This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

CCS/TMS320F28069M: ccs debugging window shows negative motor speed

Part Number: TMS320F28069M
Other Parts Discussed in Thread: DRV8301, MOTORWARE

Tool/software: Code Composer Studio

Hi 

We are trying to run a 20kW PMSM motor using Ti instaspin foc solution.we have developed our own inverter which can carry 150A maximum and we are providing 48V battery as the supply.The circuit consist of 3 hall effect sensors (L31S050S05FS)which is used to measure phase current.

we identified the motor parameters using Ti Boostxldrv-8301RevB. when we tried running the motor with our own inverter board the motor is trying to rotate,but the Ref speed in the debugging window showing negative values.while running the motor the torque is not good.what can be the problem ??

Thank you in advance.

This is my user_j1.h file

 

#ifndef _USER_J1_H_
#define _USER_J1_H_
/* --COPYRIGHT--,BSD
 * Copyright (c) 2012, Texas Instruments Incorporated
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * *  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * *  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * *  Neither the name of Texas Instruments Incorporated nor the names of
 *    its contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * --/COPYRIGHT--*/

//! \file   solutions/instaspin_foc/boards/boostxldrv8301_revB/f28x/f2806xF/src/user_j1.h
//! \brief Contains the public interface for user initialization data for the CTRL, HAL, and EST modules 
//!
//! (C) Copyright 2012, Texas Instruments, Inc.


// **************************************************************************
// the includes

//!
//!
//! \defgroup USER USER
//!
//@{


#ifdef __cplusplus
extern "C" {
#endif

// **************************************************************************
// the defines

//! \brief CURRENTS AND VOLTAGES
// **************************************************************************
//! \brief Defines the full scale frequency for IQ variable, Hz
//! \brief All frequencies are converted into (pu) based on the ratio to this value
//! \brief this value MUST be larger than the maximum speed that you are expecting from the motor

#define USER_IQ_FULL_SCALE_FREQ_Hz        (800)   // 800 Example with buffer for 8-pole 6 KRPM motor to be run to 10 KRPM with field weakening; Hz =(RPM * Poles) / 120

//! \brief Defines full scale value for the IQ30 variable of Voltage inside the system
//! \brief All voltages are converted into (pu) based on the ratio to this value
//! \brief WARNING: this value MUST meet the following condition: USER_IQ_FULL_SCALE_VOLTAGE_V > 0.5 * USER_MOTOR_MAX_CURRENT * USER_MOTOR_Ls_d * USER_VOLTAGE_FILTER_POLE_rps,
//! \brief WARNING: otherwise the value can saturate and roll-over, causing an inaccurate value
//! \brief WARNING: this value is OFTEN greater than the maximum measured ADC value, especially with high Bemf motors operating at higher than rated speeds
//! \brief WARNING: if you know the value of your Bemf constant, and you know you are operating at a multiple speed due to field weakening, be sure to set this value higher than the expected Bemf voltage
//! \brief It is recommended to start with a value ~3x greater than the USER_ADC_FULL_SCALE_VOLTAGE_V and increase to 4-5x if scenarios where a Bemf calculation may exceed these limits
//! \brief This value is also used to calculate the minimum flux value: USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7
#define USER_IQ_FULL_SCALE_VOLTAGE_V      (113)   // 24.0 Example for boostxldrv8301_revB typical usage and the Anaheim motor
//#define USER_IQ_FULL_SCALE_VOLTAGE_V      (24)
//! \brief Defines the maximum voltage at the input to the AD converter
//! \brief The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh)
//! \brief Hardware dependent, this should be based on the voltage sensing and scaling to the ADC input
//#define USER_ADC_FULL_SCALE_VOLTAGE_V       (26.314)      // 26.314 boostxldrv8301_revB voltage scaling
#define USER_ADC_FULL_SCALE_VOLTAGE_V       (113)
//! \brief Defines the full scale current for the IQ variables, A
//! \brief All currents are converted into (pu) based on the ratio to this value
//! \brief WARNING: this value MUST be larger than the maximum current readings that you are expecting from the motor or the reading will roll over to 0, creating a control issue
//#define USER_IQ_FULL_SCALE_CURRENT_A         (20) // 20.0 Example for boostxldrv8301_revB typical usage
#define USER_IQ_FULL_SCALE_CURRENT_A         (150)
//! \brief Defines the maximum current at the AD converter
//! \brief The value that will be represented by the maximum ADC input (3.3V) and conversion (0FFFh)
//! \brief Hardware dependent, this should be based on the current sensing and scaling to the ADC input
//#define USER_ADC_FULL_SCALE_CURRENT_A        (33)  // 33.0 boostxldrv8301_revB current scaling
#define USER_ADC_FULL_SCALE_CURRENT_A        (300)
//! \brief Defines the number of current sensors used
//! \brief Defined by the hardware capability present
//! \brief May be (2) or (3)
#define USER_NUM_CURRENT_SENSORS            (3)   // 3 Preferred setting for best performance across full speed range, allows for 100% duty cycle

