This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TPS2490 - IRF6718

Other Parts Discussed in Thread: TPS2490, TPS2480

Hi, I'm planing to use for the TPS2490 for a constant max current of 35A (I_lim = 42A) the IRF6718 ;

the shunt resistor will be than a 1.2mOhm part, right ?

But what is the save power limit setting of the PROG voltage for the IRF6718 ?

Can someone help me about that items ?

regards,

Carsten

 

  • Yes, a 1.2m-ohm current sense resistor is correct.

    A spreadsheet design tool exists that can assist on choice of TPS2490 external components. Please give this a try, then if you run into difficult we can help you work thru the details.

    http://focus.ti.com/docs/toolsw/folders/print/tps2480-81-90-91-92-93_calc.html

  • Hi Eric,

    Thanks for your feedback.

    I went through the spredsheet and got the following results for used IRF6718.

    Can give me a hint for the bad SOAt result ?

    And makes the outher setting sense for you ?

    regards

    Carsten

     

    Calculations for power limit control (no external cap on PROG)
    Parameter Description Value   Units
    Vcurrent_trip Over-current limiting sense threshold voltage 50.000 mV
    VIH(EN) EN UVLO comparator reference voltage 1.350 V
    VREF VREF pin voltage 4.000 V
    Vtimer_trip_th TIMER fault threshold voltage 4.000 V
    VPG_th_min Minimum power-good threshold voltage 0.800 V
    Itimer_pullup(max) TIMER pullup current during fault (max) 34.000 uA
    Itimer_pullup(typ) TIMER pullup current during fault (typical) 25.000 uA
           
    VCC (max) Maximum system input voltage (magnitude) 12.000 Volts
    Cout Load Capacitance 220.000 uF
    Imax Maximum continuous load current (magnitude) 34.700 A
    Ilimit Current Limit, 20% higher than maximum continuous load current 41.640 A
    Rs_cal Calculated current sense resistor 1.201 m-Ohm
    SELECT A SENSE RESISTOR WITH THE CLOSEST AVAILABLE VALUE OF Rs_cal    
    Rs Select the closest available value of Rs_cal 1.200 m-Ohm
    Ilimit_final Final current Limit Set Point 41.667 A
    CHECK THE NEW Ilimit and SEE IF IT IS IN THE RANGE OF 110% to 130% OF Imax.  IF NOT, RE-SELECT Rs.
    VCC_uvlo Application required input supply under-voltage-lock threshold 10.200 Volts
    R1+R2 (max) Maximum total resistance for the divider -sets Vuvlo 204.000 k-Ohm
    R2 (max) Maximum resistance for the bottom resistor of the divider 27.000 k-Ohm
    R2 Select a resistance for R2 that is less than R2(max) 27.000 k-Ohm
    R1 Calculate the top resistor value of the divider 177.000 k-Ohm
           
    Eff (min) Minimum effeciency requirement of hotswap stage 99.500 %
    VDSS (min) FET drain-source voltage rating (minimum) 24.000 V
    ID(min) FET drain-source current rating (minimum) 83.333 A
    Rds(on)_max1 FET maximum allowable Rds(on) due to efficiency requirement 0.529 m-Ohm
    Rds(on)_max2 FET maximum allowable Rds(on) due to PG threshold 19.200 m-Ohm
    Rds(on)_max FET maximum allowable Rds(on), with 30% tolerance  0.370 m-Ohm
    M1 SELECT A FET BASED ON VDSS, ID, and RDS(ON)_max IRF6718  
           
    Tj(max) FET maximum junction temperature 175.000 °C
    TA(max) Maximum ambient temperature of the application 45.000 °C
    RqJC(max) FET maximum thermal resistance, junction-to-case (J-C)
    1.800
    °C/W
    ZqJC FET normalized transient thermal impedance, J-C (single pulse). Default=1 0.010  
    RqJA(max) FET maximum thermal resistance, junction-to-ambient 12.500 °C/W
    Rds(on)_max FET maximum Rds(on)  0.500 m-Ohm
    Tj(operating) FET junction temperature at maximum application ambient temperature 52.526 °C
    Cell turns RED if Tj(operating) > Tj(max); choose another FET and restart    
           
    Pfet(lmt) FET transient power limit 3791.094 Watts
    Psupply(lmt) Maximum supply power limit 500.000 Watts
    Plimit_max Maximum power limit can be set 1666.667 Watts
    Plimit Power limit setpoint; min of Pfet, Psupply or Plimit_max 500.000 Watts
    Cell turns RED if Plimit is too low forcing Vprog < 400mV; continue    
           
