Hello,
I am trying to communicate two F28379d launchpads using CAN for example can_ex3_external_transmit.
I followed this advice from one of the thread,
"In Launchpad, GPIO12 and GPIO17 have direct connections to the CAN transceiver. This means that the CANB should be used in the can_ex3_external_transmit_code. Value for DEVICE_GPIO_CFG_CANRXB should be changed to GPIO_17_CANRXB and DEVICE_GPIO_CFG_CANTXB to GPIO_12_CANTXB. On the first Launchpad you need to modify the example code so that CANB will be transmitting and you can remove the ISR for the receive routines (essentially remove references and functions pertaining to CANB and replace references and functions on CANA to CANB on the ex3 sample code). On the second Launchpad, you just need to delete references and functions on CANA. The ex3 sample code is already has an ISR set for CANB to receive data from the CAN bus".
Updated the code accordingly but no luck. Please advice me in this matter.
Regards,
Sohail
Here is code:
for transmission:
//#############################################################################
//
// FILE: can_ex3_external_transmit.c
//
// TITLE: CAN External Transmit Example
//
//! \addtogroup driver_example_list
//! <h1> CAN-A to CAN-B External Transmit </h1>
//!
//! This example initializes CAN module A and CAN module B for external
//! communication. CAN-A module is setup to transmit incrementing data for "n"
//! number of times to the CAN-B module, where "n" is the value of TXCOUNT.
//! CAN-B module is setup to trigger an interrupt service routine (ISR) when
//! data is received. An error flag will be set if the transmitted data doesn't
//! match the received data.
//!
//! \note Both CAN modules on the device need to be
//! connected to each other via CAN transceivers. GPIOs will be different
//! on Launchpad.
//!
//! \b Hardware \b Required \n
//! - A C2000 board with two CAN transceivers
//!
//! \b External \b Connections \n
//! - ControlCARD CANA is on GPIO31 (CANTXA) and GPIO30 (CANRXA)
//! - ControlCARD CANB is on GPIO8 (CANTXB) and GPIO10 (CANRXB)
//!
//! \b Watch \b Variables \n
//! - TXCOUNT - Adjust to set the number of messages to be transmitted
//! - txMsgCount - A counter for the number of messages sent
//! - rxMsgCount - A counter for the number of messages received
//! - txMsgData - An array with the data being sent
//! - rxMsgData - An array with the data that was received
//! - errorFlag - A flag that indicates an error has occurred
//!
//
//#############################################################################
// $TI Release: F2837xD Support Library v3.05.00.00 $
// $Release Date: Thu Oct 18 15:48:42 CDT 2018 $
// $Copyright:
// Copyright (C) 2013-2018 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//#############################################################################
//
// Included Files
//
#include "driverlib.h"
#include "device.h"
//
// Defines
//
#define TXCOUNT 100
#define MSG_DATA_LENGTH 4
#define TX_MSG_OBJ_ID 1
#define RX_MSG_OBJ_ID 1
//
// Globals
//
volatile unsigned long i;
volatile uint32_t txMsgCount = 0;
volatile uint32_t rxMsgCount = 0;
volatile uint32_t errorFlag = 0;
uint16_t txMsgData[4];
uint16_t rxMsgData[4];
//
// Function Prototypes
//
__interrupt void canbISR(void);
//
// Main
//
void main(void)
{
//
// Initialize device clock and peripherals
//
Device_init();
//
// Initialize GPIO and configure GPIO pins for CANTX/CANRX
// on module A and B
//
Device_initGPIO();
//GPIO_setPinConfig(DEVICE_GPIO_CFG_CANRXA);
//GPIO_setPinConfig(DEVICE_GPIO_CFG_CANTXA);
GPIO_setPinConfig(GPIO_17_CANRXB);
GPIO_setPinConfig(GPIO_12_CANTXB);
//
// Initialize the CAN controllers
//
//CAN_initModule(CANA_BASE);
CAN_initModule(CANB_BASE);
//
// Set up the CAN bus bit rate to 500kHz for each module
// Refer to the Driver Library User Guide for information on how to set
// tighter timing control. Additionally, consult the device data sheet
// for more information about the CAN module clocking.