//! \brief Defines the number of voltage (phase) sensors
//! \brief Must be (3)
#define USER_NUM_VOLTAGE_SENSORS            (3) // 3 Required

//! \brief ADC current offsets for A, B, and C phases
//! \brief One-time hardware dependent, though the calibration can be done at run-time as well
//! \brief After initial board calibration these values should be updated for your specific hardware so they are available after compile in the binary to be loaded to the controller
#define   I_A_offset    (0.8331743479)
#define   I_B_offset    (0.8355930448)
#define   I_C_offset    (0.8392037153)

//! \brief ADC voltage offsets for A, B, and C phases
//! \brief One-time hardware dependent, though the calibration can be done at run-time as well
//! \brief After initial board calibration these values should be updated for your specific hardware so they are available after compile in the binary to be loaded to the controller
#define   V_A_offset    (0.5271264911)
#define   V_B_offset    (0.5257175565)
#define   V_C_offset    (0.5249399543)


//! \brief CLOCKS & TIMERS
// **************************************************************************
//! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz
//! \brief PWM frequency can be set directly here up to 30 KHz safely (60 KHz MAX in some cases)
//! \brief For higher PWM frequencies (60 KHz+ typical for low inductance, high current ripple motors) it is recommended to use the ePWM hardware
//! \brief and adjustable ADC SOC to decimate the ADC conversion done interrupt to the control system, or to use the software Que example.
//! \brief Otherwise you risk missing interrupts and disrupting the timing of the control state machine
#define USER_PWM_FREQ_kHz                (45.0) //30.0 Example, 8.0 - 30.0 KHz typical; 45-80 KHz may be required for very low inductance, high speed motors

//! \brief Defines the maximum Voltage vector (Vs) magnitude allowed.  This value sets the maximum magnitude for the output of the
//! \brief Id and Iq PI current controllers.  The Id and Iq current controller outputs are Vd and Vq.
//! \brief The relationship between Vs, Vd, and Vq is:  Vs = sqrt(Vd^2 + Vq^2).  In this FOC controller, the
//! \brief Vd value is set equal to USER_MAX_VS_MAG*USER_VD_MAG_FACTOR.  Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2).
//! \brief Set USER_MAX_VS_MAG = 0.5 for a pure sinewave with a peak at SQRT(3)/2 = 86.6% duty cycle.  No current reconstruction is needed for this scenario.
//! \brief Set USER_MAX_VS_MAG = 1/SQRT(3) = 0.5774 for a pure sinewave with a peak at 100% duty cycle.  Current reconstruction will be needed for this scenario (Lab10a-x).
//! \brief Set USER_MAX_VS_MAG = 2/3 = 0.6666 to create a trapezoidal voltage waveform.  Current reconstruction will be needed for this scenario (Lab10a-x).
//! \brief For space vector over-modulation, see lab 10 for details on system requirements that will allow the SVM generator to go all the way to trapezoidal.
#define USER_MAX_VS_MAG_PU        (0.5)    // Set to 0.5 if a current reconstruction technique is not used.  Look at the module svgen_current in lab10a-x for more info.


