Other Parts Discussed in Thread: TMS570LS0714, C2000WARE
Tool/software: Code Composer Studio
Hi,
When I tried communicating with TMS570LS0714 via CAN communication, Both the controller were unable to receive the message, but it can able to transmit the message.
My controller set bit rate is 500kHz. But when I calculated the bit time using the oscilloscope, it is only 10 uS (100KHz). How to set bit rate to 500 KHz. But the other contoller (TMS570LS0714) works at set bit rate i.e 500KHz.
Also I am getting error and status interrupt (0x8000U). I want to know why I am getting this type interrupt. How to avoid error and status interrupt?
//############################################################################# // // FILE: can_ex2_loopback_interrupts.c // // TITLE: CAN External Loopback with Interrupts Example // //! \addtogroup driver_example_list //! <h1> CAN External Loopback with Interrupts </h1> //! //! This example shows the basic setup of CAN in order to transmit and receive //! messages on the CAN bus. The CAN peripheral is configured to transmit //! messages with a specific CAN ID. A mAessage is then transmitted once per //! second, using a simple delay loop for timing. The message that is sent is //! a 4 byte message that contains an incrementing pattern. A CAN interrupt //! handler is used to confirm message transmission and count the number of //! messages that have been sent. //! //! This example sets up the CAN controller in External Loopback test mode. //! Data transmitted is visible on the CANTXA pin and is received internally //! back to the CAN Core. Please refer to details of the External Loopback //! Test Mode in the CAN Chapter in the Technical Reference Manual. //! //! \b External \b Connections \n //! - None. //! //! \b Watch \b Variables \n //! - txMsgCount - A counter for the number of messages sent //! - rxMsgCount - A counter for the number of messages received //! - txMsgData - An array with the data being sent //! - rxMsgData - An array with the data that was received //! - errorFlag - A flag that indicates an error has occurred //! // //############################################################################# // $TI Release: F28002x Support Library v3.02.00.00 $ // $Release Date: Tue May 26 17:23:28 IST 2020 $ // $Copyright: // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // $ //############################################################################# // // Included Files // #include "driverlib.h" #include "device.h" // // Defines // #define MSG_DATA_LENGTH 4 #define TX_MSG_OBJ_ID 1 #define RX_MSG_OBJ_ID 2 // // Globals // volatile uint32_t txMsgCount = 0; volatile uint32_t rxMsgCount = 0; volatile uint32_t errorFlag = 0; uint16_t txMsgData[4]; uint16_t rxMsgData[4]; // // Function Prototypes // __interrupt void canISR(void); // // Main // void main(void) { // // Initialize device clock and peripherals // Device_init(); // // Initialize GPIO and configure GPIO pins for CANTX/CANRX // Device_initGPIO(); GPIO_setPinConfig(DEVICE_GPIO_CFG_CANRXA); GPIO_setPinConfig(DEVICE_GPIO_CFG_CANTXA); // // Initialize the CAN controller // CAN_initModule(CANA_BASE); // // Set up the CAN bus bit rate to 500kHz // Refer to the Driver Library User Guide for information on how to set // tighter timing control. Additionally, consult the device data sheet // for more information about the CAN module clocking. // CAN_setBitRate(CANA_BASE, DEVICE_SYSCLK_FREQ, 500000, 8); // // Enable interrupts on the CAN peripheral. // CAN_enableInterrupt(CANA_BASE, CAN_INT_IE0 | CAN_INT_ERROR | CAN_INT_STATUS); // // Initialize PIE and clear PIE registers. Disables CPU interrupts. // Interrupt_initModule(); // // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // Interrupt_initVectorTable(); // // Enable Global Interrupt (INTM) and realtime interrupt (DBGM) // EINT; ERTM; // // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. // This registers the interrupt handler in PIE vector table. // Interrupt_register(INT_CANA0, &canISR); // // Enable the CAN interrupt signal // Interrupt_enable(INT_CANA0); CAN_enableGlobalInterrupt(CANA_BASE, CAN_GLOBAL_INT_CANINT0); // // Enable CAN test mode with external loopback // //CAN_enableTestMode(CANA_BASE, CAN_TEST_EXL); // // Initialize the transmit message object used for sending CAN messages. // Message Object Parameters: // Message Object ID Number: 1 // Message Identifier: 0x1 // Message Frame: Standard // Message Type: Transmit // Message ID Mask: 0x0 // Message Object Flags: Transmit Interrupt // Message Data