//
//CAN_setBitRate(CANA_BASE, DEVICE_SYSCLK_FREQ, 500000, 16);
CAN_setBitRate(CANB_BASE, DEVICE_SYSCLK_FREQ, 500000, 16);
//
// Enable interrupts on the CAN B peripheral.
//
//CAN_enableInterrupt(CANB_BASE, CAN_INT_IE0 | CAN_INT_ERROR |
// CAN_INT_STATUS);
//
// Initialize PIE and clear PIE registers. Disables CPU interrupts.
//
Interrupt_initModule();
//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
//
//Interrupt_initVectorTable();
//
// Enable Global Interrupt (INTM) and realtime interrupt (DBGM)
//
EINT;
ERTM;
//
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
// This registers the interrupt handler in PIE vector table.
//
//Interrupt_register(INT_CANB0, &canbISR);
//
// Enable the CAN-B interrupt signal
//
//Interrupt_enable(INT_CANB0);
//CAN_enableGlobalInterrupt(CANB_BASE, CAN_GLOBAL_INT_CANINT0);
//
// Initialize the transmit message object used for sending CAN messages.
// Message Object Parameters:
// CAN Module: A
// Message Object ID Number: 1
// Message Identifier: 0x95555555
// Message Frame: Extended
// Message Type: Transmit
// Message ID Mask: 0x0
// Message Object Flags: None
// Message Data Length: 4 Bytes
//
CAN_setupMessageObject(CANB_BASE, TX_MSG_OBJ_ID, 0x95555555,
CAN_MSG_FRAME_EXT, CAN_MSG_OBJ_TYPE_TX, 0,
CAN_MSG_OBJ_NO_FLAGS, MSG_DATA_LENGTH);
//
// Initialize the receive message object used for receiving CAN messages.
// Message Object Parameters:
// CAN Module: B
// Message Object ID Number: 1
// Message Identifier: 0x95555555
// Message Frame: Extended
// Message Type: Receive
// Message ID Mask: 0x0
// Message Object Flags: Receive Interrupt
// Message Data Length: 4 Bytes
//
/*CAN_setupMessageObject(CANB_BASE, RX_MSG_OBJ_ID, 0x95555555,
CAN_MSG_FRAME_EXT, CAN_MSG_OBJ_TYPE_RX, 0,
CAN_MSG_OBJ_RX_INT_ENABLE, MSG_DATA_LENGTH);*/
//
// Initialize the transmit message object data buffer to be sent
//
txMsgData[0] = 0x12;
txMsgData[1] = 0x34;
txMsgData[2] = 0x56;
txMsgData[3] = 0x78;
//
// Start CAN module A and B operations
//
//CAN_startModule(CANA_BASE);
CAN_startModule(CANB_BASE);
//
// Transmit messages from CAN-A to CAN-B
//
for(i = 0; i < TXCOUNT; i++)
{
//
// Check the error flag to see if errors occurred
//
if(errorFlag)
{
asm(" ESTOP0");
}
//
// Verify that the number of transmitted messages equal the number of
// messages received before sending a new message
//
if(txMsgCount == rxMsgCount)
{
CAN_sendMessage(CANB_BASE, TX_MSG_OBJ_ID, MSG_DATA_LENGTH,
txMsgData);
txMsgCount++;
}
else
{
errorFlag = 1;
}
//
// Delay 0.25 second before continuing
//
DEVICE_DELAY_US(250000);
//
// Increment the value in the transmitted message data.
