This thread has been locked.

If you have a related question, please click the "Ask a related question" button in the top right corner. The newly created question will be automatically linked to this question.

TINA/Spice/OPA4277: Discrepancy between TINA and SPICE AC simulation

Part Number: OPA4277
Other Parts Discussed in Thread: TINA-TI, , OPA277, OPA350, OPA378

Tool/software: TINA-TI or Spice Models

Dear all,

one of my customer has found discrepancy between TINA and SPICE model the AC simulation of the OPA4277.

The circuti is very simple, it is a Sallen Key filter.

I've attached the comparison and the Spice model used by the customer.

Can you please double check ?

regards,

Domenico

Comparison.docx

OPA277_SPICE.txt
* OPA277 PSpice Model (PSpice format)
********************************************
**  This file was created by TINA        **
**    (c) 1996-2006 DesignSoft, Inc.   **
********************************************
* OPA277 REV A CREATED by MAREK LIS 
* GREEN-LIS MACRO-MODEL ARCHITECTURE
* January 10, 2014

********************************************
**  THIS FILE WAS CREATED BY TINA        **
**    (C) 1996-2006 DESIGNSOFT, INC.   **
********************************************

* THIS MACROMODEL HAS BEEN OPTIMIZED TO MODEL THE AC, DC, NOISE, AND TRANSIENT RESPONSE PERFORMANCE WITHIN 
* THE DEVICE DATA SHEET SPECIFIED LIMITS. CORRECT OPERATION OF THIS MACROMODEL HAS BEEN VERIFIED ON DESIGNSOFT
* TINA VERSION 7.0.80.224 SF. FOR HELP WITH OTHER ANALOG SIMULATION SOFTWARE, PLEASE CONSULT THE SOFTWARE SUPPLIER.
*
* COPYRIGHT 2011 BY TEXAS INSTRUMENTS CORPORATION
*
* BEGIN MODEL OPA277
*
*GREEN-LIS MACRO-MODEL SIMULATED FEATURES:
*
*OPEN LOOP GAIN AND PHASE VS FREQUENCY WITH RL AND CL EFFECTS
*INPUT COMMON MODE REJECTION WITH FREQUENCY
*POWER SUPPLY REJECTION WITH FREQUENCY
*INPUT IMPEDANCE VS FREQUENCY 
*OUTPUT IMPEDANCE VS FREQUENCY AND OUTPUT CURRENT
*INPUT VOLTAGE NOISE VS FREQUENCY
*INPUT CURRENT NOISE VS FREQUENCY 
*OUTPUT VOLTAGE SWING VS OUTPUT CURRENT
*SHORT-CIRCUIT OUTPUT CURRENT
*QUIESCENT CURRENT VS SUPPLY VOLTAGE
*SETTLING TIME VS CAPACITIVE LOAD
*SLEW RATE
*SMALL SIGNAL OVERSHOOT VS CAPACITIVE LOAD
*LARGE SIGNAL RESPONSE
*OVERLOAD RECOVERY TIME
*INPUT BIAS CURRENT
*INPUT VOLTAGE OFFSET
*INPUT COMMON MODE RANGE
*OUTPUT CURRENT COMING THROUGH THE SUPPLY RAILS

