)
		rsoc = bq27x00_read(di, BQ27425_REG_SOC, false);
	else
		rsoc = bq27x00_read(di, BQ27000_REG_RSOC, true);

	if (rsoc < 0)
		dev_dbg(di->dev, "error reading relative State-of-Charge\n");

	return rsoc;
}

/*
 * Return a battery charge value in µAh
 * Or < 0 if something fails.
 */
static int bq27x00_battery_read_charge(struct bq27x00_device_info *di, u8 reg)
{
	int charge;

	charge = bq27x00_read(di, reg, false);
	if (charge < 0) {
		dev_dbg(di->dev, "error reading charge register %02x: %d\n",
			reg, charge);
		return charge;
	}

	if (bq27xxx_is_chip_version_higher(di))
		charge *= 1000;
	else
		charge = charge * 3570 / BQ27000_RS;

	return charge;
}

/*
 * Return the battery Nominal available capaciy in µAh
 * Or < 0 if something fails.
 */
static inline int bq27x00_battery_read_nac(struct bq27x00_device_info *di)
{
	int flags;
	bool is_bq27500 = di->chip == BQ27500;
	bool is_higher = bq27xxx_is_chip_version_higher(di);

	flags = bq27x00_read(di, BQ27x00_REG_FLAGS, !is_bq27500);
	if (flags >= 0 && !is_higher && (flags & BQ27000_FLAG_CI))
		return -ENODATA;

	return bq27x00_battery_read_charge(di, BQ27x00_REG_NAC);
}

/*
 * Return the battery Last measured discharge in µAh
 * Or < 0 if something fails.
 */
static inline int bq27x00_battery_read_lmd(struct bq27x00_device_info *di)
{
	return bq27x00_battery_read_charge(di, BQ27x00_REG_LMD);
}

/*
 * Return the battery Initial last measured discharge in µAh
 * Or < 0 if something fails.
 */
static int bq27x00_battery_read_ilmd(struct bq27x00_device_info *di)
{
	int ilmd;

	if (bq27xxx_is_chip_version_higher(di))
		ilmd = bq27x00_read(di, BQ27500_REG_DCAP, false);
	else
		ilmd = bq27x00_read(di, BQ27000_REG_ILMD, true);

	if (ilmd < 0) {
		dev_dbg(di->dev, "error reading initial last measured discharge\n");
		return ilmd;
	}

	if (bq27xxx_is_chip_version_higher(di))
		ilmd *= 1000;
	else
		ilmd = ilmd * 256 * 3570 / BQ27000_RS;

	return ilmd;
}

/*
 * Return the battery Available energy in µWh
 * Or < 0 if something fails.
 */
static int bq27x00_battery_read_energy(struct bq27x00_device_info *di)
{
	int ae;

	ae = bq27x00_read(di, BQ27x00_REG_AE, false);
	if (ae < 0) {
		dev_dbg(di->dev, "error reading available energy\n");
		return ae;
	}

	if (di->chip == BQ27500)
		ae *= 1000;
	else
		ae = ae * 29200 / BQ27000_RS;

	return ae;
}

/*
 * Return the battery temperature in tenths of degree Kelvin
 * Or < 0 if something fails.
 */
static int bq27x00_battery_read_temperature(struct bq27x00_device_info *di)
{
	int temp;

	temp = bq27x00_read(di, BQ27x00_REG_TEMP, false);
	if (temp < 0) {
		dev_err(di->dev, "error reading temperature\n");
		return temp;
	}

	if (!bq27xxx_is_chip_version_higher(di))
		temp = 5 * temp / 2;

	return temp;
}

/*
 * Return the battery Cycle count total
 * Or < 0 if something fails.
 */
static int bq27x00_battery_read_cyct(struct bq27x00_device_info *di)
{
	int cyct;

	cyct = bq27x00_read(di, BQ27x00_REG_CYCT, false);
	if (cyct < 0)
		dev_err(di->dev, "error reading cycle count total\n");

	return cyct;
}

/*
 * Read a time register.
 * Return < 0 if something fails.
 */
static int bq27x00_battery_read_time(struct bq27x00_device_info *di, u8 reg)
{
	int tval;

	tval = bq27x00_read(di, reg, false);
	if (tval < 0) {
		dev_dbg(di->dev, "error reading time register %02x: %d\n",
			reg, tval);
		return tval;
	}

	if (tval == 65535)
		return -ENODATA;

	return tval * 60;
}

/*
 * Read a power avg register.
 * Return < 0 if something fails.
 */
static int bq27x00_battery_read_pwr_avg(struct bq27x00_device_info *di, u8 reg)
{
	int tval;

	tval = bq27x00_read(di, reg, false);
	if (tval < 0) {
		dev_err(di->dev, "error reading power avg rgister  %02x: %d\n",
			reg, tval);
		return tval;
	}

	if (di->chip == BQ27500)
		return tval;
	else
		return (tval * BQ27x00_POWER_CONSTANT) / BQ27000_RS;
}

