This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

IWR1642: The computation of the process covariance matrix Q in the Traffic Monitoring Object Detection and Tracking demo

Part Number: IWR1642

Hi,

    In the Traffic Monitoring Object Detection and Tracking demo, the process covariance matrix Q is computed in the function RADARDEMO_clusterTracker_updateFQ in the following:

   float c = (float)(dt*dt*4.0);        // (dt*2)^2 *d,
    float b = (float)(c*dt*2);          // (dt*2)^3 *d
    float a = (float)(c*c);            // (dt*2)^4 *d

   float Q[16] = {
    a, 0, b, 0,
    0, a, 0, b,
     b, 0, c, 0,
    0, b, 0, c};

that is Q[16] = {
    16*dt^4, 0,         8*dt^3, 0,
     0,        16*dt^4, 0,        8*dt^3,
     8*dt^3, 0,          4*dt^2, 0,
     0,         8*dt^3,   0,        4*dt^2};

I think the mathematical modeling is as below:

x(k+1)=F*x(k)+Dv(k)

x(k)=[posx,posy,velx,vely]

F=[1,0,dt,0

      0,1,0,dt,

      0,01,0

      0,0,0,1   ]

D=[dt^2/2,dt^2/2,dt,dt]

Q=D*D'q;

  =q*[dt^4/4, 0,     dt^3/2, 0

       0,        dt^4/4,0,       dt^3/2

      dt^3/2,  0,      dt^2,    0

      0,         dt^3/2,0,     dt^2

     ]

I don't know my understanding is right or not.

Thanks in advanced,

Regards,

Rata