This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

ADS8688: .

Part Number: ADS8688

Tool/software:

Subject: ADS8688 SPI Random/Garbage Values with Input Voltage on All 8 Channels

Hello everyone,

I'm currently working with an ADS8688 ADC and am encountering a strange issue that I hope someone can help me with.

I have input voltages applied to all 8 channels of the ADS8688. However, when I try to read the conversion results via SPI, I'm consistently getting random or garbage values instead of meaningful ADC readings.

Here's some more information that might be helpful:

  • ADC Part Number: ADS8688
  • Problem: SPI output is random/garbage values despite valid input voltages on all 8 channels.

Could anyone offer some guidance or suggestions on what might be causing this and how to troubleshoot it?

 

Specifically, I'm wondering about:

  • SPI Communication: Are there common pitfalls with the SPI clock, data phase/polarity (CPOL/CPHA), or chip select (CS) timing that could lead to this? My current SPI configuration is [mention].
  • Power Supply: Could power supply noise or instability be a factor, even if the chip appears to be powered on?
  • Grounding: Are there specific grounding considerations for the ADS8688 or my setup that I might be missing?
  • Initialization/Register Configuration: Have I correctly configured all necessary registers (e.g., input range, channel enabling, reference)? I'm following the datasheet's recommended initialization sequence.
  • Input Signal Integrity: While I believe my input voltages are stable, is there anything to check regarding signal integrity or over/under-range conditions that might corrupt readings?
  • Code Issues: Are there any common coding errors for the ADS8688 (e.g., wrong byte order, incorrect number of bytes read) that could manifest as garbage data?

 

#include "ADS8688.h"
#include <stdio.h>

/*
 * INITIALISATION
 */
uint32_t ADS8688_Init(ADS8688 *ads, SPI_HandleTypeDef *spiHandle, GPIO_TypeDef *csPinBank, uint16_t csPin) {
    /* Store interface parameters in struct */
    ads->spiHandle = spiHandle;
    ads->csPinBank = csPinBank;
    ads->csPin = csPin;

    uint8_t ads_data[2] = {0};
    uint8_t state = 0;

    // Reset all registers to default
    state += ADS_Cmd_Write(ads, RST, ads_data);
    HAL_Delay(100);

    // Enable auto mode after reset
    state += ADS_Cmd_Write(ads, AUTO_RST, ads_data);
    HAL_Delay(10);

    // Enable auto transmit for all channels
    ads_data[0] = 0xFF; // Enable CH0–CH7
    state += ADS_Prog_Write(ads, AUTO_SEQ_EN, ads_data);
    HAL_Delay(10);

    // Read back for debug
    uint8_t check_data[2];
    ADS_Prog_Read(ads, AUTO_SEQ_EN, check_data);
    printf("AUTO_SEQ_EN = 0x%02X\n", check_data[0]); // Should print 0xFF

    // Power down unused channels (CH0, CH2–7)
    ads_data[0] = 0xFD; // Power down CH0, CH2–7 (1 = powered down, CH1 active)
    state += ADS_Prog_Write(ads, CHN_PWRDN, ads_data);
    HAL_Delay(10);

    // Read back for debug
    ADS_Prog_Read(ads, CHN_PWRDN, check_data);
    printf("CHN_PWRDN = 0x%02X\n", check_data[0]); // Should print 0xFD

    // Set desired features
    ads_data[0] = 0x03; // Default feature select
    state += ADS_Prog_Write(ads, FEATURE_SELECT, ads_data);
    HAL_Delay(10);

    // Set input ranges (all channels: ±2.56 V for consistency)
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_0_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_1_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_2_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_3_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_4_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_5_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_6_RANGE, ads_data); HAL_Delay(10);
    ads_data[0] = 0x06; state += ADS_Prog_Write(ads, CHN_7_RANGE, ads_data); HAL_Delay(10);