Length: 4 Bytes // CAN_setupMessageObject(CANA_BASE, TX_MSG_OBJ_ID, 0x1, CAN_MSG_FRAME_STD, CAN_MSG_OBJ_TYPE_TX, 0, CAN_MSG_OBJ_TX_INT_ENABLE, MSG_DATA_LENGTH); // // Initialize the receive message object used for receiving CAN messages. // Message Object Parameters: // Message Object ID Number: 2 // Message Identifier: 0x2 // Message Frame: Standard // Message Type: Receive // Message ID Mask: 0x0 // Message Object Flags: Receive Interrupt // Message Data Length: 4 Bytes // CAN_setupMessageObject(CANA_BASE, RX_MSG_OBJ_ID, 0x2, CAN_MSG_FRAME_STD, CAN_MSG_OBJ_TYPE_RX, 0, CAN_MSG_OBJ_RX_INT_ENABLE | CAN_MSG_OBJ_USE_ID_FILTER, MSG_DATA_LENGTH); // // Initialize the transmit message object data buffer to be sent // txMsgData[0] = 0x12; txMsgData[1] = 0x34; txMsgData[2] = 0x56; txMsgData[3] = 0x78; // // Start CAN module operations // CAN_startModule(CANA_BASE); // // Loop Forever - A new message will be sent once per second. // for(;;) { // // Check the error flag to see if errors occurred // if(errorFlag) { asm(" ESTOP0"); } // // Verify that the number of transmitted messages equal the number of // messages received before sending a new message // if(txMsgCount == rxMsgCount) { CAN_sendMessage(CANA_BASE, TX_MSG_OBJ_ID, MSG_DATA_LENGTH, txMsgData); } else { errorFlag = 1; } // // Delay 1 second before continuing // DEVICE_DELAY_US(1000000); // // Increment the value in the transmitted message data. // txMsgData[0] += 0x01; txMsgData[1] += 0x01; txMsgData[2] += 0x01; txMsgData[3] += 0x01; // // Reset data if exceeds a byte // if(txMsgData[0] > 0xFF) { txMsgData[0] = 0; } if(txMsgData[1] > 0xFF) { txMsgData[1] = 0; } if(txMsgData[2] > 0xFF) { txMsgData[2] = 0; } if(txMsgData[3] > 0xFF) { txMsgData[3] = 0; } } } // // CAN ISR - The interrupt service routine called when a CAN interrupt is // triggered. It checks for the cause of the interrupt, and // maintains a count of all messages that have been transmitted. // __interrupt void canISR(void) { uint32_t status; // // Read the CAN interrupt status to find the cause of the interrupt // status = CAN_getInterruptCause(CANA_BASE); // // If the cause is a controller status interrupt, then get the status // if(status == CAN_INT_INT0ID_STATUS) { // // Read the controller status. This will return a field of status // error bits that can indicate various errors. Error processing // is not done in this example for simplicity. Refer to the // API documentation for details about the error status bits. // The act of reading this status will clear the interrupt. // status = CAN_getStatus(CANA_BASE); // // Check to see if an error occurred. // if(((status & ~(CAN_STATUS_TXOK | CAN_STATUS_RXOK)) != 7) && ((status & ~(CAN_STATUS_TXOK | CAN_STATUS_RXOK)) != 0)) { // // Set a flag to indicate some errors may have occurred. // errorFlag = 1; } } // // Check if the cause is the transmit message object 1 // else if(status == TX_MSG_OBJ_ID) { // // Getting to this point means that the TX interrupt occurred on // message object 1, and the message TX is complete. Clear the // message object interrupt. // CAN_clearInterruptStatus(CANA_BASE, TX_MSG_OBJ_ID); // // Increment a counter to keep track of how many messages have been // sent. In a real application this could be used to set flags to // indicate when a message is sent. // txMsgCount++; // // Since the message was sent, clear any error flags. // errorFlag = 0; } // // Check if the cause is the receive message object 2 // else if(status == RX_MSG_OBJ_ID) { // // Get the received message // CAN_readMessage(CANA_BASE, RX_MSG_OBJ_ID, rxMsgData); // // Getting to this point means that the RX interrupt occurred on // message object 2, and the message RX is complete. Clear the // message object interrupt. // CAN_clearInterruptStatus(CANA_BASE, RX_MSG_OBJ_ID); // // Increment a counter to keep track of how many messages have been // received. In a real application this could be used to set flags to // indicate when a message is received. // rxMsgCount++; // // Since the message was received, clear any error flags. // errorFlag = 0; } // // If something unexpected caused the interrupt, this would handle it. // else { // // Spurious interrupt handling can go here. // } // // Clear the global interrupt flag for the CAN interrupt line // CAN_clearGlobalInterruptStatus(CANA_BASE, CAN_GLOBAL_INT_CANINT0); // // Acknowledge this interrupt located in group 9 // Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9); } // // End of File //
Note: My board XTAL frequency is 16 MHz. So system clock frequency is 80 MHz.