/*
 * Read flag register.
 * Return < 0 if something fails.
 */
static int bq27x00_battery_read_health(struct bq27x00_device_info *di)
{
	int tval;

	tval = bq27x00_read(di, BQ27x00_REG_FLAGS, false);
	if (tval < 0) {
		dev_err(di->dev, "error reading flag register:%d\n", tval);
		return tval;
	}

	if ((di->chip == BQ27500)) {
		if (tval & BQ27500_FLAG_SOCF)
			tval = POWER_SUPPLY_HEALTH_DEAD;
		else if (tval & BQ27500_FLAG_OTC)
			tval = POWER_SUPPLY_HEALTH_OVERHEAT;
		else
			tval = POWER_SUPPLY_HEALTH_GOOD;
		return tval;
	} else {
		if (tval & BQ27000_FLAG_EDV1)
			tval = POWER_SUPPLY_HEALTH_DEAD;
		else
			tval = POWER_SUPPLY_HEALTH_GOOD;
		return tval;
	}

	return -1;
}

static void bq27x00_update(struct bq27x00_device_info *di)
{
	struct bq27x00_reg_cache cache = {0, };
	bool is_bq27500 = di->chip == BQ27500;
	bool is_bq27425 = di->chip == BQ27425;

	cache.flags = bq27x00_read(di, BQ27x00_REG_FLAGS, !is_bq27500);
	if (cache.flags >= 0) {
		if (!is_bq27500 && !is_bq27425
				&& (cache.flags & BQ27000_FLAG_CI)) {
			dev_info(di->dev, "battery is not calibrated! ignoring capacity values\n");
			cache.capacity = -ENODATA;
			cache.energy = -ENODATA;
			cache.time_to_empty = -ENODATA;
			cache.time_to_empty_avg = -ENODATA;
			cache.time_to_full = -ENODATA;
			cache.charge_full = -ENODATA;
			cache.health = -ENODATA;
		} else {
			cache.capacity = bq27x00_battery_read_rsoc(di);
			if (!is_bq27425) {
				cache.energy = bq27x00_battery_read_energy(di);
				cache.time_to_empty =
					bq27x00_battery_read_time(di,
							BQ27x00_REG_TTE);
				cache.time_to_empty_avg =
					bq27x00_battery_read_time(di,
							BQ27x00_REG_TTECP);
				cache.time_to_full =
					bq27x00_battery_read_time(di,
							BQ27x00_REG_TTF);
			}
			cache.charge_full = bq27x00_battery_read_lmd(di);
			cache.health = bq27x00_battery_read_health(di);
		}
		cache.temperature = bq27x00_battery_read_temperature(di);
		if (!is_bq27425)
			cache.cycle_count = bq27x00_battery_read_cyct(di);
		cache.power_avg =
			bq27x00_battery_read_pwr_avg(di, BQ27x00_POWER_AVG);

		/* We only have to read charge design full once */
		if (di->charge_design_full <= 0)
			di->charge_design_full = bq27x00_battery_read_ilmd(di);
	}

	if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) {
		di->cache = cache;
		power_supply_changed(&di->bat);
	}

	di->last_update = jiffies;
}

static void bq27x00_battery_poll(struct work_struct *work)
{
	struct bq27x00_device_info *di =
		container_of(work, struct bq27x00_device_info, work.work);

	bq27x00_update(di);

	if (poll_interval > 0) {
		/* The timer does not have to be accurate. */
		set_timer_slack(&di->work.timer, poll_interval * HZ / 4);
		schedule_delayed_work(&di->work, poll_interval * HZ);
	}
}

/*
 * Return the battery average current in µA
 * Note that current can be negative signed as well
 * Or 0 if something fails.
 */
static int bq27x00_battery_current(struct bq27x00_device_info *di,
	union power_supply_propval *val)
{
	int curr;
	int flags;

	curr = bq27x00_read(di, BQ27x00_REG_AI, false);
	if (curr < 0) {
		dev_err(di->dev, "error reading current\n");
		return curr;
	}

	if (bq27xxx_is_chip_version_higher(di)) {
		/* bq27500 returns signed value */
		val->intval = (int)((s16)curr) * 1000;
	} else {
		flags = bq27x00_read(di, BQ27x00_REG_FLAGS, false);
		if (flags & BQ27000_FLAG_CHGS) {
			dev_dbg(di->dev, "negative current!\n");
			curr = -curr;
		}

		val->intval = curr * 3570 / BQ27000_RS;
	}

	return 0;
}

static int bq27x00_battery_status(struct bq27x00_device_info *di,
	union power_supply_propval *val)
{
	int status;

	if (bq27xxx_is_chip_version_higher(di)) {
		if (di->cache.flags & BQ27500_FLAG_FC)
			status = POWER_SUPPLY_STATUS_FULL;
		else if (di->cache.flags & BQ27500_FLAG_DSC)
			status = POWER_SUPPLY_STATUS_DISCHARGING;
		else
			status = POWER_SUPPLY_STATUS_CHARGING;
	} else {
		if (di->cache.flags & BQ27000_FLAG_FC)
			status = POWER_SUPPLY_STATUS_FULL;
		else if (di->cache.flags & BQ27000_FLAG_CHGS)
			status = POWER_SUPPLY_STATUS_CHARGING;
		else if (power_supply_am_i_supplied(&di->bat))
			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
		else
			status = POWER_SUPPLY_STATUS_DISCHARGING;
	}

	val->intval = status;

	return 0;
}

static int bq27x00_battery_capacity_level(struct bq27x00_device_info *di,
	union power_supply_propval *val)
{
	int level;

	if (bq27xxx_is_chip_version_higher(di)) {
		if (di->cache.flags & BQ27500_FLAG_FC)
			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
		else if (di->cache.flags & BQ27500_FLAG_SOC1)
			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
		else if (di->cache.flags & BQ27500_FLAG_SOCF)
			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
		else
			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
	} else {
		if (di->cache.flags & BQ27000_FLAG_FC)
			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
		else if (di->cache.flags & BQ27000_FLAG_EDV1)
			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
		else if (di->cache.flags & BQ27000_FLAG_EDVF)
			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
		else
			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
	}

	val->intval = level;

	return 0;
}

/*
 * Return the battery Voltage in millivolts
 * Or < 0 if something fails.
 */
static int bq27x00_battery_voltage(struct bq27x00_device_info *di,
	union power_supply_propval *val)
{
	int volt;

