Tool/software: Code Composer Studio
Hi,
I am trying to sample two ADC channels (A0 and B0) simultaneously. I plan to perform FFT in the future to measure frequencies, so I need to know my exact sampling frequency. I toggle GPIO37 and monitor it on an oscilloscope whenever the sequence interrupt flag is set.
According to my understanding, I should observe the GPIO toggle after every 10.2 ms. However, the oscilloscope shows that the GPIO is toggling after every ~15 ms. Is there something that I am missing in my calculations?
The code is listed below:
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
//
// Defines for ADC start parameters
//
#if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT
//
// HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
//
#define ADC_MODCLK 0x3
#endif
#if (CPU_FRQ_100MHZ)
//
// HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
//
#define ADC_MODCLK 0x2
#endif
//
// ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(2*15) = 833.333 kHz
//
#define ADC_CKPS 0xf
#define ADC_SHCLK 0xa // S/H width in ADC module periods: 0xa = 11 ADC clocks + 1 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 2048 // Sample buffer size
//
// Globals
//
Uint16 SampleTable[BUF_SIZE];
//
// Main
//
void main(void)
{
Uint16 i;
//
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
//
InitSysCtrl();
//
// Specific clock setting for this example
//
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
EALLOW;
GpioCtrlRegs.GPBMUX1.bit.GPIO37 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO37 = 1;
EDIS;
//
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
//
DINT;
//
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
//
InitPieCtrl();
//
// Disable CPU interrupts and clear all CPU interrupt flags
//
IER = 0x0000;
IFR = 0x0000;
//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
//
InitPieVectTable();
InitAdc(); // For this example, init the ADC
//
// Specific ADC setup for this example:
//
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; // load sample and hold delay value
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS; // load ADC clock divider value
AdcRegs.ADCTRL3.bit.SMODE_SEL = 0x1; // Setup simultaneous sampling mode
AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // 1 = Cascaded mode
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup conversion from ADCINA0 & ADCINB0
AdcRegs.ADCTRL1.bit.CONT_RUN = 1; // Setup continuous run
//
// Clear SampleTable
//
for (i=0; i<BUF_SIZE; i++)
{
SampleTable[i] = 0;
}
//
// Start SEQ1
//
AdcRegs.ADCTRL2.all = 0x2000;
//
// Take ADC data and log the in SampleTable array
//
for(;;)
{
for (i=0; i<AVG; i+2) // increase counter by 2 since we are logging channels A0 and B0
{
//
// Wait for interrupt. The data for both channels will be available after duration of S/H
// clocks and five additional clocks. Picking up data directly from 0x0B00 and 0x0B01 may
// speed up the process and remove the requirement for right-shifting of data.
//
while (AdcRegs.ADCST.bit.INT_SEQ1== 0)
{
}
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear sequence 1 interrupt flag
GpioDataRegs.GPBTOGGLE.bit.GPIO37 = 1; // toggle GPIO37. (at the current settings toggle may occur: every 12+5 ADC clocks or ~10.2 ms)
SampleTable[i] =((AdcRegs.ADCRESULT0>>4) ); // move result from channel A0 into odd field of array
SampleTable[i+1] =((AdcRegs.ADCRESULT1>>4) ); // move result from channel B0 into even field of array
}
}
}

