Other Parts Discussed in Thread: BQSTUDIO
Hi
BQ27441 1-0055: rom_mode_gauge_dm_init: INITCOMP not set after 100 seconds
/*
* BQ27x00 battery driver
*
* Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
* Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
* Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
* Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com>
*
* Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*/
/*
* Datasheets:
* http://focus.ti.com/docs/prod/folders/print/bq27000.html
* http://focus.ti.com/docs/prod/folders/print/bq27500.html
* http://www.ti.com/product/bq27411-g1
* http://www.ti.com/product/bq27421-g1
* http://www.ti.com/product/bq27425-g1
* http://www.ti.com/product/bq27441-g1
*/
#include <linux/module.h>
#include <linux/param.h>
#include <linux/jiffies.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/idr.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include <linux/gpio.h>
#include <linux/power/bq27441_battery.h>
#define DRIVER_VERSION "1.2.0"
#define INVALID_REG_ADDR 0xFF
//#define CHARGE_EN 94
int g_capacity;
enum bq27xxx_reg_index {
BQ27XXX_REG_CTRL = 0,
BQ27XXX_REG_TEMP,
BQ27XXX_REG_INT_TEMP,
BQ27XXX_REG_VOLT,
BQ27XXX_REG_AI,
BQ27XXX_REG_FLAGS,
BQ27XXX_REG_TTE,
BQ27XXX_REG_TTF,
BQ27XXX_REG_TTES,
BQ27XXX_REG_TTECP,
BQ27XXX_REG_NAC,
BQ27XXX_REG_FCC,
BQ27XXX_REG_CYCT,
BQ27XXX_REG_AE,
BQ27XXX_REG_SOC,
BQ27XXX_REG_DCAP,
BQ27XXX_POWER_AVG,
NUM_REGS
};
/* bq27500 registers */
static __initdata u8 bq27500_regs[NUM_REGS] = {
0x00, /* CONTROL */
0x06, /* TEMP */
0xFF, /* INT TEMP -NA */
0x08, /* VOLT */
0x14, /* AVG CURR */
0x0A, /* FLAGS */
0x16, /* TTE */
0x18, /* TTF */
0x1c, /* TTES */
0x26, /* TTECP */
0x0C, /* NAC */
0x12, /* LMD(FCC) */
0x2A, /* CYCT */
0x22, /* AE */
0x2C, /* SOC(RSOC) */
0x3C, /* DCAP(ILMD) */
0x24, /* AP */
};
/* bq27520 registers */
static __initdata u8 bq27520_regs[] = {
0x00, /* CONTROL */
0x06, /* TEMP */
0xFF, /* INT TEMP - NA*/
0x08, /* VOLT */
0x14, /* AVG CURR */
0x0A, /* FLAGS */
0x16, /* TTE */
0x18, /* TTF */
0x1c, /* TTES */
0x26, /* TTECP */
0x0C, /* NAC */
0x12, /* LMD */
0xFF, /* CYCT - NA */
0x22, /* AE */
0x2C, /* SOC(RSOC */
0xFF, /* DCAP(ILMD) - NA */
0x24, /* AP */
};
/* bq2753x registers */
static __initdata u8 bq2753x_regs[] = {
0x00, /* CONTROL */
0x06, /* TEMP */
0xFF, /* INT TEMP - NA*/
0x08, /* VOLT */
0x14, /* AVG CURR */
0x0A, /* FLAGS */
0x16, /* TTE */
0xFF, /* TTF - NA */
0xFF, /* TTES - NA */
0xFF, /* TTECP - NA */
0x0C, /* NAC */
0x12, /* LMD(FCC) */
0x2A, /* CYCT */
0xFF, /* AE - NA */
0x2C, /* SOC(RSOC) */
0xFF, /* DCAP(ILMD) - NA */
0x24, /* AP */
};
/* bq27200 registers */
static __initdata u8 bq27200_regs[NUM_REGS] = {
0x00, /* CONTROL */
0x06, /* TEMP */
0xFF, /* INT TEMP - NA */
0x08, /* VOLT */
0x14, /* AVG CURR */
0x0A, /* FLAGS */
0x16, /* TTE */
0x18, /* TTF */
0x1c, /* TTES */
0x26, /* TTECP */
0x0C, /* NAC */
0x12, /* LMD(FCC) */
0x2A, /* CYCT */
0x22, /* AE */
0x0B, /* SOC(RSOC) */
0x76, /* DCAP(ILMD) */
0x24, /* AP */
};
/* bq274xx registers */
static __initdata u8 bq27441_regs[NUM_REGS] = {
0x00, /* CONTROL */
0x02, /* TEMP */
0x1e, /* INT TEMP */
0x04, /* VOLT */
0x10, /* AVG CURR */
0x06, /* FLAGS */
0xFF, /* TTE - NA */
0xFF, /* TTF - NA */
0xFF, /* TTES - NA */
0xFF, /* TTECP - NA */
0x08, /* NAC */
0x0E, /* FCC */
0xFF, /* CYCT - NA */
0xFF, /* AE - NA */
0x1C, /* SOC */
0x3C, /* DCAP - NA */
0x18, /* AP */
};
/* bq276xx registers - same as bq274xx except CYCT */
static __initdata u8 bq276xx_regs[NUM_REGS] = {
0x00, /* CONTROL */
0x02, /* TEMP */
0x1e, /* INT TEMP */
0x04, /* VOLT */
0x10, /* AVG CURR */
0x06, /* FLAGS */
0xFF, /* TTE - NA */
0xFF, /* TTF - NA */
0xFF, /* TTES - NA */
0xFF, /* TTECP - NA */
0x08, /* NAC */
0x0E, /* FCC */
0x22, /* CYCT */
0xFF, /* AE - NA */
0x1C, /* SOC */
0x3C, /* DCAP - NA */
0x18, /* AP */
};
/*
* SBS Commands for DF access - these are pretty standard
* So, no need to go in the command array
*/
#define BLOCK_DATA_CLASS 0x3E
#define DATA_BLOCK 0x3F
#define BLOCK_DATA 0x40
#define BLOCK_DATA_CHECKSUM 0x60
#define BLOCK_DATA_CONTROL 0x61
/* bq274xx/bq276xx specific command information */
#define BQ27441_UNSEAL_KEY 0x80008000
#define BQ27441_SOFT_RESET 0x43
#define BQ27441_FLAG_ITPOR 0x20
#define BQ27441_CTRL_STATUS_INITCOMP 0x80
#define BQ27XXX_FLAG_DSC BIT(0)
#define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */
#define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */
#define BQ27XXX_FLAG_FC BIT(9)
#define BQ27XXX_FLAG_OTD BIT(14)
#define BQ27XXX_FLAG_OTC BIT(15)
/* BQ27000 has different layout for Flags register */
#define BQ27200_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */
#define BQ27200_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */
#define BQ27200_FLAG_CI BIT(4) /* Capacity Inaccurate flag */
#define BQ27200_FLAG_FC BIT(5)
#define BQ27200_FLAG_CHGS BIT(7) /* Charge state flag */