    // Read back Channel 1 range for debug
    ADS_Prog_Read(ads, CHN_1_RANGE, check_data);
    printf("CHN_1_RANGE = 0x%02X\n", check_data[0]); // Should print 0x06

    return state;
}

/*
 * REGISTER ACCESS FUNCTIONS
 */
HAL_StatusTypeDef ADS_Prog_Read(ADS8688 *ads, uint8_t addr, uint8_t *data) {
    HAL_StatusTypeDef ret;
    uint16_t txbuf[1] = {((addr << 1) & 0xFE) << 8};
    uint16_t rxbuf[1];

    HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_RESET);
    ret = HAL_SPI_TransmitReceive(ads->spiHandle, (uint8_t *)txbuf, (uint8_t *)rxbuf, 1, 10);
    HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_SET);

    data[0] = (rxbuf[0] >> 8) & 0xFF;
    data[1] = rxbuf[0] & 0xFF;
    return ret;
}

HAL_StatusTypeDef ADS_Prog_Write(ADS8688 *ads, uint8_t addr, uint8_t *data) {
    HAL_StatusTypeDef ret;
    uint16_t txbuf[1] = {((addr << 1) | 0x01) << 8 | data[0]};
    uint16_t rxbuf[1];

    HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_RESET);
    ret = HAL_SPI_TransmitReceive(ads->spiHandle, (uint8_t *)txbuf, (uint8_t *)rxbuf, 1, 10);
    HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_SET);

    data[0] = rxbuf[0] & 0xFF;
    data[1] = 0;
    return ret;
}

HAL_StatusTypeDef ADS_Cmd_Write(ADS8688 *ads, uint8_t cmd, uint8_t *data) {
    HAL_StatusTypeDef ret;
    uint16_t txbuf[1] = {cmd << 8};
    uint16_t rxbuf[1];

    HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_RESET);
    ret = HAL_SPI_TransmitReceive(ads->spiHandle, (uint8_t *)txbuf, (uint8_t *)rxbuf, 1, 10);
    HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_SET);

    data[0] = (rxbuf[0] >> 8) & 0xFF;
    data[1] = rxbuf[0] & 0xFF;
    return ret;
}

/*
 * READ ALL CHANNELS (AUTO MODE)
 */
HAL_StatusTypeDef ADS_Read_All_Raw(ADS8688 *ads, uint16_t *data) {
    HAL_StatusTypeDef ret = HAL_OK;
    uint16_t txbuf[1] = { CONT << 8 }; // Continue command (0x00)
    uint16_t rxbuf[1];

    for (int i = 0; i < CHNS_NUM_READ; i++) {
        // Pull CS low to start SPI transaction
        HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_RESET);

        // Send CONT command and receive data
        ret = HAL_SPI_TransmitReceive(
            ads->spiHandle,
            (uint8_t *)txbuf,
            (uint8_t *)rxbuf,
            sizeof(txbuf),
            100
        );

        // Pull CS high to end SPI transaction
        HAL_GPIO_WritePin(ads->csPinBank, ads->csPin, GPIO_PIN_SET);

        if (ret != HAL_OK) {
            printf("SPI Error on channel %d\r\n", i);
            return ret;
        }

        // Store the 16-bit raw ADC value
        data[i] = rxbuf[0];
        printf("Channel %d: Raw = %u\n", i, data[i]); // Debug print

        HAL_Delay(1); // Small delay for stability
    }

    return HAL_OK;
}
ADS8688.h
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "ADS8688.h"
#include <stdio.h>
#include <string.h>
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#define default_interval 500
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
unsigned int current = 0, previous = 0, interval = default_interval;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
ADS8688 ads;
uint16_t ads_data[8]; // All 8 channels
float volt_helper = 0;
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi3;