//
txMsgData[0] += 0x01;
txMsgData[1] += 0x01;
txMsgData[2] += 0x01;
txMsgData[3] += 0x01;
//
// Reset data if exceeds a byte
//
if(txMsgData[0] > 0xFF)
{
txMsgData[0] = 0;
}
if(txMsgData[1] > 0xFF)
{
txMsgData[1] = 0;
}
if(txMsgData[2] > 0xFF)
{
txMsgData[2] = 0;
}
if(txMsgData[3] > 0xFF)
{
txMsgData[3] = 0;
}
}
//
// Stop application
//
asm(" ESTOP0");
}
//
// CAN B ISR - The interrupt service routine called when a CAN interrupt is
// triggered on CAN module B.
//
/*__interrupt void
canbISR(void)
{
uint32_t status;
//
// Read the CAN-B interrupt status to find the cause of the interrupt
//
status = CAN_getInterruptCause(CANB_BASE);
//
// If the cause is a controller status interrupt, then get the status
//
if(status == CAN_INT_INT0ID_STATUS)
{
//
// Read the controller status. This will return a field of status
// error bits that can indicate various errors. Error processing
// is not done in this example for simplicity. Refer to the
// API documentation for details about the error status bits.
// The act of reading this status will clear the interrupt.
//
status = CAN_getStatus(CANB_BASE);
//
// Check to see if an error occurred.
//
if(((status & ~(CAN_STATUS_RXOK)) != CAN_STATUS_LEC_MSK) &&
((status & ~(CAN_STATUS_RXOK)) != CAN_STATUS_LEC_NONE))
{
//
// Set a flag to indicate some errors may have occurred.
//
errorFlag = 1;
}
}
//
// Check if the cause is the CAN-B receive message object 1
//
else if(status == RX_MSG_OBJ_ID)
{
//
// Get the received message
//
CAN_readMessage(CANB_BASE, RX_MSG_OBJ_ID, rxMsgData);
//
// Getting to this point means that the RX interrupt occurred on
// message object 1, and the message RX is complete. Clear the
// message object interrupt.
//
CAN_clearInterruptStatus(CANB_BASE, RX_MSG_OBJ_ID);
//
// Increment a counter to keep track of how many messages have been
// received. In a real application this could be used to set flags to
// indicate when a message is received.
//
rxMsgCount++;
//
// Since the message was received, clear any error flags.
//
errorFlag = 0;
}
//
// If something unexpected caused the interrupt, this would handle it.
//
else
{
//
// Spurious interrupt handling can go here.
//
}
//
// Clear the global interrupt flag for the CAN interrupt line
//
CAN_clearGlobalInterruptStatus(CANB_BASE, CAN_GLOBAL_INT_CANINT0);
//
// Acknowledge this interrupt located in group 9
//
Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9);
}
*/
//
// End of File
//
for receiving data:
//#############################################################################
//
// FILE: can_ex3_external_transmit.c
//
// TITLE: CAN External Transmit Example
//
//! \addtogroup driver_example_list
//! <h1> CAN-A to CAN-B External Transmit </h1>
//!
//! This example initializes CAN module A and CAN module B for external
//! communication. CAN-A module is setup to transmit incrementing data for "n"
//! number of times to the CAN-B module, where "n" is the value of TXCOUNT.
//! CAN-B module is setup to trigger an interrupt service routine (ISR) when
//! data is received. An error flag will be set if the transmitted data doesn't
//! match the received data.
//!
//! \note Both CAN modules on the device need to be
//! connected to each other via CAN transceivers. GPIOs will be different
//! on Launchpad.
//!
//! \b Hardware \b Required \n
//! - A C2000 board with two CAN transceivers
//!
//! \b External \b Connections \n
//! - ControlCARD CANA is on GPIO31 (CANTXA) and GPIO30 (CANRXA)
//! - ControlCARD CANB is on GPIO8 (CANTXB) and GPIO10 (CANRXB)
//!
//! \b Watch \b Variables \n
//! - TXCOUNT - Adjust to set the number of messages to be transmitted
//! - txMsgCount - A counter for the number of messages sent
//! - rxMsgCount - A counter for the number of messages received
//! - txMsgData - An array with the data being sent
//! - rxMsgData - An array with the data that was received
//! - errorFlag - A flag that indicates an error has occurred
//!
