Other Parts Discussed in Thread: CONTROLSUITE
Hiii,
I am working on C28x F28335 Delphino microcontroller, here I want to read ADC count values from all 16 channels of ADC(I am not using PWM trigger registers) and record the values in ADC ISR.
Here I am using 25MHz ADC clock (SysCtrlRegs.HISPCP.all = 0x3) with sysclock 150Mhz here i am reading some value 473 as ADC count (at every channel, if i make AdcRegs.ADCMAXCONV.all = 0x000; ) and while changed the register as AdcRegs.ADCMAXCONV.all = 0x0FFF not setting interrupts correctly i.e., Problem is at ADC Initiallization and below is my attached code.
//###########################################################################
//
// FILE: Example_2833xAdc.c
//
// TITLE: DSP2833x ADC Example Program.
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect signals to be converted to A2 and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example sets up the PLL in x10/2 mode.
//
// For 150 MHz devices (default)
// divides SYSCLKOUT by six to reach a 25.0Mhz HSPCLK
// (assuming a 30Mhz XCLKIN).
//
// For 100 MHz devices:
// divides SYSCLKOUT by four to reach a 25.0Mhz HSPCLK
// (assuming a 20Mhz XCLKIN).
//
// Interrupts are enabled and the ePWM1 is setup to generate a periodic
// ADC SOC on SEQ1. Two channels are converted, ADCINA3 and ADCINA2.
//
// Watch Variables:
//
// Voltage1[10] Last 10 ADCRESULT0 values
// Voltage2[10] Last 10 ADCRESULT1 values
// ConversionCount Current result number 0-9
// LoopCount Idle loop counter
//
//
//###########################################################################
//
// Original Author: D.F.
//
// $TI Release: 2833x/2823x Header Files and Peripheral Examples V133 $
// $Release Date: June 8, 2012 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Prototype statements for functions found within this file.
interrupt void adc_isr(void);
// Global variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;
Uint16 Voltage1[10];
Uint16 Voltage2[10];
Uint16 Voltage3[10];
Uint16 Voltage4[10];
Uint16 Voltage5[10];
Uint16 Voltage6[10];
Uint16 Voltage7[10];
Uint16 Voltage8[10];
Uint16 Voltage9[10];
main()
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
EALLOW;
#if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
EDIS;
// Define ADCCLK clock frequency ( less than or equal to 25 MHz )
// Assuming InitSysCtrl() has set SYSCLKOUT to 150 MHz
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK;
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected register
PieVectTable.ADCINT = &adc_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Step 5. User specific code, enable interrupts:
// Enable ADCINT in PIE
PieCtrlRegs.PIEIER1.bit.INTx6 = 1;
IER |= M_INT1; // Enable CPU Interrupt 1
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
LoopCount = 0;
ConversionCount = 0;
// Configure ADC
AdcRegs.ADCMAXCONV.all = 0x0FFF; // Setup all 16 conv's on SEQ1 // 0x000F - 0x00FF
// AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x7;
// AdcRegs.ADCMAXCONV.bit.MAX_CONV2 = 0x7;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup ADCINA0 as 1st SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // Setup ADCINA1 as 2nd SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // Setup ADCINA2 as 3rd SEQ1 conv.
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // Setup ADCINA3 as 4th SEQ1 conv.
AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // Setup ADCINA4 as 5th SEQ2 conv.
AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // Setup ADCINA5 as 6th SEQ2 conv.
AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // Setup ADCINA6 as 7th SEQ2 conv.
AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // Setup ADCINA7 as 8th SEQ2 conv.
AdcRegs.ADCCHSELSEQ3.bit.CONV08 = 0x8; // Setup ADCINB0 as 9th SEQ3 conv.