.SUBCKT OPA277 +IN -IN V+ V- Vout
V7          15 58 2.3
Vos         28 51 -1.2U
V11         60 61 100M
V10         62 63 100M
V6          7 68 100
V5          69 7 100
V4          65 67 2.4
V1          66 64 2.4
V9          80 16 2.3
IS2         V+ 28 -500P
IS1         V+ V- 790U
IS3         29 V- 1N
V3          84 7 35
V2          7 85 35
XU15        28 29 IDEAL_D_0
XU9         29 28 IDEAL_D_0
XR105       30 7 RNOISE_FREE_0
GVCCS9      7 30 31 7  1U
C7          27 7 50F IC=0 
R37         32 33 100MEG 
C6          34 32  1.00000000000000E-0016 IC=0 
C4          7 35 63.9N IC=0 
EVCVS1      11 7 8 36  -1
R38         35 37 10 
VCCVS2_in   36 9
HCCVS2      37 7 VCCVS2_in   1K
XU7         35 7 36 33 VC_RES_0
C25         11 34 2P IC=0 
C24         11 10 4U IC=0 
R32         10 34 40K 
R31         34 33 100MEG 
R30         11 34 500K 
EVCVS2      33 7 7 34  20MEG
XIn12       38 7 FEMT_0
R15         +IN 7 100MEG 
XR102       39 40 RNOISE_FREE_0
XR101       41 39 RNOISE_FREE_0
C1          39 +IN 1 IC=0 
EVCVS34     7 +IN 39 +IN  1
EVCVS29     41 +IN V+ +IN  1
EVCVS28     40 +IN V- +IN  1
SW13        11 10 7 12  S_VSWITCH_1
SW14        10 11 13 7  S_VSWITCH_2
XR105_2     14 7 RNOISE_FREE_1
XR105_3     31 7 RNOISE_FREE_0
R24         7 20 1K 
R17         7 21 1K 
R11         7 42 1K 
R10         7 43 1K 
R9          7 13 1K 
R8          7 12 1K 
L1          44 7 1F IC=0 
R2          44 45 1 
GVCCS8      7 45 7 46  1
XR109       47 7 RNOISE_FREE_0
C3          47 7 1F IC=0 
GVCCS4      7 47 25 7  1U
C2          48 7 1F IC=0 
XR109_2     48 7 RNOISE_FREE_2
GVCCS3      7 48 47 7  1M
R4          49 23 10M 
CinDiff     38 50 3P IC=0 
CinpCM      50 7 3P IC=0 
CinnCM      7 38 3P IC=0 
XIn11       51 7 FEMT_0
L2          52 7 1F IC=0 
XR109_3     25 7 RNOISE_FREE_0
XVn11       50 51 VNSE_0
XU14        53 7 54 29 VCVS_LIMIT_0
L3          55 7 1F IC=0 
Rcm2        52 53 1 
GVCCS2      7 53 7 56  1
XU13        15 57 IDEAL_D_1
EVCVS5      58 7 V- 7  1
XR109_4     24 7 RNOISE_FREE_2
GVCCS12     7 25 30 7  1U
XU5         17 7 V+ 18 VCVS_LIMIT_1
XU6         7 17 19 V- VCVS_LIMIT_2
C15         V+ V- 10P IC=0 
C22         7 22 1P IC=0 
R29         22 14 1 
C23         7 26 1P IC=0 
C9          59 7 10P IC=0 
R26         59 17 10 
C21         7 13 1P IC=0 
C20         7 12 1P IC=0 
C19         20 7 1P IC=0 
C17         21 7 1P IC=0 
C16         7 42 1P IC=0 
C12         43 7 1P IC=0 
R13         8 26 1 
R36         26 63 1M 
R35         26 61 1M 
SW12        64 60 20 7  S_VSWITCH_3
SW11        62 65 7 21  S_VSWITCH_4
R34         26 66 1K 
R33         26 67 1K 
SW10        69 14 22 7  S_VSWITCH_5
SW9         14 68 7 22  S_VSWITCH_6
R25         70 20 1 
R19         71 21 1 
R16         72 42 1 
R14         73 43 1 
R12         74 13 1 
R7          75 12 1 
R5          76 24 10M 
R6          77 14 10M 
C13         24 7 1F IC=0 
GVCCS1      7 24 48 7  1M
GIsinking   V- 7 78 7  1M
GIsourcing  V+ 7 79 7  1M
R23         78 7 10K 
SW7         17 78 59 7  S_VSWITCH_7
R21         7 79 10K 
SW8         17 79 59 7  S_VSWITCH_8
SW4         77 74 13 7  S_VSWITCH_9
SW3         75 77 7 12  S_VSWITCH_10
XU3         65 27 75 7 VCVS_LIMIT_3
XU1         64 27 74 7 VCVS_LIMIT_3
SW2         49 70 20 7  S_VSWITCH_11
SW1         71 49 7 21  S_VSWITCH_12
XU8         28 V+ IDEAL_D_0
XU12        V- 28 IDEAL_D_0
EVCVS6      80 7 V+ 7  1
R22         81 57 100 
EVCVS4      81 7 28 7  1
XU2         57 16 IDEAL_D_1
SW6         76 72 42 7  S_VSWITCH_13
SW5         73 76 7 43  S_VSWITCH_14
XU26        57 29 7 82 VCCS_LIMIT_0
XU4         82 7 7 14 VCCS_LIMIT_1
LPSR        83 7 20M IC=0 
XVCVSPSRR   45 7 54 38 VCVS_LIMIT_4
XU22        84 17 71 7 VCVS_LIMIT_5
XU21        85 17 70 7 VCVS_LIMIT_5
XU20        19 Vout 72 7 VCVS_LIMIT_5
XU19        18 Vout 73 7 VCVS_LIMIT_6
XU11        V- 29 IDEAL_D_0
XU10        29 V+ IDEAL_D_0
C10         23 7 1F IC=0 
C5          25 7 5F IC=0 
XR109_5     23 7 RNOISE_FREE_2
GVCCS15     7 23 24 7  1M
R20         +IN 50 1K 
R18         -IN 38 1K 
GVCCS6      7 31 27 7  1U
XR105_4     27 7 RNOISE_FREE_0
XR103       7 82 RNOISE_FREE_0
RPSR        83 46 1 
GVCCS11     7 46 V+ V-  300N
Rcm1        55 56 1 
GVCCS7      7 56 28 7  1U
VCCVS1_in   9 Vout
HCCVS1      17 7 VCCVS1_in   1K
GVCCS5      7 27 14 7  1U
Ccc         14 7 180U IC=0 
EVCVS3      8 7 23 7  1
.MODEL S_VSWITCH_1 VSWITCH (RON=1 ROFF=100MEG VON=100M VOFF=-100M)
.MODEL S_VSWITCH_2 VSWITCH (RON=1 ROFF=100MEG VON=100M VOFF=-100M)
.MODEL S_VSWITCH_3 VSWITCH (RON=1 ROFF=10MEG VON=100M VOFF=-100M)
.MODEL S_VSWITCH_4 VSWITCH (RON=1 ROFF=10MEG VON=100M VOFF=-100M)
.MODEL S_VSWITCH_5 VSWITCH (RON=10M ROFF=100MEG VON=150 VOFF=130)
.MODEL S_VSWITCH_6 VSWITCH (RON=10M ROFF=100MEG VON=150 VOFF=130)
.MODEL S_VSWITCH_7 VSWITCH (RON=1M ROFF=10MEG VON=-10M VOFF=0)
.MODEL S_VSWITCH_8 VSWITCH (RON=1M ROFF=10MEG VON=10M VOFF=0)
.MODEL S_VSWITCH_9 VSWITCH (RON=1 ROFF=10MEG VON=1 VOFF=-1)
.MODEL S_VSWITCH_10 VSWITCH (RON=1 ROFF=10MEG VON=1 VOFF=-1)
.MODEL S_VSWITCH_11 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
.MODEL S_VSWITCH_12 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
.MODEL S_VSWITCH_13 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
.MODEL S_VSWITCH_14 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
.ENDS