//
//#############################################################################
// $TI Release: F2837xD Support Library v3.05.00.00 $
// $Release Date: Thu Oct 18 15:48:42 CDT 2018 $
// $Copyright:
// Copyright (C) 2013-2018 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//#############################################################################
//
// Included Files
//
#include "driverlib.h"
#include "device.h"
//
// Defines
//
#define TXCOUNT 100
#define MSG_DATA_LENGTH 4
#define TX_MSG_OBJ_ID 1
#define RX_MSG_OBJ_ID 1
//
// Globals
//
volatile unsigned long i;
volatile uint32_t txMsgCount = 0;
volatile uint32_t rxMsgCount = 0;
volatile uint32_t errorFlag = 0;
uint16_t txMsgData[4];
uint16_t rxMsgData[4];
//
// Function Prototypes
//
__interrupt void canbISR(void);
//
// Main
//
void main(void)
{
//
// Initialize device clock and peripherals
//
Device_init();
//
// Initialize GPIO and configure GPIO pins for CANTX/CANRX
// on module A and B
//
Device_initGPIO();
//GPIO_setPinConfig(DEVICE_GPIO_CFG_CANRXA);
//GPIO_setPinConfig(DEVICE_GPIO_CFG_CANTXA);
GPIO_setPinConfig(GPIO_17_CANRXB);
GPIO_setPinConfig(GPIO_12_CANTXB);
//
// Initialize the CAN controllers
//
//CAN_initModule(CANA_BASE);
CAN_initModule(CANB_BASE);
//
// Set up the CAN bus bit rate to 500kHz for each module
// Refer to the Driver Library User Guide for information on how to set
// tighter timing control. Additionally, consult the device data sheet
// for more information about the CAN module clocking.
//
//CAN_setBitRate(CANA_BASE, DEVICE_SYSCLK_FREQ, 500000, 16);
CAN_setBitRate(CANB_BASE, DEVICE_SYSCLK_FREQ, 500000, 16);
//
// Enable interrupts on the CAN B peripheral.
//
//CAN_enableInterrupt(CANB_BASE, CAN_INT_IE0 | CAN_INT_ERROR |
// CAN_INT_STATUS);
//
// Initialize PIE and clear PIE registers. Disables CPU interrupts.
//
Interrupt_initModule();
//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
//
Interrupt_initVectorTable();
//
// Enable Global Interrupt (INTM) and realtime interrupt (DBGM)
//
EINT;
ERTM;
//
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
// This registers the interrupt handler in PIE vector table.
//
//Interrupt_register(INT_CANB0, &canbISR);
//
// Enable the CAN-B interrupt signal
//
//Interrupt_enable(INT_CANB0);
//CAN_enableGlobalInterrupt(CANB_BASE, CAN_GLOBAL_INT_CANINT0);
//
// Initialize the transmit message object used for sending CAN messages.
// Message Object Parameters:
// CAN Module: A
// Message Object ID Number: 1
// Message Identifier: 0x95555555
// Message Frame: Extended
// Message Type: Transmit
// Message ID Mask: 0x0
// Message Object Flags: None
// Message Data Length: 4 Bytes
//
/*CAN_setupMessageObject(CANA_BASE, TX_MSG_OBJ_ID, 0x95555555,
CAN_MSG_FRAME_EXT, CAN_MSG_OBJ_TYPE_TX, 0,
CAN_MSG_OBJ_NO_FLAGS, MSG_DATA_LENGTH);*/
//
// Initialize the receive message object used for receiving CAN messages.
