// TI File $Revision: /main/2 $ // Checkin $Date: July 30, 2009 18:44:22 $ //########################################################################### // Filename: Example_28xEcan_A_to_B_Xmit.c // // Description: eCAN-A To eCAN-B TXLOOP - Transmit loop // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Both CAN ports of the 2833x DSP need to be connected // to each other (via CAN transceivers)0 // // eCANA is on GPIO31 (CANTXA) and // GPIO30 (CANRXA) // // eCANB is on GPIO8 (CANTXB) and // GPIO10 (CANRXB) // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example TRANSMITS data to another CAN module using MAILBOX5 // This program could either loop forever or transmit "n" # of times, // where "n" is the TXCOUNT value. // // This example can be used to check CAN-A and CAN-B. Since CAN-B is // initialized in DSP2833x_ECan.c, it will acknowledge all frames // transmitted by the node on which this code runs. Both CAN ports of // the 2833x DSP need to be connected to each other (via CAN transceivers) // //########################################################################### // Original Author: HJ // // $TI Release: 2833x/2823x Header Files V1.32 $ // $Release Date: June 28, 2010 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File #define TXCOUNT 100 // Transmission will take place (TXCOUNT) times.. // Globals for this example long i; long loopcount = 0; void main() { /* Create a shadow register structure for the CAN control registers. This is needed, since, only 32-bit access is allowed to these registers. 16-bit access to these registers could potentially corrupt the register contents. This is especially true while writing to a bit (or group of bits) among bits 16 - 31 */ struct ECAN_REGS ECanaShadow; // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Just initalize eCAN pins for this example // This function is in DSP2833x_ECan.c InitECanGpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. // No interrupts used in this example. // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example // In this case just initalize eCAN-A and eCAN-B // This function is in DSP2833x_ECan.c InitECan(); // Step 5. User specific code: /* Write to the MSGID field */ ECanaMboxes.MBOX25.MSGID.all = 0x95555555; // Extended Identifier /* Configure Mailbox under test as a Transmit mailbox */ ECanaShadow.CANMD.all = ECanaRegs.CANMD.all; ECanaShadow.CANMD.bit.MD25 = 0; ECanaRegs.CANMD.all = ECanaShadow.CANMD.all; /* Enable Mailbox under test */ ECanaShadow.CANME.all = ECanaRegs.CANME.all; ECanaShadow.CANME.bit.ME25 = 1; ECanaRegs.CANME.all = ECanaShadow.CANME.all; /* Write to DLC field in Master Control reg */ ECanaMboxes.MBOX25.MSGCTRL.bit.DLC = 8; /* Write to the mailbox RAM field */ ECanaMboxes.MBOX25.MDL.all = 0x55555555; ECanaMboxes.MBOX25.MDH.all = 0x55555555; /* Begin transmitting */ for(i=0; i < TXCOUNT; i++) { ECanaShadow.CANTRS.all = 0; ECanaShadow.CANTRS.bit.TRS25 = 1; // Set TRS for mailbox under test ECanaRegs.CANTRS.all = ECanaShadow.CANTRS.all; do { ECanaShadow.CANTA.all = ECanaRegs.CANTA.all; } while(ECanaShadow.CANTA.bit.TA25 == 0 ); // Wait for TA5 bit to be set.. ECanaShadow.CANTA.all = 0; ECanaShadow.CANTA.bit.TA25 = 1; // Clear TA5 ECanaRegs.CANTA.all = ECanaShadow.CANTA.all; loopcount ++; } asm(" ESTOP0"); // Stop here }