#define BQ27200_RS 20 /* Resistor sense */
#define BQ27200_POWER_CONSTANT (256 * 29200 / 1000)
/* Subcommands of Control() */
#define CONTROL_STATUS_SUBCMD 0x0000
#define DEV_TYPE_SUBCMD 0x0001
#define FW_VER_SUBCMD 0x0002
#define DF_VER_SUBCMD 0x001F
#define RESET_SUBCMD 0x0041
#define SET_CFGUPDATE_SUBCMD 0x0013
#define SEAL_SUBCMD 0x0020
/* Location of SEAL enable bit in bq276xx DM */
#define BQ276XX_OP_CFG_B_SUBCLASS 64
#define BQ276XX_OP_CFG_B_OFFSET 2
#define BQ276XX_OP_CFG_B_DEF_SEAL_BIT (1 << 5)
struct bq27x00_device_info;
struct bq27x00_access_methods {
int (*read)(struct bq27x00_device_info *di, u8 reg, bool single);
int (*write)(struct bq27x00_device_info *di, u8 reg, int value,
bool single);
int (*blk_read)(struct bq27x00_device_info *di, u8 reg, u8 *data,
u8 sz);
int (*blk_write)(struct bq27x00_device_info *di, u8 reg, u8 *data,
u8 sz);
};
enum bq27x00_chip { BQ27200, BQ27500, BQ27520, BQ27441, BQ276XX, BQ2753X};
struct bq27x00_reg_cache {
int temperature;
int time_to_empty;
int time_to_empty_avg;
int time_to_full;
int charge_full;
int cycle_count;
int capacity;
int energy;
int flags;
int power_avg;
int health;
};
struct dm_reg {
u8 subclass;
u8 offset;
u8 len;
u32 data;
};
struct bq27x00_device_info {
struct device *dev;
int id;
enum bq27x00_chip chip;
struct bq27x00_reg_cache cache;
int charge_design_full;
unsigned long last_update;
struct delayed_work work;
struct power_supply bat;
struct bq27x00_access_methods bus;
struct mutex lock;
int fw_ver;
int df_ver;
u8 regs[NUM_REGS];
struct dm_reg *dm_regs;
u16 dm_regs_count;
};
static __initdata enum power_supply_property bq27x00_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
};
static __initdata enum power_supply_property bq27520_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
};
static __initdata enum power_supply_property bq2753x_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CYCLE_COUNT,
};
static __initdata enum power_supply_property bq27441_battery_props[] = {
//added by yue.zhong at 2017-05-08 14:40
// POWER_SUPPLY_PROP_STATUS,
//end added by yue.zhong at 2017-05-08 14:40
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_HEALTH,
};
static __initdata enum power_supply_property bq276xx_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CYCLE_COUNT,
};
/*
* Ordering the parameters based on subclass and then offset will help in
* having fewer flash writes while updating.
* Customize these values and, if necessary, add more based on system needs.
*/
static struct dm_reg bq27441_dm_regs[] = {
{82, 0, 2, 15729}, /* Qmax */
{82, 5, 1, 0x81}, /* Load Select */
{82, 10, 2, 4000}, /* Design Capacity */
{82, 12, 2, 15200}, /* Design Energy */
{82, 16, 2, 3000}, /* Terminate Voltage */
{82, 27, 2, 110}, /* Taper rate */
};
static struct dm_reg bq276xx_dm_regs[] = {
{64, 2, 1, 0x2C}, /* Op Config B */
{82, 0, 2, 1000}, /* Qmax */
{82, 2, 1, 0x81}, /* Load Select */
{82, 3, 2, 1340}, /* Design Capacity */
{82, 5, 2, 3700}, /* Design Energy */
{82, 9, 2, 3250}, /* Terminate Voltage */
{82, 20, 2, 110}, /* Taper rate */
};
static unsigned int por_detect_flag = 0;
static unsigned int poll_interval = 360;
module_param(poll_interval, uint, 0644);
MODULE_PARM_DESC(poll_interval, "battery poll interval in seconds - " \
"0 disables polling");
/*
* Forward Declarations
*/
static int read_dm_block(struct bq27x00_device_info *di, u8 subclass,
u8 offset, u8 *data);
/*
* Common code for BQ27x00 devices
*/
static inline int bq27xxx_read(struct bq27x00_device_info *di, int reg_index,
bool single)
{
int val;
/* Reports 0 for invalid/missing registers */
if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
return 0;
val = di->bus.read(di, di->regs[reg_index], single);
return val;
}
static inline int bq27xxx_write(struct bq27x00_device_info *di, int reg_index,
int value, bool single)
{
if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
return -1;
return di->bus.write(di, di->regs[reg_index], value, single);
}
static int control_cmd_wr(struct bq27x00_device_info *di, u16 cmd)
{
dev_dbg(di->dev, "%s: cmd - %04x\n", __func__, cmd);
return di->bus.write(di, BQ27XXX_REG_CTRL, cmd, false);
}
static int control_cmd_read(struct bq27x00_device_info *di, u16 cmd)
{
dev_dbg(di->dev, "%s: cmd - %04x\n", __func__, cmd);
di->bus.write(di, BQ27XXX_REG_CTRL, cmd, false);
msleep(5);
return di->bus.read(di, BQ27XXX_REG_CTRL, false);
}
/*
* It is assumed that the gauge is in unsealed mode when this function
* is called
*/
static int bq276xx_seal_enabled(struct bq27x00_device_info *di)
{
u8 buf[32];
u8 op_cfg_b;
if (!read_dm_block(di, BQ276XX_OP_CFG_B_SUBCLASS,
BQ276XX_OP_CFG_B_OFFSET, buf)) {
return 1; /* Err on the side of caution and try to seal */
}
op_cfg_b = buf[BQ276XX_OP_CFG_B_OFFSET & 0x1F];
if (op_cfg_b & BQ276XX_OP_CFG_B_DEF_SEAL_BIT)
return 1;
return 0;
}
#define SEAL_UNSEAL_POLLING_RETRY_LIMIT 1000
static inline int sealed(struct bq27x00_device_info *di)
