Tool/software: Code Composer Studio
Hello
I am using this device. I am facing the problem with the voltage readings. when I try to read the voltages it gives wrong values or sometime it didn't read the LSB. I am attaching the code file. need your help regarding this.
BR
// include the library code: #include <SPI.h> #include <Wire.h> #include <math.h> #include <LiquidCrystal.h> //Declared Variables SPISettings settingsA(3000000, MSBFIRST, SPI_MODE1); const byte Fault_H = 8; //Fault indication pin from bq76 const byte Alert_H = 7; //Alert indication pin from bq76 const byte DRDY_H = 6; //Data ready indication from bq76 const byte CONV_H = 5; //Conversion start pin for bq76 const byte Charge_Mode = 4; //Charger status to indicate if charging mode is active const byte Charge_Relay = 3; //Output to toggle charger on or off const byte slaveSelectPin = 10; //SPI slave select const byte LED = 9; //LED indicator const byte n_dev = 1; //Expected number of devices in stack const byte COV = 0x2B; //Cell overvoltage (4.15V). 0x00 = 2V, bit increments increase set point by 50mV. const byte CUV = 0x12; //Cell undervoltage (2.5V). 0x00 =0.7V, bit increments increase set point by 100mV. const int OV = 4150; //Set point for Cell balancing const byte FC = 0x20; //Set ratiometric mode for GPAI_REF byte w_data[3]; //Write packet byte r_header[3]; //Read packet header byte r_header2[3]; //Alternate read packet header byte drdy; //Data ready byte CRC; //CRC byte read_byte; //Shifted byte to read byte write_byte; //Shifted byte to write byte RegValue; //Value read from register byte dev_fault; //Fault Code of current device byte dev_alert; //Alert Code of current device byte cell_now = 0x03; //Current selected cell reg address, must increment by 2. 0x03 to 0x0E byte cell_num = 1; //Current selected cell number byte alert_now = 7; //Alert bit status to be displayed byte fault_now = 7; //Fault bit status to be displayed byte v_msb; //MSB of volt measurement byte v_lsb; //LSB of volt measurement float volts; int cellno=1; int CB_Timer; //Count for number of CB Timers active //Functions: void read_header(byte r_header[]); byte read_data(); byte read_CRC(); void write_reg(byte w_data[]); byte function_CRC(byte data[]); void reset_all(); void auto_addr(int n_dev); byte read_shift(byte d_addr); byte write_shift(byte d_addr); void batt_init(byte COV, byte CUV, byte OT, byte FC); void conv(byte adc_ctrl[]); int volt_calc(byte v_msb, byte v_lsb); //CRC LUT: byte CrcTable[] = { 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 }; void setup() { //MCU Initialization START pinMode(Fault_H, INPUT); // Fault_H pinMode(Alert_H, INPUT); // Alert_H pinMode(DRDY_H, INPUT); // DRDY_H (Data Ready) pinMode(CONV_H, OUTPUT); // CONV_H (Conversion) pinMode(Charge_Mode, INPUT); // Input to determine if in charging mode pinMode(Charge_Relay, OUTPUT); // Output to turn charger on or off //MCU Initialization END Serial.begin(9600); // Debugging output //lcd.begin(16, 2); //SPI Initialization START pinMode(slaveSelectPin, OUTPUT); //set the slaveSelectPin as an output digitalWrite(slaveSelectPin, HIGH); //Set CS_H HIGH SPI.begin(); //Initializes SPI bus //SPI Initialization END //bq76 Automatic Device Addressing START auto_addr(n_dev); //bq76 Automatic Device Addressing END //Serial.println("start"); //Battery Initialization START //batt_init(COV,CUV,FC); //Battery Initialization END //Clear POR Fault START byte por_clear[] = {0x7F, 0x21, 0x08}; write_reg(por_clear); por_clear[2] = 0x00; write_reg(por_clear); //Clear POR Fault END //Clear Address Alert START byte ar_clear[] = {0x7F, 0x20, 0x80}; write_reg(ar_clear); ar_clear[2] = 0x00; write_reg(ar_clear); //Clear Address Alert END //Serial.println("start"); } void loop() { // put your main code here, to run repeatedly: byte w_wake[] = {0x7F, 0x31, 0x00}; write_reg(w_wake); delay (1); //Wait to stabilize the reference voltage Serial.println("ZZZZZZZZZZZZ"); w_wake[1] = 0x20; w_wake[2] = 0x04; //means sleep mode was activated write_reg(w_wake); w_wake[2] = 0x00; //Clear Sleep alert by writning this to device. write_reg(w_wake); Serial.println("YYYYYYYYY"); byte adc_ctrl[] = {0x7F, 0x30, 0x05}; //ADC_Ctrl to readall voltages and temps binary 00110101 for zeon it should be 00000101 conv(adc_ctrl); //Start conversion drdy = digitalRead(DRDY_H); Serial.println("TTTTTTTTTTT"); while (drdy == 0) { //Wait for conversion process to finish. drdy = digitalRead(DRDY_H); Serial.println(drdy); Serial.println("XXXXXXXXXXX"); for (int i = 1; i<n_dev+1; i++) { //cycle through each device for (byte j=0x03;j<=0x0E;j+0x02) { //cycle through each cell