//! \brief DECIMATION
// **************************************************************************
//! \brief Defines the number of pwm clock ticks per isr clock tick
//!        Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK        (3)

//! \brief Defines the number of isr ticks (hardware) per controller clock tick (software)
//! \brief Controller clock tick (CTRL) is the main clock used for all timing in the software
//! \brief Typically the PWM Frequency triggers (can be decimated by the ePWM hardware for less overhead) an ADC SOC
//! \brief ADC SOC triggers an ADC Conversion Done
//! \brief ADC Conversion Done triggers ISR
//! \brief This relates the hardware ISR rate to the software controller rate
//! \brief Typcially want to consider some form of decimation (ePWM hardware, CURRENT or EST) over 16KHz ISR to insure interrupt completes and leaves time for background tasks
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK       (1)      // 2 Example, controller clock rate (CTRL) runs at PWM / 2; ex 30 KHz PWM, 15 KHz control

//! \brief Defines the number of controller clock ticks per current controller clock tick
//! \brief Relationship of controller clock rate to current controller (FOC) rate
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK   (1)      // 1 Typical, Forward FOC current controller (Iq/Id/IPARK/SVPWM) runs at same rate as CTRL.

//! \brief Defines the number of controller clock ticks per estimator clock tick
//! \brief Relationship of controller clock rate to estimator (FAST) rate
//! \brief Depends on needed dynamic performance, FAST provides very good results as low as 1 KHz while more dynamic or high speed applications may require up to 15 KHz
#define USER_NUM_CTRL_TICKS_PER_EST_TICK       (1)      // 1 Typical, FAST estimator runs at same rate as CTRL;

//! \brief Defines the number of controller clock ticks per speed controller clock tick
//! \brief Relationship of controller clock rate to speed loop rate
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK  (15)   // 15 Typical to match PWM, ex: 15KHz PWM, controller, and current loop, 1KHz speed loop

//! \brief Defines the number of controller clock ticks per trajectory clock tick
//! \brief Relationship of controller clock rate to trajectory loop rate
//! \brief Typically the same as the speed rate
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK   (15)   // 15 Typical to match PWM, ex: 10KHz controller & current loop, 1KHz speed loop, 1 KHz Trajectory


//! \brief LIMITS
// **************************************************************************
//! \brief Defines the maximum negative current to be applied in Id reference
//! \brief Used in field weakening only, this is a safety setting (e.g. to protect against demagnetization)
//! \brief User must also be aware that overall current magnitude [sqrt(Id^2 + Iq^2)] should be kept below any machine design specifications
#define USER_MAX_NEGATIVE_ID_REF_CURRENT_A     (-0.5 * USER_MOTOR_MAX_CURRENT)   // -0.5 * USER_MOTOR_MAX_CURRENT Example, adjust to meet safety needs of your motor

//! \brief Defines the R/L estimation frequency, Hz
//! \brief User higher values for low inductance motors and lower values for higher inductance
//! \brief motors.  The values can range from 100 to 300 Hz.
#define USER_R_OVER_L_EST_FREQ_Hz (300)               // 300 Default

//! \brief Defines the low speed limit for the flux integrator, pu
//! \brief This is the speed range (CW/CCW) at which the ForceAngle object is active, but only if Enabled
//! \brief Outside of this speed - or if Disabled - the ForcAngle will NEVER be active and the angle is provided by FAST only
#define USER_ZEROSPEEDLIMIT   (0.5 / USER_IQ_FULL_SCALE_FREQ_Hz)     // 0.002 pu, 1-5 Hz typical; Hz = USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz

//! \brief Defines the force angle frequency, Hz
//! \brief Frequency of stator vector rotation used by the ForceAngle object
//! \brief Can be positive or negative
#define USER_FORCE_ANGLE_FREQ_Hz   (2.0 * USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz)      // 1.0 Typical force angle start-up speed