{
return control_cmd_read(di, CONTROL_STATUS_SUBCMD) & (1 << 13);
}
static int unseal(struct bq27x00_device_info *di, u32 key)
{
int i = 0;
dev_dbg(di->dev, "%s: key - %08x\n", __func__, key);
if (!sealed(di))
goto out;
di->bus.write(di, BQ27XXX_REG_CTRL, key & 0xFFFF, false);
msleep(5);
di->bus.write(di, BQ27XXX_REG_CTRL, (key & 0xFFFF0000) >> 16, false);
msleep(5);
while (i < SEAL_UNSEAL_POLLING_RETRY_LIMIT) {
i++;
if (!sealed(di))
break;
msleep(10);
}
out:
if (i == SEAL_UNSEAL_POLLING_RETRY_LIMIT) {
dev_err(di->dev, "%s: failed\n", __func__);
return 0;
} else {
return 1;
}
}
static int seal(struct bq27x00_device_info *di)
{
int i = 0;
int is_sealed;
dev_dbg(di->dev, "%s:\n", __func__);
is_sealed = sealed(di);
if (is_sealed)
return is_sealed;
if (di->chip == BQ276XX && !bq276xx_seal_enabled(di)) {
dev_dbg(di->dev, "%s: sealing is not enabled\n", __func__);
return is_sealed;
}
di->bus.write(di, BQ27XXX_REG_CTRL, SEAL_SUBCMD, false);
while (i < SEAL_UNSEAL_POLLING_RETRY_LIMIT) {
i++;
is_sealed = sealed(di);
if (is_sealed)
break;
msleep(10);
}
if (!is_sealed)
dev_err(di->dev, "%s: failed\n", __func__);
return is_sealed;
}
#define CFG_UPDATE_POLLING_RETRY_LIMIT 50
static int enter_cfg_update_mode(struct bq27x00_device_info *di)
{
int i = 0;
u16 flags;
dev_dbg(di->dev, "%s:\n", __func__);
if (!unseal(di, BQ27441_UNSEAL_KEY))
return 0;
control_cmd_wr(di, SET_CFGUPDATE_SUBCMD);
msleep(5);
while (i < CFG_UPDATE_POLLING_RETRY_LIMIT) {
i++;
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
if (flags & (1 << 4))
break;
msleep(100);
}
if (i == CFG_UPDATE_POLLING_RETRY_LIMIT) {
dev_err(di->dev, "%s: failed %04x\n", __func__, flags);
return 0;
}
return 1;
}
static int exit_cfg_update_mode(struct bq27x00_device_info *di)
{
int i = 0;
u16 flags;
dev_dbg(di->dev, "%s:\n", __func__);
control_cmd_wr(di, BQ27441_SOFT_RESET);
while (i < CFG_UPDATE_POLLING_RETRY_LIMIT) {
i++;
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
if (!(flags & (1 << 4)))
break;
msleep(100);
}
if (i == CFG_UPDATE_POLLING_RETRY_LIMIT) {
dev_err(di->dev, "%s: failed %04x\n", __func__, flags);
return 0;
}
if (seal(di))
return 1;
else
return 0;
}
static u8 checksum(u8 *data)
{
u16 sum = 0;
int i;
for (i = 0; i < 32; i++)
sum += data[i];
sum &= 0xFF;
return 0xFF - sum;
}
#ifdef DEBUG
static void print_buf(const char *msg, u8 *buf)
{
int i;
printk("\nbq: %s buf: ", msg);
for (i = 0; i < 32; i++)
printk("%02x ", buf[i]);
printk("\n");
}
#else
#define print_buf(a, b)
#endif
static int update_dm_block(struct bq27x00_device_info *di, u8 subclass,
u8 offset, u8 *data)
{
u8 buf[32];
u8 cksum;
u8 blk_offset = offset >> 5;
dev_dbg(di->dev, "%s: subclass %d offset %d\n",
__func__, subclass, offset);
di->bus.write(di, BLOCK_DATA_CONTROL, 0, true);
msleep(5);
di->bus.write(di, BLOCK_DATA_CLASS, subclass, true);
msleep(5);
di->bus.write(di, DATA_BLOCK, blk_offset, true);
msleep(5);
di->bus.blk_write(di, BLOCK_DATA, data, 32);
msleep(5);
print_buf(__func__, data);
cksum = checksum(data);
di->bus.write(di, BLOCK_DATA_CHECKSUM, cksum, true);
msleep(5);
/* Read back and compare to make sure write is successful */
di->bus.write(di, DATA_BLOCK, blk_offset, true);
msleep(5);
di->bus.blk_read(di, BLOCK_DATA, buf, 32);
if (memcmp(data, buf, 32)) {
dev_err(di->dev, "%s: error updating subclass %d offset %d\n",
__func__, subclass, offset);
return 0;
} else {
return 1;
}
}
static int read_dm_block(struct bq27x00_device_info *di, u8 subclass,
u8 offset, u8 *data)
{
u8 cksum_calc, cksum;
u8 blk_offset = offset >> 5;
dev_dbg(di->dev, "%s: subclass %d offset %d\n",
__func__, subclass, offset);
di->bus.write(di, BLOCK_DATA_CONTROL, 0, true);
msleep(5);
di->bus.write(di, BLOCK_DATA_CLASS, subclass, true);
msleep(5);
di->bus.write(di, DATA_BLOCK, blk_offset, true);
msleep(5);
di->bus.blk_read(di, BLOCK_DATA, data, 32);
cksum_calc = checksum(data);
cksum = di->bus.read(di, BLOCK_DATA_CHECKSUM, true);
if (cksum != cksum_calc) {
dev_err(di->dev, "%s: error reading subclass %d offset %d\n",
__func__, subclass, offset);
return 0;
}
print_buf(__func__, data);
return 1;
}
/*
* Return the battery State-of-Charge
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_soc(struct bq27x00_device_info *di)
{
int soc;
soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
if (soc < 0)
dev_dbg(di->dev, "error reading relative State-of-Charge\n");
return soc;
}
/*
* Return a battery charge value in μAh
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_charge(struct bq27x00_device_info *di, u8 reg)
{
int charge;
charge = bq27xxx_read(di, reg, false);
if (charge < 0) {
dev_dbg(di->dev, "error reading charge register %02x: %d\n",
reg, charge);
return charge;
}
if (di->chip == BQ27200)
charge = charge * 3570 / BQ27200_RS;
else
charge *= 1000;
return charge;
}
/*
* Return the battery Nominal available capaciy in μAh
* Or < 0 if something fails.