read_byte = read_shift(i); Serial.print("read_byte"); Serial.println(read_byte); byte r_header[] = {read_byte, j, 0x01}; //read from msb of volts for current cell of current device read_header(r_header); v_msb = read_data(); CRC = read_CRC(); Serial.print("v_msb="); Serial.println(v_msb); byte r_header2[] = {read_byte, j+1, 0x01}; //read from lsb of volts for current cell of current device read_header(r_header2); v_lsb = read_data(); Serial.print("v_Lsb="); Serial.println(v_lsb); CRC = read_CRC(); volts= volt_calc(v_msb, v_lsb); //Calculate voltage in mV Serial.print(j); Serial.print("zz="); Serial.println(volts); delay(5000); //int Zvoltage[i][cellno]; //Zvoltage[i][cellno]= volts; //Serial.println(Zvoltage[i][cellno]); //cellno++; } Serial.println("finish"); //cellno=1; } } }//Function to establish device address, register address, and length for reading void read_header(byte r_header[]) { digitalWrite(slaveSelectPin, LOW); //Set CS_H LOW to start packet transfer SPI.beginTransaction(settingsA); for (int i = 0; i <=1; i++) { SPI.transfer(r_header[i]); //Set device address, read, register address, & length } } // Shift device address left 1 bit byte read_shift(byte d_addr) { byte read_byte = (d_addr << 1); return read_byte; } //Function to clock in a read cycle and return the read data byte read_data() { byte RegValue; RegValue = SPI.transfer(0x00); return RegValue; } //Function to clock in a CRC cycle and return CRC value byte read_CRC() { byte CRC; CRC = SPI.transfer(0x00); SPI.endTransaction(); digitalWrite(slaveSelectPin, HIGH); //Set CS_H HIGH to end packet transfer return CRC; } //Function to write to bq71 void write_reg(byte w_data[]) { CRC = function_CRC(w_data); digitalWrite(slaveSelectPin, LOW); //Set CS_H LOW to start packet transfer SPI.beginTransaction(settingsA); for (int i = 0; i <=1; i++) { SPI.transfer(w_data[i]); //Set device address, write, register address, & write data } SPI.transfer(CRC); // CRC Code SPI.endTransaction(); digitalWrite(slaveSelectPin, HIGH); //Set CS_H HIGH to end packet transfer } //Function to generate a CRC byte function_CRC(byte data[]) { byte crc = 0; int temp = 0; for (int i = 0; i < sizeof(data) + 1; i++) { temp = crc ^ data[i]; crc = CrcTable[temp]; } return crc; } //Broadcast RESET to all devices void reset_all() { byte w_data[3] = {0x7F, 0x3C, 0xA5}; write_reg(w_data); } //Automatically address all devices in stack void auto_addr(byte n_dev) { byte device_search = 0; point1: reset_all(); device_search++; byte n = 0; point2: n++; byte w_data[3] = {0x00, 0x3B, n}; //header for write address n to dev[0] write_reg(w_data); read_byte = read_shift(n); byte r_header[3] = {read_byte, 0x3B, 0x01}; //header to read address from address_ctrl register read_header(r_header); RegValue = read_data(); CRC = read_CRC(); Serial.println(RegValue); RegValue = RegValue/128; //RegValue = RegValue; while (RegValue != n) { //Device will be stuck in this loop if addressing fails. Requires POR to try again. Device addr critical. //lcd.setCursor(0, 0); Serial.println("Addr Failed on Device"); Serial.println(n); byte por_clear[] = {0x7F, 0x21, 0x08}; write_reg(por_clear); por_clear[2] = 0x00; write_reg(por_clear); //lcd.print("Addr Failed on D"); //lcd.setCursor(0, 1); //lcd.print(n); } if (n < device_search) { goto point2; } if (n < n_dev) { goto point1; } if (n != n_dev) { Serial.println("Address Failed 2"); //lcd.setCursor(0, 0); //lcd.print("Automatic Device"); //lcd.setCursor(0, 1); //lcd.print("Address Failed 2"); } if(n==n_dev) { Serial.println("adresing succesful"); } } // Shift device address left 1 bit then add 1 to indicate write byte write_shift(byte d_addr) { byte write_byte = (d_addr << 1) + 1; return write_byte; } //Overwrite EPROM values using shadow control special sequence. Write 0x35 to shdw_ctrl reg followed by set point. void batt_init(byte COV, byte CUV, byte FC) { byte shdw_ctrl[3] = {0x7F, 0x3A, 0x35}; //Set Special feature config: write_reg(shdw_ctrl); byte w_func_con[] = {0x7F, 0x40, FC}; write_reg(w_func_con); //Set Overvoltage: write_reg(shdw_ctrl); byte w_COV[3] = {0x7F, 0x42, COV}; write_reg(w_COV); //Set Undervoltage: write_reg(shdw_ctrl); byte w_CUV[3] = {0x7F, 0x44, CUV}; write_reg(w_CUV); } //Function to assert a conversion process void conv(byte adc_ctrl[]) { byte conv_start[] = {0x7F, 0x34, 0x01}; write_reg(adc_ctrl); //Sets ADC control register with desired parameters write_reg(conv_start); //Start conversion } //Function to calculate voltage using register values int volt_calc(byte v_msb, byte v_lsb) { float ratio = 0.381493; int mV = ((v_msb * 0x100) + v_lsb) * ratio; return mV; }