    R3+R4 (max) Maximum total resistance for resistor divider (R3 + R4) 220.000 k-Ohm
    R4 (max) Maximum resistance for the bottom resistor of the divider 66.000 k-Ohm
    R4 Select the bottom resistor of the divider, must < R4(max) 63.000 k-Ohm
    R3 Calculate the top resistor value of the resistor divider 147.000 k-Ohm
    R3 Select the top resistor of the divider 147.000 k-Ohm
    Vprog Prog pin voltage (typical). Ensure that Vprog > 0.4V 1.200 V
    Plim_actual Actual power limit using actual R3 and R4 500.000 W
    Cell turns RED if Vprog is < 0.4V, proceed through T_timer section below    
           
    R5 Recommended minimum gate resistor to reduce noise 10.000 Ohm
    R6(min) Minimum PG pull-up resistor 6.000 k-Ohm
    R6(max) Maximum PG pull-up resistor 480.000 k-Ohm
    R6 Select the PG pull-up resistor between min and max 10.000 k-Ohm
           
           
    ton FET on-time for the capacitive load 0.063 ms
    CT(min) Minimum timing cap with 40% capacitance tolerance 0.001 uF
    CT Select a capacitance that is larger than CT(min)   0.001 uF
    T_timer Typical fault time
    0.160
    ms
    If Vprog is > 0.4V, proceed to SOA section below    
    SOA derating check
    Parameter Description Value   Units
    MRds(on)_temp FET Rds(on) multiplier using FET Rds(on) vs. temp curves 1.400  
    Tj(elevated) FET elevated max junction temperature 55.536 °C
    DFsoa SOA derating factor 0.796  
    Vsoa Power limited Vds: Use Vsoa, T_timer with FET SOA curve to get Isoa 12.000 V
    Isoa Id from FET SOA curve using Vsoa and T_timer 50.000 A
    SOAjmax FET SOA junction power from Vsoa and Isoa at 25C case temperature 600.000 W
    SOAt Derated SOAjmax. Ensure SOAt is greater than Plim_actual 477.857 W
    Cell turns RED if SOAt < Plim_actual; a more robust FET or improved heat sink is required  
    Calculations for dV/dt control (external cap on GATE and no external cap on PROG)
    Parameter Description Value   Units
    Icharge(max) Choose Icharge less than Plim_actual / VCC(max) 41.667 A
    tcharge(min) Based on Cout, VCC(max), and Icharge 0.063 ms
    Qgd M1 gate-drain charge (from M1 gate charge plot) 14.000 nC
    Vgs(th) M1 gate-threshold voltage (from M1 gate charge plot) 4.500 V
    Igate Typical GATE charge current 22.000 uA
    Cg(min) Using Qgd (install 1k-Ohm resistor in series with Cg) -2.995 nF
    Cg Select Cg greater than Cg(min) 4.700 nF
    tcharge tcharge using selected Cg 4.261 ms
    Icharge Icharge using selected Cg 0.620 A
  • Your analysis seems reasonable. We are a bit uncomfortable with this type of MOSFET package. The transient thermal curves represent Z theta J-A for this package while our spreadsheet tool expects Z theta J-C (actual or normalized). You could ask IRF if they could provide curves for Z theta J-C and rerun the tool. I have attached the spreadsheet updated with a seemingly workable solution assuming a normalized Z theta JC of 0.15 (educated guess).

    FYI, TI has a line of MOSFETs suitable for this type of application. Several 12V, 40A (50A trip) EVM designs exist which use the same TPS2490 based power limiting hot swap controller (TPS2480EVM and TPS2492EVM). These EVMs use a pair of CSC16401Q5A FETs in parallel for this. You could copy the EVM design and adjust the current sense resistor as required.

    http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=sluu370a&fileType=pdf

    TPS2490Tool_revF_locked_Carsten.xls
  • I am doing TPS2480 using IRF6718. How do you calculate FET Rds(on) multiplier using FET Rds(on) vs. temp curves? I am not sure how to read the curve to find the multiplier.

  • These curves are (usually) normalized to 1 at 25C so getting the multiplier is fairly straightforward. For this case, use the FET elevated junction temperature calculated in cell C79 (~92C for the spreadsheet you sent). Then go to figure 7 on pg 4 of the IRF6718 datasheet and use 92C on the X axis to find the multiplier on the RDson curve (~1.25 on the 10V Vgs curve).

  • Correction:

    Use the temperature calculated in cell C47 (cell C79 recalculates elevated junction temperature using the multiplier). So for this case find the multiplier using ~78C (~1.20 vs. 1.25).