*/
static inline int bq27x00_battery_read_nac(struct bq27x00_device_info *di)
{
int flags;
if (di->chip == BQ27200) {
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
if (flags >= 0 && (flags & BQ27200_FLAG_CI))
return -ENODATA;
}
return bq27x00_battery_read_charge(di, BQ27XXX_REG_NAC);
}
/*
* Return the battery Last measured discharge in μAh
* Or < 0 if something fails.
*/
static inline int bq27x00_battery_read_fcc(struct bq27x00_device_info *di)
{
return bq27x00_battery_read_charge(di, BQ27XXX_REG_FCC);
}
/*
* Return the Design Capacity in μAh
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_dcap(struct bq27x00_device_info *di)
{
int dcap;
dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
if (dcap < 0) {
dev_dbg(di->dev, "error reading initial last measured discharge\n");
return dcap;
}
if (di->chip == BQ27200)
dcap = dcap * 256 * 3570 / BQ27200_RS;
else
dcap *= 1000;
return dcap;
}
/*
* Return the battery Available energy in μWh
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_energy(struct bq27x00_device_info *di)
{
int ae;
ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
if (ae < 0) {
dev_dbg(di->dev, "error reading available energy\n");
return ae;
}
if (di->chip == BQ27200)
ae = ae * 29200 / BQ27200_RS;
else
ae *= 1000;
return ae;
}
/*
* Return the battery temperature in tenths of degree Kelvin
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_temperature(struct bq27x00_device_info *di)
{
int temp;
temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
if (temp < 0) {
dev_err(di->dev, "error reading temperature\n");
return temp;
}
if (di->chip == BQ27200)
temp = 5 * temp / 2;
return temp;
}
/*
* Return the battery Cycle count total
* Or < 0 if something fails.
*/
static int bq27x00_battery_read_cyct(struct bq27x00_device_info *di)
{
int cyct;
cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
if (cyct < 0)
dev_err(di->dev, "error reading cycle count total\n");
return cyct;
}
/*
* Read a time register.
* Return < 0 if something fails.
*/
static int bq27x00_battery_read_time(struct bq27x00_device_info *di, u8 reg)
{
int tval;
tval = bq27xxx_read(di, reg, false);
if (tval < 0) {
dev_dbg(di->dev, "error reading time register %02x: %d\n",
reg, tval);
return tval;
}
if (tval == 65535)
return -ENODATA;
return tval * 60;
}
/*
* Read a power avg register.
* Return < 0 if something fails.
*/
static int bq27x00_battery_read_pwr_avg(struct bq27x00_device_info *di, u8 reg)
{
int tval;
tval = bq27xxx_read(di, reg, false);
if (tval < 0) {
dev_err(di->dev, "error reading power avg rgister %02x: %d\n",
reg, tval);
return tval;
}
if (di->chip == BQ27200)
return (tval * BQ27200_POWER_CONSTANT) / BQ27200_RS;
else
return tval;
}
static int overtemperature(struct bq27x00_device_info *di, u16 flags)
{
if (di->chip == BQ27520)
return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
else
return flags & BQ27XXX_FLAG_OTC;
}
/*
* Read flag register.
* Return < 0 if something fails.
*/
static int bq27x00_battery_read_health(struct bq27x00_device_info *di)
{
u16 tval;
tval = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
if (tval < 0) {
dev_err(di->dev, "error reading flag register:%d\n", tval);
return tval;
}
if ((di->chip == BQ27200)) {
if (tval & BQ27200_FLAG_EDV1)
tval = POWER_SUPPLY_HEALTH_DEAD;
else
tval = POWER_SUPPLY_HEALTH_GOOD;
return tval;
} else {
if (tval & BQ27XXX_FLAG_SOCF)
tval = POWER_SUPPLY_HEALTH_DEAD;
else if (overtemperature(di, tval))
tval = POWER_SUPPLY_HEALTH_OVERHEAT;
else
tval = POWER_SUPPLY_HEALTH_GOOD;
return tval;
}
return -1;
}
static void bq27x00_update(struct bq27x00_device_info *di)
{
struct bq27x00_reg_cache cache = {0, };
bool is_bq27200 = di->chip == BQ27200;
bool is_bq27500 = di->chip == BQ27500;
bool is_bq27441 = di->chip == BQ27441;
bool is_bq276xx = di->chip == BQ276XX;
cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, !is_bq27500);
if (cache.flags >= 0) {
if (is_bq27200 && (cache.flags & BQ27200_FLAG_CI)) {
cache.capacity = -ENODATA;
cache.energy = -ENODATA;
cache.time_to_empty = -ENODATA;
cache.time_to_empty_avg = -ENODATA;
cache.time_to_full = -ENODATA;
cache.charge_full = -ENODATA;
cache.health = -ENODATA;
} else {
cache.capacity = bq27x00_battery_read_soc(di);
g_capacity = cache.capacity;
if (!(is_bq27441 || is_bq276xx)) {
cache.energy = bq27x00_battery_read_energy(di);
cache.time_to_empty =
bq27x00_battery_read_time(di,
BQ27XXX_REG_TTE);
cache.time_to_empty_avg =
bq27x00_battery_read_time(di,
BQ27XXX_REG_TTECP);
cache.time_to_full =
bq27x00_battery_read_time(di,
BQ27XXX_REG_TTF);
}
cache.charge_full = bq27x00_battery_read_fcc(di);
cache.health = bq27x00_battery_read_health(di);
}
cache.temperature = bq27x00_battery_read_temperature(di);
if (!is_bq27441)
cache.cycle_count = bq27x00_battery_read_cyct(di);
cache.power_avg =
bq27x00_battery_read_pwr_avg(di, BQ27XXX_POWER_AVG);
/* We only have to read charge design full once */
if ((di->charge_design_full <= 0) || por_detect_flag) {
di->charge_design_full = bq27x00_battery_read_dcap(di);
}
}
if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) {
di->cache = cache;
power_supply_changed(&di->bat);
}
di->last_update = jiffies;
}
