This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TMS320F28069M: LaunchXL-F28069M kit problems with CCS 10.4 and XDS100v2 drivers

Part Number: TMS320F28069M
Other Parts Discussed in Thread: TMS320F28069

Hi,

I've installed CCS 10.4 and tried to do TMS320F28069 workshop with LaunchXL-F28069 development kit, but at first attempt to connect and debug fails. After a while of troubleshooting I get to point I tried those steps:

1) I found there are missing drivers for XDS100v2 in folder C:\ti\ccs_base\emulation\windows. It contain only drivers XDS2xx, XDS110, ftdi and icdi.

Tried to install XDS emulation package but it install exactly the same as I already have. In device manager I can see USB device connected, but it dont recognize its XDS100v2 since there are not drivers installed.

2) Tried to change jumper settings for isolated/non-isolated PSU on launchpad and didnt help

3) Tried to change various settings of boot jumper settings, but it didnt help.

4) Tried to update FTDI based on this thread, but still missing XDS100v2 drivers

e2e.ti.com/.../faq-sticky-enable-xds100-usb-serial-port-on-launchxl-f28069m

I believe problem is with missing drivers XDS100v2, but where to get them and how to install it? XDS emulation package installed everything I didnt need.

CCS 10.4

Windows 10

thank you

  • 6th Sep is a holiday in US and hence please expect a delay in response.

  • Hi Ales,

    The FTDI drivers are the XDS100 drivers I believe, XDS100 is an FTDI device (FT2232HQ). They should get installed automatically by windows when you plug your device into your PC, but you may need to manually start a windows driver search if that's not the case.

    4) Tried to update FTDI based on this thread, but still missing XDS100v2 drivers

    If you're missing the XDS100 COM port in device manager when the board is plugged in, shown below, then re-programming the FTDI XDS100 should fix the issue. Are you not seeing this in your case? Can you confirm the XDS100 was erased / programmed properly per the instructions?

    Best,

    Kevin

  • Hi Kevin,

    I checked and now I can see XDS100 drivers in COM/LPT ports. When I run Test connection in Target Configurations, it fails. Log file included

    -----[Print the reset-command software log-file]-----------------------------

    This utility has selected a 100- or 510-class product.
    This utility will load the adapter 'jioserdesusb.dll'.
    The library build date was 'Jun 25 2021'.
    The library build time was '11:45:30'.
    The library package version is '9.4.0.00129'.
    The library component version is '35.35.0.0'.
    The controller does not use a programmable FPGA.
    The controller has a version number of '4' (0x00000004).
    The controller has an insertion length of '0' (0x00000000).
    This utility will attempt to reset the controller.
    This utility has successfully reset the controller.

    -----[Print the reset-command hardware log-file]-----------------------------

    The scan-path will be reset by toggling the JTAG TRST signal.
    The controller is the FTDI FT2232 with USB interface.
    The link from controller to target is direct (without cable).
    The software is configured for FTDI FT2232 features.
    The controller cannot monitor the value on the EMU[0] pin.
    The controller cannot monitor the value on the EMU[1] pin.
    The controller cannot control the timing on output pins.
    The controller cannot control the timing on input pins.
    The scan-path link-delay has been set to exactly '0' (0x0000).

    -----[The log-file for the JTAG TCLK output generated from the PLL]----------

    There is no hardware for programming the JTAG TCLK frequency.

    -----[Measure the source and frequency of the final JTAG TCLKR input]--------

    There is no hardware for measuring the JTAG TCLK frequency.

    -----[Perform the standard path-length test on the JTAG IR and DR]-----------

    This path-length test uses blocks of 64 32-bit words.

    The test for the JTAG IR instruction path-length failed.
    The JTAG IR instruction scan-path is stuck-at-ones.

    The test for the JTAG DR bypass path-length failed.
    The JTAG DR bypass scan-path is stuck-at-ones.

    -----[Perform the Integrity scan-test on the JTAG IR]------------------------

    This test will use blocks of 64 32-bit words.
    This test will be applied just once.

    Do a test using 0xFFFFFFFF.
    Scan tests: 1, skipped: 0, failed: 0
    Do a test using 0x00000000.
    Test 2 Word 0: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 1: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 2: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 3: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 4: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 5: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 6: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 7: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    The details of the first 8 errors have been provided.
    The utility will now report only the count of failed tests.
    Scan tests: 2, skipped: 0, failed: 1
    Do a test using 0xFE03E0E2.
    Scan tests: 3, skipped: 0, failed: 2
    Do a test using 0x01FC1F1D.
    Scan tests: 4, skipped: 0, failed: 3
    Do a test using 0x5533CCAA.
    Scan tests: 5, skipped: 0, failed: 4
    Do a test using 0xAACC3355.
    Scan tests: 6, skipped: 0, failed: 5
    Some of the values were corrupted - 83.3 percent.

    The JTAG IR Integrity scan-test has failed.

    -----[Perform the Integrity scan-test on the JTAG DR]------------------------

    This test will use blocks of 64 32-bit words.
    This test will be applied just once.

    Do a test using 0xFFFFFFFF.
    Scan tests: 1, skipped: 0, failed: 0
    Do a test using 0x00000000.
    Test 2 Word 0: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 1: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 2: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 3: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 4: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 5: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 6: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 7: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    The details of the first 8 errors have been provided.
    The utility will now report only the count of failed tests.
    Scan tests: 2, skipped: 0, failed: 1
    Do a test using 0xFE03E0E2.
    Scan tests: 3, skipped: 0, failed: 2
    Do a test using 0x01FC1F1D.
    Scan tests: 4, skipped: 0, failed: 3
    Do a test using 0x5533CCAA.
    Scan tests: 5, skipped: 0, failed: 4
    Do a test using 0xAACC3355.
    Scan tests: 6, skipped: 0, failed: 5
    Some of the values were corrupted - 83.3 percent.

    The JTAG DR Integrity scan-test has failed.

    [End: Texas Instruments XDS100v2 USB Debug Probe_0]

    LaunchPAD is working (original code in the MCU is running), LED are lit. But JTAG test fails and I cant load even Lab2 program which is just SW with equation.

    Any ideas where to look for problem?

    thank you

  • Hi Ales,

    Please see the JTAG debug flow charts in the app note below. Following the steps should allow you to narrow down the issue. Let me know how this goes or if you get stuck on anything specific.

    https://www.ti.com/lit/spracf0

    Best,

    Kevin