//! \brief POLES
// **************************************************************************
//! \brief Defines the analog voltage filter pole location, Hz
//! \brief Must match the hardware filter for Vph
//#define USER_VOLTAGE_FILTER_POLE_Hz  (364.682)   // 364.682, value for boostxldrv8301_revB hardware
#define USER_VOLTAGE_FILTER_POLE_Hz  (811.69)

//! \brief USER MOTOR & ID SETTINGS
// **************************************************************************

//! \brief Define each motor with a unique name and ID number
// BLDC & SMPM motors
#define Estun_EMJ_04APB22           101
#define Anaheim_BLY172S             102
#define Tamagawa_A0100 	            103
#define Teknic_M2310PLN04K          104
#define Drone_A2212_1000KV			105
#define Drone_A2313_960KV			106

// IPM motors
// If user provides separate Ls-d, Ls-q
// else treat as SPM with user or identified average Ls
#define Belt_Drive_Washer_IPM       201
#define Anaheim_Salient             202

// ACIM motors
#define Marathon_5K33GN2A           301

//! \brief Uncomment the motor which should be included at compile
//! \brief These motor ID settings and motor parameters are then available to be used by the control system
//! \brief Once your ideal settings and parameters are identified update the motor section here so it is available in the binary code
//#define USER_MOTOR Estun_EMJ_04APB22
#define USER_MOTOR MY_MOTOR
//#define USER_MOTOR Tamagawa_A0100
//#define USER_MOTOR Drone_A2313_960KV
//#define USER_MOTOR Teknic_M2310PLN04K
//#define USER_MOTOR Belt_Drive_Washer_IPM
//#define USER_MOTOR Marathon_s5K33GN2A
//#define USER_MOTOR Anaheim_Salient


#if (USER_MOTOR == Estun_EMJ_04APB22)                  // Name must match the motor #define
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm  // Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI)
#define USER_MOTOR_NUM_POLE_PAIRS       (4)            // PAIRS, not total poles. Used to calculate user RPM from rotor Hz only
#define USER_MOTOR_Rr                   (NULL)         // Induction motors only, else NULL
#define USER_MOTOR_Rs                   (2.303403)     // Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float)
#define USER_MOTOR_Ls_d                 (0.008464367)  // For PM, Identified average stator inductance  (Henry, float)
#define USER_MOTOR_Ls_q                 (0.008464367)  // For PM, Identified average stator inductance  (Henry, float)
#define USER_MOTOR_RATED_FLUX           (0.38)         // Identified TOTAL flux linkage between the rotor and the stator (V/Hz)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)         // Induction motors only, else NULL
#define USER_MOTOR_RES_EST_CURRENT      (1.0)          // During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20% rated current
#define USER_MOTOR_IND_EST_CURRENT      (-1.0)         // During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to enable rotation
#define USER_MOTOR_MAX_CURRENT          (3.82)         // CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided Speed PI Controller to the Iq controller
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)         // During Motor ID, maximum commanded speed (Hz, float), ~10% rated

#elif (USER_MOTOR == Anaheim_BLY172S)
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (0.4110007)
#define USER_MOTOR_Ls_d                 (0.0007092811)
#define USER_MOTOR_Ls_q                 (0.0007092811)
#define USER_MOTOR_RATED_FLUX           (0.03279636)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (1.0)
#define USER_MOTOR_IND_EST_CURRENT      (-1.0)
#define USER_MOTOR_MAX_CURRENT          (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)
#define IPD_HFI_EXC_FREQ_HZ             (750.0)       // excitation frequency, Hz
#define IPD_HFI_LP_SPD_FILT_HZ          (35.0)        // lowpass filter cutoff frequency, Hz
#define IPD_HFI_HP_IQ_FILT_HZ           (100.0)       // highpass filter cutoff frequency, Hz
#define IPD_HFI_KSPD                    (15.0)       // the speed gain value
#define IPD_HFI_EXC_MAG_COARSE_PU       (0.13)         // coarse IPD excitation magnitude, pu
#define IPD_HFI_EXC_MAG_FINE_PU         (0.12)         // fine IPD excitation magnitude, pu
#define IPD_HFI_EXC_TIME_COARSE_S       (0.5)         // coarse wait time, sec max 0.64
#define IPD_HFI_EXC_TIME_FINE_S         (0.5)         // fine wait time, sec max 0.4
#define AFSEL_FREQ_HIGH_PU              (_IQ(15.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_FREQ_LOW_PU               (_IQ(10.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_IQ_SLOPE_EST              (_IQ((float)(1.0/0.1/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_HFI              (_IQ((float)(1.0/10.0/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_THROTTLE_DWN     (_IQ((float)(1.0/0.05/USER_ISR_FREQ_Hz)))
#define AFSEL_MAX_IQ_REF_EST            (_IQ(0.6))
#define AFSEL_MAX_IQ_REF_HFI            (_IQ(0.6))