static void copy_to_dm_buf_big_endian(struct bq27x00_device_info *di,
u8 *buf, u8 offset, u8 sz, u32 val)
{
dev_dbg(di->dev, "%s: offset %d sz %d val %d\n",
__func__, offset, sz, val);
switch (sz) {
case 1:
buf[offset] = (u8) val;
break;
case 2:
put_unaligned_be16((u16) val, &buf[offset]);
break;
case 4:
put_unaligned_be32(val, &buf[offset]);
break;
default:
dev_err(di->dev, "%s: bad size for dm parameter - %d",
__func__, sz);
break;
}
}
static int rom_mode_gauge_init_completed(struct bq27x00_device_info *di)
{
dev_dbg(di->dev, "%s:\n", __func__);
return control_cmd_read(di, CONTROL_STATUS_SUBCMD) &
BQ27441_CTRL_STATUS_INITCOMP;
}
static bool rom_mode_gauge_dm_initialized(struct bq27x00_device_info *di)
{
u16 flags;
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
dev_dbg(di->dev, "%s: flags - 0x%04x\n", __func__, flags);
if (flags & BQ27441_FLAG_ITPOR)
return false;
else
return true;
}
#define INITCOMP_TIMEOUT_MS 10000
static void rom_mode_gauge_dm_init(struct bq27x00_device_info *di)
{
int i;
int timeout = INITCOMP_TIMEOUT_MS;
u8 subclass, offset;
u32 blk_number;
u32 blk_number_prev = 0;
u8 buf[32];
bool buf_valid = false;
struct dm_reg *dm_reg;
dev_dbg(di->dev, "%s:\n", __func__);
while (!rom_mode_gauge_init_completed(di) && timeout > 0) {
msleep(100);
timeout -= 100;
}
if (timeout <= 0) {
dev_err(di->dev, "%s: INITCOMP not set after %d seconds\n",
__func__, INITCOMP_TIMEOUT_MS/100);
return;
}
if (!di->dm_regs || !di->dm_regs_count) {
dev_err(di->dev, "%s: Data not available for DM initialization\n",
__func__);
return;
}
enter_cfg_update_mode(di);
for (i = 0; i < di->dm_regs_count; i++) {
dm_reg = &di->dm_regs[i];
subclass = dm_reg->subclass;
offset = dm_reg->offset;
/*
* Create a composite block number to see if the subsequent
* register also belongs to the same 32 btye block in the DM
*/
blk_number = subclass << 8;
blk_number |= offset >> 5;
if (blk_number == blk_number_prev) {
copy_to_dm_buf_big_endian(di, buf, offset,
dm_reg->len, dm_reg->data);
} else {
if (buf_valid)
update_dm_block(di, blk_number_prev >> 8,
(blk_number_prev << 5) & 0xFF , buf);
else
buf_valid = true;
read_dm_block(di, dm_reg->subclass, dm_reg->offset,
buf);
copy_to_dm_buf_big_endian(di, buf, offset,
dm_reg->len, dm_reg->data);
}
blk_number_prev = blk_number;
}
/* Last buffer to be written */
if (buf_valid)
update_dm_block(di, subclass, offset, buf);
exit_cfg_update_mode(di);
}
static void bq27x00_battery_poll(struct work_struct *work)
{
struct bq27x00_device_info *di =
container_of(work, struct bq27x00_device_info, work.work);
if (((di->chip == BQ27441) || (di->chip == BQ276XX)) &&
!rom_mode_gauge_dm_initialized(di)) {
por_detect_flag = 1;
rom_mode_gauge_dm_init(di);
}
bq27x00_update(di);
if (poll_interval > 0) {
/* The timer does not have to be accurate. */
set_timer_slack(&di->work.timer, poll_interval * HZ / 4);
schedule_delayed_work(&di->work, poll_interval * HZ);
}
}
/*
* Return the battery average current in μA
* Note that current can be negative signed as well
* Or 0 if something fails.
*/
static int bq27x00_battery_current(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int curr;
int flags;
curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
if (curr < 0) {
dev_err(di->dev, "error reading current\n");
return curr;
}
if (di->chip == BQ27200) {
flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
if (flags & BQ27200_FLAG_CHGS) {
dev_dbg(di->dev, "negative current!\n");
curr = -curr;
}
val->intval = curr * 3570 / BQ27200_RS;
} else {
/* Other gauges return signed value */
val->intval = (int)((s16)curr) * 1000;
}
return 0;
}
static int bq27x00_battery_status(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int status;
if (di->chip == BQ27200) {
if (di->cache.flags & BQ27200_FLAG_FC)
status = POWER_SUPPLY_STATUS_FULL;
else if (di->cache.flags & BQ27200_FLAG_CHGS)
status = POWER_SUPPLY_STATUS_CHARGING;
else if (power_supply_am_i_supplied(&di->bat))
status = POWER_SUPPLY_STATUS_NOT_CHARGING;
else
status = POWER_SUPPLY_STATUS_DISCHARGING;
} else {
if (di->cache.flags & BQ27XXX_FLAG_FC) {
status = POWER_SUPPLY_STATUS_FULL;}
else if (di->cache.flags & BQ27XXX_FLAG_DSC) {
status = POWER_SUPPLY_STATUS_DISCHARGING;}
else {
status = POWER_SUPPLY_STATUS_CHARGING;}
}
val->intval = status;
return 0;
}
static int bq27x00_battery_capacity_level(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int level;
if (di->chip == BQ27200) {
if (di->cache.flags & BQ27200_FLAG_FC)
level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (di->cache.flags & BQ27200_FLAG_EDV1)
level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (di->cache.flags & BQ27200_FLAG_EDVF)
level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
} else {
if (di->cache.flags & BQ27XXX_FLAG_FC) {
level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;}
else if (di->cache.flags & BQ27XXX_FLAG_SOC1) {
level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;}
else if (di->cache.flags & BQ27XXX_FLAG_SOCF) {
level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;}
else {
level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;}
}
val->intval = level;
return 0;
}
/*
* Return the battery Voltage in millivolts
* Or < 0 if something fails.