	volt = bq27x00_read(di, BQ27x00_REG_VOLT, false);
	if (volt < 0) {
		dev_err(di->dev, "error reading voltage\n");
		return volt;
	}

	val->intval = volt * 1000;

	return 0;
}

static int bq27x00_simple_value(int value,
	union power_supply_propval *val)
{
	if (value < 0)
		return value;

	val->intval = value;

	return 0;
}

#define to_bq27x00_device_info(x) container_of((x), \
				struct bq27x00_device_info, bat);

static int bq27x00_battery_get_property(struct power_supply *psy,
					enum power_supply_property psp,
					union power_supply_propval *val)
{
	int ret = 0;
	struct bq27x00_device_info *di = to_bq27x00_device_info(psy);

	mutex_lock(&di->lock);
	if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
		cancel_delayed_work_sync(&di->work);
		bq27x00_battery_poll(&di->work.work);
	}
	mutex_unlock(&di->lock);

	if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
		return -ENODEV;

	switch (psp) {
	case POWER_SUPPLY_PROP_STATUS:
		ret = bq27x00_battery_status(di, val);
		break;
	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
		ret = bq27x00_battery_voltage(di, val);
		break;
	case POWER_SUPPLY_PROP_PRESENT:
		val->intval = di->cache.flags < 0 ? 0 : 1;
		break;
	case POWER_SUPPLY_PROP_CURRENT_NOW:
		ret = bq27x00_battery_current(di, val);
		break;
	case POWER_SUPPLY_PROP_CAPACITY:
		ret = bq27x00_simple_value(di->cache.capacity, val);
		break;
	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
		ret = bq27x00_battery_capacity_level(di, val);
		break;
	case POWER_SUPPLY_PROP_TEMP:
		ret = bq27x00_simple_value(di->cache.temperature, val);
		if (ret == 0)
			val->intval -= 2731;
		break;
	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
		ret = bq27x00_simple_value(di->cache.time_to_empty, val);
		break;
	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
		ret = bq27x00_simple_value(di->cache.time_to_empty_avg, val);
		break;
	case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
		ret = bq27x00_simple_value(di->cache.time_to_full, val);
		break;
	case POWER_SUPPLY_PROP_TECHNOLOGY:
		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
		break;
	case POWER_SUPPLY_PROP_CHARGE_NOW:
		ret = bq27x00_simple_value(bq27x00_battery_read_nac(di), val);
		break;
	case POWER_SUPPLY_PROP_CHARGE_FULL:
		ret = bq27x00_simple_value(di->cache.charge_full, val);
		break;
	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
		ret = bq27x00_simple_value(di->charge_design_full, val);
		break;
	case POWER_SUPPLY_PROP_CYCLE_COUNT:
		ret = bq27x00_simple_value(di->cache.cycle_count, val);
		break;
	case POWER_SUPPLY_PROP_ENERGY_NOW:
		ret = bq27x00_simple_value(di->cache.energy, val);
		break;
	case POWER_SUPPLY_PROP_POWER_AVG:
		ret = bq27x00_simple_value(di->cache.power_avg, val);
		break;
	case POWER_SUPPLY_PROP_HEALTH:
		ret = bq27x00_simple_value(di->cache.health, val);
		break;
	default:
		return -EINVAL;
	}

	return ret;
}

static void bq27x00_external_power_changed(struct power_supply *psy)
{
	struct bq27x00_device_info *di = to_bq27x00_device_info(psy);

	cancel_delayed_work_sync(&di->work);
	schedule_delayed_work(&di->work, 0);
}

static int bq27x00_powersupply_init(struct bq27x00_device_info *di)
{
	int ret;

	di->bat.type = POWER_SUPPLY_TYPE_BATTERY;
	if (di->chip == BQ27425) {
		di->bat.properties = bq27425_battery_props;
		di->bat.num_properties = ARRAY_SIZE(bq27425_battery_props);
	} else {
		di->bat.properties = bq27x00_battery_props;
		di->bat.num_properties = ARRAY_SIZE(bq27x00_battery_props);
	}
	di->bat.get_property = bq27x00_battery_get_property;
	di->bat.external_power_changed = bq27x00_external_power_changed;

	INIT_DELAYED_WORK(&di->work, bq27x00_battery_poll);
	mutex_init(&di->lock);

	ret = power_supply_register(di->dev, &di->bat);
	if (ret) {
		dev_err(di->dev, "failed to register battery: %d\n", ret);
		return ret;
	}

	dev_info(di->dev, "support ver. %s enabled\n", DRIVER_VERSION);

	bq27x00_update(di);

	return 0;
}

static void bq27x00_powersupply_unregister(struct bq27x00_device_info *di)
{
	/*
	 * power_supply_unregister call bq27x00_battery_get_property which
	 * call bq27x00_battery_poll.
	 * Make sure that bq27x00_battery_poll will not call
	 * schedule_delayed_work again after unregister (which cause OOPS).
	 */
	poll_interval = 0;

	cancel_delayed_work_sync(&di->work);

	power_supply_unregister(&di->bat);

	mutex_destroy(&di->lock);
}


/* i2c specific code */
#ifdef CONFIG_BATTERY_BQ27X00_I2C

/* If the system has several batteries we need a different name for each
 * of them...
 */
static DEFINE_IDR(battery_id);
static DEFINE_MUTEX(battery_mutex);

static int bq27x00_read_i2c(struct bq27x00_device_info *di, u8 reg, bool single)
{
	struct i2c_client *client = to_i2c_client(di->dev);
	struct i2c_msg msg[2];
	unsigned char data[2];
	int ret;

	if (!client->adapter)
		return -ENODEV;

	msg[0].addr = client->addr;
	msg[0].flags = 0;
	msg[0].buf = &reg;
	msg[0].len = sizeof(reg);
	msg[1].addr = client->addr;
	msg[1].flags = I2C_M_RD;
	msg[1].buf = data;
	if (single)
		msg[1].len = 1;
	else
		msg[1].len = 2;

	ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
	if (ret < 0)
		return ret;

	if (!single)
		ret = get_unaligned_le16(data);
	else
		ret = data[0];

	return ret;
}

static int bq27x00_battery_probe(struct i2c_client *client,
				 const struct i2c_device_id *id)
{
	char *name;
	struct bq27x00_device_info *di;
	int num;
	int retval = 0;

	/* Get new ID for the new battery device */
	mutex_lock(&battery_mutex);
	num = idr_alloc(&battery_id, client, 0, 0, GFP_KERNEL);
	mutex_unlock(&battery_mutex);
	if (num < 0)
		return num;

	name = kasprintf(GFP_KERNEL, "%s-%d", id->name, num);
	if (!name) {
		dev_err(&client->dev, "failed to allocate device name\n");
		retval = -ENOMEM;
		goto batt_failed_1;
	}

	di = kzalloc(sizeof(*di), GFP_KERNEL);
	if (!di) {
		dev_err(&client->dev, "failed to allocate device info data\n");
		retval = -ENOMEM;
		goto batt_failed_2;
	}

	di->id = num;
	di->dev = &client->dev;
	di->chip = id->driver_data;
	di->bat.name = name;
	di->bus.read = &bq27x00_read_i2c;

	retval = bq27x00_powersupply_init(di);
	if (retval)
		goto batt_failed_3;

	i2c_set_clientdata(client, di);

	return 0;

batt_failed_3:
	kfree(di);
batt_failed_2:
	kfree(name);
batt_failed_1:
	mutex_lock(&battery_mutex);
	idr_remove(&battery_id, num);
	mutex_unlock(&battery_mutex);

	return retval;
}

static int bq27x00_battery_remove(struct i2c_client *client)
{
	struct bq27x00_device_info *di = i2c_get_clientdata(client);

	bq27x00_powersupply_unregister(di);

	kfree(di->bat.name);

	mutex_lock(&battery_mutex);
	idr_remove(&battery_id, di->id);
	mutex_unlock(&battery_mutex);

	kfree(di);

	return 0;
}

static const struct i2c_device_id bq27x00_id[] = {
	{ "bq27200", BQ27000 },	/* bq27200 is same as bq27000, but with i2c */
	{ "bq27500", BQ27500 },
	{ "bq27425", BQ27425 },
	{},
};
MODULE_DEVICE_TABLE(i2c, bq27x00_id);

static struct i2c_driver bq27x00_battery_driver = {
	.driver = {
		.name = "bq27x00-battery",
	},
	.probe = bq27x00_battery_probe,
	.remove = bq27x00_battery_remove,
	.id_table = bq27x00_id,
};

static inline int bq27x00_battery_i2c_init(void)
{
	int ret = i2c_add_driver(&bq27x00_battery_driver);
	if (ret)
		printk(KERN_ERR "Unable to register BQ27x00 i2c driver\n");

	return ret;
}

static inline void bq27x00_battery_i2c_exit(void)
{
	i2c_del_driver(&bq27x00_battery_driver);
}

#else

static inline int bq27x00_battery_i2c_init(void) { return 0; }
static inline void bq27x00_battery_i2c_exit(void) {};

#endif

/* platform specific code */
#ifdef CONFIG_BATTERY_BQ27X00_PLATFORM

static int bq27000_read_platform(struct bq27x00_device_info *di, u8 reg,
			bool single)
{
	struct device *dev = di->dev;
	struct bq27000_platform_data *pdata = dev->platform_data;
	unsigned int timeout = 3;
	int upper, lower;
	int temp;

	if (!single) {
		/* Make sure the value has not changed in between reading the
		 * lower and the upper part */
		upper = pdata->read(dev, reg + 1);
		do {
			temp = upper;
			if (upper < 0)
				return upper;

			lower = pdata->read(dev, reg);
			if (lower < 0)
				return lower;

			upper = pdata->read(dev, reg + 1);
		} while (temp != upper && --timeout);

		if (timeout == 0)
			return -EIO;

		return (upper << 8) | lower;
	}

	return pdata->read(dev, reg);
}

static int bq27000_battery_probe(struct platform_device *pdev)
{
	struct bq27x00_device_info *di;
	struct bq27000_platform_data *pdata = pdev->dev.platform_data;
	int ret;

	if (!pdata) {
		dev_err(&pdev->dev, "no platform_data supplied\n");
		return -EINVAL;
	}

	if (!pdata->read) {
		dev_err(&pdev->dev, "no hdq read callback supplied\n");
		return -EINVAL;
	}

	di = kzalloc(sizeof(*di), GFP_KERNEL);
	if (!di) {
		dev_err(&pdev->dev, "failed to allocate device info data\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, di);

	di->dev = &pdev->dev;
	di->chip = BQ27000;

	di->bat.name = pdata->name ?: dev_name(&pdev->dev);
	di->bus.read = &bq27000_read_platform;

	ret = bq27x00_powersupply_init(di);
	if (ret)
		goto err_free;

	return 0;

err_free:
	platform_set_drvdata(pdev, NULL);
	kfree(di);

	return ret;
}

static int bq27000_battery_remove(struct platform_device *pdev)
{
	struct bq27x00_device_info *di = platform_get_drvdata(pdev);

	bq27x00_powersupply_unregister(di);

	platform_set_drvdata(pdev, NULL);
	kfree(di);

	return 0;
}

static struct platform_driver bq27000_battery_driver = {
	.probe	= bq27000_battery_probe,
	.remove = bq27000_battery_remove,
	.driver = {
		.name = "bq27000-battery",
		.owner = THIS_MODULE,
	},
};

static inline int bq27x00_battery_platform_init(void)
{
	int ret = platform_driver_register(&bq27000_battery_driver);
	if (ret)
		printk(KERN_ERR "Unable to register BQ27000 platform driver\n");

	return ret;
}

static inline void bq27x00_battery_platform_exit(void)
{
	platform_driver_unregister(&bq27000_battery_driver);
}