#define USER_MOTOR_FREQ_LOW				(10.0)			// Hz - suggested to set to 10% of rated motor frequency
#define USER_MOTOR_FREQ_HIGH			(100.0)			// Hz - suggested to set to 100% of rated motor frequency
#define USER_MOTOR_FREQ_MAX				(120.0)			// Hz - suggested to set to 120% of rated motor frequency
#define USER_MOTOR_VOLT_MIN				(3.0)			// Volt - suggested to set to 15% of rated motor voltage
#define USER_MOTOR_VOLT_MAX				(18.0)			// Volt - suggested to set to 100% of rated motor voltage

#elif (USER_MOTOR == Tamagawa_A0100)
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (0.262230158)
#define USER_MOTOR_Ls_d                 (0.000459346687)
#define USER_MOTOR_Ls_q                 (0.000459346687)
#define USER_MOTOR_RATED_FLUX           (0.0484918393)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (1.0)
#define USER_MOTOR_IND_EST_CURRENT      (-1.0)
#define USER_MOTOR_MAX_CURRENT          (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)
#define IPD_HFI_EXC_FREQ_HZ             (750.0)       // excitation frequency, Hz
#define IPD_HFI_LP_SPD_FILT_HZ          (35.0)        // lowpass filter cutoff frequency, Hz
#define IPD_HFI_HP_IQ_FILT_HZ           (100.0)       // highpass filter cutoff frequency, Hz
#define IPD_HFI_KSPD                    (15.0)       // the speed gain value
#define IPD_HFI_EXC_MAG_COARSE_PU       (0.13)         // coarse IPD excitation magnitude, pu
#define IPD_HFI_EXC_MAG_FINE_PU         (0.12)         // fine IPD excitation magnitude, pu
#define IPD_HFI_EXC_TIME_COARSE_S       (0.5)         // coarse wait time, sec max 0.64
#define IPD_HFI_EXC_TIME_FINE_S         (0.5)         // fine wait time, sec max 0.4
#define AFSEL_FREQ_HIGH_PU              (_IQ(15.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_FREQ_LOW_PU               (_IQ(10.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_IQ_SLOPE_EST              (_IQ((float)(1.0/0.1/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_HFI              (_IQ((float)(1.0/10.0/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_THROTTLE_DWN     (_IQ((float)(1.0/0.05/USER_ISR_FREQ_Hz)))
#define AFSEL_MAX_IQ_REF_EST            (_IQ(0.6))
#define AFSEL_MAX_IQ_REF_HFI            (_IQ(0.6))