*/
int voltage = 0;
static int bq27x00_battery_voltage(struct bq27x00_device_info *di,
union power_supply_propval *val)
{
int volt;
/*gpio_direction_output(CHARGE_EN,1);
gpio_set_value(CHARGE_EN,1);
mdelay(20);*/
volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
//gpio_set_value(CHARGE_EN,0);
if (volt < 0) {
dev_err(di->dev, "error reading voltage\n");
return volt;
}
voltage = volt;
val->intval = volt * 1000;
return 0;
}
u32 bq27441_battery_voltage(void)
{
int bq27441_volt;
bq27441_volt = voltage;
return bq27441_volt;
}
EXPORT_SYMBOL_GPL(bq27441_battery_voltage);
static int bq27x00_simple_value(int value,
union power_supply_propval *val)
{
if (value < 0)
return value;
val->intval = value;
return 0;
}
#define to_bq27x00_device_info(x) container_of((x), \
struct bq27x00_device_info, bat);
static int bq27x00_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct bq27x00_device_info *di = to_bq27x00_device_info(psy);
mutex_lock(&di->lock);
if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
cancel_delayed_work_sync(&di->work);
bq27x00_battery_poll(&di->work.work);
}
mutex_unlock(&di->lock);
if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
return -ENODEV;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
ret = bq27x00_battery_status(di, val);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
ret = bq27x00_battery_voltage(di, val);
bq27441_battery_voltage();
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = di->cache.flags < 0 ? 0 : 1;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
ret = bq27x00_battery_current(di, val);
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = bq27x00_simple_value(di->cache.capacity, val);
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
ret = bq27x00_battery_capacity_level(di, val);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = bq27x00_simple_value(di->cache.temperature, val);
if (ret == 0)
val->intval -= 2731;
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
ret = bq27x00_simple_value(di->cache.time_to_empty, val);
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
ret = bq27x00_simple_value(di->cache.time_to_empty_avg, val);
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
ret = bq27x00_simple_value(di->cache.time_to_full, val);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
ret = bq27x00_simple_value(bq27x00_battery_read_nac(di), val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
ret = bq27x00_simple_value(di->cache.charge_full, val);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
ret = bq27x00_simple_value(di->charge_design_full, val);
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
ret = bq27x00_simple_value(di->cache.cycle_count, val);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
ret = bq27x00_simple_value(di->cache.energy, val);
break;
case POWER_SUPPLY_PROP_POWER_AVG:
ret = bq27x00_simple_value(di->cache.power_avg, val);
break;
case POWER_SUPPLY_PROP_HEALTH:
ret = bq27x00_simple_value(di->cache.health, val);
break;
default:
return -EINVAL;
}
return ret;
}
static void bq27x00_external_power_changed(struct power_supply *psy)
{
struct bq27x00_device_info *di = to_bq27x00_device_info(psy);
cancel_delayed_work_sync(&di->work);
schedule_delayed_work(&di->work, 0);
}
static void __init set_properties_array(struct bq27x00_device_info *di,
enum power_supply_property *props, int num_props)
{
int tot_sz = num_props * sizeof(enum power_supply_property);
di->bat.properties = devm_kzalloc(di->dev, tot_sz, GFP_KERNEL);
if (di->bat.properties) {
memcpy(di->bat.properties, props, tot_sz);
di->bat.num_properties = num_props;
} else {
di->bat.num_properties = 0;
}
}
static int __init bq27x00_powersupply_init(struct bq27x00_device_info *di)
{
int ret;
di->bat.type = POWER_SUPPLY_TYPE_BATTERY;
if (di->chip == BQ27441) {
set_properties_array(di, bq27441_battery_props,
ARRAY_SIZE(bq27441_battery_props));
} else if (di->chip == BQ276XX) {
set_properties_array(di, bq276xx_battery_props,
ARRAY_SIZE(bq276xx_battery_props));
} else if (di->chip == BQ27520) {
set_properties_array(di, bq27520_battery_props,
ARRAY_SIZE(bq27520_battery_props));
} else if (di->chip == BQ2753X) {
set_properties_array(di, bq2753x_battery_props,
ARRAY_SIZE(bq2753x_battery_props));
} else {
set_properties_array(di, bq27x00_battery_props,
ARRAY_SIZE(bq27x00_battery_props));
}
di->bat.get_property = bq27x00_battery_get_property;
di->bat.external_power_changed = bq27x00_external_power_changed;
INIT_DELAYED_WORK(&di->work, bq27x00_battery_poll);
mutex_init(&di->lock);
ret = power_supply_register(di->dev, &di->bat);
if (ret) {
dev_err(di->dev, "failed to register battery: %d\n", ret);
return ret;
}
dev_info(di->dev, "support ver. %s enabled\n", DRIVER_VERSION);
bq27x00_update(di);
return 0;
}
static void bq27x00_powersupply_unregister(struct bq27x00_device_info *di)
{
/*
* power_supply_unregister call bq27x00_battery_get_property which
* call bq27x00_battery_poll.
* Make sure that bq27x00_battery_poll will not call
* schedule_delayed_work again after unregister (which cause OOPS).
*/
poll_interval = 0;
cancel_delayed_work_sync(&di->work);
power_supply_unregister(&di->bat);
mutex_destroy(&di->lock);
}
/* i2c specific code */
#ifdef CONFIG_BATTERY_BQ27441_I2C
/* If the system has several batteries we need a different name for each
* of them...