#else

static inline int bq27x00_battery_platform_init(void) { return 0; }
static inline void bq27x00_battery_platform_exit(void) {};

#endif

/*
 * Module stuff
 */
static int __init bq27x00_battery_init(void)
{
	int ret;

	ret = bq27x00_battery_i2c_init();
	if (ret)
		return ret;

	ret = bq27x00_battery_platform_init();
	if (ret)
		bq27x00_battery_i2c_exit();

	return ret;
}
module_init(bq27x00_battery_init);

static void __exit bq27x00_battery_exit(void)
{
	bq27x00_battery_platform_exit();
	bq27x00_battery_i2c_exit();
}
module_exit(bq27x00_battery_exit);

MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
MODULE_DESCRIPTION("BQ27x00 battery monitor driver");
MODULE_LICENSE("GPL");

Is the driver is fine ? I think it will work straight away.

And here is the DTS file  

imx6qdl-sabresd.dtsi-1.txt
/*
 * Copyright 2012 Freescale Semiconductor, Inc.
 * Copyright 2011 Linaro Ltd.
 *
 * The code contained herein is licensed under the GNU General Public
 * License. You may obtain a copy of the GNU General Public License
 * Version 2 or later at the following locations:
 *
 * http://www.opensource.org/licenses/gpl-license.html
 * http://www.gnu.org/copyleft/gpl.html
 */

/ {
	aliases {
		mxcfb0 = &mxcfb1;
		mxcfb1 = &mxcfb2;
		mxcfb2 = &mxcfb3;
		mxcfb3 = &mxcfb4;
	};

	memory {
		reg = <0x10000000 0x40000000>;
	};

	battery1: max8903@0 {
		compatible = "fsl,max8903-charger";
		pinctrl-names = "default";
		dok_input = <&gpio2 24 1>;
		uok_input = <&gpio1 27 1>;
		chg_input = <&gpio3 23 1>;
		flt_input = <&gpio5 2 1>;
		fsl,dcm_always_high;
		fsl,dc_valid;
		fsl,usb_valid;
		status = "okay";
	};

	hannstar_cabc {
		compatible = "hannstar,cabc";

		lvds0 {
			gpios = <&gpio6 15 GPIO_ACTIVE_HIGH>;
		};

		lvds1 {
			gpios = <&gpio6 16 GPIO_ACTIVE_HIGH>;
		};
	};

	leds {
		compatible = "gpio-leds";

		charger-led {
			gpios = <&gpio1 2 0>;
			linux,default-trigger = "max8903-charger-charging";
			retain-state-suspended;
		};
	};

	regulators {
		compatible = "simple-bus";

		reg_usb_otg_vbus: usb_otg_vbus {
			compatible = "regulator-fixed";
			regulator-name = "usb_otg_vbus";
			regulator-min-microvolt = <5000000>;
			regulator-max-microvolt = <5000000>;
			gpio = <&gpio3 22 0>;
			enable-active-high;
		};

		reg_usb_h1_vbus: usb_h1_vbus {
			compatible = "regulator-fixed";
			regulator-name = "usb_h1_vbus";
			regulator-min-microvolt = <5000000>;
			regulator-max-microvolt = <5000000>;
			gpio = <&gpio1 29 0>;
			enable-active-high;
		};

		reg_audio: wm8962_supply {
			compatible = "regulator-fixed";
			regulator-name = "wm8962-supply";
			gpio = <&gpio4 10 0>;
			enable-active-high;
		};

		reg_mipi_dsi_pwr_on: mipi_dsi_pwr_on {
			compatible = "regulator-fixed";
			regulator-name = "mipi_dsi_pwr_on";
			gpio = <&gpio6 14 0>;
			enable-active-high;
		};

		reg_sensor: sensor_supply {
			compatible = "regulator-fixed";
			regulator-name = "sensor-supply";
			regulator-min-microvolt = <3300000>;
			regulator-max-microvolt = <3300000>;
			gpio = <&gpio2 31 0>;
			startup-delay-us = <500>;
			enable-active-high;
		};
	};

	gpio-keys {
		compatible = "gpio-keys";
		power {
			label = "Power Button";
			gpios = <&gpio3 29 1>;
			linux,code = <116>; /* KEY_POWER */
			gpio-key,wakeup;
		};

		volume-up {
			label = "Volume Up";
			gpios = <&gpio1 4 1>;
			linux,code = <115>; /* KEY_VOLUMEUP */
		};

		volume-down {
			label = "Volume Down";
			gpios = <&gpio1 5 1>;
			linux,code = <114>; /* KEY_VOLUMEDOWN */
		};
	};