#elif (USER_MOTOR == Drone_A2212_1000KV)
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (0.4110007)
#define USER_MOTOR_Ls_d                 (0.0007092811)
#define USER_MOTOR_Ls_q                 (0.0007092811)
#define USER_MOTOR_RATED_FLUX           (0.03279636)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (1.0)
#define USER_MOTOR_IND_EST_CURRENT      (-1.0)
#define USER_MOTOR_MAX_CURRENT          (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)
#define IPD_HFI_EXC_FREQ_HZ             (750.0)       // excitation frequency, Hz
#define IPD_HFI_LP_SPD_FILT_HZ          (35.0)        // lowpass filter cutoff frequency, Hz
#define IPD_HFI_HP_IQ_FILT_HZ           (100.0)       // highpass filter cutoff frequency, Hz
#define IPD_HFI_KSPD                    (15.0)       // the speed gain value
#define IPD_HFI_EXC_MAG_COARSE_PU       (0.13)         // coarse IPD excitation magnitude, pu
#define IPD_HFI_EXC_MAG_FINE_PU         (0.12)         // fine IPD excitation magnitude, pu
#define IPD_HFI_EXC_TIME_COARSE_S       (0.5)         // coarse wait time, sec max 0.64
#define IPD_HFI_EXC_TIME_FINE_S         (0.5)         // fine wait time, sec max 0.4
#define AFSEL_FREQ_HIGH_PU              (_IQ(15.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_FREQ_LOW_PU               (_IQ(10.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_IQ_SLOPE_EST              (_IQ((float)(1.0/0.1/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_HFI              (_IQ((float)(1.0/10.0/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_THROTTLE_DWN     (_IQ((float)(1.0/0.05/USER_ISR_FREQ_Hz)))
#define AFSEL_MAX_IQ_REF_EST            (_IQ(0.6))
#define AFSEL_MAX_IQ_REF_HFI            (_IQ(0.6))

#elif (USER_MOTOR == Drone_A2313_960KV)
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (0.4110007)
#define USER_MOTOR_Ls_d                 (0.0007092811)
#define USER_MOTOR_Ls_q                 (0.0007092811)
#define USER_MOTOR_RATED_FLUX           (0.03279636)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (1.0)
#define USER_MOTOR_IND_EST_CURRENT      (-1.0)
#define USER_MOTOR_MAX_CURRENT          (5.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)
#define IPD_HFI_EXC_FREQ_HZ             (750.0)       // excitation frequency, Hz
#define IPD_HFI_LP_SPD_FILT_HZ          (35.0)        // lowpass filter cutoff frequency, Hz
#define IPD_HFI_HP_IQ_FILT_HZ           (100.0)       // highpass filter cutoff frequency, Hz
#define IPD_HFI_KSPD                    (15.0)       // the speed gain value
#define IPD_HFI_EXC_MAG_COARSE_PU       (0.13)         // coarse IPD excitation magnitude, pu
#define IPD_HFI_EXC_MAG_FINE_PU         (0.12)         // fine IPD excitation magnitude, pu
#define IPD_HFI_EXC_TIME_COARSE_S       (0.5)         // coarse wait time, sec max 0.64
#define IPD_HFI_EXC_TIME_FINE_S         (0.5)         // fine wait time, sec max 0.4
#define AFSEL_FREQ_HIGH_PU              (_IQ(15.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_FREQ_LOW_PU               (_IQ(10.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_IQ_SLOPE_EST              (_IQ((float)(1.0/0.1/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_HFI              (_IQ((float)(1.0/10.0/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_THROTTLE_DWN     (_IQ((float)(1.0/0.05/USER_ISR_FREQ_Hz)))
#define AFSEL_MAX_IQ_REF_EST            (_IQ(0.6))
#define AFSEL_MAX_IQ_REF_HFI            (_IQ(0.6))