*/
static DEFINE_IDR(battery_id);
static DEFINE_MUTEX(battery_mutex);
static int bq27xxx_read_i2c(struct bq27x00_device_info *di, u8 reg, bool single)
{
struct i2c_client *client = to_i2c_client(di->dev);
struct i2c_msg msg[2];
unsigned char data[2];
int ret;
if (!client->adapter)
return -ENODEV;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].buf = ®
msg[0].len = sizeof(reg);
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = data;
if (single)
msg[1].len = 1;
else
msg[1].len = 2;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret < 0)
return ret;
if (!single)
ret = get_unaligned_le16(data);
else
ret = data[0];
return ret;
}
static int bq27xxx_write_i2c(struct bq27x00_device_info *di, u8 reg, int value, bool single)
{
struct i2c_client *client = to_i2c_client(di->dev);
struct i2c_msg msg;
unsigned char data[4];
int ret;
if (!client->adapter)
return -ENODEV;
data[0] = reg;
if (single) {
data[1] = (unsigned char)value;
msg.len = 2;
} else {
put_unaligned_le16(value, &data[1]);
msg.len = 3;
}
msg.buf = data;
msg.addr = client->addr;
msg.flags = 0;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0)
return ret;
return 0;
}
static int bq27xxx_read_i2c_blk(struct bq27x00_device_info *di, u8 reg,
u8 *data, u8 len)
{
struct i2c_client *client = to_i2c_client(di->dev);
struct i2c_msg msg[2];
int ret;
if (!client->adapter)
return -ENODEV;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].buf = ®
msg[0].len = 1;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = data;
msg[1].len = len;
ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg));
if (ret < 0)
return ret;
return ret;
}
static int bq27xxx_write_i2c_blk(struct bq27x00_device_info *di, u8 reg,
u8 *data, u8 sz)
{
struct i2c_client *client = to_i2c_client(di->dev);
struct i2c_msg msg;
int ret;
u8 buf[33];
if (!client->adapter)
return -ENODEV;
buf[0] = reg;
memcpy(&buf[1], data, sz);
msg.buf = buf;
msg.addr = client->addr;
msg.flags = 0;
msg.len = sz + 1;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0)
return ret;
return 0;
}
static int bq27x00_battery_reset(struct bq27x00_device_info *di)
{
bq27xxx_write(di, BQ27XXX_REG_CTRL, RESET_SUBCMD, false);
msleep(10);
return bq27xxx_read(di, BQ27XXX_REG_CTRL, false);
}
static int bq27x00_battery_read_fw_version(struct bq27x00_device_info *di)
{
bq27xxx_write(di, BQ27XXX_REG_CTRL, FW_VER_SUBCMD, false);
msleep(10);
return bq27xxx_read(di, BQ27XXX_REG_CTRL, false);
}
static int bq27x00_battery_read_device_type(struct bq27x00_device_info *di)
{
bq27xxx_write(di, BQ27XXX_REG_CTRL, DEV_TYPE_SUBCMD, false);
msleep(10);
return bq27xxx_read(di, BQ27XXX_REG_CTRL, false);
}
static int bq27x00_battery_read_dataflash_version(struct bq27x00_device_info *di)
{
bq27xxx_write(di, BQ27XXX_REG_CTRL, DF_VER_SUBCMD, false);
msleep(10);
return bq27xxx_read(di, BQ27XXX_REG_CTRL, false);
}
static ssize_t show_firmware_version(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bq27x00_device_info *di = dev_get_drvdata(dev);
int ver;
ver = bq27x00_battery_read_fw_version(di);
return sprintf(buf, "%d\n", ver);
}
static ssize_t show_dataflash_version(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bq27x00_device_info *di = dev_get_drvdata(dev);
int ver;
ver = bq27x00_battery_read_dataflash_version(di);
return sprintf(buf, "%d\n", ver);
}
static ssize_t show_device_type(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bq27x00_device_info *di = dev_get_drvdata(dev);
int dev_type;
dev_type = bq27x00_battery_read_device_type(di);
return sprintf(buf, "%d\n", dev_type);
}
static ssize_t show_reset(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bq27x00_device_info *di = dev_get_drvdata(dev);
bq27x00_battery_reset(di);
return sprintf(buf, "okay\n");
}
static ssize_t show_por_detect(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "OK\n");
}
static ssize_t store_por_detect(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int ret;
unsigned long data;
struct bq27x00_device_info *di = dev_get_drvdata(dev);
ret = strict_strtoul(buf, 10, &data);
if(data) {
printk("bq27441 update charge_full_design\n");
di->charge_design_full = bq27x00_battery_read_dcap(di);
}
else {
printk("bq27441 disable update charge_full_design\n");
por_detect_flag = 0;
}
return count;
}
static DEVICE_ATTR(fw_version, S_IRUGO, show_firmware_version, NULL);
static DEVICE_ATTR(df_version, S_IRUGO, show_dataflash_version, NULL);
static DEVICE_ATTR(device_type, S_IRUGO, show_device_type, NULL);
static DEVICE_ATTR(reset, S_IRUGO, show_reset, NULL);
static DEVICE_ATTR(por_detect, S_IRUSR | S_IWUSR, show_por_detect, store_por_detect);
static struct attribute *bq27x00_attributes[] = {
&dev_attr_fw_version.attr,
&dev_attr_df_version.attr,
&dev_attr_device_type.attr,
&dev_attr_reset.attr,
&dev_attr_por_detect.attr,
NULL
};
static const struct attribute_group bq27x00_attr_group = {
.attrs = bq27x00_attributes,
};
static int __init bq27x00_battery_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
char *name;
struct bq27x00_device_info *di;
int num;
int retval = 0;
u8 *regs;
/* Get new ID for the new battery device */
retval = idr_pre_get(&battery_id, GFP_KERNEL);
if (retval == 0)
return -ENOMEM;
mutex_lock(&battery_mutex);
retval = idr_get_new(&battery_id, client, &num);
mutex_unlock(&battery_mutex);
if (retval < 0)
return retval;
name = kasprintf(GFP_KERNEL, "%s-%d", id->name, num);
if (!name) {
dev_err(&client->dev, "failed to allocate device name\n");
retval = -ENOMEM;
goto batt_failed_1;