	sound {
		compatible = "fsl,imx6q-sabresd-wm8962",
			   "fsl,imx-audio-wm8962";
		model = "wm8962-audio";
		cpu-dai = <&ssi2>;
		audio-codec = <&codec>;
		audio-routing =
			"Headphone Jack", "HPOUTL",
			"Headphone Jack", "HPOUTR",
			"Ext Spk", "SPKOUTL",
			"Ext Spk", "SPKOUTR",
			"MICBIAS", "AMIC",
			"IN3R", "MICBIAS",
			"DMIC", "MICBIAS",
			"DMICDAT", "DMIC";
		mux-int-port = <2>;
		mux-ext-port = <3>;
		hp-det-gpios = <&gpio7 8 1>;
		mic-det-gpios = <&gpio1 9 1>;
	};

	sound-hdmi {
		compatible = "fsl,imx6q-audio-hdmi",
			     "fsl,imx-audio-hdmi";
		model = "imx-audio-hdmi";
		hdmi-controller = <&hdmi_audio>;
	};

	mxcfb1: fb@0 {
		compatible = "fsl,mxc_sdc_fb";
		disp_dev = "ldb";
		interface_pix_fmt = "RGB666";
		default_bpp = <16>;
		int_clk = <0>;
		late_init = <0>;
		status = "disabled";
	};

	mxcfb2: fb@1 {
		compatible = "fsl,mxc_sdc_fb";
		disp_dev = "hdmi";
		interface_pix_fmt = "RGB24";
		mode_str ="1920x1080M@60";
		default_bpp = <24>;
		int_clk = <0>;
		late_init = <0>;
		status = "disabled";
	};

	mxcfb3: fb@2 {
		compatible = "fsl,mxc_sdc_fb";
		disp_dev = "lcd";
		interface_pix_fmt = "RGB565";
		mode_str ="CLAA-WVGA";
		default_bpp = <16>;
		int_clk = <0>;
		late_init = <0>;
		status = "disabled";
	};

	mxcfb4: fb@3 {
		compatible = "fsl,mxc_sdc_fb";
		disp_dev = "ldb";
		interface_pix_fmt = "RGB666";
		default_bpp = <16>;
		int_clk = <0>;
		late_init = <0>;
		status = "disabled";
	};

	lcd@0 {
		compatible = "fsl,lcd";
		ipu_id = <0>;
		disp_id = <0>;
		default_ifmt = "RGB565";
		pinctrl-names = "default";
		pinctrl-0 = <&pinctrl_ipu1_1>;
		status = "okay";
	};

	backlight {
		compatible = "pwm-backlight";
		pwms = <&pwm1 0 5000000>;
		brightness-levels = <0 4 8 16 32 64 128 255>;
		default-brightness-level = <7>;
	};

	v4l2_cap_0 {
		compatible = "fsl,imx6q-v4l2-capture";
		ipu_id = <0>;
		csi_id = <0>;
		mclk_source = <0>;
		status = "okay";
	};

	v4l2_cap_1 {
		compatible = "fsl,imx6q-v4l2-capture";
		ipu_id = <0>;
		csi_id = <1>;
		mclk_source = <0>;
		status = "okay";
	};

	v4l2_out {
		compatible = "fsl,mxc_v4l2_output";
		status = "okay";
	};

	mipi_dsi_reset: mipi-dsi-reset {
		compatible = "gpio-reset";
		reset-gpios = <&gpio6 11 GPIO_ACTIVE_LOW>;
		reset-delay-us = <50>;
		#reset-cells = <0>;
	};
};

&audmux {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_audmux_2>;
	status = "okay";
};

&cpu0 {
	arm-supply = <&sw1a_reg>;
	soc-supply = <&sw1c_reg>;
	pu-supply = <&pu_dummy>; /* use pu_dummy if VDDSOC share with VDDPU */
};

&ecspi1 {
	fsl,spi-num-chipselects = <1>;
	cs-gpios = <&gpio4 9 0>;
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_ecspi1_2>;
	status = "okay";

	flash: m25p80@0 {
		#address-cells = <1>;
		#size-cells = <1>;
		compatible = "st,m25p32";
		spi-max-frequency = <20000000>;
		reg = <0>;
	};
};

&fec {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_enet_1>;
	phy-mode = "rgmii";
	status = "okay";
};

&gpc {
	fsl,cpu_pupscr_sw2iso = <0xf>;
	fsl,cpu_pupscr_sw = <0xf>;
	fsl,cpu_pdnscr_iso2sw = <0x1>;
	fsl,cpu_pdnscr_iso = <0x1>;
	fsl,ldo-bypass = <1>; /* use ldo-bypass, u-boot will check it and configure */
	fsl,wdog-reset = <2>; /* watchdog select of reset source */
	pu-supply = <&pu_dummy>; /* ldo-bypass:use pu_dummy if VDDSOC share with VDDPU */
};

&wdog1 {
	status = "disabled";
};

&wdog2 {
	status = "okay";
};

&gpu {
	pu-supply = <&pu_dummy>; /* ldo-bypass:use pu_dummy if VDDSOC share with VDDPU */
};

&hdmi_audio {
	status = "okay";
};

&hdmi_cec {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_hdmi_cec_2>;
	status = "okay";
};

&hdmi_core {
	ipu_id = <0>;
	disp_id = <0>;
	status = "okay";
};

&hdmi_video {
	fsl,phy_reg_vlev = <0x0294>;
	fsl,phy_reg_cksymtx = <0x800d>;
	status = "okay";
};

