This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

InstaSPIN-FOC

Other Parts Discussed in Thread: CCSTUDIO, TMDSHVMTRINSPIN

Hi,

I have the following problem when using GUI:

Restarting Program Model...
Initializing target : C:\ti\guicomposer\webapps\InstaSPIN_FOC_F2806xM\appConfig.ccxml
Connecting target: Texas Instruments XDS100v2 USB Emulator_0/C28xx
sun.org.mozilla.javascript.internal.WrappedException: Wrapped com.ti.ccstudio.scripting.environment.ScriptingException: Error connecting to the target: emulation failure occurred (<Unknown source>#14) in <Unknown source> at line number 14Restart Completed.

I have checked my USB port and it is configured as  "TI XDS100 Channel A" and "TI XDS100 Channel B", besides LD1 of the board and control card is ON, so I guess that is not a power problem.

any solution?

  • 1. You can use CCS to verify the JTAG connection first.
    2. Refer to GUI QSG to install the Webapp and gui composer, and set the correct switch on controlCard and EVM kit.
  • Hi Yamming,

    I have verified the JTAG connection with CCS.  This is the result:

    -------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    [Start: Texas Instruments XDS100v2 USB Debug Probe_0]

    Execute the command:

    %ccs_base%/common/uscif/dbgjtag -f %boarddatafile% -rv -o -F inform,logfile=yes -S pathlength -S integrity

    [Result]


    -----[Print the board config pathname(s)]------------------------------------

    C:\Users\Admin\AppData\Local\TEXASI~1\CCS\
    ti\0\0\BrdDat\testBoard.dat

    -----[Print the reset-command software log-file]-----------------------------

    This utility has selected a 100- or 510-class product.
    This utility will load the adapter 'jioserdesusb.dll'.
    The library build date was 'Apr 8 2016'.
    The library build time was '02:44:08'.
    The library package version is '6.0.222.0'.
    The library component version is '35.35.0.0'.
    The controller does not use a programmable FPGA.
    The controller has a version number of '4' (0x00000004).
    The controller has an insertion length of '0' (0x00000000).
    This utility will attempt to reset the controller.
    This utility has successfully reset the controller.

    -----[Print the reset-command hardware log-file]-----------------------------

    The scan-path will be reset by toggling the JTAG TRST signal.
    The controller is the FTDI FT2232 with USB interface.
    The link from controller to target is direct (without cable).
    The software is configured for FTDI FT2232 features.
    The controller cannot monitor the value on the EMU[0] pin.
    The controller cannot monitor the value on the EMU[1] pin.
    The controller cannot control the timing on output pins.
    The controller cannot control the timing on input pins.
    The scan-path link-delay has been set to exactly '0' (0x0000).

    -----[The log-file for the JTAG TCLK output generated from the PLL]----------

    There is no hardware for programming the JTAG TCLK frequency.

    -----[Measure the source and frequency of the final JTAG TCLKR input]--------

    There is no hardware for measuring the JTAG TCLK frequency.

    -----[Perform the standard path-length test on the JTAG IR and DR]-----------

    This path-length test uses blocks of 64 32-bit words.

    The test for the JTAG IR instruction path-length failed.
    The JTAG IR instruction scan-path is stuck-at-ones.

    The test for the JTAG DR bypass path-length failed.
    The JTAG DR bypass scan-path is stuck-at-ones.

    -----[Perform the Integrity scan-test on the JTAG IR]------------------------

    This test will use blocks of 64 32-bit words.
    This test will be applied just once.

    Do a test using 0xFFFFFFFF.
    Scan tests: 1, skipped: 0, failed: 0
    Do a test using 0x00000000.
    Test 2 Word 0: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 1: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 2: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 3: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 4: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 5: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 6: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 7: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    The details of the first 8 errors have been provided.
    The utility will now report only the count of failed tests.
    Scan tests: 2, skipped: 0, failed: 1
    Do a test using 0xFE03E0E2.
    Scan tests: 3, skipped: 0, failed: 2
    Do a test using 0x01FC1F1D.
    Scan tests: 4, skipped: 0, failed: 3
    Do a test using 0x5533CCAA.
    Scan tests: 5, skipped: 0, failed: 4
    Do a test using 0xAACC3355.
    Scan tests: 6, skipped: 0, failed: 5
    Some of the values were corrupted - 83.3 percent.

    The JTAG IR Integrity scan-test has failed.

    -----[Perform the Integrity scan-test on the JTAG DR]------------------------

    This test will use blocks of 64 32-bit words.
    This test will be applied just once.

    Do a test using 0xFFFFFFFF.
    Scan tests: 1, skipped: 0, failed: 0
    Do a test using 0x00000000.
    Test 2 Word 0: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 1: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 2: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 3: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 4: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 5: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 6: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    Test 2 Word 7: scanned out 0x00000000 and scanned in 0xFFFFFFFF.
    The details of the first 8 errors have been provided.
    The utility will now report only the count of failed tests.
    Scan tests: 2, skipped: 0, failed: 1
    Do a test using 0xFE03E0E2.
    Scan tests: 3, skipped: 0, failed: 2
    Do a test using 0x01FC1F1D.
    Scan tests: 4, skipped: 0, failed: 3
    Do a test using 0x5533CCAA.
    Scan tests: 5, skipped: 0, failed: 4
    Do a test using 0xAACC3355.
    Scan tests: 6, skipped: 0, failed: 5
    Some of the values were corrupted - 83.3 percent.

    The JTAG DR Integrity scan-test has failed.

    [End: Texas Instruments XDS100v2 USB Debug Probe_0]

    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    I have used the same hadware configuration as in QSG. 15V to JP1, AC power and banana from BS1 to BS5. Besides, all the switches are in the right position.

    thanks for your help!

  • It seems your JTAG had some issue to connect correctly, please check the JTAG setup configuration or control board power.
  • Hi Yanming,

    I have not been not able to sort out the problem yet. I have revised hd connection and it is correct, then I have re-installed all the software but in this process  i have a doubt. I am using windows 10, it is compatible with this OS? I have disconnected firewalls and anti-virus for the installation process, can them produce also problems when using the device?

    thanks

  • CCS, GUI and Emulator Driver can work well with Win10, please check below items
    1. What EVM board are you using? The power supply and switch on board is correct?
    2. Use a lab project with CCS to check the JTAG connection. If no worked, try to change a controlCard to do again.
  • I am using this board TMDSHVMTRINSPIN with C2000 InstaSPIN TMS320F28069M MCU.

    I have probed the JTAG connection with CCS again. Now, the error is SC_ERR_FTDI_FAIL with code -150. In the wiki there are not a explicit solution to this problem. It is caused by the USB port of my PC? What can I test?

    thanks