AdcRegs.ADCCHSELSEQ3.bit.CONV09 = 0x9; // Setup ADCINB1 as 10th SEQ3 conv
AdcRegs.ADCCHSELSEQ3.bit.CONV10 = 0xA; // Setup ADCINB2 as 11th SEQ3 conv
AdcRegs.ADCCHSELSEQ3.bit.CONV11 = 0xB; // Setup ADCINB3 as 12th SEQ3 conv
AdcRegs.ADCCHSELSEQ4.bit.CONV12 = 0xC; // Setup ADCINB4 as 13th SEQ4 conv
AdcRegs.ADCCHSELSEQ4.bit.CONV13 = 0xD; // Setup ADCINB5 as 14th SEQ4 conv
AdcRegs.ADCCHSELSEQ4.bit.CONV14 = 0xE; // Setup ADCINB6 as 15th SEQ4 conv
AdcRegs.ADCCHSELSEQ4.bit.CONV15 = 0xF; // Setup ADCINB7 as 16th SEQ4 conv
// AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 = 1;// Enable SOCA from ePWM to start SEQ1
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; // Enable software trigger for SEQ1( In separate instructions)
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // Enable SEQ1 interrupt (every EOS)
// AdcRegs.ADCTRL2.bit.EPWM_SOCB_SEQ2 = 1;// Enable SOCB from ePWM to start SEQ2
AdcRegs.ADCTRL2.bit.RST_SEQ2 = 1; // Reset SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ2 = 1; // // Enable software trigger for SEQ2 ( in separate instructions)
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ2 = 1; // Enable SEQ2 interrupt (every EOS)
AdcRegs.ADCTRL1.bit.CONT_RUN = 1;
/*
// Assumes ePWM1 clock is already enabled in InitSysCtrl();
EPwm2Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm2Regs.ETSEL.bit.SOCASEL = 1;//4; // Select SOC from from CPMA on upcount
EPwm2Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
//SOCB
EPwm2Regs.ETSEL.bit.SOCBEN = 1; // Enable SOC on B group
EPwm2Regs.ETSEL.bit.SOCBSEL = 1;//4; // Select SOC from from CPMB on upcount
EPwm2Regs.ETPS.bit.SOCBPRD = 1; // Generate pulse on 1st event
EPwm2Regs.CMPA.half.CMPA = 0x0080; // Set compare A value
EPwm2Regs.TBPRD = 0xFFFF; // Set period for ePWM1
EPwm2Regs.TBCTL.bit.CTRMODE = 0; // count up and start
*/
// Wait for ADC interrupt
for(;;)
{
LoopCount++;
}
}
interrupt void adc_isr(void)
{
Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>4;
Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4;
Voltage3[ConversionCount] = AdcRegs.ADCRESULT2 >>4;
Voltage4[ConversionCount] = AdcRegs.ADCRESULT3 >>4;
Voltage5[ConversionCount] = AdcRegs.ADCRESULT4 >>4;
Voltage6[ConversionCount] = AdcRegs.ADCRESULT5 >>4;
Voltage7[ConversionCount] = AdcRegs.ADCRESULT6 >>4;
Voltage8[ConversionCount] = AdcRegs.ADCRESULT7 >>4;
Voltage9[ConversionCount] = AdcRegs.ADCRESULT8 >>4;
// If 40 conversions have been logged, start over
if(ConversionCount == 9)
{
ConversionCount = 0;
}
else ConversionCount++;
// Reinitialize for next ADC sequence
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // Clear INT SEQ1 bit
AdcRegs.ADCTRL2.bit.RST_SEQ2 = 1; // Reset SEQ1
AdcRegs.ADCST.bit.INT_SEQ2_CLR = 1; // Clear INT SEQ1 bit
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE
return;
}
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
void InitAdc(void)
{
extern void DSP28x_usDelay(Uint32 Count);
EALLOW;
SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;
ADC_cal();
EDIS;
AdcRegs.ADCTRL3.all = 0x00E0; // Power up bandgap/reference/ADC circuits
DELAY_US(ADC_usDELAY); // Delay before converting ADC channels
}
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
and above is my Initiallization of ADC. plese get me out of this.
Thanks in Advance.