}
di = kzalloc(sizeof(*di), GFP_KERNEL);
if (!di) {
dev_err(&client->dev, "failed to allocate device info data\n");
retval = -ENOMEM;
goto batt_failed_2;
}
di->id = num;
di->dev = &client->dev;
di->chip = id->driver_data;
di->bat.name = name;
di->bus.read = &bq27xxx_read_i2c;
di->bus.write = &bq27xxx_write_i2c;
di->bus.blk_read = bq27xxx_read_i2c_blk;
di->bus.blk_write = bq27xxx_write_i2c_blk;
di->dm_regs = NULL;
di->dm_regs_count = 0;
if (di->chip == BQ27200)
regs = bq27200_regs;
else if (di->chip == BQ27500)
regs = bq27500_regs;
else if (di->chip == BQ27520)
regs = bq27520_regs;
else if (di->chip == BQ2753X)
regs = bq2753x_regs;
else if (di->chip == BQ27441) {
regs = bq27441_regs;
di->dm_regs = bq27441_dm_regs;
di->dm_regs_count = ARRAY_SIZE(bq27441_dm_regs);
} else if (di->chip == BQ276XX) {
/* commands are same as bq274xx, only DM is different */
regs = bq276xx_regs;
di->dm_regs = bq276xx_dm_regs;
di->dm_regs_count = ARRAY_SIZE(bq276xx_dm_regs);
} else {
dev_err(&client->dev,
"Unexpected gas gague: %d\n", di->chip);
regs = bq27520_regs;
}
memcpy(di->regs, regs, NUM_REGS);
di->fw_ver = bq27x00_battery_read_fw_version(di);
retval = bq27x00_powersupply_init(di);
if (retval)
goto batt_failed_3;
/* Schedule a polling after about 1 min */
schedule_delayed_work(&di->work, 60 * HZ);
i2c_set_clientdata(client, di);
retval = sysfs_create_group(&client->dev.kobj, &bq27x00_attr_group);
if (retval)
dev_err(&client->dev, "could not create sysfs files\n");
return 0;
batt_failed_3:
kfree(di);
batt_failed_2:
kfree(name);
batt_failed_1:
mutex_lock(&battery_mutex);
idr_remove(&battery_id, num);
mutex_unlock(&battery_mutex);
return retval;
}
static int bq27x00_battery_remove(struct i2c_client *client)
{
struct bq27x00_device_info *di = i2c_get_clientdata(client);
bq27x00_powersupply_unregister(di);
kfree(di->bat.name);
mutex_lock(&battery_mutex);
idr_remove(&battery_id, di->id);
mutex_unlock(&battery_mutex);
kfree(di);
return 0;
}
static const struct i2c_device_id bq27x00_id[] = {
{ "bq27200", BQ27200 },
{ "bq27500", BQ27500 },
{ "bq27520", BQ27520 },
{ "bq27441", BQ27441 },
{ "bq276xx", BQ276XX },
{ "bq2753x", BQ2753X },
{},
};
MODULE_DEVICE_TABLE(i2c, bq27x00_id);
static struct i2c_driver bq27x00_battery_driver = {
.driver = {
.name = "bq27441",
},
.probe = bq27x00_battery_probe,
.remove = bq27x00_battery_remove,
.id_table = bq27x00_id,
};
module_i2c_driver(bq27x00_battery_driver);
#endif
/* platform specific code */
#ifdef CONFIG_BATTERY_BQ27441_PLATFORM
static int bq27000_read_platform(struct bq27x00_device_info *di, u8 reg,
bool single)
{
struct device *dev = di->dev;
struct bq27000_platform_data *pdata = dev->platform_data;
unsigned int timeout = 3;
int upper, lower;
int temp;
if (!single) {
/* Make sure the value has not changed in between reading the
* lower and the upper part */
upper = pdata->read(dev, reg + 1);
do {
temp = upper;
if (upper < 0)
return upper;
lower = pdata->read(dev, reg);
if (lower < 0)
return lower;
upper = pdata->read(dev, reg + 1);
} while (temp != upper && --timeout);
if (timeout == 0)
return -EIO;
return (upper << 8) | lower;
}
return pdata->read(dev, reg);
}
static int bq27000_battery_probe(struct platform_device *pdev)
{
struct bq27x00_device_info *di;
struct bq27000_platform_data *pdata = pdev->dev.platform_data;
int ret;
if (!pdata) {
dev_err(&pdev->dev, "no platform_data supplied\n");
return -EINVAL;
}
if (!pdata->read) {
dev_err(&pdev->dev, "no hdq read callback supplied\n");
return -EINVAL;
}
di = kzalloc(sizeof(*di), GFP_KERNEL);
if (!di) {
dev_err(&pdev->dev, "failed to allocate device info data\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, di);
di->dev = &pdev->dev;
di->chip = BQ27200;
di->bat.name = pdata->name ?: dev_name(&pdev->dev);
di->bus.read = &bq27000_read_platform;
ret = bq27x00_powersupply_init(di);
if (ret)
goto err_free;
return 0;
err_free:
kfree(di);
return ret;
}
static int bq27000_battery_remove(struct platform_device *pdev)
{
struct bq27x00_device_info *di = platform_get_drvdata(pdev);
bq27x00_powersupply_unregister(di);
kfree(di);
return 0;
}
static struct platform_driver __initdata bq27000_battery_driver = {
.probe = bq27000_battery_probe,
.remove = bq27000_battery_remove,
.driver = {
.name = "bq27000-battery",
.owner = THIS_MODULE,
},
};
static inline int bq27x00_battery_platform_init(void)
{
int ret = platform_driver_register(&bq27000_battery_driver);
if (ret)
printk(KERN_ERR "Unable to register BQ27200 platform driver\n");
return ret;
}
static inline void bq27x00_battery_platform_exit(void)
{
platform_driver_unregister(&bq27000_battery_driver);
}
#else
static inline int bq27x00_battery_platform_init(void) { return 0; }
static inline void bq27x00_battery_platform_exit(void) {};
#endif
/*
* Module stuff
*/
static int __init bq27x00_battery_init(void)
{
int ret;
ret = bq27x00_battery_platform_init();
return ret;
}
module_init(bq27x00_battery_init);
static void __exit bq27x00_battery_exit(void)
{
bq27x00_battery_platform_exit();
}
module_exit(bq27x00_battery_exit);
MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
MODULE_DESCRIPTION("BQ27x00 battery monitor driver");
MODULE_LICENSE("GPL");
The I2C communication is normal and the register values, including fw_version, can be read correctly. But the bit INITCOMP is always 0.
ITPOR is 1, and then polls to read the CONTROL_STATUS[INITCOMP] bit. It polls for a long time, many times, and it is still 0.
Waiting for your reply.
Thanks
Star