UART_HandleTypeDef huart4;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI3_Init(void);
static void MX_UART4_Init(void);
/* USER CODE BEGIN PFP */
int __io_putchar(int ch)
{
    HAL_UART_Transmit(&huart4, (uint8_t *)&ch, 1, 100); // 100 ms timeout
    return ch;
}
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI3_Init();
  MX_UART4_Init();
  /* USER CODE BEGIN 2 */
  printf("UART Test\n"); // Debug print to confirm UART
      HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_SET);
      if (ADS8688_Init(&ads, &hspi3, GPIOA, GPIO_PIN_15) != 0) {
          printf("ADS8688 Initialization Failed\n");
          Error_Handler();
      }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
	  current = HAL_GetTick();
	          if (current >= previous + interval) {
	              // Read all 8 channels
	              if (ADS_Read_All_Raw(&ads, ads_data) != HAL_OK) {
	                  printf("Error reading ADS8688 data\n");
	                  previous = current;
	                  continue;
	              }

	              // Process and print data for each channel
	              char output[512];
	              int len = 0;
	              for (int i = 0; i < 8; i++) {
	                  volt_helper = ((float)ads_data[i]) * 4.098f / 65535.0f; // ±2.56 V range
	                  len += snprintf(output + len, sizeof(output) - len,
	                                  "CHN_%d: Raw = %u, Voltage = %.3f V\n", i, ads_data[i], volt_helper);
	              }
	              HAL_UART_Transmit(&huart4, (uint8_t *)output, len, 100);

	              previous = current;
	              break ;
	          }
	          /* USER CODE BEGIN 3 */
	      }
	      /* USER CODE END 3
	      /* USER CODE END 3 */
	  }

	  /**
	    * @brief System Clock Configuration
	    * @retval None
	    */

  /* USER CODE END 3 */


/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI3_Init(void)
{

  /* USER CODE BEGIN SPI3_Init 0 */

  /* USER CODE END SPI3_Init 0 */

  /* USER CODE BEGIN SPI3_Init 1 */

  /* USER CODE END SPI3_Init 1 */
  /* SPI3 parameter configuration*/
  hspi3.Instance = SPI3;
  hspi3.Init.Mode = SPI_MODE_MASTER;
  hspi3.Init.Direction = SPI_DIRECTION_2LINES;
  hspi3.Init.DataSize = SPI_DATASIZE_16BIT;
  hspi3.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi3.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi3.Init.NSS = SPI_NSS_SOFT;
  hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi3.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi3.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI3_Init 2 */

  /* USER CODE END SPI3_Init 2 */

}

/**
  * @brief UART4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_UART4_Init(void)
{

  /* USER CODE BEGIN UART4_Init 0 */

  /* USER CODE END UART4_Init 0 */

  /* USER CODE BEGIN UART4_Init 1 */

  /* USER CODE END UART4_Init 1 */
  huart4.Instance = UART4;
  huart4.Init.BaudRate = 115200;
  huart4.Init.WordLength = UART_WORDLENGTH_8B;
  huart4.Init.StopBits = UART_STOPBITS_1;
  huart4.Init.Parity = UART_PARITY_NONE;
  huart4.Init.Mode = UART_MODE_TX_RX;
  huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart4) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN UART4_Init 2 */

  /* USER CODE END UART4_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_RESET);

  /*Configure GPIO pin : PA15 */
  GPIO_InitStruct.Pin = GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
1018.main.h

  • Hi Kiruthvi,

    Looks like you are working with Ashokkumar!  Has the DAC issue been taken care of?  I believe that is where you are getting your reference voltage.  All of the things you noted above could have an impact on your conversion results.  Can you please provide a couple screen captures that show the SPI control lines (/CS, SCLK, SDO and SDI) similar to what is shown in Figure 72 (CPOL=0, CPHA=1)?  Can you also let us know what voltage is applied to the inputs versus the conversion results you see?

  • Hi Tom.
         Yes, I’m working with Ashokkumar on this ADS8688 setup. Regarding the DAC issue, I’m not sure if it’s been fully resolved yet—Ashokkumar might have more details on the reference voltage stability. I’ll follow up with him to confirm.
    Now in ADS8688 We had got the reference voltage of 4.089
    I’ll capture the SPI control lines (/CS, SCLK, SDO, SDI). By using oscilloscope CS & CSK) correct . 
    SDO & SDI waveforms as you suggested ,I can't arrive with any solution here .So, here is the video of the waveform attached .
  • The video does not really help to show the issue.  A static screen shot would be better.