#elif (USER_MOTOR == Anaheim_Salient)                 // When using IPD_HFI, set decimation to 1 and PWM to 15.0 KHz
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (0.1215855)
#define USER_MOTOR_Ls_d                 (0.0002298828)
#define USER_MOTOR_Ls_q                 (0.0002298828)
#define USER_MOTOR_RATED_FLUX           (0.04821308)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (2.0)         // Enter amperes(float)
#define USER_MOTOR_IND_EST_CURRENT      (-0.5)        // Enter negative amperes(float)
#define USER_MOTOR_MAX_CURRENT          (10.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)
#define IPD_HFI_EXC_FREQ_HZ             (750.0)       // excitation frequency, Hz
#define IPD_HFI_LP_SPD_FILT_HZ          (35.0)        // lowpass filter cutoff frequency, Hz
#define IPD_HFI_HP_IQ_FILT_HZ           (100.0)       // highpass filter cutoff frequency, Hz
#define IPD_HFI_KSPD                    (15.0)       // the speed gain value
#define IPD_HFI_EXC_MAG_COARSE_PU       (0.13)         // coarse IPD excitation magnitude, pu
#define IPD_HFI_EXC_MAG_FINE_PU         (0.12)         // fine IPD excitation magnitude, pu
#define IPD_HFI_EXC_TIME_COARSE_S       (0.5)         // coarse wait time, sec max 0.64
#define IPD_HFI_EXC_TIME_FINE_S         (0.5)         // fine wait time, sec max 0.4
#define AFSEL_FREQ_HIGH_PU              (_IQ(15.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_FREQ_LOW_PU               (_IQ(10.0 / USER_IQ_FULL_SCALE_FREQ_Hz))
#define AFSEL_IQ_SLOPE_EST              (_IQ((float)(1.0/0.1/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_HFI              (_IQ((float)(1.0/10.0/USER_ISR_FREQ_Hz)))
#define AFSEL_IQ_SLOPE_THROTTLE_DWN     (_IQ((float)(1.0/0.05/USER_ISR_FREQ_Hz)))
#define AFSEL_MAX_IQ_REF_EST            (_IQ(0.6))
#define AFSEL_MAX_IQ_REF_HFI            (_IQ(0.6))

#elif (USER_MOTOR == Teknic_M2310PLN04K)
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (0.3918252)
#define USER_MOTOR_Ls_d                 (0.00023495)
#define USER_MOTOR_Ls_q                 (0.00023495)
#define USER_MOTOR_RATED_FLUX           (0.03955824)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (1.0)
#define USER_MOTOR_IND_EST_CURRENT      (-0.5)
#define USER_MOTOR_MAX_CURRENT          (7.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)

#elif (USER_MOTOR == Belt_Drive_Washer_IPM)
#define USER_MOTOR_TYPE                 MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS       (4)
#define USER_MOTOR_Rr                   (NULL)
#define USER_MOTOR_Rs                   (2.832002)
#define USER_MOTOR_Ls_d                 (0.0115)
#define USER_MOTOR_Ls_q                 (0.0135)
#define USER_MOTOR_RATED_FLUX           (0.5022156)
#define USER_MOTOR_MAGNETIZING_CURRENT  (NULL)
#define USER_MOTOR_RES_EST_CURRENT      (1.0)
#define USER_MOTOR_IND_EST_CURRENT      (-1.0)
#define USER_MOTOR_MAX_CURRENT          (4.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz     (20.0)

#elif (USER_MOTOR == Marathon_5K33GN2A)                      // Name must match the motor #define
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (.02064561)
#define USER_MOTOR_Rs (9.171844)
#define USER_MOTOR_Ls_d (.00753362)
#define USER_MOTOR_Ls_q (.00753362)
#define USER_MOTOR_RATED_FLUX (0.8165*415.0/50.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (.9999)
#define USER_MOTOR_RES_EST_CURRENT (.5)
#define USER_MOTOR_IND_EST_CURRENT (NULL)
#define USER_MOTOR_MAX_CURRENT (2.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

#elif (USER_MOTOR == MY_MOTOR)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (5)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (.215310246)
#define USER_MOTOR_Ls_d (2.5940768e-05)
#define USER_MOTOR_Ls_q (2.5940768e-05)
#define USER_MOTOR_RATED_FLUX (.143120214)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (6.0)
#define USER_MOTOR_IND_EST_CURRENT (-6.0)
#define USER_MOTOR_MAX_CURRENT (14)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (40.0)

#define USER_MOTOR_FREQ_LOW				(20.0)			// Hz - suggested to set to 10% of rated motor frequency
#define USER_MOTOR_FREQ_HIGH			(100.0)			// Hz - suggested to set to 100% of rated motor frequency
#define USER_MOTOR_FREQ_MAX				(120.0)			// Hz - suggested to set to 120% of rated motor frequency
#define USER_MOTOR_VOLT_MIN				(20)			// Volt - suggested to set to 15% of rated motor voltage
#define USER_MOTOR_VOLT_MAX				(100)			// Volt - suggested to set to 100% of rated motor voltage



#else
#error No motor type specified
#endif

#ifdef __cplusplus
}
#endif // extern "C"

//@} // ingroup
#endif // end of _USER_J1_H_ definition

  • Have you tried labs 1b and 1c for your custom board? These labs are scalar control labs designed to test your hardware integrity, but they can also help us debug where an issue may be, perhaps in your feedback network. Do you have correct polarity for commanded IqRef?