*TG IDEAL DIODE
.SUBCKT IDEAL_D_0  A C
D1 A C DNOM 
.MODEL DNOM D (TT=10P CJO=1E-18 IS=1E-15 RS=1E-3)
.ENDS IDEAL_D_0 


* NOISELESS RESISTOR
.SUBCKT RNOISE_FREE_0  1 2
*ROHMS = VALUE IN OHMS OF NOISELESS RESISTOR
.PARAM ROHMS=1E6
ERES 1 3 VALUE = { I(VSENSE) * ROHMS }
RDUMMY 30 3 1
VSENSE 30 2 DC 0V
.ENDS RNOISE_FREE_0 


*VOLTAGE CONTROLLED RESISTOR
.SUBCKT VC_RES_0  1      2      3    4
*              VC+    VC-   RES1 RES2
ERES 3 40 VALUE = {(I(VSENSE) * (ABS(V(1,2))*ABS(V(1,2))*0.000352-0.02359*ABS(V(1,2))+0.5922))*140000*33000*50*2/414500}
VSENSE 40 4 DC 0
.ENDS VC_RES_0 


* BEGIN PROG NSE FEMTO AMP/RT-HZ 
.SUBCKT FEMT_0  1 2
* BEGIN SETUP OF NOISE GEN - FEMPTOAMPS/RT-HZ
* INPUT THREE VARIABLES
* SET UP INSE 1/F
* FA/RHZ AT 1/F FREQ
.PARAM NLFF=1000
* FREQ FOR 1/F VAL
.PARAM FLWF=1
* SET UP INSE FB
* FA/RHZ FLATBAND
.PARAM NVRF=200
* END USER INPUT
* START CALC VALS
.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164}
.PARAM RNVF={1.184*PWR(NVRF,2)}
.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16
* END CALC VALS
I1 0 7 10E-3
I2 0 8 10E-3
D1 7 0 DVNF
D2 8 0 DVNF
E1 3 6 7 8 {GLFF}
R1 3 0 1E9
R2 3 0 1E9
R3 3 6 1E9
E2 6 4 5 0 10
R4 5 0 {RNVF}
R5 5 0 {RNVF}
R6 3 4 1E9
R7 4 0 1E9
G1 1 2 3 4 1E-6
C1 1 0 1E-15
C2 2 0 1E-15
C3 1 2 1E-15
.ENDS
* END PROG NSE FEMTO AMP/RT-HZ


