Tool/software: Code Composer Studio
Hi,
Recently we faced one issue from F2806x ADC.
Our goal is to set SOC0~SOC5 with high priority, PWM trigger frequency like 40KHz with ADC interrupt 1; set SOC6~SOC15 round robin, another PWM trigger frequency like 20KHz with ADC interrupt 2.
No matter how we configure, we find that the two ADC interrupts frequency are the same. There's one exception, that's to set ADC interrupt 2's EOC like EOC7 or EOC6.
Will you help to take a look please? Thanks in advance.
Here's the code: ADC interrupt 4 is used.
//###########################################################################
// Description:
//! \addtogroup f2806x_example_list
//! <h1> ADC Start of Conversion (adc_soc)</h1>
//!
//! This ADC example uses ePWM1 to generate a periodic ADC SOC - ADCINT1.
//! Two channels are converted, ADCINA4 and ADCINA2.
//!
//! \b Watch \b Variables \n
//! - Voltage1[10] - Last 10 ADCRESULT0 values
//! - Voltage2[10] - Last 10 ADCRESULT1 values
//! - ConversionCount - Current result number 0-9
//! - LoopCount - Idle loop counter
//
//
//###########################################################################
// $TI Release: F2806x C/C++ Header Files and Peripheral Examples V151 $
// $Release Date: February 2, 2016 $
// $Copyright: Copyright (C) 2011-2016 Texas Instruments Incorporated -
// http://www.ti.com/ ALL RIGHTS RESERVED $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Prototype statements for functions found within this file.
__interrupt void adc_isr(void);
__interrupt void adc_isr2(void);
void Adc_Config(void);
#define hoFault_LED() 0//GpioDataRegs.GPBSET.bit.GPIO43 = 1
#define loFault_LED() 0//GpioDataRegs.GPBCLEAR.bit.GPIO43 = 1
#define hoFault_LED1() GpioDataRegs.GPBSET.bit.GPIO43 = 1
#define loFault_LED1() GpioDataRegs.GPBCLEAR.bit.GPIO43 = 1
#define hoComm_LED() 0//GpioDataRegs.GPASET.bit.GPIO0 = 1
#define loComm_LED() 0//GpioDataRegs.GPACLEAR.bit.GPIO0 = 1
#define hoComm_LED1() GpioDataRegs.GPASET.bit.GPIO0 = 1
#define loComm_LED1() GpioDataRegs.GPACLEAR.bit.GPIO0 = 1
// Global variables used in this example:
Uint16 LoopCount;
Uint16 ConversionCount;
Uint16 Voltage1[10];
Uint16 Voltage2[10];
int32 user_max_speed, user_min_speed, temp_speed, num_isr1, num_isr2;
Uint16 ain_speed, flag_need, flag_start_command;
#define MIN_AIN 250
Uint16 Flag1 =0;
Uint16 Flag2 =0;
main()
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the F2806x_SysCtrl.c file.
//////
InitSysCtrl();
////////
// Step 2. Initialize GPIO:
// This example function is found in the F2806x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the F2806x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
EALLOW;
GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0; //comm led
GpioCtrlRegs.GPADIR.bit.GPIO0 = 1;
GpioCtrlRegs.GPAPUD.bit.GPIO0 = 0;
GpioDataRegs.GPACLEAR.bit.GPIO0 = 1; //default off
GpioCtrlRegs.GPBMUX1.bit.GPIO43 = 0; //FAULT LED
GpioCtrlRegs.GPBDIR.bit.GPIO43 = 1;
GpioCtrlRegs.GPBPUD.bit.GPIO43 = 0;
GpioDataRegs.GPBCLEAR.bit.GPIO43 = 1; //default off
EDIS;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in F2806x_DefaultIsr.c.