    Sean
  • Use lab02c to identify the motor parameters first, and to check the current/voltage sampling circuit also. the current/voltage sampling works well if the identified motor parameters are correct. If no, you can't go to next step, the motor will not run well.
    What lab project are you working on? The reference speed (gMotorVars.SpeedRef_krpm) is set by yourself, it's your target speed for motor.
  • thank you for your reply Sean Bigley,
    how can i ensure that the commanded IqRef value is correct?
    We tried lab1b and the motor is not running .When we changed the slope value in the debugging window it is running smoothly,
    then we tried running the lab1c and the motor is not running properly.It is showing the correct dc bus value in debugging window.But the speed is not changing based on the commanded reference speed.
  • Thank you for your reply Yanming,
    we identified the motor parameters using TI boostxldrv8301 inverter,actually we don't have correct motor name plate ,
    using the boostxl inverter we were able to run the motor in closed loop.
    when we are using our own inverter for parameter identification we are getting different motor parameters.Based on the identified parameters the motor is not able to run.
    The hardware is working fine it has 3 phase voltage sensing and 3 phase current sensing.
    we have adc reading of 1.63v at 0A.And the voltage divider can sense 112V maximum.
    The voltage divider consist of 66.5K,2K and .1uf .I have calculated the filter pole and it is 811.
    We are trying to run the motor with 48V ,120A battery.
    We are working on the lab2c.The speed is commanded through the debugging window.
  • It seems like the feedback circuitry is not providing the correct voltage and current back to the MCU if you are not able to correctly ID the motor using lab2c. Have you consulted the InstaSPIN User's Guide section 5.2 regarding hardware design and filter pole settings?

    www.ti.com/.../spruhj1g.pdf

    Sean
  • we have designed our hardware based on this user guide.we have the filterpole value 811 will that be a problem?
    how can i check whether the feedback 3 phase voltage and current values are correct from the debugging window?
    we are getting the correct dc bus value in the debugging window.
    Thank you
  • You can use the Registers window to read the ADCRESULT registers to see the values of Ia,b,c and Va,b,c

    Sean
  • while identifying the motor parameters we are getting correct value of Rs.But the inductance value is wrong. what can be the problem?
  • Did the motor run smoothly during the Ls and Flux identification state? If no, adjust USER_MOTOR_RES_EST_CURRENT, USER_MOTOR_IND_EST_CURRENT, and USER_MOTOR_FLUX_EST_FREQ_Hz in user.h. If the motor can't run well though you had adjusted these 3 values many times, you have to back checking the current/voltage feedback circuit to ensure the signal is clear, and the USER_VOLTAGE_FILTER_POLE_Hz is correct for your circuit.
  • during the Ls identification the motor stops,during all other processes the motor runs smoothly.

    We tried running the motor with our own hardware based on the parameters obtained from the boostxl drv8301.
    At low speeds the motor oscillates back and forth(less than .3 Krpm),At high speeds it is running smoothly(above .3 Krpm).How can i run the motor at low speed??
  • At very low speed, it is difficult to obtain a reliable back-EMF signal since the feedback is quite weak. You'll need to ensure you have clean feedback presented to the MCU, free from as much noise as possible, so that InstaSPIN can extrapolate the angle based on the voltage and current.

    Sean
  • So will this problem solved by integrating sine cosine encoder with the launchpad?we have sine cosine encoder in our PMSM motor,how to integrate the sine cosine encoder to the current motion projects in motorware?.We couldn't find any library to integrate the sine cosine encoder in motorware.