* NOISELESS RESISTOR
.SUBCKT RNOISE_FREE_1  1 2
*ROHMS = VALUE IN OHMS OF NOISELESS RESISTOR
.PARAM ROHMS=1E4
ERES 1 3 VALUE = { I(VSENSE) * ROHMS }
RDUMMY 30 3 1
VSENSE 30 2 DC 0V
.ENDS RNOISE_FREE_1 


* NOISELESS RESISTOR
.SUBCKT RNOISE_FREE_2  1 2
*ROHMS = VALUE IN OHMS OF NOISELESS RESISTOR
.PARAM ROHMS=1E3
ERES 1 3 VALUE = { I(VSENSE) * ROHMS }
RDUMMY 30 3 1
VSENSE 30 2 DC 0V
.ENDS RNOISE_FREE_2 


* BEGIN PROG NSE NANO VOLT/RT-HZ
.SUBCKT VNSE_0  1 2
* BEGIN SETUP OF NOISE GEN - NANOVOLT/RT-HZ
* INPUT THREE VARIABLES
* SET UP VNSE 1/F
* NV/RHZ AT 1/F FREQ
.PARAM NLF=50
* FREQ FOR 1/F VAL
.PARAM FLW=1
* SET UP VNSE FB
* NV/RHZ FLATBAND
.PARAM NVR=5.5
* END USER INPUT
* START CALC VALS
.PARAM GLF={PWR(FLW,0.25)*NLF/1164}
.PARAM RNV={1.184*PWR(NVR,2)}
.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16
* END CALC VALS
I1 0 7 10E-3
I2 0 8 10E-3
D1 7 0 DVN
D2 8 0 DVN
E1 3 6 7 8 {GLF}
R1 3 0 1E9
R2 3 0 1E9
R3 3 6 1E9
E2 6 4 5 0 10
R4 5 0 {RNV}
R5 5 0 {RNV}
R6 3 4 1E9
R7 4 0 1E9
E3 1 2 3 4 1
C1 1 0 1E-15
C2 2 0 1E-15
C3 1 2 1E-15
.ENDS
* END PROG NSE NANOV/RT-HZ


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_0  VC+ VC- VOUT+ VOUT-
*              
.PARAM GAIN = 1
.PARAM VPOS = 10M
.PARAM VNEG = -10M
E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
.ENDS VCVS_LIMIT_0 


*TG IDEAL DIODE
.SUBCKT IDEAL_D_1  A C
D1 A C DNOM
.MODEL DNOM D (TT=10P CJO=1E-18 IS=1E-15 RS=1E-3)
.ENDS IDEAL_D_1 


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_1  VC+ VC- VOUT+ VOUT-
*              

E1 VOUT+ VOUT- TABLE {ABS(V(VC+,VC-))} = (0.0,1.0)(16,1.3)(26,4.0)(34.9,7.5)
.ENDS VCVS_LIMIT_1 



*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_2  VC+ VC- VOUT+ VOUT-
*              

E1 VOUT+ VOUT- TABLE {ABS(V(VC+,VC-))} = (0.0,0.3)(20,2.0)(25,3.5)(34.9,7.5)
.ENDS VCVS_LIMIT_2 



*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_3  VC+ VC- VOUT+ VOUT-
*              
.PARAM GAIN = 100
.PARAM VPOS = 6000
.PARAM VNEG = -6000
E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
.ENDS VCVS_LIMIT_3 


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCCS_LIMIT_0  VC+ VC- IOUT+ IOUT-
*              
.PARAM GAIN = 1M
.PARAM IPOS = .5
.PARAM INEG = -.5
G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
.ENDS VCCS_LIMIT_0 


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCCS_LIMIT_1  VC+ VC- IOUT+ IOUT-
*              
.PARAM GAIN = 1.3
.PARAM IPOS = 150
.PARAM INEG = -150
G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
.ENDS VCCS_LIMIT_1 


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_4  VC+ VC- VOUT+ VOUT-
*              
.PARAM GAIN = -1
.PARAM VPOS = 10M
.PARAM VNEG = -10M
E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
.ENDS VCVS_LIMIT_4 


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_5  VC+ VC- VOUT+ VOUT-
*              
.PARAM GAIN = 100
.PARAM VPOS = 5000
.PARAM VNEG = -5000
E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
.ENDS VCVS_LIMIT_5 


*VOLTAGE CONTROLLED SOURCE WITH LIMITS
.SUBCKT VCVS_LIMIT_6  VC+ VC- VOUT+ VOUT-
*             
.PARAM GAIN = 100
.PARAM VPOS = 5000
.PARAM VNEG = -5000
E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
.ENDS VCVS_LIMIT_6 


.END