// This function is found in F2806x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected register
PieVectTable.ADCINT1 = &adc_isr;
// PieVectTable.ADCINT2 = &adc_isr2;
PieVectTable.ADCINT4 = &adc_isr2;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in F2806x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
AdcOffsetSelfCal();
// Step 5. User specific code, enable interrupts:
// Enable ADCINT1 in PIE
PieCtrlRegs.PIEIER1.bit.INTx1 = 1; // Enable INT 1.1 in the PIE
PieCtrlRegs.PIEIER10.bit.INTx4 = 1; // Enable INT 10.2 in the PIE
// PieCtrlRegs.PIEIER10.bit.INTx4 = 1;
IER |= M_INT1; // Enable CPU Interrupt 1
IER |= M_INT10;
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
LoopCount = 0;
ConversionCount = 0;
num_isr1=0;
num_isr2=0;
// Configure ADC
EALLOW;
AdcRegs.ADCCTL2.bit.ADCNONOVERLAP = 0; // Enable non-overlap mode
AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; // ADCINT1 trips after AdcResults latch
AdcRegs.SOCPRICTL.bit.SOCPRIORITY = 0x05;
AdcRegs.INTSEL1N2.bit.INT1E = 1; // Enabled ADCINT1
AdcRegs.INTSEL1N2.bit.INT1CONT = 0; // 0 Disable ADCINT1 Continuous mode
AdcRegs.INTSEL1N2.bit.INT1SEL = 4; // setup EOC1 to trigger ADCINT1 to fire
AdcRegs.ADCSOC0CTL.bit.CHSEL = 0; // set SOC0 channel select to ADCINA4
AdcRegs.ADCSOC1CTL.bit.CHSEL = 1; // set SOC1 channel select to ADCINA2
AdcRegs.ADCSOC2CTL.bit.CHSEL = 2; // set SOC1 channel select to ADCINA2
AdcRegs.ADCSOC3CTL.bit.CHSEL = 3; // set SOC1 channel select to ADCINA2
AdcRegs.ADCSOC4CTL.bit.CHSEL = 4; // set SOC1 channel select to ADCINA2
AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 5; // set SOC0 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC1CTL.bit.TRIGSEL = 5; // set SOC1 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC2CTL.bit.TRIGSEL = 5; // set SOC1 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC3CTL.bit.TRIGSEL = 5; // set SOC1 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC4CTL.bit.TRIGSEL = 5; // set SOC1 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC0CTL.bit.ACQPS = 8; // set SOC0 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC1CTL.bit.ACQPS = 8; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC2CTL.bit.ACQPS = 8; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC3CTL.bit.ACQPS = 8; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC4CTL.bit.ACQPS = 8; // set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
// AdcRegs.INTSEL1N2.bit.INT2E = 1; // Enabled ADCINT2
// AdcRegs.INTSEL1N2.bit.INT2CONT = 0; // Disable ADCINT2 Continuous mode
// AdcRegs.INTSEL1N2.bit.INT2SEL = 4; // setup EOC4 to trigger ADCINT2 to fire
AdcRegs.INTSEL3N4.bit.INT4E = 1; // Enabled ADCINT4
AdcRegs.INTSEL3N4.bit.INT4CONT = 0; // 0 Disable ADCINT4 Continuous mode
AdcRegs.INTSEL3N4.bit.INT4SEL =0xF; //7; // setup EOC4 to trigger ADCINT4 to fire
AdcRegs.ADCSOC5CTL.bit.CHSEL = 5; // set SOC2 channel select to ADCINA4
AdcRegs.ADCSOC6CTL.bit.CHSEL = 6; // set SOC3 channel select to ADCINA2
AdcRegs.ADCSOC7CTL.bit.CHSEL = 7; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC8CTL.bit.CHSEL = 8; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC9CTL.bit.CHSEL = 9; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC10CTL.bit.CHSEL = 10; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC11CTL.bit.CHSEL = 11; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC12CTL.bit.CHSEL = 12; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC13CTL.bit.CHSEL = 13; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC14CTL.bit.CHSEL = 14; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC15CTL.bit.CHSEL = 15; // set SOC4 channel select to ADCINA2
AdcRegs.ADCSOC5CTL.bit.TRIGSEL = 8; // set SOC2 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC6CTL.bit.TRIGSEL = 8; // set SOC3 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC7CTL.bit.TRIGSEL = 8; // set SOC4 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC8CTL.bit.TRIGSEL = 8; // set SOC2 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC9CTL.bit.TRIGSEL = 8; // set SOC3 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC10CTL.bit.TRIGSEL = 8; // set SOC4 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC11CTL.bit.TRIGSEL = 8; // set SOC2 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC12CTL.bit.TRIGSEL = 8; // set SOC3 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC13CTL.bit.TRIGSEL = 8; // set SOC4 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC14CTL.bit.TRIGSEL = 8; // set SOC2 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC15CTL.bit.TRIGSEL = 8; // set SOC3 start trigger on EPWM2B, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC5CTL.bit.ACQPS = 8; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC6CTL.bit.ACQPS = 8; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC7CTL.bit.ACQPS = 8; // set SOC4 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC8CTL.bit.ACQPS = 8; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC9CTL.bit.ACQPS = 8; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC10CTL.bit.ACQPS = 8; // set SOC4 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC11CTL.bit.ACQPS = 8; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC12CTL.bit.ACQPS = 8; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC13CTL.bit.ACQPS = 8; // set SOC4 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC14CTL.bit.ACQPS = 8; // set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC15CTL.bit.ACQPS = 8; // set SOC3 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
EDIS;
// Assumes ePWM1 clock is already enabled in InitSysCtrl();
EPwm1Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm1Regs.ETSEL.bit.SOCASEL = 4; // Select SOC from CMPA on upcount
EPwm1Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
EPwm1Regs.CMPA.half.CMPA = 0x10; // Set compare A value
EPwm1Regs.TBPRD = 0x8000; // Set period for ePWM1
EPwm1Regs.TBCTL.bit.CTRMODE = 0; // count up and start
// Assumes ePWM2 clock is already enabled in InitSysCtrl();
// EPwm2Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on B group
// EPwm2Regs.ETSEL.bit.SOCASEL = 4; // Select SOC from CMPB on upcount
// EPwm2Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
// EPwm2Regs.CMPA.half.CMPA = 10; // Set compare B value
// EPwm2Regs.TBPRD = 2250; // Set period for ePWM1
// EPwm2Regs.TBCTL.bit.CTRMODE = 0; // count up and start
EPwm2Regs.ETSEL.bit.SOCBEN = 1; // Enable SOC on B group
EPwm2Regs.ETSEL.bit.SOCBSEL = 6; // Select SOC from CMPB on upcount
EPwm2Regs.ETPS.bit.SOCBPRD = 1; // Generate pulse on 1st event
EPwm2Regs.CMPB = 0x2020; // Set compare B value
EPwm2Regs.TBPRD = 0xFFF0; // Set period for ePWM1
EPwm2Regs.TBCTL.bit.CTRMODE = 0; // count up and start
// Wait for ADC interrupt
// Wait for ADC interrupt
// Wait for ADC interrupt
// Wait for ADC interrupt
for(;;)
{
LoopCount++;
if(flag_need==1)
{
// Speed from AIN, 3.3V~0.2V==max_speed~min_speedRPM
temp_speed = user_max_speed/4095;
temp_speed *= ain_speed;
// if AIN below 0.2V, set to 0RPM
if(temp_speed > user_min_speed)
{
flag_start_command=0x00;
}
else
{ //_IQ(1)=16777216~1000RPM, 16777~1RPM
//temp_speed *=16777;
flag_start_command=0x01;
}
flag_need=0;
}
}
}
__interrupt void adc_isr(void)
{
hoFault_LED1();
/*
if(Flag1 == 0)
{
hoFault_LED1();
Flag1 = 1;
}
else
{
loFault_LED1();
Flag1 = 0;
}
*/
Voltage1[ConversionCount] = AdcResult.ADCRESULT0;
Voltage2[ConversionCount] = AdcResult.ADCRESULT1;
num_isr1++;
// If 20 conversions have been logged, start over
if(ConversionCount == 9)
{
ConversionCount = 0;
}
else ConversionCount++;
AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //Clear ADCINT1 flag reinitialize for next SOC
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE
// PieCtrlRegs.PIEACK.bit.ACK1=1;
// loFault_LED1();
return;
}
__interrupt void adc_isr2(void)
{
hoComm_LED1();
/*
if(Flag2 == 0)
{
hoComm_LED1();
Flag2 = 1;
}
else
{
loComm_LED1();
Flag2 = 0;
}
*/
Voltage1[ConversionCount] = AdcResult.ADCRESULT2;
Voltage2[ConversionCount] = AdcResult.ADCRESULT3;
Voltage2[ConversionCount] = AdcResult.ADCRESULT4;
num_isr2++;
// If 20 conversions have been logged, start over
if(ConversionCount == 9)
{
ConversionCount = 0;
}
else ConversionCount++;
AdcRegs.ADCINTFLGCLR.bit.ADCINT4 = 1; //Clear ADCINT1 flag reinitialize for next SOC
// PieCtrlRegs.PIEACK.all = PIEACK_GROUP10; // Acknowledge interrupt to PIE
// PieCtrlRegs.PIEACK.bit.ACK1 = 1;
// AdcRegs.ADCINTFLGCLR.bit.ADCINT4 = 1; //Clear ADCINT1 flag reinitialize for next SOC
PieCtrlRegs.PIEACK.all = PIEACK_GROUP10; // Acknowledge interrupt to PIE
// loComm_LED1();
return;
}