&i2c1 {
	clock-frequency = <100000>;
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_i2c1_2>;
	status = "okay";

	codec: wm8962@1a {
		compatible = "wlf,wm8962";
		reg = <0x1a>;
		clocks = <&clks 201>;
		DCVDD-supply = <&reg_audio>;
		DBVDD-supply = <&reg_audio>;
		AVDD-supply = <&reg_audio>;
		CPVDD-supply = <&reg_audio>;
		MICVDD-supply = <&reg_audio>;
		PLLVDD-supply = <&reg_audio>;
		SPKVDD1-supply = <&reg_audio>;
		SPKVDD2-supply = <&reg_audio>;
		amic-mono;
		gpio-cfg = <
			0x0000 /* 0:Default */
			0x0000 /* 1:Default */
			0x0013 /* 2:FN_DMICCLK */
			0x0000 /* 3:Default */
			0x8014 /* 4:FN_DMICCDAT */
			0x0000 /* 5:Default */
		>;
       };

	ov564x: ov564x@3c {
		compatible = "ovti,ov564x";
		reg = <0x3c>;
		pinctrl-names = "default";
		pinctrl-0 = <&pinctrl_ipu1_2>;
		clocks = <&clks 201>;
		clock-names = "csi_mclk";
		DOVDD-supply = <&vgen4_reg>; /* 1.8v */
		AVDD-supply = <&vgen3_reg>;  /* 2.8v, on rev C board is VGEN3,
						on rev B board is VGEN5 */
		DVDD-supply = <&vgen2_reg>;  /* 1.5v*/
		pwn-gpios = <&gpio1 16 1>;   /* active low: SD1_DAT0 */
		rst-gpios = <&gpio1 17 0>;   /* active high: SD1_DAT1 */
		csi_id = <0>;
		mclk = <24000000>;
		mclk_source = <0>;
	};

	mma8451@1c {
		compatible = "fsl,mma8451";
		reg = <0x1c>;
		position = <0>;
		vdd-supply = <&reg_sensor>;
		vddio-supply = <&reg_sensor>;
		interrupt-parent = <&gpio1>;
		interrupts = <18 8>;
		interrupt-route = <1>;
	};

	bq32000: rtc@68 {
		 compatible = "ti,bq32000";
		 reg = <0x68>;
	 };
};

&i2c2 {
	clock-frequency = <100000>;
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_i2c2_2>;
	status = "okay";

	hdmi: edid@50 {
		compatible = "fsl,imx6-hdmi-i2c";
		reg = <0x50>;
	};

	max11801@48 {
		compatible = "maxim,max11801";
		reg = <0x48>;
		interrupt-parent = <&gpio3>;
		interrupts = <26 2>;
		work-mode = <1>;/*DCM mode*/
	};

	ov5640_mipi: ov5640_mipi@3c { /* i2c2 driver */
		compatible = "ovti,ov5640_mipi";
		reg = <0x3c>;
		clocks = <&clks 201>;
		clock-names = "csi_mclk";
		DOVDD-supply = <&vgen4_reg>; /* 1.8v */
		AVDD-supply = <&vgen3_reg>;  /* 2.8v, rev C board is VGEN3
						rev B board is VGEN5 */
		DVDD-supply = <&vgen2_reg>;  /* 1.5v*/
		pwn-gpios = <&gpio1 19 1>;   /* active low: SD1_CLK */
		rst-gpios = <&gpio1 20 0>;   /* active high: SD1_DAT2 */
		csi_id = <1>;
		mclk = <24000000>;
		mclk_source = <0>;
	};

        egalax_ts@04 {
                compatible = "eeti,egalax_ts";
                reg = <0x04>;
                interrupt-parent = <&gpio6>;
                interrupts = <8 2>;
                wakeup-gpios = <&gpio6 8 0>;
        };
};

&i2c3 {
        clock-frequency = <100000>;
        pinctrl-names = "default";
        pinctrl-0 = <&pinctrl_i2c3_2>;
        status = "okay";

        egalax_ts@04 {
                compatible = "eeti,egalax_ts";
                reg = <0x04>;
                interrupt-parent = <&gpio6>;
                interrupts = <7 2>;
                wakeup-gpios = <&gpio6 7 0>;
        };

	mag3110@0e {
		compatible = "fsl,mag3110";
		reg = <0x0e>;
		position = <2>;
		vdd-supply = <&reg_sensor>;
		vddio-supply = <&reg_sensor>;
		interrupt-parent = <&gpio3>;
		interrupts = <16 1>;
	};

	elan@10 {
		compatible = "elan,elan-touch";
		reg = <0x10>;
		interrupt-parent = <&gpio3>;
		interrupts = <28 3>;
		gpio_elan_cs = <&gpio2 18 0>;
		gpio_elan_rst = <&gpio3 8 0>;
		gpio_intr = <&gpio3 28 0>;
		status = "okay";
	};

	isl29023@44 {
		compatible = "fsl,isl29023";
		reg = <0x44>;
		rext = <499>;
		vdd-supply = <&reg_sensor>;
		interrupt-parent = <&gpio3>;
		interrupts = <9 2>;
	};
};

&iomuxc {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_hog_1>;