// Message Object Parameters:
// CAN Module: B
// Message Object ID Number: 1
// Message Identifier: 0x95555555
// Message Frame: Extended
// Message Type: Receive
// Message ID Mask: 0x0
// Message Object Flags: Receive Interrupt
// Message Data Length: 4 Bytes
//
CAN_setupMessageObject(CANB_BASE, RX_MSG_OBJ_ID, 0x95555555,
CAN_MSG_FRAME_EXT, CAN_MSG_OBJ_TYPE_RX, 0,
CAN_MSG_OBJ_RX_INT_ENABLE, MSG_DATA_LENGTH);
//
// Initialize the transmit message object data buffer to be sent
//
txMsgData[0] = 0x12;
txMsgData[1] = 0x34;
txMsgData[2] = 0x56;
txMsgData[3] = 0x78;
//
// Start CAN module A and B operations
//
//CAN_startModule(CANA_BASE);
CAN_startModule(CANB_BASE);
//
// Transmit messages from CAN-A to CAN-B
//
/*for(i = 0; i < TXCOUNT; i++)
{
//
// Check the error flag to see if errors occurred
//
if(errorFlag)
{
asm(" ESTOP0");
}
//
// Verify that the number of transmitted messages equal the number of
// messages received before sending a new message
//
if(txMsgCount == rxMsgCount)
{
CAN_sendMessage(CANA_BASE, TX_MSG_OBJ_ID, MSG_DATA_LENGTH,
txMsgData);
txMsgCount++;
}
else
{
errorFlag = 1;
}
//
// Delay 0.25 second before continuing
//
DEVICE_DELAY_US(250000);
//
// Increment the value in the transmitted message data.
//
txMsgData[0] += 0x01;
txMsgData[1] += 0x01;
txMsgData[2] += 0x01;
txMsgData[3] += 0x01;
//
// Reset data if exceeds a byte
//
if(txMsgData[0] > 0xFF)
{
txMsgData[0] = 0;
}
if(txMsgData[1] > 0xFF)
{
txMsgData[1] = 0;
}
if(txMsgData[2] > 0xFF)
{
txMsgData[2] = 0;
}
if(txMsgData[3] > 0xFF)
{
txMsgData[3] = 0;
}
}*/
//
// Stop application
//
asm(" ESTOP0");
}
//
// CAN B ISR - The interrupt service routine called when a CAN interrupt is
// triggered on CAN module B.
//
__interrupt void
canbISR(void)
{
uint32_t status;
//
// Read the CAN-B interrupt status to find the cause of the interrupt
//
status = CAN_getInterruptCause(CANB_BASE);
//
// If the cause is a controller status interrupt, then get the status
//
if(status == CAN_INT_INT0ID_STATUS)
{
//
// Read the controller status. This will return a field of status
// error bits that can indicate various errors. Error processing
// is not done in this example for simplicity. Refer to the
// API documentation for details about the error status bits.
// The act of reading this status will clear the interrupt.
//
status = CAN_getStatus(CANB_BASE);
//
// Check to see if an error occurred.
//
if(((status & ~(CAN_STATUS_RXOK)) != CAN_STATUS_LEC_MSK) &&
((status & ~(CAN_STATUS_RXOK)) != CAN_STATUS_LEC_NONE))
{
//
// Set a flag to indicate some errors may have occurred.
//
errorFlag = 1;
}
}
//
// Check if the cause is the CAN-B receive message object 1
//
else if(status == RX_MSG_OBJ_ID)
{
//
// Get the received message
//
CAN_readMessage(CANB_BASE, RX_MSG_OBJ_ID, rxMsgData);
//
// Getting to this point means that the RX interrupt occurred on
// message object 1, and the message RX is complete. Clear the
// message object interrupt.
//
CAN_clearInterruptStatus(CANB_BASE, RX_MSG_OBJ_ID);
//
// Increment a counter to keep track of how many messages have been
// received. In a real application this could be used to set flags to
// indicate when a message is received.
//
rxMsgCount++;
//
// Since the message was received, clear any error flags.
//
errorFlag = 0;
}
//
// If something unexpected caused the interrupt, this would handle it.
//
else
{
//
// Spurious interrupt handling can go here.
//
}
//
// Clear the global interrupt flag for the CAN interrupt line
//
CAN_clearGlobalInterruptStatus(CANB_BASE, CAN_GLOBAL_INT_CANINT0);
//
// Acknowledge this interrupt located in group 9
//
Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9);
}
//
// End of File
//