What is CAN bit clock frequency?
// Defines related to clock configuration
//
//*****************************************************************************
//
// 20MHz XTAL on controlCARD. For use with SysCtl_getClock().
//
#define DEVICE_OSCSRC_FREQ 16000000U // (16 MHz XTAL)
//
// Define to pass to SysCtl_setClock(). Will configure the clock as follows:
// PLLSYSCLK = 20MHz (XTAL_OSC) * 30 (IMULT) / (2 (REFDIV) * 3 (ODIV) * 1(SYSDIV))
//
#define DEVICE_SETCLOCK_CFG (SYSCTL_OSCSRC_XTAL | SYSCTL_IMULT(30) | \
SYSCTL_REFDIV(2) | SYSCTL_ODIV(3) | \
SYSCTL_SYSDIV(1) | SYSCTL_PLL_ENABLE | \
SYSCTL_DCC_BASE_0)
//
// 100MHz SYSCLK frequency based on the above DEVICE_SETCLOCK_CFG. Update the
// code below if a different clock configuration is used!
//
#define DEVICE_SYSCLK_FREQ ((DEVICE_OSCSRC_FREQ * 30) / (2 * 3 * 1)) // (80 MHz)
//
// 25MHz LSPCLK frequency based on the above DEVICE_SYSCLK_FREQ and a default
// low speed peripheral clock divider of 4. Update the code below if a
// different LSPCLK divider is used!
//
#define DEVICE_LSPCLK_FREQ (DEVICE_SYSCLK_FREQ / 4)
Kindly check my CAN_setBitRate function.
Sets the CAN Bit Timing based on requested Bit Rate.
//!
//! \param base - CANA BASE.
//! \param clock - DEVICE_SYSCLK_FREQ which is 80MHz
//! \param bitRate - 500000
//! \param bitTime - 8
void
CAN_setBitRate(uint32_t base, uint32_t clock, uint32_t bitRate,
uint16_t bitTime)
{
uint16_t brp;
uint16_t tPhase;
uint16_t phaseSeg2;
uint16_t tSync = 1U;
uint16_t tProp = 2U;
uint16_t tSeg1;
uint16_t tSeg2;
uint16_t sjw;
uint16_t prescaler;
uint16_t prescalerExtension;
//
// Check the arguments.
//
ASSERT(CAN_isBaseValid(base));
ASSERT((bitTime > 7U) && (bitTime < 26U));
ASSERT(bitRate <= 1000000U);
//
// Calculate bit timing values
//
brp = (uint16_t)(clock / (bitRate * bitTime));
tPhase = bitTime - (tSync + tProp);
if((tPhase / 2U) <= 8U)
{
phaseSeg2 = tPhase / 2U;
}
else
{
phaseSeg2 = 8U;
}
tSeg1 = ((tPhase - phaseSeg2) + tProp) - 1U;
tSeg2 = phaseSeg2 - 1U;
if(phaseSeg2 > 4U)
{
sjw = 3U;
}
else
{
sjw = tSeg2;
}
prescalerExtension = ((brp - 1U) / 64U);
prescaler = ((brp - 1U) % 64U);
//
// Set the calculated timing parameters
//
CAN_setBitTiming(base, prescaler, prescalerExtension, tSeg1, tSeg2, sjw);
}
Whether any changes need to be made.
Regards
Monish P