	hog {
		pinctrl_hog_1: hoggrp-1 {
			fsl,pins = <
				MX6QDL_PAD_GPIO_4__GPIO1_IO04   0x80000000
				MX6QDL_PAD_GPIO_5__GPIO1_IO05   0x80000000
				MX6QDL_PAD_NANDF_D0__GPIO2_IO00 0x80000000
				MX6QDL_PAD_NANDF_D1__GPIO2_IO01 0x80000000
				MX6QDL_PAD_NANDF_D2__GPIO2_IO02 0x80000000
				MX6QDL_PAD_NANDF_D3__GPIO2_IO03 0x80000000
				MX6QDL_PAD_NANDF_ALE__GPIO6_IO08 0x80000000
				MX6QDL_PAD_NANDF_CLE__GPIO6_IO07 0x80000000
				MX6QDL_PAD_GPIO_0__CCM_CLKO1    0x130b0
				MX6QDL_PAD_NANDF_CS2__GPIO6_IO15 0x80000000
				MX6QDL_PAD_NANDF_CS3__GPIO6_IO16 0x80000000
				MX6QDL_PAD_EIM_D26__GPIO3_IO26 0x80000000
				MX6QDL_PAD_EIM_CS1__GPIO2_IO24 0x80000000
				MX6QDL_PAD_ENET_RXD0__GPIO1_IO27 0x80000000
				MX6QDL_PAD_EIM_A25__GPIO5_IO02 0x80000000
				MX6QDL_PAD_EIM_D23__GPIO3_IO23 0x80000000
				MX6QDL_PAD_ENET_TXD1__GPIO1_IO29 0x80000000
				MX6QDL_PAD_EIM_D22__GPIO3_IO22  0x80000000
				MX6QDL_PAD_NANDF_CS0__GPIO6_IO11 0x80000000
				MX6QDL_PAD_NANDF_CS1__GPIO6_IO14 0x80000000
				MX6QDL_PAD_EIM_EB3__GPIO2_IO31 0x80000000
				MX6QDL_PAD_EIM_D16__GPIO3_IO16 0x80000000
				MX6QDL_PAD_EIM_DA9__GPIO3_IO09 0x80000000
				MX6QDL_PAD_GPIO_4__GPIO1_IO04 0x80000000
				MX6QDL_PAD_GPIO_5__GPIO1_IO05 0x80000000
				MX6QDL_PAD_EIM_D29__GPIO3_IO29 0x80000000
				MX6QDL_PAD_SD3_RST__GPIO7_IO08 0x80000000
				MX6QDL_PAD_GPIO_9__GPIO1_IO09 0x80000000
				MX6QDL_PAD_GPIO_1__WDOG2_B 0x80000000
				MX6QDL_PAD_GPIO_2__GPIO1_IO02 0x80000000
				MX6QDL_PAD_SD1_CMD__GPIO1_IO18 0x80000000
			>;
		};
	};
};

&ldb {
	status = "okay";

	lvds-channel@0 {
		fsl,data-mapping = "spwg";
		fsl,data-width = <18>;
		status = "okay";

		display-timings {
			native-mode = <&timing0>;
			timing0: hsd100pxn1 {
				clock-frequency = <65000000>;
				hactive = <1024>;
				vactive = <768>;
				hback-porch = <220>;
				hfront-porch = <40>;
				vback-porch = <21>;
				vfront-porch = <7>;
				hsync-len = <60>;
				vsync-len = <10>;
			};
		};
	};

	lvds-channel@1 {
		fsl,data-mapping = "spwg";
		fsl,data-width = <18>;
		primary;
		status = "okay";

		display-timings {
			native-mode = <&timing1>;
			timing1: hsd100pxn1 {
				clock-frequency = <65000000>;
				hactive = <1024>;
				vactive = <768>;
				hback-porch = <220>;
				hfront-porch = <40>;
				vback-porch = <21>;
				vfront-porch = <7>;
				hsync-len = <60>;
				vsync-len = <10>;
			};
		};
	};
};

&mipi_csi {
	status = "okay";
	ipu_id = <0>;
	csi_id = <1>;
	v_channel = <0>;
	lanes = <2>;
};

&mipi_dsi {
	dev_id = <0>;
	disp_id = <1>;
	lcd_panel = "TRULY-WVGA";
	disp-power-on-supply = <&reg_mipi_dsi_pwr_on>;
	resets = <&mipi_dsi_reset>;
	status = "okay";
};

&dcic1 {
	dcic_id = <0>;
	dcic_mux = "dcic-hdmi";
	status = "okay";
};

&dcic2 {
	dcic_id = <1>;
	dcic_mux = "dcic-lvds1";
	status = "okay";
};

&pcie {
	power-on-gpio = <&gpio3 19 0>;
	reset-gpio = <&gpio7 12 0>;
	status = "okay";
};


&pwm1 {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_pwm1_1>;
	status = "okay";
};

&ssi2 {
	fsl,mode = "i2s-slave";
	status = "okay";
};

&uart1 {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_uart1_1>;
	status = "okay";
};

&usbh1 {
	vbus-supply = <&reg_usb_h1_vbus>;
	status = "okay";
};

&usbotg {
	vbus-supply = <&reg_usb_otg_vbus>;
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_usbotg_2>;
	disable-over-current;
	status = "okay";
};

&usdhc2 {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_usdhc2_1>;
	cd-gpios = <&gpio2 2 0>;
	wp-gpios = <&gpio2 3 0>;
	no-1-8-v;
	keep-power-in-suspend;
	enable-sdio-wakeup;
	status = "okay";
};

&usdhc3 {
	pinctrl-names = "default";
	pinctrl-0 = <&pinctrl_usdhc3_1>;
	cd-gpios = <&gpio2 0 0>;
	wp-gpios = <&gpio2 1 0>;
	no-1-8-v;
	keep-power-in-suspend;
	enable-sdio-wakeup;
	status = "okay";
};

&usdhc4 {
        pinctrl-names = "default";
        pinctrl-0 = <&pinctrl_usdhc4_1>;
        bus-width = <8>;
        non-removable;
        no-1-8-v;
	keep-power-in-suspend;
        status = "okay";
};

&vpu {
	pu-supply = <&pu_dummy>; /* ldo-bypass:use pu_dummy if VDDSOC share with VDDPU */
};

I would like to know that changes that need to be done in the driver and DTS file to add the support bq27200. interface is I2C

1. any changes need to be done in driver file for DTS bindings ?

2. changes to be done to add driver support in DTS file. and if anything is there can you please add it and give, I am a newbie to this DTs binding and all

Please help in this

Thanks in advance

Sarjoon